1
|
Chae H, Kim J, Han CS. 2D Graphene Oxide-Polyelectrolytes Composite Membranes with Enhanced Ion Sieving for Nanofluidic Energy Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412071. [PMID: 40249243 DOI: 10.1002/smll.202412071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/25/2025] [Indexed: 04/19/2025]
Abstract
2D nanofluidic membranes, with their nano-structured lamella architecture, offer effective control over ion transport, making them promising candidates for osmotic energy harvesting based on electrolyte concentration gradients. However, low-concentration electrolytes increase internal resistance, which leads to reduced output power, thereby limiting the practical application of nanofluidic energy generators. In this study, a high-power nanofluidic energy generator is proposed by replacing the low-concentration electrolytes with the high-concentration divalent electrolytes. Here, oppositely charged graphene oxide (GO)-polyelectrolytes composite membranes produce a high membrane potential by selectively allowing the transport of a single ionic species among various ions, such as biological ion channels. By modifying GO with polyelectrolytes to increase surface charge density and applying additional mild heating to adjust the interlayer spacing, ion sieving properties of the GO membranes are enhanced. As a result, the cation-selective membrane achieved a K⁺/Mg2⁺ selectivity ratio of 41.6, while the anion-selective membrane attained a Cl⁻/SO₄2⁻ selectivity ratio of 30.8. The energy device using the GO-polyelectrolyte membrane pairs achieved a power density of 5.49 W m⁻2 under a 50-fold concentration gradient of NaCl, which is further improved to 9.48 W m⁻2 in a system utilizing high-concentration divalent ions.
Collapse
Affiliation(s)
- Heonseung Chae
- School of Mechanical Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jongwoon Kim
- School of Mechanical Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chang-Soo Han
- School of Mechanical Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Yang Y, Zheng N, Ma C, Chen S, Chen W, Chen G. Toward a New Understanding of Graphene Oxide Photolysis: The Role of Photoreduction in Degradation Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414716. [PMID: 39899671 PMCID: PMC11947990 DOI: 10.1002/advs.202414716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Indexed: 02/05/2025]
Abstract
Graphene oxide (GO) is developed in various applications owing to its fascinating physicochemical properties. However, the weak photostability always leads to inevitable photolysis of GO during the use, storage, and application. Indirect photolysis has a significant impact on the structure of GO via causing fragmentation and degradation, while the pathway can be divided into two stages. In the early stage, photoreduction is the dominant reaction to generate porous reduction GO (PrGO). Then H2O2 breaks PrGO into fragments, and eventually, the fragmented GO is converted into CO2 by OH radicals. The generation of porous structures in early photoreduction is a crucial premise for the subsequent photodegradation, while GO flakes without porous structure cannot be broken by H2O2 and OH. In this work, a deep insight into the indirect photolysis pathway and the committed step is provided, which may bring some advanced ideas for enhancing GO stability in practical application.
Collapse
Affiliation(s)
- Yuchen Yang
- College of Materials Science and EngineeringGraphene Powder & Composite Materials Research Center of Fujian ProvinceThe Xiamen Key Laboratory of Polymers & Electronic MaterialsHuaqiao UniversityXiamen361021P. R. China
| | - Nanzhi Zheng
- College of Materials Science and EngineeringGraphene Powder & Composite Materials Research Center of Fujian ProvinceThe Xiamen Key Laboratory of Polymers & Electronic MaterialsHuaqiao UniversityXiamen361021P. R. China
| | - Chen Ma
- College of Materials Science and EngineeringGraphene Powder & Composite Materials Research Center of Fujian ProvinceThe Xiamen Key Laboratory of Polymers & Electronic MaterialsHuaqiao UniversityXiamen361021P. R. China
| | - Silong Chen
- College of Materials Science and EngineeringGraphene Powder & Composite Materials Research Center of Fujian ProvinceThe Xiamen Key Laboratory of Polymers & Electronic MaterialsHuaqiao UniversityXiamen361021P. R. China
| | - Wenhua Chen
- College of Materials Science and EngineeringGraphene Powder & Composite Materials Research Center of Fujian ProvinceThe Xiamen Key Laboratory of Polymers & Electronic MaterialsHuaqiao UniversityXiamen361021P. R. China
| | - Guohua Chen
- College of Materials Science and EngineeringGraphene Powder & Composite Materials Research Center of Fujian ProvinceThe Xiamen Key Laboratory of Polymers & Electronic MaterialsHuaqiao UniversityXiamen361021P. R. China
| |
Collapse
|
3
|
El‐Machachi Z, Frantzov D, Nijamudheen A, Zarrouk T, Caro MA, Deringer VL. Accelerated First-Principles Exploration of Structure and Reactivity in Graphene Oxide. Angew Chem Int Ed Engl 2024; 63:e202410088. [PMID: 39133826 PMCID: PMC11656143 DOI: 10.1002/anie.202410088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 11/14/2024]
Abstract
Graphene oxide (GO) materials are widely studied, and yet their atomic-scale structures remain to be fully understood. Here we show that the chemical and configurational space of GO can be rapidly explored by advanced machine-learning methods, combining on-the-fly acceleration for first-principles molecular dynamics with message-passing neural-network potentials. The first step allows for the rapid sampling of chemical structures with very little prior knowledge required; the second step affords state-of-the-art accuracy and predictive power. We apply the method to the thermal reduction of GO, which we describe in a realistic (ten-nanometre scale) structural model. Our simulations are consistent with recent experimental findings, including X-ray photoelectron spectroscopy (XPS), and help to rationalise them in atomistic and mechanistic detail. More generally, our work provides a platform for routine, accurate, and predictive simulations of diverse carbonaceous materials.
Collapse
Affiliation(s)
- Zakariya El‐Machachi
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUnited Kingdom
| | - Damyan Frantzov
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUnited Kingdom
| | - A. Nijamudheen
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUnited Kingdom
| | - Tigany Zarrouk
- Department of Chemistry and Materials ScienceAalto University02150EspooFinland
| | - Miguel A. Caro
- Department of Chemistry and Materials ScienceAalto University02150EspooFinland
| | - Volker L. Deringer
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordOxfordOX1 3QRUnited Kingdom
| |
Collapse
|
4
|
Kim GW, Lee S, Kim G, Lee H, Lee KT, Kim SY. Additive-Free Gelation of Graphene Oxide Dispersions via Mild Thermal Annealing: Implications for 3D Printing and Supercapacitor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411479. [PMID: 39318072 DOI: 10.1002/adma.202411479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 09/26/2024]
Abstract
Herein, a mild thermal annealing (MTA) process is presented for additive-free gelation of graphene oxide (GO) dispersions. This process transitions the GO from a nematic liquid crystal phase to a random network structure, significantly enhancing its rheological properties by order of magnitude. This transition is facilitated by the diffusion of functional groups on the GO surface, which induces hydrophobic attractions, leading to a stable network structure. Employing rheo-SAXS experiments, detailed insights are provided into the microstructural changes of GO gel under shear stress, establishing a direct correlation between its rheological behavior and microstructure. The distinctive properties of MTA-processed inks are illustrated, seamlessly integrating with 3D printing, to yield a highly porous lattice structure that demonstrates promising potential as a supercapacitor electrode. The MTA process, an additive-free approach to gelation, maintains the inherent dispersion properties of GO while offering scalability. Thus, this method brings significant economic and environmental advantages compared to conventional gelation techniques. The findings not only advance the fundamental understanding of 2D colloidal network gels but also increase the potential of GO for a wide range of applications, from gas and liquid absorbers to electrodes for energy storage and conversion, and biomedical fields.
Collapse
Affiliation(s)
- Geon Woong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guksung Kim
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, South Korea
| | - Howon Lee
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, South Korea
| | - Kyu Tae Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Rabchinskii MK, Shiyanova KA, Brzhezinskaya M, Gudkov MV, Saveliev SD, Stolyarova DY, Torkunov MK, Chumakov RG, Vdovichenko AY, Cherviakova PD, Novosadov NI, Nguen DZ, Ryvkina NG, Shvidchenko AV, Prasolov ND, Melnikov VP. Chemistry of Reduced Graphene Oxide: Implications for the Electrophysical Properties of Segregated Graphene-Polymer Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1664. [PMID: 39453000 PMCID: PMC11509990 DOI: 10.3390/nano14201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Conductive polymer composites (CPCs) with nanocarbon fillers are at the high end of modern materials science, advancing current electronic applications. Herein, we establish the interplay between the chemistry and electrophysical properties of reduced graphene oxide (rGO), separately and as a filler for CPCs with the segregated structure conferred by the chemical composition of the initial graphene oxide (GO). A set of experimental methods, namely X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy, van der Paw and temperature-dependent sheet resistance measurements, along with dielectric spectroscopy, are employed to thoroughly examine the derived materials. The alterations in the composition of oxygen groups along with their beneficial effect on nitrogen doping upon GO reduction by hydrazine are tracked with the help of XPS. The slight defectiveness of the graphene network is found to boost the conductivity of the material due to facilitating the impact of the nitrogen lone-pair electrons in charge transport. In turn, a sharp drop in material conductivity is indicated upon further disruption of the π-conjugated network, predominantly governing the charge transport. Particularly, the transition from the Mott variable hopping transport mechanism to the Efros-Shklovsky one is signified. Finally, the impact of rGO chemistry and physics on the electrophysical properties of CPCs with the segregated structure is evaluated. Taken together, our results give a hint at how GO chemistry manifests the properties of rGO and the CPC derived from it, offering compelling opportunities for their practical applications.
