1
|
Lee J, Jeon HH, Seo E, Park S, Choe D, Cho BK, Lee JW. Direct mRNA-to-sgRNA conversion generates design-free ultra-dense CRISPRi libraries for systematic phenotypic screening. Metab Eng 2025; 89:108-120. [PMID: 39993558 DOI: 10.1016/j.ymben.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/16/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
CRISPR interference (CRISPRi) is a versatile tool for high-throughput phenotypic screening. However, rational design and synthesis of the single-guide RNA (sgRNA) library required for each genome-wide CRISPRi application is time-consuming, expensive, and unfeasible if the target organisms lack comprehensive sequencing and characterization. We developed an ultra-dense random sgRNA library generation method applicable to any organism, including those that are not well-characterized. Our method converts transcriptome-wide mRNA into 20 nt of sgRNA spacer sequences through enzymatic reactions. The generated sgRNA library selectively binds to the non-template strand of the coding sequence, leading to more efficient repression compared to binding the template strand. We then generated a genome-scale library for Escherichia coli by applying this method and identified essential and auxotrophic genes through phenotypic screening. Furthermore, we tuned the production levels of lycopene and violacein and identified new repression targets for violacein production. Our results demonstrated that a genome-scale sgRNA library can be generated without rational design and can be utilized simultaneously in a range of phenotypic screenings.
Collapse
Affiliation(s)
- Jiseon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ha Hyeon Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Euijin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sehyeon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
3
|
Sadanov AK, Baimakhanova BB, Orasymbet SE, Ratnikova IA, Turlybaeva ZZ, Baimakhanova GB, Amitova AA, Omirbekova AA, Aitkaliyeva GS, Kossalbayev BD, Belkozhayev AM. Engineering Useful Microbial Species for Pharmaceutical Applications. Microorganisms 2025; 13:599. [PMID: 40142492 PMCID: PMC11944651 DOI: 10.3390/microorganisms13030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Microbial engineering has made a significant breakthrough in pharmaceutical biotechnology, greatly expanding the production of biologically active compounds, therapeutic proteins, and novel drug candidates. Recent advancements in genetic engineering, synthetic biology, and adaptive evolution have contributed to the optimization of microbial strains for pharmaceutical applications, playing a crucial role in enhancing their productivity and stability. The CRISPR-Cas system is widely utilized as a precise genome modification tool, enabling the enhancement of metabolite biosynthesis and the activation of synthetic biological pathways. Additionally, synthetic biology approaches allow for the targeted design of microorganisms with improved metabolic efficiency and therapeutic potential, thereby accelerating the development of new pharmaceutical products. The integration of artificial intelligence (AI) and machine learning (ML) plays a vital role in further advancing microbial engineering by predicting metabolic network interactions, optimizing bioprocesses, and accelerating the drug discovery process. However, challenges such as the efficient optimization of metabolic pathways, ensuring sustainable industrial-scale production, and meeting international regulatory requirements remain critical barriers in the field. Furthermore, to mitigate potential risks, it is essential to develop stringent biocontainment strategies and implement appropriate regulatory oversight. This review comprehensively examines recent innovations in microbial engineering, analyzing key technological advancements, regulatory challenges, and future development perspectives.
Collapse
Affiliation(s)
- Amankeldi K. Sadanov
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050010, Kazakhstan; (A.K.S.); (B.B.B.); (S.E.O.); (I.A.R.); (Z.Z.T.)
| | - Baiken B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050010, Kazakhstan; (A.K.S.); (B.B.B.); (S.E.O.); (I.A.R.); (Z.Z.T.)
| | - Saltanat E. Orasymbet
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050010, Kazakhstan; (A.K.S.); (B.B.B.); (S.E.O.); (I.A.R.); (Z.Z.T.)
| | - Irina A. Ratnikova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050010, Kazakhstan; (A.K.S.); (B.B.B.); (S.E.O.); (I.A.R.); (Z.Z.T.)
| | - Zere Z. Turlybaeva
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050010, Kazakhstan; (A.K.S.); (B.B.B.); (S.E.O.); (I.A.R.); (Z.Z.T.)
| | - Gul B. Baimakhanova
- LLP “Research and Production Center for Microbiology and Virology”, Almaty 050010, Kazakhstan; (A.K.S.); (B.B.B.); (S.E.O.); (I.A.R.); (Z.Z.T.)
| | - Aigul A. Amitova
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan; (G.S.A.); (A.M.B.)
| | - Anel A. Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Gulzat S. Aitkaliyeva
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan; (G.S.A.); (A.M.B.)
| | - Bekzhan D. Kossalbayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan; (G.S.A.); (A.M.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Ayaz M. Belkozhayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Almaty 050043, Kazakhstan; (G.S.A.); (A.M.B.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
4
|
Wu J, Ye W, Yu J, Zhou T, Zhou N, K P Ng D, Li Z. Engineered bacteria and bacterial derivatives as advanced therapeutics for inflammatory bowel disease. Essays Biochem 2025; 69:EBC20253003. [PMID: 40014418 DOI: 10.1042/ebc20253003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
Inflammatory bowel disease (IBD), a chronic and relapsing-remitting condition, is inadequately managed by conventional therapies that often lack targeting specificity and carry significant side effects, particularly failing to address intestinal barrier repair and microbial balance. Probiotics, with their strong colonization capabilities, present a novel approach to drug delivery. Various engineering strategies have been developed to enhance the targeting ability of probiotics to inflammation sites, enabling precise delivery or in situ synthesis of therapeutic molecules to expand their multifunctional potential. This review discusses the recent advancements in bacterial modifications, including surface physico-chemical and biological coating, genetic engineering, outer membrane vesicles, minicells, and bacterial ghosts, all of which can enhance therapeutic localization. We also outline critical preclinical considerations, such as delivery frequency, systemic distribution, immune evasion, and gene contamination risks, for clinical translation. These engineered bacteria and bacterial derivatives hold great promise for personalized and sustained IBD treatments, providing a new frontier for therapy tailored to the complex inflammatory environment of IBD.
Collapse
Affiliation(s)
- Jingyuan Wu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Wanlin Ye
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Jie Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Tuoyu Zhou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China
| | - Nuo Zhou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China
| | - Zhaoting Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
5
|
Wiull K, Haugen LK, Eijsink VGH, Mathiesen G. CRISPR/Cas9-mediated genomic insertion of functional genes into Lactiplantibacillus plantarum WCFS1. Microbiol Spectr 2025; 13:e0202524. [PMID: 39817779 PMCID: PMC11792511 DOI: 10.1128/spectrum.02025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Lactiplantibacillus plantarum, a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in L. plantarum. The knock-in plasmid was designed with a cassette-like structure to simplify the insertion of target DNA and streamline the CRISPR/Cas9 genome editing, bringing it one step closer to becoming a routine procedure. We demonstrate that the system enables efficient insertion of expression cassettes for both inducible and constitutive production of a fluorescent reporter protein, mCherry, and for inducible production of the receptor-binding domain (RBD) of the SARS-CoV-2 virus. Two variants of RBD were successfully expressed, one directed to the cytoplasm and one directed to the cell surface. All the knock-in strains produced the target protein, although with lower yields than strains with plasmid-encoded expression. IMPORTANCE Genetic engineering of lactic acid bacteria, such as Lactiplantibacillus plantarum, has proven to be difficult. This study presents an inducible two-plasmid CRISPR/Cas9-system for inserting genes into the chromosome of Lactiplantibacillus plantarum. Our system successfully knock-in four expression cassettes varying in length from ~800-1,300 bp with high efficiency and insert an expression cassette encoding a SARS-CoV-2 antigen receptor-binding domain (RBD) with an anchor mediating surface display, which has not been achieved previously using CRISPR/Cas9. We demonstrate the production of the insertion genes. Importantly, the plasmid carrying the SgRNA, Cas9, and homology-directed repair template is designed for easy component exchange. These plasmids represent valuable contributions to the field as they could facilitate rapid CRISPR/Cas9 engineering of L. plantarum strains.