Collapse
Affiliation(s)
| | - Kseniya A. Shiyanova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | - Maria Brzhezinskaya
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Maksim V. Gudkov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | | | - Dina Yu. Stolyarova
- NRC “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (D.Y.S.)
| | - Mikhail K. Torkunov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | - Ratibor G. Chumakov
- NRC “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (D.Y.S.)
| | - Artem Yu. Vdovichenko
- NRC “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia; (D.Y.S.)
| | | | - Nikolai I. Novosadov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | - Diana Z. Nguen
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia
| | - Natalia G. Ryvkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| | | | - Nikita D. Prasolov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia
| | - Valery P. Melnikov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119991 Moscow, Russia; (K.A.S.)
| |
Collapse
|
6
|
Huang CY, Chen CY, Wei CH, Yang JW, Lin YC, Kao CF, Chung JHY, Chen GY. Patterned graphene oxide via one-step thermal annealing for controlling collective cell migration. J Mater Chem B 2024; 12:8733-8745. [PMID: 39138950 DOI: 10.1039/d4tb01091d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Graphene oxide (GO) is a two-dimensional metastable nanomaterial. Interestingly, GO formed oxygen clusterings in addition to oxidized and graphitic phases during the low-temperature thermal annealing process, which could be further used for biomolecule bonding. By harnessing this property of GO, we created a bio-interface with patterned structures with a common laboratory hot plate that could tune cellular behavior by physical contact. Due to the regional distribution of oxygen clustering at the interface, we refer to it as patterned annealed graphene oxide (paGO). In addition, since the paGO was a heterogeneous interface and bonded biomolecules to varying degrees, arginine-glycine-aspartic acid (RGD) was modified on it and successfully regulated cellular-directed growth and migration. Finally, we investigated the FRET phenomenon of this heterogeneous interface and found that it has potential as a biosensor. The paGO interface has the advantages of easy regulation and fabrication, and the one-step thermal reduction method is suitable for biological applications. We believe that this low-temperature thermal annealing method would make GO interfaces more accessible, especially for the development of nano-interfacial modifications for biological applications, revealing its potential for biomedical applications.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Hung Wei
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jia-Wei Yang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yu-Chien Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Johnson H Y Chung
- Intelligent Polymer Research Institute, Institute for Innovative Materials, University of Wollongong, 2500, NSW, Australia
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
7
|
Karton A, Foller T, Joshi R. Catalyzing epoxy oxygen migration on the basal surface of graphene oxide using strong hydrogen-bond donors. Chem Commun (Camb) 2024; 60:7049-7052. [PMID: 38895846 DOI: 10.1039/d4cc01911c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-level double-hybrid DFT simulations reveal that strong hydrogen-bond-donor catalysts (e.g., ethylene glycol, guanidine, and thiourea) significantly accelerate the migration of epoxy oxygen on the surface of graphene oxide, enhancing the reaction rate by 6-12 orders of magnitude. These results shed light on previously puzzling experimental observations.
Collapse
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Tobias Foller
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
8
|
Hamieh T. Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution. Molecules 2024; 29:2871. [PMID: 38930936 PMCID: PMC11206878 DOI: 10.3390/molecules29122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The thermal surface properties of graphenes and carbon materials are of crucial importance in the chemistry of materials, chemical engineering, and many industrial processes. BACKGROUND The determination of these surface properties is carried out using inverse gas chromatography at infinite dilution, which leads to the retention volume of organic solvents adsorbed on solid surfaces. This experimental and fundamental parameter actually reflects the surface thermodynamic interactions between injected probes and solid substrates. METHODS The London dispersion equation and the Hamieh thermal model are used to quantify the London dispersive and polar surface energy of graphenes and carbon fibers as well their Lewis acid-base constants by introducing the coupling amphoteric constant of materials. RESULTS The London dispersive and polar acid-base surface energies, the free energy of adsorption, the polar enthalpy and entropy, and the Lewis acid-base constants of graphenes and carbon materials are determined. CONCLUSIONS It is shown that graphene exhibited the highest values of London dispersive surface energy, polar surface energy, and Lewis acid-base constants. The highest characteristics of graphene justify its great potentiality and uses in many industrial applications.
Collapse
Affiliation(s)
- Tayssir Hamieh
- Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands;
- Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573/14, Lebanon
| |
Collapse
|
9
|
Potbhare AK, Aziz SKT, Ayyub MM, Kahate A, Madankar R, Wankar S, Dutta A, Abdala A, Mohmood SH, Adhikari R, Chaudhary RG. Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review. NANOSCALE ADVANCES 2024; 6:2539-2568. [PMID: 38752147 PMCID: PMC11093270 DOI: 10.1039/d3na01071f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Considering the rapidly increasing population, the development of new resources, skills, and devices that can provide safe potable water and clean energy remains one of the vital research topics for the scientific community. Owing to this, scientific community discovered such material for tackle this issue of environment benign, the new materials with graphene functionalized derivatives show significant advantages for application in multifunctional catalysis and energy storage systems. Herein, we highlight the recent methods reported for the preparation of graphene-based materials by focusing on the following aspects: (i) transformation of graphite/graphite oxide into graphene/graphene oxide via exfoliation and reduction; (ii) bioinspired fabrication or modification of graphene with various metal oxides and its applications in photocatalysis and storage systems. The kinetics of photocatalysis and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) for the optimization of the degradation efficiency of organic dyes, phenol compounds, antibiotics, and pharmaceutical drugs are discussed. Further, we present a brief introduction on different graphene-based metal oxides and a systematic survey of the recently published research literature on electrode materials for lithium-ion batteries (LIBs), supercapacitors, and fuel cells. Subsequently, the power density, stability, pseudocapacitance charge/discharge process, capacity and electrochemical reaction mechanisms of intercalation, and conversion- and alloying-type anode materials are summarized in detail. Furthermore, we thoroughly distinguish the intrinsic differences among underpotential deposition, intercalation, and conventional pseudocapacitance of electrode materials. This review offers a meaningful reference for the construction and fabrication of graphene-based metal oxides as effective photocatalysts for photodegradation study and high-performance optimization of anode materials for LIBs, supercapacitors, and fuel cells.
Collapse
Affiliation(s)
- Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - S K Tarik Aziz
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Mohd Monis Ayyub
- New Chemistry Unit, International Centre for Materials Science and Sheikh Saqr Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore India
| | - Aniket Kahate
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Rohit Madankar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| | - Sneha Wankar
- Post Graduate Teaching Department of Chemistry, Gondwana University Gadchiroli 442605 India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology, Bombay Powai 400076 India
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar POB 23784 Doha Qatar
| | - Sami H Mohmood
- Department of Physics, The University of Jordan Amman 11942 Jordan
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University Kathmandu Nepal
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce Kamptee-441001 India
| |
Collapse
|
10
|
Luo W, Zhao L, Huang Z, Ni J, Tu Y. Confined and spontaneously transformed oxidation structures due to the intrinsic heterogeneous surface morphology of C3N monolayer. J Chem Phys 2024; 160:154701. [PMID: 38619458 DOI: 10.1063/5.0202848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Identifying the oxidation structure of two-dimensional interfaces is crucial to improve surface chemistry and electronic properties. Beyond graphene with only phenyl rings, a novel carbon-nitrogen material, C3N, presents an intrinsic heterogeneous surface morphology where each phenyl ring is encircled by six nitrogen atoms, yet its atomistic oxidation structure remains unclear. Here, combining a series of density functional theory calculations and ab initio molecular dynamics simulations, we demonstrate that thermodynamically favorable oxidation loci are confined to the phenyl ring, and kinetic transformations of oxidation structures are feasible along the phenyl ring, whereas those toward nitrogen atoms are proven to be extremely difficult. These results are attributed to the lower barrier of oxygen atom migration along the phenyl ring, while the significantly high barriers toward nitrogen atoms are due to the heterogeneous potential energy surface for oxygen-C3N interaction. This work highlights the significance of surface morphology on the characteristics of oxidation structure, offering insights into tunable electronic properties via confined interfacial oxidation.