Collapse
Affiliation(s)
- Kamilla Wiull
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Lisa K. Haugen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Chemla Y, Sweeney CJ, Wozniak CA, Voigt CA. Design and regulation of engineered bacteria for environmental release. Nat Microbiol 2025; 10:281-300. [PMID: 39905169 DOI: 10.1038/s41564-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Emerging products of biotechnology involve the release of living genetically modified microbes (GMMs) into the environment. However, regulatory challenges limit their use. So far, GMMs have mainly been tested in agriculture and environmental cleanup, with few approved for commercial purposes. Current government regulations do not sufficiently address modern genetic engineering and limit the potential of new applications, including living therapeutics, engineered living materials, self-healing infrastructure, anticorrosion coatings and consumer products. Here, based on 47 global studies on soil-released GMMs and laboratory microcosm experiments, we discuss the environmental behaviour of released bacteria and offer engineering strategies to help improve performance, control persistence and reduce risk. Furthermore, advanced technologies that improve GMM function and control, but lead to increases in regulatory scrutiny, are reviewed. Finally, we propose a new regulatory framework informed by recent data to maximize the benefits of GMMs and address risks.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Connor J Sweeney
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Saeed H, Díaz LA, Gil-Gómez A, Burton J, Bajaj JS, Romero-Gomez M, Arrese M, Arab JP, Khan MQ. Microbiome-centered therapies for the management of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2025; 31:S94-S111. [PMID: 39604327 PMCID: PMC11925441 DOI: 10.3350/cmh.2024.0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant global health issue, affecting over 30% of the population worldwide due to the rising prevalence of metabolic risk factors such as obesity and type 2 diabetes mellitus. This spectrum of liver disease ranges from isolated steatosis to more severe forms such as steatohepatitis, fibrosis, and cirrhosis. Recent studies highlight the role of gut microbiota in MASLD pathogenesis, showing that dysbiosis significantly impacts metabolic health and the progression of liver disease. This review critically evaluates current microbiome-centered therapies in MASLD management, including prebiotics, probiotics, synbiotics, fecal microbiota transplantation, and emerging therapies such as engineered bacteria and bacteriophage therapy. We explore the scientific rationale, clinical evidence, and potential mechanisms by which these interventions influence MASLD. The gut-liver axis is crucial in MASLD, with notable changes in microbiome composition linked to disease progression. For instance, specific microbial profiles and reduced alpha diversity are associated with MASLD severity. Therapeutic strategies targeting the microbiome could modulate disease progression by improving gut permeability, reducing endotoxin-producing bacteria, and altering bile acid metabolism. Although promising, these therapies require further research to fully understand their mechanisms and optimize their efficacy. This review integrates findings from clinical trials and experimental studies, providing a comprehensive overview of microbiome-centered therapies' potential in managing MASLD. Future research should focus on personalized strategies, utilizing microbiome features, blood metabolites, and customized dietary interventions to enhance the effectiveness of these therapies.
Collapse
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Luis Antonio Díaz
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonio Gil-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jeremy Burton
- Department of Microbiology & Immunology, Western University, London, ON, Canada
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Manuel Romero-Gomez
- SeLiver Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- UCM Digestive diseases, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Mohammad Qasim Khan
- Division of Gastroenterology, Department of Medicine, University of Western Ontario, London, ON, Canada
- Department of Epidemiology and Biostatistics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
8
|
Choi YN, Kim D, Lee S, Shin Y, Lee J. Quadruplet codon decoding-based versatile genetic biocontainment system. Nucleic Acids Res 2025; 53:gkae1292. [PMID: 39777466 PMCID: PMC11705086 DOI: 10.1093/nar/gkae1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Biological resources, such as sequence information, genetic traits, materials and strains, pose risks when inadvertently released or deliberately misused. To address these concerns, we developed Quadruplet COdon DEcoding (QCODE), a versatile genetic biocontainment strategy that introduces a quadruplet codon (Q-codon) causing frameshifts, hindering proper gene expression. Strategically incorporating Q-codons in multiple genes prevents genetic trait escape, unallowed proliferation of microbial strains and unauthorized leakages of genetic materials. This multifaceted strategy, integrating Q-codons for genetic traits, materials and strains, ensures robust biocontainment across various levels. Notably, our system maintains sequence protection, safeguarding genetic sequence information against unauthorized access. The QCODE approach offers a versatile, efficient and compact solution to enhance biosecurity in diverse biological research settings.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donghyeon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seongbeom Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ye Rim Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
9
|
Yang B, Wu C, Teng Y, Chou KJ, Guarnieri MT, Xiong W. Tailoring microbial fitness through computational steering and CRISPRi-driven robustness regulation. Cell Syst 2024; 15:1133-1147.e4. [PMID: 39667940 DOI: 10.1016/j.cels.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/25/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024]
Abstract
The widespread application of genetically modified microorganisms (GMMs) across diverse sectors underscores the pressing need for robust strategies to mitigate the risks associated with their potential uncontrolled escape. This study merges computational modeling with CRISPR interference (CRISPRi) to refine GMM metabolic robustness. Utilizing ensemble modeling, we achieved high-throughput in silico screening for enzymatic targets susceptible to expression alterations. Translating these insights, we developed functional CRISPRi, boosting fitness control via multiplexed gene knockdown. Our method, enhanced by an insulator-improved gRNA structure and an off-switch circuit controlling a compact Cas12m, resulted in rationally engineered strains with escape frequencies below National Institutes of Health standards. The effectiveness of this approach was confirmed under various conditions, showcasing its ability for secure GMM management. This research underscores the resilience of microbial metabolism, strategically modifying key nodes to halt growth without provoking significant resistance, thereby enabling more reliable and precise GMM control. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Bin Yang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Chao Wu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yuxi Teng
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27679-27700. [PMID: 39588716 DOI: 10.1021/acs.jafc.4c08702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The burgeoning field of microbiome research has profoundly reshaped our comprehension of human health, particularly highlighting the potential of probiotics and fecal microbiota transplantation (FMT) as therapeutic interventions. While the benefits of traditional probiotics are well-recognized, the efficacy and mechanisms remain ambiguous, and FMT's long-term effects are still being investigated. Recent advancements in high-throughput sequencing have identified gut microbes with significant health benefits, paving the way for next-generation probiotics (NGPs). These NGPs, engineered through synthetic biology and bioinformatics, are designed to address specific disease states with enhanced stability and viability. This review synthesizes current research on NGP stability, challenges in delivery, and their applications in preventing and treating chronic diseases such as diabetes, obesity, and cardiovascular diseases. We explore the physiological characteristics, safety profiles, and mechanisms of action of various NGP strains while also addressing the challenges and opportunities presented by their integration into clinical practice. The potential of NGPs to revolutionize microbiome-based therapies and improve clinical outcomes is immense, underscoring the need for further research to optimize their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237 East Java, Indonesia
| | - Erna Susilowati
- Akademi Kesehatan Dharma Husada Kediri, Kediri, 64118 East Java, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Luo Z, Qi Z, Luo J, Chen T. Potential applications of engineered bacteria in disease diagnosis and treatment. MICROBIOME RESEARCH REPORTS 2024; 4:10. [PMID: 40207274 PMCID: PMC11977365 DOI: 10.20517/mrr.2024.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 04/11/2025]
Abstract
Probiotics are live microorganisms that confer health benefits to the host when administered in appropriate quantities. This beneficial effect has spurred extensive research in the medical and health fields. With rapid advancements in synthetic biology, the genetic and biological characteristics of a broad array of probiotics have been elucidated. Utilizing these insights, genetic editing technologies now enable the precise modification of probiotics, leading to the development of engineered bacteria. Emerging evidence underscores the significant potential of these engineered bacteria in disease management. This review explores the methodologies for creating engineered bacteria, their preliminary applications in healthcare, and the mechanisms underlying their functions. Engineered bacteria are being developed for roles such as in vivo drug delivery systems, biosensors, and mucosal vaccines, thereby contributing to the treatment, diagnosis, and prevention of conditions including inflammatory bowel disease (IBD), metabolic disorders, cancer, and neurodegenerative diseases. The review concludes by assessing the advantages and limitations of engineered bacteria in the context of disease management.
Collapse
Affiliation(s)
- Zhaowei Luo
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Zhanghua Qi
- School of Huankui Academy, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jie Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
12
|
Huang Y, Peng S, Zeng R, Yao H, Feng G, Fang J. From probiotic chassis to modification strategies, control and improvement of genetically engineered probiotics for inflammatory bowel disease. Microbiol Res 2024; 289:127928. [PMID: 39405668 DOI: 10.1016/j.micres.2024.127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024]
Abstract
With the rising morbidity of inflammatory bowel disease (IBD) year by year, conventional therapeutic drugs with systemic side effects are no longer able to meet the requirements of patients. Probiotics can improve gut microbiota, enhance intestinal barrier function, and regulate mucosal immunity, making them a potential complementary or alternative therapy for IBD. To compensate for the low potency of probiotics, genetic engineering technology has been widely used to improve their therapeutic function. In this review, we systematically summarize the genetically engineered probiotics used for IBD treatment, including probiotic chassis, genetic modification strategies, methods for controlling probiotics, and means of improving efficacy. Finally, we provide prospects on how genetically engineered probiotics can be extended to clinical applications.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha 410081, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Zou ZP, Zhang XP, Zhang Q, Yin BC, Zhou Y, Ye BC. Genetically engineered bacteria as inflammatory bowel disease therapeutics. ENGINEERING MICROBIOLOGY 2024; 4:100167. [PMID: 39628589 PMCID: PMC11611042 DOI: 10.1016/j.engmic.2024.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease caused by immune response disorders that disrupt the intestinal lumen symbiotic ecosystem and dysregulate mucosal immune functions. Current therapies available for IBD primarily focus on symptom management, making early diagnosis and prompt intervention challenging. The development of genetically engineered bacteria using synthetic biology presents a new strategy for addressing these challenges. In this review, we present recent breakthroughs in the field of engineered bacteria for the treatment and detection of IBD and describe how bacteria can be genetically modified to produce therapeutic molecules or execute diagnostic functions. In particular, we discuss the challenges faced in translating live bacterial therapeutics from bacterial design to delivery strategies for further clinical applications.