Collapse
Affiliation(s)
- Wenjin Luo
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liang Zhao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhijing Huang
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Junqing Ni
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yusong Tu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
11
|
Lee JW, Kwak JH, Kim J, Jang YK, Han JT, Kim TJ, Hong KS, Jeong HJ, Yang IHS. Highly emissive blue graphene quantum dots with excitation-independent emission via ultrafast liquid-phase photoreduction. RSC Adv 2024; 14:11524-11532. [PMID: 38601707 PMCID: PMC11005024 DOI: 10.1039/d4ra01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Graphene oxide quantum dots (GOQDs) are promising candidates for biomedical applications since they have lower toxicity and higher biocompatibility than traditional semiconductor quantum dots. However, oxygen functional groups such as epoxy and hydroxyl groups usually induce nonradiative relaxation, which leads to GOQDs exhibiting nonemissive properties. For the enhancement of the emission efficiency of GOQDs, the number of nonradiative relaxation sites should be reduced. This paper reports the synthesis of highly luminescent reduced GOQDs prepared by liquid-phase photoreduction (LPP-rGOQDs). First, GOQDs was fabricated from single-walled carbon nanotubes through chlorate-based oxidation and separation after acoustic cavitation. Subsequently, LPP-rGOQDs were obtained by liquid-phase photoreduction of the GOQD suspension under intense pulsed light irradiation. Liquid-phase photoreduction selectively reduced epoxy groups present on the basal plane of GOQDs, and hydrogenated the basal plane without removal of carbonyl and carboxyl groups at the edges of the GOQDs. Such selective removal of oxidative functional groups was used to control the reduction degree of GOQDs, closely related to their optical properties. The optimized LPP-rGOQDs were bright blue in color and showed quantum yields up to about 19.7%, which was 10 times the quantum yield of GOQDs. Furthermore, the LPP-rGOQDs were utilized to image a human embryonic kidney (HEK293A), and a low cytotoxicity level and satisfactory cell imaging performance were observed.
Collapse
Affiliation(s)
- Jae-Won Lee
- Department of Physics, Pusan National University Busan 46241 South Korea
- Nano Hybrid Technology Research Center, Creative and Fundamental Research Division, Korea Electrotechnology Research Institute (KERI) Changwon 51543 Republic of Korea
| | - Ji Hye Kwak
- Electrical Environment Research Center, Power Grid Research Division Korea Electrotechnology Research Institute (KERI) Changwon 51543 Republic of Korea
| | - Juhee Kim
- Nano Hybrid Technology Research Center, Creative and Fundamental Research Division, Korea Electrotechnology Research Institute (KERI) Changwon 51543 Republic of Korea
| | - Yoon-Kwan Jang
- Department of Biological Sciences, Pusan National University Busan 46241 South Korea
| | - Joong Tark Han
- Nano Hybrid Technology Research Center, Creative and Fundamental Research Division, Korea Electrotechnology Research Institute (KERI) Changwon 51543 Republic of Korea
| | - Tae-Jin Kim
- Department of Biological Sciences, Pusan National University Busan 46241 South Korea
| | - Kyong-Soo Hong
- Busan Center, Korea Basic Science Institute (KBSI) Busan 46742 South Korea
| | - Hee Jin Jeong
- Nano Hybrid Technology Research Center, Creative and Fundamental Research Division, Korea Electrotechnology Research Institute (KERI) Changwon 51543 Republic of Korea
| | - Imjeong H-S Yang
- Department of Physics, Pusan National University Busan 46241 South Korea
| |
Collapse
|
12
|
Alinia Z, Akbarzadeh H, Mohammadi Zonoz F, Tayebee R. Enhancing the seawater desalination performance of multilayer reduced graphene oxide membranes by introducing in-plane nanopores: a molecular dynamics simulation study. Phys Chem Chem Phys 2024; 26:9722-9732. [PMID: 38470395 DOI: 10.1039/d3cp02967k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In this study, using MD simulation, the effect of creating in-plane nanopores in a reduced graphene oxide (rGO) membrane and the formation of a reduced nanoporous graphene oxide (rNPGO) membrane is proposed to increase salt rejection and water flux. To this end, the desalination performance of r1NPGO, r2NPGO and r4NPGO membranes, which have 1, 2 and 4 pore(s), respectively, with a diameter of 0.9 nm and the r1NPGO-3 nm membrane, which has 1 pore with an approximate diameter of 3.0 nm, was investigated and compared from a molecular point of view. The simulation results show that in the rNPGO membranes, by increasing the number of pores from 1 to 4, water flux increases by ∼6 times compared to the rGO membrane. Meanwhile, upon increasing the pore size from 0.9 to 3.0 nm, water flux is enhanced by ∼16 times compared to the rGO membrane. The simulation results also demonstrate that the rGO membrane has two paths for water penetration, which are called the interlayer pathway and in-slit pathway. Moreover, pores in the rNPGO membranes provide another additional path for water transfer by shortening the lateral size of the membranes. This path is referred to as the in-pore pathway. By increasing the size of the pore in the r1NPGO-3 nm membrane, the contribution of the in-pore pathway increases and plays an important role. Furthermore, the simulation results show that in all rGO and rNPGO membranes, the interlayer space acts as a barrier for ions. Therefore, complete salt rejection is observed. Interestingly, by increasing the pore size in the r1NPGO-3 nm membrane, this membrane still maintains complete salt rejection. The observed phenomenon can be a result of very high water flux in this membrane. By increasing water flux, the presence of water molecules around Na+ and Cl- ions decreases. As a result, the formation of Na+Cl- ionic clusters is strengthened in such a way that these clusters do not have the ability to pass through large pores of 3.0 nm.
Collapse
Affiliation(s)
- Z Alinia
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran.
| | - H Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran.
- Department of Physical Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - F Mohammadi Zonoz
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran.
| | - R Tayebee
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179-76487, Iran.
| |
Collapse
|
13
|
Otsuka H, Urita K, Honma N, Kimuro T, Amako Y, Kukobat R, Bandosz TJ, Ukai J, Moriguchi I, Kaneko K. Transient chemical and structural changes in graphene oxide during ripening. Nat Commun 2024; 15:1708. [PMID: 38402244 PMCID: PMC10894275 DOI: 10.1038/s41467-024-46083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Graphene oxide (GO)-the oxidized form of graphene-is actively studied in various fields, such as energy, electronic devices, separation of water, materials engineering, and medical technologies, owing to its fascinating physicochemical properties. One major drawback of GO is its instability, which leads to the difficulties in product management. A physicochemical understanding of the ever-changing nature of GO can remove the barrier for its growing applications. Here, we evidencde the presence of intrinsic, metastable and transient GO states upon ripening. The three GO states are identified using a [Formula: see text] transition peak of ultraviolet-visible absorption spectra and exhibit inherent magnetic and electrical properties. The presence of three states of GO is supported by the compositional changes of oxygen functional groups detected via X-ray photoelectron spectroscopy and structural information from X-ray diffraction analysis and transmission electron microscopy. Although intrinsic GO having a [Formula: see text] transition at 230.5 ± 0.5 nm is stable only for 5 days at 298 K, the intrinsic state can be stabilized by either storing GO dispersions below 255 K or by adding ammonium peroxydisulfate.
Collapse
Affiliation(s)
- Hayato Otsuka
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
| | - Koki Urita
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki, 852-8521, Japan
| | - Nobutaka Honma
- New Material & Value Creation Gr., Project Material Creation Dept., Mobility Material Engineering Div., Toyota Motor Corporation, 1, Toyota-cho, Toyota, Aichi, 471-8572, Japan
| | - Takashi Kimuro
- Development Gr.2, Development Section, Engineering Dept., Sanwayuka Industry Corporation, Fukada 15, Ichiriyamacho, Kariya, Aichi, 448-0002, Japan
| | - Yasushi Amako
- Department of Physics, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Radovan Kukobat
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
- Department of Chemical Engineering and Technology, Faculty of Technology, University of Banja Luka, B.V. Stepe Stepanovica 73, 78 000, Banja Luka, Bosnia and Herzegovina
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Junzo Ukai
- New Material & Value Creation Gr., Project Material Creation Dept., Mobility Material Engineering Div., Toyota Motor Corporation, 1, Toyota-cho, Toyota, Aichi, 471-8572, Japan
| | - Isamu Moriguchi
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki, 852-8521, Japan
| | - Katsumi Kaneko
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan.
| |
Collapse
|
14
|
Liu H, Huang X, Wang Y, Kuang B, Li W. Nanowire-assisted electrochemical perforation of graphene oxide nanosheets for molecular separation. Nat Commun 2024; 15:164. [PMID: 38167389 PMCID: PMC10762124 DOI: 10.1038/s41467-023-44626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Two-dimensional nanosheets, e.g., graphene oxide (GO), have been widely used to fabricate efficient membranes for molecular separation. However, because of poor transport across nanosheets and high width-to-thickness ratio, the permeation pathway length and tortuosity of these membranes are extremely large, which limit their separation performance. Here we report a facile, scalable, and controllable nanowire electrochemical concept for perforating and modifying nanosheets to shorten permeation pathway and adjust transport property. It is found that confinement effects with locally enhanced charge density, electric field, and hydroxyl radical generation over nanowire tips on anode can be executed under low voltage, thereby inducing confined direct electron loss and indirect oxidation to reform configuration and composition of GO nanosheets. We demonstrate that the porous GO nanosheets with a lot of holes are suitable for assembling separation membranes with tuned accessibility, tortuosity, interlayer space, electronegativity, and hydrophilicity. For molecular separation, the prepared membranes exhibit quadruple water permeance and higher rejections for salts (>91%) and small molecules (>96%) as/than original ones. This nanowire electrochemical perforation concept offers a feasible strategy to reconstruct two-dimensional materials and tune their transport property for separation.
Collapse
Affiliation(s)
- Hai Liu
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xinxi Huang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yang Wang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Baian Kuang
- School of Environment, Jinan University, Guangzhou, 511443, China
| | - Wanbin Li
- School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
15
|
Pinilla-Peñalver E, Esteban-Arranz A, Contento AM, Ríos Á. Fluorescent dual-mode sensor for the determination of graphene oxide and catechin in environmental or food field. RSC Adv 2023; 13:33255-33268. [PMID: 37954414 PMCID: PMC10637338 DOI: 10.1039/d3ra04726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023] Open
Abstract
The novel fluorescent sensor is proposed in this work based on the competitive interactions between the known bioactive compounds, riboflavin and catechin, which act as guests, and graphene oxide (GO) material that acts as host. Specifically, this proposal is based on an indicator displacement assay which allows the detection of GO and catechin (fluorescence quenching of riboflavin signal by GO and increase in fluorescence by catechin on the GO-riboflavin system). Three GO structures with different lateral dimensions and thickness were synthesized and tested, being able to be the three differentiated depending on the attenuation capacity of the fluorescent signal that each one possesses. The environmental analytical control of GO is more and more important, being this method sensitive and selective in the presence of other potential interferent substances. On the other hand, the other sensing capacity of the sensor also allows the determination of catechin in food samples based on the formation of riboflavin-GO complex. It is a rapid, simple and non-expensive procedure. Thus, the same 2D nanomaterial (GO) is seen to play a double role in this sensing strategy (analyte and analytical tool for the determination of another compound).
Collapse
Affiliation(s)
- Esther Pinilla-Peñalver
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Avenue Camilo José Cela, s/n 13071 Ciudad Real Spain +34926295232
- Regional Institute for Applied Chemistry Research, IRICA Avenue Camilo José Cela, 1 13071 Ciudad Real Spain
| | - Adrián Esteban-Arranz
- Department of Chemical Engineering, University of Castilla La-Mancha Avenue Camilo José Cela, 12 13071 Ciudad Real Spain
- Department of Polymeric Nanomaterials and Biomaterials, Polymer Science and Technology Institute (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - Ana M Contento
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Avenue Camilo José Cela, s/n 13071 Ciudad Real Spain +34926295232
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha Avenue Camilo José Cela, s/n 13071 Ciudad Real Spain +34926295232
| |
Collapse
|
16
|
Bondaz L, Ronghe A, Li S, Čerņevičs K, Hao J, Yazyev OV, Ayappa KG, Agrawal KV. Selective Photonic Gasification of Strained Oxygen Clusters on Graphene for Tuning Pore Size in the Å Regime. JACS AU 2023; 3:2844-2854. [PMID: 37885574 PMCID: PMC10598578 DOI: 10.1021/jacsau.3c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Controlling the size of single-digit pores, such as those in graphene, with an Å resolution has been challenging due to the limited understanding of pore evolution at the atomic scale. The controlled oxidation of graphene has led to Å-scale pores; however, obtaining a fine control over pore evolution from the pore precursor (i.e., the oxygen cluster) is very attractive. Herein, we introduce a novel "control knob" for gasifying clusters to form pores. We show that the cluster evolves into a core/shell structure composed of an epoxy group surrounding an ether core in a bid to reduce the lattice strain at the cluster core. We then selectively gasified the strained core by exposing it to 3.2 eV of light at room temperature. This allowed for pore formation with improved control compared to thermal gasification. This is because, for the latter, cluster-cluster coalescence via thermally promoted epoxy diffusion cannot be ruled out. Using the oxidation temperature as a control knob, we were able to systematically increase the pore density while maintaining a narrow size distribution. This allowed us to increase H2 permeance as well as H2 selectivity. We further show that these pores could differentiate CH4 from N2, which is considered to be a challenging separation. Dedicated molecular dynamics simulations and potential of mean force calculations revealed that the free energy barrier for CH4 translocation through the pores was lower than that for N2. Overall, this study will inspire research on the controlled manipulation of clusters for improved precision in incorporating Å-scale pores in graphene.
Collapse
Affiliation(s)
- Luc Bondaz
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Anshaj Ronghe
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Shaoxian Li
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | | | - Jian Hao
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Oleg V. Yazyev
- Institute
of Physics, EPFL, Lausanne CH-1015, Switzerland
| | - K. Ganapathy Ayappa
- Department
of Chemical Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations, Institute of Chemical
Sciences & Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1950 Sion, Switzerland
| |
Collapse
|
17
|
Vahdat MT, Li S, Huang S, Pignedoli CA, Marzari N, Agrawal KV. Unraveling the Oxidation of a Graphitic Lattice: Structure Determination of Oxygen Clusters. PHYSICAL REVIEW LETTERS 2023; 131:168001. [PMID: 37925704 DOI: 10.1103/physrevlett.131.168001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Unraveling the oxidation of graphitic lattice is of great interest for atomic-scale lattice manipulation. Herein, we build epoxy cluster, atom by atom, using Van der Waals' density-functional theory aided by Clar's aromatic π-sextet rule. We predict the formation of cyclic epoxy trimers and its linear chains propagating along the armchair direction of the lattice to minimize the system's energy. Using low-temperature scanning tunneling microscopy on oxidized graphitic lattice, we identify linear chains as bright features that have a threefold symmetry, and which exclusively run along the armchair direction of the lattice confirming the theoretical predictions.
Collapse
Affiliation(s)
- Mohammad Tohidi Vahdat
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), EPFL, CH-1015 Lausanne, Switzerland
| | - Shaoxian Li
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Shiqi Huang
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
| | - Carlo A Pignedoli
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-8600 Dübendorf, Switzerland
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), EPFL, CH-1015 Lausanne, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1950 Sion, Switzerland
| |
Collapse
|
18
|
Amato F, Ferrari I, Motta A, Zanoni R, Dalchiele EA, Marrani AG. Assessing the evolution of oxygenated functional groups on the graphene oxide surface upon mild thermal annealing in water. RSC Adv 2023; 13:29308-29315. [PMID: 37809030 PMCID: PMC10557050 DOI: 10.1039/d3ra05083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023] Open
Abstract
Graphene oxide (GO) is known to be a 2D metastable nanomaterial that can be reconstructed under thermal annealing into distinct oxidized and graphitic phases. Up to now, such phase transformation, mainly related to epoxide and hydroxyl functional groups, has been usually achieved by thermally treating layers of GO in the solid state. Here, we present the mild annealing of GO dispersed in an aqueous medium, performed at two temperatures, 50 °C and 80 °C, for different intervals of time. We show experimental evidences of the epoxide instability in the presence of water by means of XPS, cyclic voltammetry and Raman spectroscopy, demonstrating the reorganization of epoxide and hydroxyl moieties initiated by water molecules. In fact, at 50 °C an increase in oxygen content is detected in all annealed samples compared to untreated GO, with a transformation of epoxide groups into vicinal diols. On the other hand, at 80 °C the oxygen content decreases towards the initial value since the vicinal diols, previously formed, transform into single hydroxyls and C[double bond, length as m-dash]C bonds. Moreover, the higher temperature annealing likely favours oxygenated functional groups rearrangements and clustering, in accordance with the literature, leading to a higher electron affinity and conductivity of the graphenic network.