Collapse
Affiliation(s)
| | | | - Qian Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhou
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
14
|
Kim TH, Cho BK, Lee DH. Synthetic Biology-Driven Microbial Therapeutics for Disease Treatment. J Microbiol Biotechnol 2024; 34:1947-1958. [PMID: 39233526 PMCID: PMC11540606 DOI: 10.4014/jmb.2407.07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The human microbiome, consisting of microorganisms that coexist symbiotically with the body, impacts health from birth. Alterations in gut microbiota driven by factors such as diet and medication can contribute to diseases beyond the gut. Synthetic biology has paved the way for engineered microbial therapeutics, presenting promising treatments for a variety of conditions. Using genetically encoded biosensors and dynamic regulatory tools, engineered microbes can produce and deliver therapeutic agents, detect biomarkers, and manage diseases. This review organizes engineered microbial therapeutics by disease type, emphasizing innovative strategies and recent advancements. The scope of diseases includes gastrointestinal disorders, cancers, metabolic diseases, infections, and other ailments. Synthetic biology facilitates precise targeting and regulation, improving the efficacy and safety of these therapies. With promising results in animal models, engineered microbial therapeutics provide a novel alternative to traditional treatments, heralding a transformative era in diagnostics and treatment for numerous diseases.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Byung Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institutes for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology Research Center and the K-Biofoundry, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon 34141, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Yoda M, Takase S, Suzuki K, Murakami A, Namai F, Sato T, Fujii T, Tochio T, Shimosato T. Development of engineered IL-36γ-hypersecreting Lactococcus lactis to improve the intestinal environment. World J Microbiol Biotechnol 2024; 40:363. [PMID: 39446273 PMCID: PMC11502612 DOI: 10.1007/s11274-024-04157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Interleukin (IL) 36 is a member of the IL-1-like proinflammatory cytokine family that has a protective role in mucosal immunity. We hypothesized that mucosal delivery of IL-36γ to the intestine would be a very effective way to prevent intestinal diseases. Here, we genetically engineered a lactic acid bacterium, Lactococcus lactis, to produce recombinant mouse IL-36γ (rmIL-36γ). Western blotting and enzyme-linked immunosorbent assay results showed that the engineered strain (NZ-IL36γ) produced and hypersecreted the designed rmIL-36γ in the presence of nisin, which induces the expression of the recombinant gene. We administered NZ-IL36γ to mice via oral gavage, and collected the ruminal contents and rectal tissues. Colony PCR using primers specific for NZ-IL36γ, and enzyme-linked immunosorbent assay to measure the rmIL-36γ concentrations of the ruminal contents showed that NZ-IL36γ colonized the mouse intestines and secreted rmIL-36γ. A microbiota analysis revealed increased abundances of bacteria of the genera Acetatifactor, Eubacterium, Monoglobus, and Roseburia in the mouse intestines. Real-time quantitative PCR of the whole colon showed increased Muc2 expression. An in vitro assay using murine colorectal epithelial cells and human colonic cells showed that purified rmIL-36γ promoted Muc2 gene expression. Taken together, these data suggest that NZ-IL36γ may be an effective and attractive tool for delivering rmIL-36γ to improve the intestinal environment.
Collapse
Affiliation(s)
- Masahiro Yoda
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Shogo Takase
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Kaho Suzuki
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Aito Murakami
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Tadashi Fujii
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, 470-1101, Japan
| | - Takumi Tochio
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake, Aichi, 470-1101, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan.
- Institute for Aqua Regeneration, Shinshu University, Nagano, 399-4598, Japan.
- Department of Pharmacy, Medical Faculty, Universitas Brawijaya, Malang, 65145, Indonesia.
| |
Collapse
|
16
|
Xu M, Feng G, Fang J. Microcapsules based on biological macromolecules for intestinal health: A review. Int J Biol Macromol 2024; 276:133956. [PMID: 39029830 DOI: 10.1016/j.ijbiomac.2024.133956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intestinal dysfunction is becoming increasingly associated with neurological and endocrine issues, raising concerns about its impact on world health. With the introduction of several breakthrough technologies for detecting and treating intestinal illnesses, significant progress has been made in the previous few years. On the other hand, traditional intrusive diagnostic techniques are expensive and time-consuming. Furthermore, the efficacy of conventional drugs (not capsules) is reduced since they are more likely to degrade before reaching their target. In this context, microcapsules based on different types of biological macromolecules have been used to encapsulate active drugs and sensors to track intestinal ailments and address these issues. Several biomacromolecules/biomaterials (natural protein, alginate, chitosan, cellulose and RNA etc.) are widely used for make microcapsules for intestinal diseases, and can significantly improve the therapeutic effect and reduce adverse reactions. This article systematically summarizes microencapsulated based on biomacromolecules material for intestinal health control and efficacy enhancement. It also discusses the application and mechanism research of microencapsulated biomacromolecules drugs in reducing intestinal inflammation, in addition to covering the preparation techniques of microencapsulated drug delivery systems used for intestinal health. Microcapsule delivery systems' limits and potential applications for intestinal disease diagnosis, treatment, and surveillance were highlighted.
Collapse
Affiliation(s)
- Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha 410128, Hunan, China
| |
Collapse
|
17
|
Munkler LP, Mohamed ET, Vazquez-Uribe R, Visby Nissen V, Rugbjerg P, Worberg A, Woodley JM, Feist AM, Sommer MOA. Genetic heterogeneity of engineered Escherichia coli Nissle 1917 strains during scale-up simulation. Metab Eng 2024; 85:159-166. [PMID: 39111565 DOI: 10.1016/j.ymben.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Advanced microbiome therapeutics have emerged as a powerful approach for the treatment of numerous diseases. While the genetic instability of genetically engineered microorganisms is a well-known challenge in the scale-up of biomanufacturing processes, it has not yet been investigated for advanced microbiome therapeutics. Here, the evolution of engineered Escherichia coli Nissle 1917 strains producing Interleukin 2 and Aldafermin were investigated in two strain backgrounds with and without the three error-prone DNA polymerases polB, dinB, and umuDC, which contribute to the mutation rate of the host strain. Whole genome short-read sequencing revealed the genetic instability of the pMUT-based production plasmid after serial passaging for approximately 150 generations using an automated platform for high-throughput microbial evolution in five independent lineages for six distinct strains. While a reduction of the number of mutations of 12%-43% could be observed after the deletion of the error-prone DNA polymerases, the interruption of production-relevant genes could not be prevented, highlighting the need for additional strategies to improve the stability of advanced microbiome therapeutics.
Collapse
Affiliation(s)
- Lara P Munkler
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Elsayed T Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Vlaams Instituut voor Biotechnologie, Center for Microbiology, Leuven, Belgium
| | - Victoria Visby Nissen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | | | - Andreas Worberg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
18
|
Gao B, Ruiz D, Case H, Jinkerson RE, Sun Q. Engineering bacterial warriors: harnessing microbes to modulate animal physiology. Curr Opin Biotechnol 2024; 87:103113. [PMID: 38564969 PMCID: PMC11444245 DOI: 10.1016/j.copbio.2024.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
A central goal of synthetic biology is the reprogramming of living systems for predetermined biological functions. While many engineering efforts have been made in living systems, these innovations have been mainly employed with microorganisms or cell lines. The engineering of multicellular organisms including animals remains challenging owing to the complexity of these systems. In this context, microbes, with their intricate impact on animals, have opened new opportunities. Through the utilization of the symbiotic relationships between microbes and animals, researchers have effectively manipulated animals in various ways using engineered microbes. This focused approach has demonstrated its significance in scientific exploration and engineering with model animals, coral preservation and restoration, and advancements in human health.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Daniela Ruiz
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States
| | - Hayden Case
- Department of Biology, Texas A&M University, College Station, TX 77840, United States
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States; Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States; Program of Genetics and Genomics, Texas A&M University, College Station, TX 77840, United States.
| |
Collapse
|
19
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
20
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Hayashi N, Lai Y, Fuerte-Stone J, Mimee M, Lu TK. Cas9-assisted biological containment of a genetically engineered human commensal bacterium and genetic elements. Nat Commun 2024; 15:2096. [PMID: 38453913 PMCID: PMC10920895 DOI: 10.1038/s41467-024-45893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Sophisticated gene circuits built by synthetic biology can enable bacteria to sense their environment and respond predictably. Engineered biosensing bacteria outfitted with such circuits can potentially probe the human gut microbiome to prevent, diagnose, or treat disease. To provide robust biocontainment for engineered bacteria, we devised a Cas9-assisted auxotrophic biocontainment system combining thymidine auxotrophy, an Engineered Riboregulator (ER) for controlled gene expression, and a CRISPR Device (CD). The CD prevents the engineered bacteria from acquiring thyA via horizontal gene transfer, which would disrupt the biocontainment system, and inhibits the spread of genetic elements by killing bacteria harboring the gene cassette. This system tunably controlled gene expression in the human gut commensal bacterium Bacteroides thetaiotaomicron, prevented escape from thymidine auxotrophy, and blocked transgene dissemination. These capabilities were validated in vitro and in vivo. This biocontainment system exemplifies a powerful strategy for bringing genetically engineered microorganisms safely into biomedicine.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp., 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yong Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, MIT, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Jay Fuerte-Stone
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Timothy K Lu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Research Laboratory of Electronics, MIT, Cambridge, MA, 02139, USA.
- Broad Institute, Cambridge, MA, 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
22
|
Hoffmann SA, Cai Y. Engineering stringent genetic biocontainment of yeast with a protein stability switch. Nat Commun 2024; 15:1060. [PMID: 38316765 PMCID: PMC10844650 DOI: 10.1038/s41467-024-44988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Synthetic biology holds immense promise to tackle key problems in resource use, environmental remediation, and human health care. However, comprehensive safety measures are lacking to employ engineered microorganisms in open-environment applications. Genetically encoded biocontainment systems may solve this issue. Here, we describe such a system based on conditional stability of essential proteins. We used a destabilizing domain degron stabilized by estradiol addition (ERdd). We ERdd-tagged 775 essential genes and screened for strains with estradiol dependent growth. Three genes, SPC110, DIS3 and RRP46, were found to be particularly suitable targets. Respective strains showed no growth defect in the presence of estradiol and strong growth inhibition in its absence. SPC110-ERdd offered the most stringent containment, with an escape frequency of <5×10-7. Removal of its C-terminal domain decreased the escape frequency further to <10-8. Being based on conditional protein stability, the presented approach is mechanistically orthogonal to previously reported genetic biocontainment systems.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
23
|
Chiriac MT, Hracsko Z, Günther C, Gonzalez-Acera M, Atreya R, Stolzer I, Wittner L, Dressel A, Schickedanz L, Gamez-Belmonte R, Erkert L, Hundorfean G, Zundler S, Rath T, Vetrano S, Danese S, Sturm G, Trajanoski Z, Kühl AA, Siegmund B, Hartmann A, Wirtz S, Siebler J, Finotto S, Becker C, Neurath MF. IL-20 controls resolution of experimental colitis by regulating epithelial IFN/STAT2 signalling. Gut 2024; 73:282-297. [PMID: 37884352 PMCID: PMC10850655 DOI: 10.1136/gutjnl-2023-329628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/10/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.
Collapse
Affiliation(s)
- Mircea Teodor Chiriac
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Zsuzsanna Hracsko
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Leonie Wittner
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anja Dressel
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Laura Schickedanz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gheorghe Hundorfean
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Timo Rath
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefania Vetrano
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Pieve Emanuele, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy & Division of Immunology, Transplantation and Infectious Disease, IRCCS Ospedale San Raffaele, Milano, Italy
- Faculty of Medicine, Universita Vita Salute San Raffaele, Milano, Italy
| | - Gregor Sturm
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Zlatko Trajanoski
- Medical University of Innsbruck, Biocenter, Institute of Bioinformatics, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Core Unit of Charité, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Jürgen Siebler
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Susetta Finotto
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Molecular Pneumology, University Hospital Erlangen, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, and the Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
24
|
Liu J, Ren H, Zhang C, Li J, Qiu Q, Zhang N, Jiang N, Lovell JF, Zhang Y. Orally-Delivered, Cytokine-Engineered Extracellular Vesicles for Targeted Treatment of Inflammatory Bowel Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304023. [PMID: 37728188 DOI: 10.1002/smll.202304023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
The use of orally-administered therapeutic proteins for treatment of inflammatory bowel disease (IBD) has been limited due to the harsh gastrointestinal environment and low bioavailability that affects delivery to diseased sites. Here, a nested delivery system, termed Gal-IL10-EVs (C/A) that protects interleukin 10 (IL-10) from degradation in the stomach and enables targeted delivery of IL-10 to inflammatory macrophages infiltrating the colonic lamina propria, is reported. Extracellular vesicles (EVs) carrying IL-10 are designed to be secreted from genetically engineered mammalian cells by a plasmid system, and EVs are subsequently modified with galactose, endowing the targeted IL-10 delivery to inflammatory macrophages. Chitosan/alginate (C/A) hydrogel coating on Gal-IL10-EVs enables protection from harsh conditions in the gastrointestinal tract and favorable delivery to the colonic lumen, where the C/A hydrogel coating is removed at the diseased sites. Gal-IL10-EVs control the production of reactive oxygen species (ROS) and inhibit the expression of proinflammatory cytokines. In a murine model of colitis, Gal-IL10-EVs (C/A) alleviate IBD symptoms including inflammatory responses and disrupt colonic barriers. Taken together, Gal-IL10-EVs (C/A) features biocompatibility, pH-responsive drug release, and macrophage-targeting as a therapeutic platform for oral delivery of bioactive proteins for treating intestinal diseases.
Collapse
Affiliation(s)
- Jingang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
25
|
Akgul A, Freguia CF, Maddaloni M, Hoffman C, Voigt A, Nguyen CQ, Fanger NA, Fanger GR, Pascual DW. Treatment with a Lactococcus lactis that chromosomally express E. coli cfaI mitigates salivary flow loss in a Sjögren's syndrome-like disease. Sci Rep 2023; 13:19489. [PMID: 37945636 PMCID: PMC10636062 DOI: 10.1038/s41598-023-46557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-β+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | - Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | | | - David W Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Chang T, Ding W, Yan S, Wang Y, Zhang H, Zhang Y, Ping Z, Zhang H, Huang Y, Zhang J, Wang D, Zhang W, Xu X, Shen Y, Fu X. A robust yeast biocontainment system with two-layered regulation switch dependent on unnatural amino acid. Nat Commun 2023; 14:6487. [PMID: 37838746 PMCID: PMC10576815 DOI: 10.1038/s41467-023-42358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
Synthetic auxotrophy in which cell viability depends on the presence of an unnatural amino acid (unAA) provides a powerful strategy to restrict unwanted propagation of genetically modified organisms (GMOs) in open environments and potentially prevent industrial espionage. Here, we describe a generic approach for robust biocontainment of budding yeast dependent on unAA. By understanding escape mechanisms, we specifically optimize our strategies by introducing designed "immunity" to the generation of amber-suppressor tRNAs and developing the transcriptional- and translational-based biocontainment switch. We further develop a fitness-oriented screening method to easily obtain multiplex safeguard strains that exhibit robust growth and undetectable escape frequency (<~10-9) on solid media for 14 days. Finally, we show that employing our multiplex safeguard system could restrict the proliferation of strains of interest in a real fermentation scenario, highlighting the great potential of our yeast biocontainment strategy to protect the industrial proprietary strains.