Collapse
Affiliation(s)
- Francesco Amato
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| | - Irene Ferrari
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| | - Alessandro Motta
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
- Consorzio INSTM, UdR Roma "La Sapienza" Italy
| | - Robertino Zanoni
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| | - Enrique A Dalchiele
- Instituto de Física & CINQUIFIMA, Facultad de Ingeniería Julio Herrera y Reissig 565, C.C. 30 Montevideo 11000 Uruguay
| | - Andrea Giacomo Marrani
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| |
Collapse
|
19
|
Tene T, Jiménez-Gaona Y, Campoverde-Santos DK, Cevallos Y, La Pietra M, Vacacela Gomez C, Scarcello A, Straface S, Caputi LS, Bellucci S. Tunable optical and semiconducting properties of eco-friendly-prepared reduced graphene oxide. Front Chem 2023; 11:1267199. [PMID: 37720717 PMCID: PMC10501135 DOI: 10.3389/fchem.2023.1267199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Wide bandgap oxidized graphenes have garnered particular interest among the materials explored for these applications because of their exceptional semiconducting and optical properties. This study aims to investigate the tunability of the related properties in reduced graphene oxide (rGO) for potential use in energy conversion, storage, and optoelectronic devices. To accomplish this, we scrutinized crucial parameters of the synthesis process such as reduction time and temperature. Our findings demonstrate that controlling these parameters makes it possible to customize the optical bandgap of reduced graphene oxide within a range of roughly 2.2 eV-1.6 eV. Additionally, we observed that reduced graphene oxide has strong and superior absorption in the visible region, which is attributable to the existence of OFGs and defects. Notably, our results indicate that the absorption coefficients of reduced graphene oxide are up to almost three times higher (7426 ml mg-1 m-1) than those observed in dispersions of exfoliated graphene and graphene oxide (GO). To complement our findings, we employed several spectroscopic and morphological characterizations, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and electrical measurements. The implications of our results are significant for the development and design of future semiconductors for energy conversion and optoelectronic applications.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | - Yesenia Cevallos
- College of Engineering, Universidad Nacional de Chimborazo, Riobamba, Ecuador
- Universidad San Francisco de Quito, Quito, Ecuador
| | - Matteo La Pietra
- INFN-Laboratori Nazionali di Frascati, Frascati, Italy
- Department of Information Engineering, Polytechnic University of Marche, Ancona, Italy
| | | | - Andrea Scarcello
- UNICARIBE Research Center, University of Calabria, Cosenza, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Cosenza, Italy
| | - Salvatore Straface
- Department of Environmental Engineering (DIAm), University of Calabria, Cosenza, Italy
| | - Lorenzo S. Caputi
- UNICARIBE Research Center, University of Calabria, Cosenza, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Cosenza, Italy
| | | |
Collapse
|
20
|
Tene T, Vinueza-Naranjo PG, Cevallos Y, Arias Arias F, La Pietra M, Scarcello A, Salazar YC, Polanco MA, Straface S, Vacacela Gomez C, Caputi LS, Bellucci S. Temperature-Dependent Optical Properties of Oxidized Graphenes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2263. [PMID: 37570581 PMCID: PMC10421430 DOI: 10.3390/nano13152263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
In this study, we investigate how changing important synthesis-related parameters can affect and control the optical characteristics of graphene oxide (GO) and reduced graphene oxide (rGO). These parameters include drying time and reduction time at two different temperatures. We obtain an understanding of their impact on optical transitions, optical bandgap, absorption coefficient, and absorbance spectrum width by analyzing these factors. Accordingly, GO has an optical bandgap of about 4 eV, which is decreased by the reduction process to 1.9 eV. Both GO and rGO display greater absorption in the visible spectrum, which improves photon capture and boosts efficiency in energy conversion applications. Additionally, our results show that GO and rGO have higher absorption coefficients than those previously reported for dispersions of exfoliated graphene. Defects in GO and rGO, as well as the presence of functional oxygen groups, are the main contributors to this increased absorption. Several measurements are carried out, including spectroscopic and morphological studies, to further support our findings.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | | | - Yesenia Cevallos
- College of Engineering, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
- Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Fabian Arias Arias
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
| | - Matteo La Pietra
- INFN—Laboratori Nazionali di Frascati, 00044 Frascati, Italy
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Andrea Scarcello
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, 87036 Rende, Italy
| | - Yolenny Cruz Salazar
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, 87036 Rende, Italy
| | - Melvin Arias Polanco
- Instituto Tecnológico de Santo Domingo, Área de Ciencias Básicas y Ambientales, Av. Los Próceres, Santo Domingo 10602, Dominican Republic
| | - Salvatore Straface
- Department of Environmental Engineering (DIAm), University of Calabria, Via P. Bucci, Cubo 42B, 87036 Rende, Italy
| | | | - Lorenzo S. Caputi
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
- Surface Nanoscience Group, Department of Physics, University of Calabria, Via P. Bucci, Cubo 33C, 87036 Rende, Italy
| | | |
Collapse
|
21
|
Tene T, Guevara M, Benalcázar Palacios F, Morocho Barrionuevo TP, Vacacela Gomez C, Bellucci S. Optical properties of graphene oxide. Front Chem 2023; 11:1214072. [PMID: 37547907 PMCID: PMC10397392 DOI: 10.3389/fchem.2023.1214072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
The study of the optical properties of graphene oxide (GO) is crucial in designing functionalized GO materials with specific optical properties for various applications such as (bio) sensors, optoelectronics, and energy storage. The present work aims to investigate the electronic transitions, optical bandgap, and absorption coefficient of GO under different conditions. Specifically, the study examines the effects of drying times ranging from 0 to 120 h while maintaining a fixed temperature of 80°C and low temperatures ranging from 40℃ to 100℃ , with a constant drying time of 24 h. Our findings indicate that exposing the GO sample to a drying time of up to 120 h at 80°C can lead to a reduction in the optical bandgap, decreasing it from 4.09 to 2.76 eV. The π - π * transition was found to be the most affected, shifting from approximately 230 nm at 0 h to 244 nm after 120 h of drying time. Absorption coefficients of 3140-5507 ml mg-1 m-1 were measured, which are similar to those reported for exfoliated graphene dispersions but up to two times higher, confirming the improved optical properties of GO. Our findings can provide insights into determining the optimal temperature and duration required for transforming GO into its reduced form for a specific application through extrapolation. The study is complemented by analyzing the elemental composition, surface morphology change, and electrical properties.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Marco Guevara
- Facultad de Ingeniería Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador
| | - Freddy Benalcázar Palacios
- Facultad de Ingeniería en Sistemas Electrónica e Industrial, Universidad Técnica de Ambato, Ambato, Ecuador
| | | | | | | |
Collapse
|
22
|
Huang T, Wu W, Yang Z, Hou Q, Li R, Chen S, Yang Y, Liu H. Unravelling the pseudocapacitive origin of graphene oxide-based aerogels by comparative insights. Chem Commun (Camb) 2023. [PMID: 37469305 DOI: 10.1039/d3cc02410e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
We reveal the intrinsic pseudocapacitive center of graphene-oxide-based aerogels by investigating different modified graphene skeletons from various approaches. A high proportion of carbonyl groups in carbon networks is shown to optimize the construction of rational pseudocapacitive sites by triggering reversible proton-induced surface reactions, leading to satisfactory electrochemical performance.
Collapse
Affiliation(s)
- Tieqi Huang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Weiying Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Zhengfei Yang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Qianqian Hou
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ruolan Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Suyue Chen
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
23
|
Huang CY, Lin YC, Chung JHY, Chiu HY, Yeh NL, Chang SJ, Chan CH, Shih CC, Chen GY. Enhancing Cementitious Composites with Functionalized Graphene Oxide-Based Materials: Surface Chemistry and Mechanisms. Int J Mol Sci 2023; 24:10461. [PMID: 37445640 DOI: 10.3390/ijms241310461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Graphene oxide-based materials (GOBMs) have been widely explored as nano-reinforcements in cementitious composites due to their unique properties. Oxygen-containing functional groups in GOBMs are crucial for enhancing the microstructure of cementitious composites. A better comprehension of their surface chemistry and mechanisms is required to advance the potential applications in cementitious composites of functionalized GOBMs. However, the mechanism by which the oxygen-containing functional groups enhance the response of cementitious composites is still unclear, and controlling the surface chemistry of GOBMs is currently constrained. This review aims to investigate the reactions and mechanisms for functionalized GOBMs as additives incorporated in cement composites. A variety of GOBMs, including graphene oxide (GO), hydroxylated graphene (HO-G), edge-carboxylated graphene (ECG), edge-oxidized graphene oxide (EOGO), reduced graphene oxide (rGO), and GO/silane composite, are discussed with regard to their oxygen functional groups and interactions with the cement microstructure. This review provides insight into the potential benefits of using GOBMs as nano-reinforcements in cementitious composites. A better understanding of the surface chemistry and mechanisms of GOBMs will enable the development of more effective functionalization strategies and open up new possibilities for the design of high-performance cementitious composites.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chien Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Johnson H Y Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Hsien-Yi Chiu
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Dermatology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Nai-Lun Yeh
- Department of Family Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu 300, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Chia-Hao Chan
- Department of Obstetrics and Gynecology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu 300, Taiwan
| | - Chuan-Chi Shih
- Department of Obstetrics and Gynecology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu 300, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
24
|
Bardhan NM, Radisic M, Nurunnabi M. Bioinspired Materials for Wearable Diagnostics and Biosensors. ACS Biomater Sci Eng 2023; 9:2015-2019. [PMID: 37153960 DOI: 10.1021/acsbiomaterials.3c00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
25
|
Subjalearndee N, He N, Cheng H, Tesatchabut P, Eiamlamai P, Phothiphiphit S, Saensuk O, Limthongkul P, Intasanta V, Gao W, Zhang X. Wet Spinning of Graphene Oxide Fibers with Different MnO 2 Additives. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19514-19526. [PMID: 37017220 DOI: 10.1021/acsami.3c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We present the fabrication of graphene oxide (GO) and manganese dioxide (MnO2) composite fibers via wet spinning processes, which entails the effects of MnO2 micromorphology and mass loading on the extrudability of GO/MnO2 spinning dope and on the properties of resulted composite fibers. Various sizes of rod and sea-urchin shaped MnO2 microparticles have been synthesized via hydrothermal reactions with different oxidants and hydrothermal conditions. Both the microparticle morphology and mass loading significantly affect the extrudability of the GO/MnO2 mixture. In addition, the orientation of MnO2 microparticles within the fibers is largely affected by their microscopic surface areas. The composite fibers have been made electrically conductive via chemical or thermal treatments and then applied as fiber cathodes in Zn-ion battery prototypes. Thermal annealing under an argon atmosphere turns out to be an appropriate method to avoid MnO2 dissolution and leaching, which have been observed in the chemical treatments. These rGO/MnO2 fiber cathodes have been assembled into prototype Zn-ion batteries with Zn wire as the anode and xanthan-gum gel containing ZnSO4 and MnSO4 salts as the electrolyte. The resulted electrochemical output depends on the annealing temperature and MnO2 distribution within the fiber cathodes, while the best performer shows stable cycling stability at a maximum capacity of ca. 80 mA h/g.
Collapse
Affiliation(s)
- Nakarin Subjalearndee
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nanfei He
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Hui Cheng
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Panpanat Tesatchabut
- National Energy Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Priew Eiamlamai
- National Energy Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Somruthai Phothiphiphit
- NSTDA Characterization and Testing Service Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Orapan Saensuk
- NSTDA Characterization and Testing Service Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pimpa Limthongkul
- National Energy Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Varol Intasanta
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wei Gao
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
26
|
Thangaraj B, Mumtaz F, Abbas Y, Anjum DH, Solomon PR, Hassan J. Synthesis of Graphene Oxide from Sugarcane Dry Leaves by Two-Stage Pyrolysis. Molecules 2023; 28:molecules28083329. [PMID: 37110563 PMCID: PMC10140955 DOI: 10.3390/molecules28083329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Natural or synthetic graphite as precursors for the preparation of graphene oxide (GO) have constraints due to their limited availability, high reaction temperature for processing of synthetic graphite and higher generation cost. The use of oxidants, long reaction duration, the generation of toxic gases and residues of inorganic salts, the degree of hazard and low yield are some of the disadvantages of the oxidative-exfoliation methods. Under these circumstances, biomass waste usage as a precursor is a viable alternative. The conversion of biomass into GO by the pyrolysis method is ecofriendly with diverse applications, which partially overcomes the waste disposal problem encountered by the existing methods. In this study, graphene oxide (GO) is prepared from dry leaves of sugarcane plant through a two-step pyrolysis method using ferric (III) citrate as a catalyst, followed by treatment with conc. H2SO4. The synthesized GO is analyzed by UV-Vis., FTIR, XRD, SEM, TEM, EDS and Raman spectroscopy. The synthesized GO has many oxygen-containing functional groups (-OH, C-OH, COOH, C-O). It shows a sheet-like structure with a crystalline size of 10.08 nm. The GO has a graphitic structure due to the Raman shift of G (1339 cm-1) and D (1591 cm-1) bands. The prepared GO has multilayers due to the ratio of 0.92 between ID and IG. The weight ratios between carbon and oxygen are examined by SEM-EDS and TEM-EDS and found to be 3.35 and 38.11. This study reveals that the conversion of sugarcane dry leaves into the high-value-added material GO becomes realistic and feasible and thus reduces the production cost of GO.
Collapse
Affiliation(s)
- Baskar Thangaraj
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fatima Mumtaz
- Emirates Nuclear Technology Center, Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Yawar Abbas
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Dalaver H Anjum
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Pravin Raj Solomon
- Molecular Epidemiology and Diagnostic Research Facility, Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Jamal Hassan
- Department of Physics, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
27
|
Ratova DMV, Mikheev IV, Chermashentsev GR, Maslakov KI, Kottsov SY, Stolbov DN, Maksimov SV, Sozarukova MM, Proskurnina EV, Proskurnin MA. Green and Sustainable Ultrasound-Assisted Anodic Electrochemical Preparation of Graphene Oxide Dispersions and Their Antioxidant Properties. Molecules 2023; 28:molecules28073238. [PMID: 37050001 PMCID: PMC10096744 DOI: 10.3390/molecules28073238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A fast method for preparing aqueous graphene oxide (GO) dispersions by electrochemical oxidation of a graphite anode without preliminary intercalation with oxidizing agents is proposed. Ultrasonic probing was used in the modulation mode of ultrasonic waves (work/rest) for more efficient graphite oxidation-exfoliation. It is shown that the 4/2 s mode of ultrasonic modulation is the most effective due to the probe material's low corrosion while maintaining the optimum synthesis temperature not exceeding 30-35 °C and achieving the best characteristics of the resulting product. Three cases of anodic oxidation of graphite to obtain graphene oxide were considered: (1) a combined cathode-anode compartment, (2) a split cathode-anode salt-bridged compartment, and (3) separated anode compartment with a 3.5 kDa dialysis membrane. It was determined that the approach to synthesis with a divided cathode-anode compartment makes it possible to obtain GO sheets with fewer defects compared to chemical methods or methods with a combined cathode-anode compartment and makes it possible to control the oxidation degree of the material (C:O ratio) by varying the current density. The prepared samples showed good stability for more than six months. The spectral and morphological characteristics were studied. Using chemiluminometry in the luminol/Co(II)/H2O2 system, the antioxidant properties concerning three key reactive oxygen species (H2O2, superoxide anion radical, and hydroxyl radical) were demonstrated. It was also shown that the prepared GO dispersions do not induce lipid and phospholipid peroxidation.
Collapse
Affiliation(s)
- Daria-Maria V Ratova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Ivan V Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Grigoryi R Chermashentsev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergei Yu Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Dmitrii N Stolbov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey V Maksimov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Madina M Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Elena V Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
28
|
Valentini C, Montes-García V, Livio PA, Chudziak T, Raya J, Ciesielski A, Samorì P. Tuning the electrical properties of graphene oxide through low-temperature thermal annealing. NANOSCALE 2023; 15:5743-5755. [PMID: 36880730 DOI: 10.1039/d2nr06091d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During the last fifteen years, the reduction of electrically insulating graphene oxide (GO) through the elimination of oxygen containing functional groups and the restoration of sp2 conjugation yielding its conducting form, known as reduced graphene oxide (rGO), has been widely investigated as a scalable and low-cost method to produce materials featuring graphene-like characteristics. Among various protocols, thermal annealing represents an attractive green approach compatible with industrial processes. However, the high temperatures typically required to accomplish this process are energetically demanding and are incompatible with the use of plastic substrates often desired for flexible electronics applications. Here, we report a systematic study on the low-temperature annealing of GO by optimizing different annealing conditions, i.e., temperature, time, and reduction atmosphere. We show that the reduction is accompanied by structural changes of GO, which affect its electrochemical performance when used as an electrode material in supercapacitors. We demonstrate that thermally-reduced GO (TrGO) obtained under air or inert atmosphere at relatively low temperatures (<300 °C) exhibits low film resistivities (10-2-10-4 Ω m) combined with unaltered resistance after 2000 bending cycles when supported on plastic substrates. Moreover, it exhibits enhanced electrochemical characteristics with a specific capacitance of 208 F g-1 and a capacitance retention of >99% after 2000 cycles. The reported strategy is an important step forward toward the development of environmentally friendly TrGO for future electrical or electrochemical applications.