Collapse
Affiliation(s)
- Tiantian Chang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Weichao Ding
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Shirui Yan
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Yun Wang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Haoling Zhang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Yu Zhang
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Zhi Ping
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Huiming Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Yijian Huang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Jiahui Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, Shenzhen, 518083, China
| | - Dan Wang
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, 519087, China
- BNU-HKBU United International College, Zhuhai, 519087, China
| | - Wenwei Zhang
- BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Yue Shen
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Changzhou, 213299, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Xian Fu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Changzhou, 213299, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
27
|
Choudhury A, Ortiz PS, Young M, Mahmud MT, Stoffel RT, Greathouse KL, Kearney CM. Control of Helicobacter pylori with engineered probiotics secreting selective guided antimicrobial peptides. Microbiol Spectr 2023; 11:e0201423. [PMID: 37712669 PMCID: PMC10580918 DOI: 10.1128/spectrum.02014-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023] Open
Abstract
Helicobacter pylori is the primary cause of 78% of gastric cancer cases, providing an opportunity to prevent cancer by controlling a single bacterial pathogen within the complex gastric microbiota. We developed highly selective antimicrobial agents against H. pylori by fusing an H. pylori-binding guide peptide (MM1) to broad-spectrum antimicrobial peptides. The common dairy probiotic Lactococcus lactis was then engineered to secrete these guided antimicrobial peptides (gAMPs). When co-cultured in vitro with H. pylori, the gAMP probiotics lost no toxicity compared to unguided AMP probiotics against the target, H. pylori, while losing >90% of their toxicity against two tested off-target bacteria. To test binding to H. pylori, the MM1 guide was fused to green fluorescent protein (GFP), resulting in enhanced binding compared to unguided GFP as measured by flow cytometry. In contrast, MM1-GFP showed no increased binding over GFP against five different off-target bacteria. These highly selective gAMP probiotics were then tested by oral gavage in mice infected with H. pylori. As a therapy, the probiotics outperformed antibiotic treatment, effectively eliminating H. pylori in just 5 days, and also protected mice from challenge infection as a prophylactic. As expected, the gAMP probiotics were as toxic against H. pylori as the unguided AMP probiotics. However, a strong rebound in gastric species diversity was found with both the selective gAMP probiotics and the non-selective AMP probiotics. Eliminating the extreme microbial dysbiosis caused by H. pylori appeared to be the major factor in diversity recovery. IMPORTANCE Alternatives to antibiotics in the control of Helicobacter pylori and the prevention of gastric cancer are needed. The high prevalence of H. pylori in the human population, the induction of microbial dysbiosis by antibiotics, and increasing antibiotic resistance call for a more sustainable approach. By selectively eliminating the pathogen and retaining the commensal community, H. pylori control may be achieved without adverse health outcomes. Antibiotics are typically used as a therapeutic post-infection, but a more targeted, less disruptive approach could be used as a long-term prophylactic against H. pylori or, by extension, against other gastrointestinal pathogens. Furthermore, the modular nature of the guided antimicrobial peptide (gAMP) technology allows for the substitution of different guides for different pathogens and the use of a cocktail of gAMPs to avoid the development of pathogen resistance.
Collapse
Affiliation(s)
| | | | - Mikaeel Young
- Department of Biology, Baylor University, Waco, Texas, USA
| | | | - Ryan T. Stoffel
- Baylor Sciences Building Vivarium, Baylor University, Waco, Texas, USA
| | - K. Leigh Greathouse
- Department of Biology, Baylor University, Waco, Texas, USA
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, USA
| | | |
Collapse
|
28
|
Mazzolini R, Rodríguez-Arce I, Fernández-Barat L, Piñero-Lambea C, Garrido V, Rebollada-Merino A, Motos A, Torres A, Grilló MJ, Serrano L, Lluch-Senar M. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat Biotechnol 2023; 41:1089-1098. [PMID: 36658340 PMCID: PMC10421741 DOI: 10.1038/s41587-022-01584-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/21/2022] [Indexed: 01/21/2023]
Abstract
Engineered live bacteria could provide a new modality for treating lung infections, a major cause of mortality worldwide. In the present study, we engineered a genome-reduced human lung bacterium, Mycoplasma pneumoniae, to treat ventilator-associated pneumonia, a disease with high hospital mortality when associated with Pseudomonas aeruginosa biofilms. After validating the biosafety of an attenuated M. pneumoniae chassis in mice, we introduced four transgenes into the chromosome by transposition to implement bactericidal and biofilm degradation activities. We show that this engineered strain has high efficacy against an acute P. aeruginosa lung infection in a mouse model. In addition, we demonstrated that the engineered strain could dissolve biofilms formed in endotracheal tubes of patients with ventilator-associated pneumonia and be combined with antibiotics targeting the peptidoglycan layer to increase efficacy against Gram-positive and Gram-negative bacteria. We expect our M. pneumoniae-engineered strain to be able to treat biofilm-associated infections in the respiratory tract.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Irene Rodríguez-Arce
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Laia Fernández-Barat
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Carlos Piñero-Lambea
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Pulmobiotics Ltd, Barcelona, Spain
| | - Victoria Garrido
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Agrobiotechnology, CSIC-Navarra Government, Navarra, Spain
| | - Agustín Rebollada-Merino
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Anna Motos
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Department of Pneumology, Thorax Institute, Hospital Clinic of Barcelona, SpainICREA, Barcelona, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Maria Lluch-Senar
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Pulmobiotics Ltd, Barcelona, Spain.
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.
| |
Collapse
|
29
|
Abstract
Techniques by which to genetically manipulate members of the microbiota enable both the evaluation of host-microbe interactions and an avenue by which to monitor and modulate human physiology. Genetic engineering applications have traditionally focused on model gut residents, such as Escherichia coli and lactic acid bacteria. However, emerging efforts by which to develop synthetic biology toolsets for "nonmodel" resident gut microbes could provide an improved foundation for microbiome engineering. As genome engineering tools come online, so too have novel applications for engineered gut microbes. Engineered resident gut bacteria facilitate investigations of the roles of microbes and their metabolites on host health and allow for potential live microbial biotherapeutics. Due to the rapid pace of discovery in this burgeoning field, this minireview highlights advancements in the genetic engineering of all resident gut microbes.
Collapse
Affiliation(s)
- Jack Arnold
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Joshua Glazier
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Mark Mimee
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Freguia CF, Pascual DW, Fanger GR. Sjögren's Syndrome Treatments in the Microbiome Era. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230004. [PMID: 37323129 PMCID: PMC10270702 DOI: 10.20900/agmr20230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by inflammatory cell infiltration of the salivary and lacrimal glands, resulting in acinar epithelial cell atrophy, cell death, and loss of exocrine function. At least half of SS patients develop extraglandular inflammatory disease and have a wide range of systemic clinical manifestations that can affect any organ system, including connective tissues. As many as 3.1 million people in the U.S. suffer from SS, a disease that causes severe impairment. Women are nine times more likely than men to be affected by this condition. Unfortunately, there is currently no effective treatment for SS, and the available options only provide partial relief. Treatment involves using replacement therapies such as artificial saliva and eye lubricants, or immunosuppressive agents that have limited efficacy. The medical community recognizes that there is a significant need for more effective treatments for SS. Increasing evidence demonstrates the links between the dysfunction of the human microbial community and the onset and development of many human diseases, signifying the potential use of microorganisms as an alternative strategy to conquer these issues. The role of the microbiome in controlling immune function of the human host in the context of autoimmune diseases like SS is now becoming better understood and may help to enable new drug development strategies. Natural probiotics and synthetic biology applications hold promise for novel treatment approaches to solve the encryption of many complex and multifactorial immune disorders, like SS.
Collapse
Affiliation(s)
| | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - Gary R. Fanger
- Rise Therapeutics, 1405 Research Blvd., Rockville, MD 20850, USA
| |
Collapse
|
31
|
Hoffmann SA, Diggans J, Densmore D, Dai J, Knight T, Leproust E, Boeke JD, Wheeler N, Cai Y. Safety by design: Biosafety and biosecurity in the age of synthetic genomics. iScience 2023; 26:106165. [PMID: 36895643 PMCID: PMC9988571 DOI: 10.1016/j.isci.2023.106165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Technologies to profoundly engineer biology are becoming increasingly affordable, powerful, and accessible to a widening group of actors. While offering tremendous potential to fuel biological research and the bioeconomy, this development also increases the risk of inadvertent or deliberate creation and dissemination of pathogens. Effective regulatory and technological frameworks need to be developed and deployed to manage these emerging biosafety and biosecurity risks. Here, we review digital and biological approaches of a range of technology readiness levels suited to address these challenges. Digital sequence screening technologies already are used to control access to synthetic DNA of concern. We examine the current state of the art of sequence screening, challenges and future directions, and environmental surveillance for the presence of engineered organisms. As biosafety layer on the organism level, we discuss genetic biocontainment systems that can be used to created host organisms with an intrinsic barrier against unchecked environmental proliferation.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - James Diggans
- Twist Bioscience, 681 Gateway Boulevard, South San Francisco, CA 9408, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tom Knight
- Ginkgo Bioworks, 27 Drydock Avenue, Boston, MA 02210, USA
| | - Emily Leproust
- Twist Bioscience, 681 Gateway Boulevard, South San Francisco, CA 9408, USA
| | - Jef D Boeke
- Institute for Systems Genetics, and Department of Biochemistry & Molecular Pharmacology, NYU Langone Health, 435 East 30th Street, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Nicole Wheeler
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
32
|
Hedin KA, Kruse V, Vazquez-Uribe R, Sommer MOA. Biocontainment strategies for in vivo applications of Saccharomyces boulardii. Front Bioeng Biotechnol 2023; 11:1136095. [PMID: 36890914 PMCID: PMC9986445 DOI: 10.3389/fbioe.2023.1136095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
The human gastrointestinal tract is a complex and dynamic environment, playing a crucial role in human health. Microorganisms engineered to express a therapeutic activity have emerged as a novel modality to manage numerous diseases. Such advanced microbiome therapeutics (AMTs) must be contained within the treated individual. Hence safe and robust biocontainment strategies are required to prevent the proliferation of microbes outside the treated individual. Here we present the first biocontainment strategy for a probiotic yeast, demonstrating a multi-layered strategy combining an auxotrophic and environmental-sensitive strategy. We knocked out the genes THI6 and BTS1, causing thiamine auxotrophy and increased sensitivity to cold, respectively. The biocontained Saccharomyces boulardii showed restricted growth in the absence of thiamine above 1 ng/ml and exhibited a severe growth defect at temperatures below 20°C. The biocontained strain was well tolerated and viable in mice and demonstrated equal efficiency in peptide production as the ancestral non-biocontained strain. In combination, the data support that thi6∆ and bts1∆ enable biocontainment of S. boulardii, which could be a relevant chassis for future yeast-based AMTs.
Collapse
Affiliation(s)
| | | | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | | |
Collapse
|
33
|
Khablenko A, Danylenko S, Yalovenko O, Duhan O, Potemskaia O, Prykhodko D. Recombinant Probiotic Preparations: Current State, Development and Application Prospects. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2023; 6:119-147. [DOI: 10.20535/ibb.2022.6.3-4.268349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The article is devoted to the latest achievements in the field of research, development, and implementation of various types of medicinal products based on recombinant probiotics. The benefits of probiotics, their modern use in medicine along with the most frequently used genera and species of probiotic microorganisms were highlighted. The medicinal and therapeutic activities of the studied probiotics were indicated. The review suggests various methods of creating recombinant probiotic microorganisms, including standard genetic engineering methods, as well as systems biology approaches and new methods of using the CRISPR-Cas system. The range of potential therapeutic applications of drugs based on recombinant probiotics was proposed. Special attention was paid to modern research on the creation of new, more effective recombinant probiotics that can be used for various therapeutic purposes. Considering the vast diversity of therapeutic applications of recombinant probiotics and ambiguous functions, their use for the potential treatment of various common human diseases (non-infectious and infectious diseases of the gastrointestinal tract, metabolic disorders, and allergic conditions) was investigated. The prospects for creating different types of vaccines based on recombinant probiotics together with the prospects for their implementation into medicine were considered. The possibilities of using recombinant probiotics in veterinary medicine, particularly for the prevention of domestic animal diseases, were reviewed. The prospects for the implementation of recombinant probiotics as vaccines and diagnostic tools for testing certain diseases as well as modeling the work of the human digestive system were highlighted. The risks of creation, application, including the issues related to the regulatory sphere regarding the use of new recombinant microorganisms, which can potentially enter the environment and cause unforeseen circumstances, were outlined.
Collapse
Affiliation(s)
| | - Svetlana Danylenko
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | | - Olexii Duhan
- Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
| | - Oksana Potemskaia
- Institute of Food Resources of the National Academy of Agrarian Sciences of Ukraine, Ukraine
| | | |
Collapse
|
34
|
Kato Y. A strategy for addicting transgene-free bacteria to synthetic modified metabolites. Front Microbiol 2023; 14:1086094. [PMID: 36846762 PMCID: PMC9950777 DOI: 10.3389/fmicb.2023.1086094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Biological containment is a safeguard technology to prevent uncontrolled proliferation of "useful but dangerous" microbes. Addiction to synthetic chemicals is ideal for biological containment, but this currently requires introduction of transgenes containing synthetic genetic elements for which environmental diffusion has to be prevented. Here, I designed a strategy for addicting transgene-free bacteria to synthetic modified metabolites, in which the target organism that can neither produce an essential metabolite nor use the extracellularly supplied metabolite, is rescued by a synthetic derivative that is taken up from a medium and converted into the metabolite in the cell. Because design of the synthetic modified metabolite is the key technology, our strategy differs distinctly from conventional biological containment, which mainly depends on genetic manipulation of the target microorganisms. Our strategy is particularly promising for containment of non-genetically modified organisms such as pathogens and live vaccines.
Collapse
|
35
|
Chemla Y, Dorfan Y, Yannai A, Meng D, Cao P, Glaven S, Gordon DB, Elbaz J, Voigt CA. Parallel engineering of environmental bacteria and performance over years under jungle-simulated conditions. PLoS One 2022; 17:e0278471. [PMID: 36516154 PMCID: PMC9750038 DOI: 10.1371/journal.pone.0278471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Engineered bacteria could perform many functions in the environment, for example, to remediate pollutants, deliver nutrients to crops or act as in-field biosensors. Model organisms can be unreliable in the field, but selecting an isolate from the thousands that naturally live there and genetically manipulating them to carry the desired function is a slow and uninformed process. Here, we demonstrate the parallel engineering of isolates from environmental samples by using the broad-host-range XPORT conjugation system (Bacillus subtilis mini-ICEBs1) to transfer a genetic payload to many isolates in parallel. Bacillus and Lysinibacillus species were obtained from seven soil and water samples from different locations in Israel. XPORT successfully transferred a genetic function (reporter expression) into 25 of these isolates. They were then screened to identify the best-performing chassis based on the expression level, doubling time, functional stability in soil, and environmentally-relevant traits of its closest annotated reference species, such as the ability to sporulate and temperature tolerance. From this library, we selected Bacillus frigoritolerans A3E1, re-introduced it to soil, and measured function and genetic stability in a contained environment that replicates jungle conditions. After 21 months of storage, the engineered bacteria were viable, could perform their function, and did not accumulate disruptive mutations.
Collapse
Affiliation(s)
- Yonatan Chemla
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yuval Dorfan
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Adi Yannai
- School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Dechuan Meng
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Paul Cao
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States of America
| | - D. Benjamin Gordon
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Johann Elbaz
- School of Molecular Cell Biology & Biotechnology, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Christopher A. Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
36
|
Heterologous Systemic Prime–Intranasal Boosting Using a Spore SARS-CoV-2 Vaccine Confers Mucosal Immunity and Cross-Reactive Antibodies in Mice as well as Protection in Hamsters. Vaccines (Basel) 2022; 10:vaccines10111900. [PMID: 36366408 PMCID: PMC9692796 DOI: 10.3390/vaccines10111900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background: Current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are administered systemically and typically result in poor immunogenicity at the mucosa. As a result, vaccination is unable to reduce viral shedding and transmission, ultimately failing to prevent infection. One possible solution is that of boosting a systemic vaccine via the nasal route resulting in mucosal immunity. Here, we have evaluated the potential of bacterial spores as an intranasal boost. Method: Spores engineered to express SARS-CoV-2 antigens were administered as an intranasal boost following a prime with either recombinant Spike protein or the Oxford AZD1222 vaccine. Results: In mice, intranasal boosting following a prime of either Spike or vaccine produced antigen-specific sIgA at the mucosa together with the increased production of Th1 and Th2 cytokines. In a hamster model of infection, the clinical and virological outcomes resulting from a SARS-CoV-2 challenge were ameliorated. Wuhan-specific sIgA were shown to cross-react with Omicron antigens, suggesting that this strategy might offer protection against SARS-CoV-2 variants of concern. Conclusions: Despite being a genetically modified organism, the spore vaccine platform is attractive since it offers biological containment, the rapid and cost-efficient production of vaccines together with heat stability. As such, employed in a heterologous systemic prime–mucosal boost regimen, spore vaccines might have utility for current and future emerging diseases.
Collapse
|
37
|
Huang Y, Lin X, Yu S, Chen R, Chen W. Intestinal Engineered Probiotics as Living Therapeutics: Chassis Selection, Colonization Enhancement, Gene Circuit Design, and Biocontainment. ACS Synth Biol 2022; 11:3134-3153. [PMID: 36094344 DOI: 10.1021/acssynbio.2c00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intestinal probiotics are often used for the in situ treatment of diseases, such as metabolic disorders, tumors, and chronic inflammatory infections. Recently, there has been an increased emphasis on intelligent, customized treatments with a focus on long-term efficacy; however, traditional probiotic therapy has not kept up with this trend. The use of synthetic biology to construct gut-engineered probiotics as live therapeutics is a promising avenue in the treatment of specific diseases, such as phenylketonuria and inflammatory bowel disease. These studies generally involve a series of fundamental design issues: choosing an engineered chassis, improving the colonization ability of engineered probiotics, designing functional gene circuits, and ensuring the safety of engineered probiotics. In this review, we summarize the relevant past research, the progress of current research, and discuss the key issues that restrict the widespread application of intestinal engineered probiotic living therapeutics.