Collapse
Affiliation(s)
- Cataldo Valentini
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Verónica Montes-García
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Pietro Antonio Livio
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Tomasz Chudziak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jésus Raya
- Université de Strasbourg, CNRS, Membrane Biophysics and NMR, Institute of Chemistry, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Artur Ciesielski
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Paolo Samorì
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
29
|
Zhang X, Wang N, Liu T, Wu Y, Wang Z, Wang H. Precisely tailored graphene oxide membranes on glass fiber supports for efficient hydrogen separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
30
|
Venkidusamy V, Nallusamy S, Nammalvar G, Veerabahu R, Thirumurugan A, Natarajan C, Dhanabalan SS, Pabba DP, Abarzúa CV, Kamaraj SK. ZnO/Graphene Composite from Solvent-Exfoliated Few-Layer Graphene Nanosheets for Photocatalytic Dye Degradation under Sunlight Irradiation. MICROMACHINES 2023; 14:189. [PMID: 36677250 PMCID: PMC9860591 DOI: 10.3390/mi14010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ZnO/graphene nanocomposites were prepared using a facile approach. Graphene nanosheets were prepared by ultrasonication-based liquid phase exfoliation of graphite powder in a low boiling point organic solvent, 1,2-Dichloroethane, for the preparation of ZnO/graphene nanocomposites. Structural properties of the synthesized ZnO/graphene nanocomposites were studied through powder XRD and micro-Raman analysis. The characteristic Raman active modes of ZnO and graphene present in the micro-Raman spectra ensured the formation of ZnO/graphene nanocomposite and it is inferred that the graphene sheets in the composites were few layers in nature. Increasing the concentration of graphene influenced the surface morphology of the ZnO nanoparticles and a flower shape ZnO was formed on the graphene nanosheets of the composite with high graphene concentration. The efficiencies of the samples for the photocatalytic degradation of Methylene Blue dye under sunlight irradiation were investigated and 97% degradation efficiency was observed. The stability of the nanocomposites was evaluated by performing five cycles, and 92% degradation efficiency was maintained. The observed results were compared with that of ZnO/graphene composite derived from other methods.
Collapse
Affiliation(s)
- Vasanthi Venkidusamy
- Department of Physics, National Institute of Technology-Tiruchirappalli, Tiruchirappalli 620015, India
| | - Sivanantham Nallusamy
- Department of Physics, K. Ramakrishnan College of Engineering, Tiruchirappalli 621112, India
| | - Gopalakrishnan Nammalvar
- Department of Physics, National Institute of Technology-Tiruchirappalli, Tiruchirappalli 620015, India
| | | | - Arun Thirumurugan
- Sede Vallenar, Universidad de Atacama, Costanera #105, Vallenar 1612178, Chile
| | - Chidhambaram Natarajan
- Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613005, India
| | | | - Durga Prasad Pabba
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnologica Metropolitana, Santiago 8330378, Chile
| | | | - Sathish-Kumar Kamaraj
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA)-Unidad Altamira, Instituto Politécnico Nacional (IPN), Carretera Tampico-Puerto Industrial Altamira Km 14.5, C. Manzano, Industrial Altamira, Altamira 89600, Mexico
| |
Collapse
|
31
|
Bairi P, Furuse A, Fujisawa K, Hayashi T, Kaneko K. Effect of Pretreatment Conditions on the Precise Nanoporosity of Graphene Oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15880-15886. [PMID: 36469405 DOI: 10.1021/acs.langmuir.2c02938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoscale pores in graphene oxide (GO) control various important functions. The nanoporosity of GO is sensitive to low-temperature heating. Therefore, it is important to carefully process GO and GO-based materials to achieve superior functions. Optimum pretreatment conditions, such as the pre-evacuation temperature and time, are important during gas adsorption in GO to obtain accurate pore structure information. This study demonstrated that the pre-evacuation temperature and time for gas adsorption in GO must be approximately 333-353 K and 4 h, respectively, to avoid the irreversible alteration of nanoporosity. In situ temperature-dependent Fourier-transform infrared spectra and thermogravimetric analysis-mass spectrometry suggested significant structural changes in GO above the pre-evacuation temperature (353 K) through the desorption of "physically adsorbed water" and decomposition of unstable surface functional groups. The nanoporosity of GO significantly changed above the aforementioned pre-evacuation temperature and time. Thus, standard pretreatment is indispensable for understanding the intrinsic interface properties of GO.
Collapse
Affiliation(s)
- Partha Bairi
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Ayumi Furuse
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kazunori Fujisawa
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Takuya Hayashi
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Department of Water Environment and Civil Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Katsumi Kaneko
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
32
|
Bardhan N. Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS COMMUNICATIONS 2022; 12:1119-1139. [PMID: 36277435 PMCID: PMC9576318 DOI: 10.1557/s43579-022-00257-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/01/2022] [Indexed: 05/09/2023]
Abstract
Abstract In the past two decades, the emergence of nanomaterials for biomedical applications has shown tremendous promise for changing the paradigm of all aspects of disease management. Nanomaterials are particularly attractive for being a modularly tunable system; with the ability to add functionality for early diagnostics, drug delivery, therapy, treatment and monitoring of patient response. In this review, a survey of the landscape of different classes of nanomaterials being developed for applications in diagnostics and imaging, as well as for the delivery of prophylactic vaccines and therapeutics such as small molecules and biologic drugs is undertaken; with a particular focus on COVID-19 diagnostics and vaccination. Work involving bio-templated nanomaterials for high-resolution imaging applications for early cancer detection, as well as for optimal cancer treatment efficacy, is discussed. The main challenges which need to be overcome from the standpoint of effective delivery and mitigating toxicity concerns are investigated. Subsequently, a section is included with resources for researchers and practitioners in nanomedicine, to help tailor their designs and formulations from a clinical perspective. Finally, three key areas for researchers to focus on are highlighted; to accelerate the development and clinical translation of these nanomaterials, thereby unleashing the true potential of nanomedicine in healthcare. Graphical abstract
Collapse
Affiliation(s)
- Neelkanth Bardhan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, 02142 MA USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, 02139 MA USA
| |
Collapse
|
33
|
Highly stable and permeable graphene oxide membrane modified by carbohydrazide for efficient dyes separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Goyat R, Saharan Y, Singh J, Umar A, Akbar S. Synthesis of Graphene-Based Nanocomposites for Environmental Remediation Applications: A Review. Molecules 2022; 27:6433. [PMID: 36234970 PMCID: PMC9571129 DOI: 10.3390/molecules27196433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
The term graphene was coined using the prefix "graph" taken from graphite and the suffix "-ene" for the C=C bond, by Boehm et al. in 1986. The synthesis of graphene can be done using various methods. The synthesized graphene was further oxidized to graphene oxide (GO) using different methods, to enhance its multitude of applications. Graphene oxide (GO) is the oxidized analogy of graphene, familiar as the only intermediate or precursor for obtaining the latter at a large scale. Graphene oxide has recently obtained enormous popularity in the energy, environment, sensor, and biomedical fields and has been handsomely exploited for water purification membranes. GO is a unique class of mechanically robust, ultrathin, high flux, high-selectivity, and fouling-resistant separation membranes that provide opportunities to advance water desalination technologies. The facile synthesis of GO membranes opens the doors for ideal next-generation membranes as cost-effective and sustainable alternative to long existing thin-film composite membranes for water purification applications. Many types of GO-metal oxide nanocomposites have been used to eradicate the problem of metal ions, halomethanes, other organic pollutants, and different colors from water bodies, making water fit for further use. Furthermore, to enhance the applications of GO/metal oxide nanocomposites, they were deposited on polymeric membranes for water purification due to their relatively low-cost, clear pore-forming mechanism and higher flexibility compared to inorganic membranes. Along with other applications, using these nanocomposites in the preparation of membranes not only resulted in excellent fouling resistance but also could be a possible solution to overcome the trade-off between water permeability and solute selectivity. Hence, a GO/metal oxide nanocomposite could improve overall performance, including antibacterial properties, strength, roughness, pore size, and the surface hydrophilicity of the membrane. In this review, we highlight the structure and synthesis of graphene, as well as graphene oxide, and its decoration with a polymeric membrane for further applications.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Ji G, Tian J, Xing F, Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. Int J Mol Sci 2022; 23:10838. [PMID: 36142748 PMCID: PMC9500660 DOI: 10.3390/ijms231810838] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.