Collapse
Affiliation(s)
- Yan Huang
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Lin
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Siyang Yu
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruiyue Chen
- Team SZU-China at iGEM 2021, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Weizhao Chen
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory for Microbial Gene Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
38
|
Boix-Amorós A, Monaco H, Sambataro E, Clemente JC. Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease. Gut Microbes 2022; 14:2107866. [PMID: 36104776 PMCID: PMC9481095 DOI: 10.1080/19490976.2022.2107866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present an overview of recent experimental and computational advances in technology used to characterize the microbiome, with a focus on how these developments improve our understanding of inflammatory bowel disease (IBD). Specifically, we present studies that make use of flow cytometry and metabolomics assays to provide a functional characterization of microbial communities. We also describe computational methods for strain-level resolution, temporal series, mycobiome and virome data, co-occurrence networks, and compositional data analysis. In addition, we review novel techniques to therapeutically manipulate the microbiome in IBD. We discuss the benefits and drawbacks of these technologies to increase awareness of specific biases, and to facilitate a more rigorous interpretation of results and their potential clinical application. Finally, we present future lines of research to better characterize the relation between microbial communities and IBD pathogenesis and progression.
Collapse
Affiliation(s)
- Alba Boix-Amorós
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Hilary Monaco
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA
| | - Elisa Sambataro
- Department of Biological Sciences, CUNY Hunter College, New York, NY, USA
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY, USA,CONTACT Jose C. Clemente Department of Genetics and Genomic Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai. New York, NY10029USA
| |
Collapse
|
39
|
Sridhar S, Ajo-Franklin CM, Masiello CA. A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology. ACS Synth Biol 2022; 11:2909-2916. [PMID: 35961652 PMCID: PMC9486965 DOI: 10.1021/acssynbio.2c00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 01/24/2023]
Abstract
Microbial biosensors sense and report exposures to stimuli, thereby facilitating our understanding of environmental processes. Successful design and deployment of biosensors hinge on the persistence of the microbial host of the genetic circuit, termed the chassis. However, model chassis organisms may persist poorly in environmental conditions. In contrast, non-model organisms persist better in environmental conditions but are limited by other challenges, such as genetic intractability and part unavailability. Here we identify ecological, metabolic, and genetic constraints for chassis development and propose a conceptual framework for the systematic selection of environmental biosensor chassis. We identify key challenges with using current model chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.
Collapse
Affiliation(s)
- Swetha Sridhar
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, MS-180, Houston, Texas 77005, United
States
| | - Caroline M. Ajo-Franklin
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Caroline A. Masiello
- Department
of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department
of Earth, Environmental, and Planetary Sciences, Rice University, 6100 Main St, MS-126, Houston, Texas 77005, United
States
| |
Collapse
|
40
|
Robinson CM, Short NE, Riglar DT. Achieving spatially precise diagnosis and therapy in the mammalian gut using synthetic microbial gene circuits. Front Bioeng Biotechnol 2022; 10:959441. [PMID: 36118573 PMCID: PMC9478464 DOI: 10.3389/fbioe.2022.959441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian gut and its microbiome form a temporally dynamic and spatially heterogeneous environment. The inaccessibility of the gut and the spatially restricted nature of many gut diseases translate into difficulties in diagnosis and therapy for which novel tools are needed. Engineered bacterial whole-cell biosensors and therapeutics have shown early promise at addressing these challenges. Natural and engineered sensing systems can be repurposed in synthetic genetic circuits to detect spatially specific biomarkers during health and disease. Heat, light, and magnetic signals can also activate gene circuit function with externally directed spatial precision. The resulting engineered bacteria can report on conditions in situ within the complex gut environment or produce biotherapeutics that specifically target host or microbiome activity. Here, we review the current approaches to engineering spatial precision for in vivo bacterial diagnostics and therapeutics using synthetic circuits, and the challenges and opportunities this technology presents.
Collapse
Affiliation(s)
| | | | - David T. Riglar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Manohar MM, Campbell BE, Walduck AK, Moore RJ. Enhancement of live vaccines by co-delivery of immune modulating proteins. Vaccine 2022; 40:5769-5780. [PMID: 36064671 DOI: 10.1016/j.vaccine.2022.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/23/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Vaccines are very effective in providing protection against many infectious diseases. However, it has proven difficult to develop highly efficacious vaccines against some pathogens and so there is a continuing need to improve vaccine technologies. The first successful and widely used vaccines were based on attenuated pathogens (e.g., laboratory passaged Pasteurella multocida to vaccinate against fowl cholera) or closely related non-pathogenic organisms (e.g., cowpox to vaccinate against smallpox). Subsequently, live vaccines, either attenuated pathogens or non-pathogenic microorganisms modified to deliver heterologous antigens, have been successfully used to induce protective immune responses against many pathogens. Unlike conventional killed and subunit vaccines, live vaccines can deliver antigens to mucosal surfaces in a similar manner and context as the natural infection and hence can often produce a more appropriate and protective immune response. Despite these advantages, there is still a need to improve the immunogenicity of some live vaccines. The efficacy of injectable killed and subunit vaccines is usually enhanced using adjuvants such mineral salts, oils, and saponin, but such adjuvants cannot be used with live vaccines. Instead, live vaccines can be engineered to produce immunomodulatory molecules that can stimulate the immune system to induce more robust and long-lasting adaptive immune responses. This review focuses on research that has been undertaken to engineer live vaccines to produce immunomodulatory molecules that act as adjuvants to increase immunogenicity. Adjuvant strategies with varying mechanisms of action (inflammatory, antibody-mediated, cell-mediated) and delivery modes (oral, intramuscular, intranasal) have been investigated, with varying degrees of success. The goal of such research is to define adjuvant strategies that can be adapted to enhance live vaccine efficacy by triggering strong innate and adaptive immune responses and produce vaccines against a wider range of pathogens.
Collapse
Affiliation(s)
- Megha M Manohar
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | - Anna K Walduck
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
42
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Zhang H, Dong M, Yuan S, Jin W. Oral glucagon-like peptide 1 analogue ameliorates glucose intolerance in db/db mice. Biotechnol Lett 2022; 44:1149-1162. [PMID: 36006576 DOI: 10.1007/s10529-022-03288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES We constructed a recombinant oral GLP-1 analogue in Lactococcus lactis (L. lactis) and evaluated its physiological functions. RESULTS In silico docking suggested the alanine at position 8 substituted with serine (A8SGLP-1) reduced binding of DPP4, which translated to reduced cleavage by DPP4 with minimal changes in stability. This was further confirmed by an in vitro enzymatic assay which showed that A8SGLP-1 significantly increased half-life upon DPP4 treatment. In addition, recombinant L. lactis (LL-A8SGLP-1) demonstrated reduced fat mass with no changes in body weight, significant improvement of random glycemic control and reduced systemic inflammation compared with WT GLP-1 in db/db mice. CONCLUSION LL-A8SGLP-1 adopted in live biotherapeutic products reduce blood glucose in db/db mice without affecting its function.
Collapse
Affiliation(s)
- Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China.
| |
Collapse
|
44
|
Zúñiga A, Muñoz-Guamuro G, Boivineau L, Mayonove P, Conejero I, Pageaux GP, Altwegg R, Bonnet J. A rapid and standardized workflow for functional assessment of bacterial biosensors in fecal samples. Front Bioeng Biotechnol 2022; 10:859600. [PMID: 36072290 PMCID: PMC9444133 DOI: 10.3389/fbioe.2022.859600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Gut metabolites are pivotal mediators of host-microbiome interactions and provide an important window on human physiology and disease. However, current methods to monitor gut metabolites rely on heavy and expensive technologies such as liquid chromatography-mass spectrometry (LC-MS). In that context, robust, fast, field-deployable, and cost-effective strategies for monitoring fecal metabolites would support large-scale functional studies and routine monitoring of metabolites biomarkers associated with pathological conditions. Living cells are an attractive option to engineer biosensors due to their ability to detect and process many environmental signals and their self-replicating nature. Here we optimized a workflow for feces processing that supports metabolite detection using bacterial biosensors. We show that simple centrifugation and filtration steps remove host microbes and support reproducible preparation of a physiological-derived media retaining important characteristics of human feces, such as matrix effects and endogenous metabolites. We measure the performance of bacterial biosensors for benzoate, lactate, anhydrotetracycline, and bile acids, and find that they are highly sensitive to fecal matrices. However, encapsulating the bacteria in hydrogel helps reduce this inhibitory effect. Sensitivity to matrix effects is biosensor-dependent but also varies between individuals, highlighting the need for case-by-case optimization for biosensors’ operation in feces. Finally, by detecting endogenous bile acids, we demonstrate that bacterial biosensors could be used for future metabolite monitoring in feces. This work lays the foundation for the optimization and use of bacterial biosensors for fecal metabolites monitoring. In the future, our method could also allow rapid pre-prototyping of engineered bacteria designed to operate in the gut, with applications to in situ diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ana Zúñiga
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
- *Correspondence: Ana Zúñiga, ; Jerome Bonnet,
| | - Geisler Muñoz-Guamuro
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Lucile Boivineau
- Hepatogastroenterology and Bacteriology Service at CHU Montpellier, University of Montpellier, Montpellier, France
| | - Pauline Mayonove
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Ismael Conejero
- Department of Psychiatry, CHU Nimes, University of Montpellier, Montpellier, France
| | - Georges-Philippe Pageaux
- Hepatogastroenterology and Bacteriology Service at CHU Montpellier, University of Montpellier, Montpellier, France
| | - Romain Altwegg
- Hepatogastroenterology and Bacteriology Service at CHU Montpellier, University of Montpellier, Montpellier, France
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
- *Correspondence: Ana Zúñiga, ; Jerome Bonnet,
| |
Collapse
|
45
|
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, LeBlanc JG, Bermúdez-Humarán LG. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health. Gut Microbes 2022; 14:2110821. [PMID: 35960855 PMCID: PMC9377234 DOI: 10.1080/19490976.2022.2110821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally. They are therefore good candidates for the development of new mucosal delivery strategies and are attractive alternatives to vaccines based on attenuated pathogenic bacteria whose use presents health risks. This article reviews the most recent research and advances in the use of LAB and bifidobacteria as live delivery vectors for human and animal health.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Naima G. Cortes-Perez
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0496, 78350 Jouy-en-Josas, France
| | - Alejandra de Moreno de Leblanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Jade Loiseau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| |
Collapse
|
46
|
An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat Biomed Eng 2022; 6:910-921. [PMID: 35411114 DOI: 10.1038/s41551-022-00871-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
Antibiotic-induced alterations in the gut microbiota are implicated in many metabolic and inflammatory diseases, increase the risk of secondary infections and contribute to the emergence of antimicrobial resistance. Here we report the design and in vivo performance of an engineered strain of Lactococcus lactis that altruistically degrades the widely used broad-spectrum antibiotics β-lactams (which disrupt commensal bacteria in the gut) through the secretion and extracellular assembly of a heterodimeric β-lactamase. The engineered β-lactamase-expression system does not confer β-lactam resistance to the producer cell, and is encoded via a genetically unlinked two-gene biosynthesis strategy that is not susceptible to dissemination by horizontal gene transfer. In a mouse model of parenteral ampicillin treatment, oral supplementation with the engineered live biotherapeutic minimized gut dysbiosis without affecting the ampicillin concentration in serum, precluded the enrichment of antimicrobial resistance genes in the gut microbiome and prevented the loss of colonization resistance against Clostridioides difficile. Engineered live biotherapeutics that safely degrade antibiotics in the gut may represent a suitable strategy for the prevention of dysbiosis and its associated pathologies.
Collapse
|
47
|
Zhu X, Zhaoyang Zhang, Bin Jia, Yuan Y. Current advances of biocontainment strategy in synthetic biology. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Lai Y, Hayashi N, Lu TK. Engineering the human gut commensal Bacteroides thetaiotaomicron with synthetic biology. Curr Opin Chem Biol 2022; 70:102178. [PMID: 35759819 DOI: 10.1016/j.cbpa.2022.102178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
The role of the microbiome in health and disease is attracting the attention of researchers seeking to engineer microorganisms for diagnostic and therapeutic applications. Recent progress in synthetic biology may enable the dissection of host-microbiota interactions. Sophisticated genetic circuits that can sense, compute, memorize, and respond to signals have been developed for the stable commensal bacterium Bacteroides thetaiotaomicron, dominant in the human gut. In this review, we highlight recent advances in expanding the genetic toolkit for B. thetaiotaomicron and foresee several applications of this species for microbiome engineering. We provide our perspective on the challenges and future opportunities for the engineering of human gut-associated bacteria as living therapeutic agents.
Collapse
Affiliation(s)
- Yong Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Naoki Hayashi
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp., 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Senti Biosciences, 2 Corporate Drive South San Francisco, CA 94080, USA.
| |
Collapse
|
49
|
Kang S, Lin Z, Xu Y, Park M, Ji GE, Johnston TV, Ku S, Park MS. A recombinant Bifidobacterium bifidum BGN4 strain expressing the streptococcal superoxide dismutase gene ameliorates inflammatory bowel disease. Microb Cell Fact 2022; 21:113. [PMID: 35672695 PMCID: PMC9172062 DOI: 10.1186/s12934-022-01840-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is a gastrointestinal disease characterized by diarrhea, rectal bleeding, abdominal pain, and weight loss. Recombinant probiotics producing specific proteins with IBD therapeutic potential are currently considered novel drug substitutes. In this study, a Bifidobacterium bifidum BGN4-SK strain was designed to produce the antioxidant enzymes streptococcal superoxide dismutase (SOD) and lactobacillus catalase (CAT), and a B. bifidum BGN4-pBESIL10 strain was proposed to generate an anti-inflammatory cytokine, human interleukin (IL)-10. In vitro and in vivo efficacy of these genetically modified Bifidobacterium strains were evaluated for colitis amelioration. Results In a lipopolysaccharide (LPS)-stimulated HT-29 cell model, tumor necrosis factor (TNF)-α and IL-8 production was significantly suppressed in the B. bifidum BGN4-SK treatment, followed by B. bifidum BGN4-pBESIL10 treatment, when compared to the LPS-treated control. Synergistic effects on TNF-α suppression were also observed. In a dextran sodium sulphate (DSS)-induced colitis mouse model, B. bifidum BGN4-SK treatment significantly enhanced levels of antioxidant enzymes SOD, glutathione peroxidase (GSH-Px) and CAT, compared to the DSS-only group. B. bifidum BGN4-SK significantly ameliorated the symptoms of DSS-induced colitis, increased the expression of tight junction genes (claudin and ZO-1), and decreased pro-inflammatory cytokines IL-6, IL-1β and TNF-α. Conclusions These findings suggest that B. bifidum BGN4-SK ameliorated DSS-induced colitis by generating antioxidant enzymes, maintaining the epithelial barrier, and decreasing the production of pro-inflammatory cytokines. Although B. bifidum BGN4-pBESIL10 exerted anti-inflammatory effects in vitro, the enhancement of IL-10 production and alleviation of colitis were very limited. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01840-2.
Collapse
|
50
|
Yasmin F, Najeeb H, Shaikh S, Hasanain M, Naeem U, Moeed A, Koritala T, Hasan S, Surani S. Novel drug delivery systems for inflammatory bowel disease. World J Gastroenterol 2022; 28:1922-1933. [PMID: 35664964 PMCID: PMC9150062 DOI: 10.3748/wjg.v28.i18.1922] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/22/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic illness characterized by relapsing inflammation of the intestines. The disorder is stratified according to the severity and is marked by its two main phenotypical representations: Ulcerative colitis and Crohn's disease. Pathogenesis of the disease is ambiguous and is expected to have interactivity between genetic disposition, environmental factors such as bacterial agents, and dysregulated immune response. Treatment for IBD aims to reduce symptom extent and severity and halt disease progression. The mainstay drugs have been 5-aminosalicylates (5-ASAs), corticosteroids, and immunosuppressive agents. Parenteral, oral and rectal routes are the conventional methods of drug delivery, and among all, oral administration is most widely adopted. However, problems of systematic drug reactions and low specificity in delivering drugs to the inflamed sites have emerged with these regular routes of delivery. Novel drug delivery systems have been introduced to overcome several therapeutic obstacles and for localized drug delivery to target tissues. Enteric-coated microneedle pills, various nano-drug delivery techniques, prodrug systems, lipid-based vesicular systems, hybrid drug delivery systems, and biologic drug delivery systems constitute some of these novel methods. Microneedles are painless, they dislodge their content at the affected site, and their release can be prolonged. Recombinant bacteria such as genetically engineered Lactococcus Lactis and eukaryotic cells, including GM immune cells and red blood cells as nanoparticle carriers, can be plausible delivery methods when evaluating biologic systems. Nano-particle drug delivery systems consisting of various techniques are also employed as nanoparticles can penetrate through inflamed regions and adhere to the thick mucus of the diseased site. Prodrug systems such as 5-ASAs formulations or their derivatives are effective in reducing colonic damage. Liposomes can be modified with both hydrophilic and lipophilic particles and act as lipid-based vesicular systems, while hybrid drug delivery systems containing an internal nanoparticle section for loading drugs are potential routes too. Leukosomes are also considered as possible carrier systems, and results from mouse models have revealed that they control anti- and pro-inflammatory molecules.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Hala Najeeb
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Shehryar Shaikh
- Department of Medicine, Dow OJha University Hospital, Karachi 74200, Pakistan
| | - Muhammad Hasanain
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Unaiza Naeem
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Abdul Moeed
- Department of Medicine, Dow University of Health Science, Karachi 74200, Pakistan
| | - Thoyaja Koritala
- Department of Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Syedadeel Hasan
- Department of Medicine, University of Louisville, Louisville, KY 40292, United States
| | - Salim Surani
- Department of Medicine, Texas A&M University, College Station, TX 77843, United States
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55901, United States
| |
Collapse
|