Collapse
Affiliation(s)
- Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yu Feng
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
36
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Zhang J, Wang Z, Zhuang W, Rabiee H, Zhu C, Deng J, Ge L, Ying H. Amphiphilic Nanointerface: Inducing the Interfacial Activation for Lipase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39622-39636. [PMID: 35980131 DOI: 10.1021/acsami.2c11500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphene-based materials are widely used in the field of immobilized enzymes due to their easily tunable interfacial properties. We designed amphiphilic nanobiological interfaces between graphene oxide (GO) and lipase TL (Thermomyces lanuginosus) with tunable reduction degrees through molecular dynamics simulations and a facile chemical modulation, thus revealing the optimal interface for the interfacial activation of lipase TL and addressing the weakness of lipase TL, which exhibits weak catalytic activity due to an inconspicuous active site lid. It was demonstrated that the reduced graphene oxide (rGO) after 4 h of ascorbic acid reduction could boost the relative enzyme activity of lipase TL to reach 208%, which was 48% higher than the pristine GO and 120% higher than the rGO after 48 h of reduction. Moreover, TL-GO-4 h's tolerance against heat, organic solvent, and long-term storage environment was higher than that of free TL. The drawbacks of strong hydrophobic nanomaterials on lipase production were explored in depth with the help of molecular dynamics simulations, which explained the mechanism of enzyme activity enhancement. We demonstrated that nanomaterials with certain hydrophilicity could facilitate the lipase to undergo interfacial activation and improve its stability and protein loading rate, displaying the potential of the extensive application.
Collapse
Affiliation(s)
- Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Zhaoxin Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hesamoddin Rabiee
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiawei Deng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
38
|
Yan Z, Yang W, Yang H, Ji C, Zeng S, Zhang X, Zhao L, Tu Y. Remarkably enhanced dynamic oxygen migration on graphene oxide supported by copper substrate. NANOSCALE HORIZONS 2022; 7:1082-1086. [PMID: 35829645 DOI: 10.1039/d2nh00041e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dynamic covalent properties of graphene oxide (GO) are of fundamental interest to a broad range of scientific areas and technological applications. It remains a challenge to access feasible dynamic reactions for reversibly breaking/reforming the covalent bonds of oxygen functional groups on GO, although these reactions can be induced by photonic or mechanical routes, or mediated by adsorbed water. Here, using density functional theory calculations, we demonstrate the remarkably enhanced dynamic oxygen migration along the basal plane of GO supported by copper substrate (GO@copper), with C-O bond breaking reactions and proton transfer between neighboring epoxy and hydroxyl groups. Compared to reactions on GO, the energy barriers of oxygen migrations on GO@copper are sharply reduced to be less than or comparable to thermal fluctuations, and meanwhile the crystallographic match between GO and copper substrate induces new oxygen migration paths on GO@copper. This work sheds light on understanding of the metal substrate-enhanced dynamic properties of GO, and evidences the strategy to tune the activity of two-dimensional-interfacial oxygen groups for various potential applications.
Collapse
Affiliation(s)
- Zihan Yan
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Wenjie Yang
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Hao Yang
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Chengao Ji
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Shuming Zeng
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Xiuyun Zhang
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Liang Zhao
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| | - Yusong Tu
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China.
| |
Collapse
|
39
|
|
40
|
Eivazzadeh-Keihan R, Alimirzaloo F, Aghamirza Moghim Aliabadi H, Bahojb Noruzi E, Akbarzadeh AR, Maleki A, Madanchi H, Mahdavi M. Functionalized graphene oxide nanosheets with folic acid and silk fibroin as a novel nanobiocomposite for biomedical applications. Sci Rep 2022; 12:6205. [PMID: 35418605 PMCID: PMC9007964 DOI: 10.1038/s41598-022-10212-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, a novel graphene oxide-folic acid/silk fibroin (GO-FA/SF) nanobiocomposite scaffold was designed and fabricated using affordable and non-toxic materials. The GO was synthesized using the hummer method, covalently functionalized with FA, and then easily conjugated with extracted SF via the freeze-drying process. For characterization of the scaffold, several techniques were employed: Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and thermogravimetric analysis (TGA). The cell viability method, hemolysis, and anti-biofilm assays were performed, exploring the biological capability of the nanobiocomposite. The cell viability percentages were 96.67, 96.35 and 97.23% for 24, 48, and 72 h, respectively, and its hemolytic effect was less than 10%. In addition, it was shown that this nanobiocomposite prevents the formation of Pseudomonas aeruginosa biofilm and has antibacterial activity.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Farkhondeh Alimirzaloo
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Yang JW, Chen CY, Yu ZY, Chung JH, Liu X, Wu CY, Chen GY. An electroactive hybrid biointerface for enhancing neuronal differentiation and axonal outgrowth on bio-subretinal chip. Mater Today Bio 2022; 14:100253. [PMID: 35464741 PMCID: PMC9018446 DOI: 10.1016/j.mtbio.2022.100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Retinal prostheses offer viable vision restoration therapy for patients with blindness. However, a critical requirement for maintaining the stable performance of electrical stimulation and signal transmission is the biocompatibility of the electrode interface. Here, we demonstrated a functionalized electrode-neuron biointerface composed of an annealed graphene oxide-collagen (aGO-COL) composite and neuronal cells. The aGO-COL exhibited an electroactive 3D crumpled surface structure and enhanced the differentiation efficiency of PC-12 cells. It is integrated into a photovoltaic self-powered retinal chip to develop a biohybrid retinal implant that facilitates biocompatibility and tissue regeneration. Moreover, aGO-COL micropatterns fabricated via 3D bioprinting can be used to create neuronal cell microarrays, which supports the possibility of retaining the high spatial resolution achieved through electrical stimulation of the retinal chip. This study paves the way for the next generation of biohybrid retinal implants based on biointerfaces.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Zih-Yu Yu
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Johnson H.Y. Chung
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Chung-Yu Wu
- Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Electronics and Electrical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
42
|
Chen CY, Chiu HY, Chang SJ, Yeh NL, Chan CH, Shih CC, Chen SL, Yang JW, Huang CY, Chen GY. Enhanced Probe Bonding and Fluorescence Properties through Annealed Graphene Oxide Nanosheets. ACS Biomater Sci Eng 2022; 9:2148-2155. [PMID: 35156796 DOI: 10.1021/acsbiomaterials.1c01044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Graphene oxide (GO) has been widely used in biological sensing studies because of its excellent physical and chemical properties. In particular, the rich functional groups on the surface of GO can effectively enhance the bonding of biomolecules and serve as an efficient sensing substrate. However, when biomolecules are labeled with fluorescence, the GO interface affects the biomolecules by reducing the fluorescence properties and limiting their applications in biosensing. Here, we establish an annealed GO (aGO) substrate through the annealing process, which can effectively increase the bonding amount of a DNA probe because of the accumulation of oxygen atoms on the surface without significantly damaging the nanosheet structure. Furthermore, we prove that the aGO substrate can effectively maintain its fluorescence performance and stability by exposing more graphic domains. Overall, this study successfully verifies that GO's interface annealing modification can be used as an alternative innovative interface application in biosensing.
Collapse
Affiliation(s)
- Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hsien-Yi Chiu
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.,Department of Dermatology, College of Medicine, National Taiwan University, Taipei100, Taiwan.,Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.,Department of Dermatology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shing-Jyh Chang
- Gynecologic Oncology Section Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu 300, Taiwan
| | - Nai-Lun Yeh
- Department of Community and Family Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan
| | - Chia-Hao Chan
- Gynecologic Oncology Section Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu 300, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chuan-Chi Shih
- Gynecologic Oncology Section Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu 300, Taiwan
| | - Shiue-Luen Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jia-Wei Yang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chien-Yu Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
43
|
Zhou S, Xie L, Yan M, Zeng H, Zhang X, Zeng J, Liang Q, Liu T, Chen P, Jiang L, Kong B. Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Analyst 2022; 147:652-660. [PMID: 35060575 DOI: 10.1039/d1an02232f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic nacre-like membranes composed of two-dimensional lamellar sheets and one-dimensional nanofibers exhibit high mechanical strength and excellent stability. Thus, they show substantial application in the field of membrane science and water purification. However, the limited techniques for the assembly of two-dimensional lamellar membranes and one-dimensional nanofibers hamper their development and application. Herein, we developed a nacre-like and freestanding graphene oxide/aramid fiber membrane with abundant T-mode subnanochannels by introducing aramid fibers into graphene oxide interlamination via the super-assembly interaction between graphene oxide and aramid fibers. Benefiting from the presence of stable and adjustable sub-nanometer-size ion transport channels, the graphene oxide/aramid fiber composite membrane exhibited excellent mono/divalent ion selectivity of 3.51 (K+/Mg2+), which is superior to that of the pure graphene oxide membrane. The experimental results suggest that the mono/divalent ion selectivity is ascribed to the subnanochannels in the graphene oxide/aramid fiber composite membrane, electrostatic repulsion interaction and strong interaction between the divalent metal ion and carboxyl groups. Moreover, the composite membrane exhibited remarkable charge selectivity with a K+/Cl- ratio of up to ∼158, indicating that this graphene oxide/aramid fiber composite membrane has great potential for application in energy conversion. This study provides an avenue to prepare freestanding and nacre-like composite membranes with abundant T-mode ion transport channels for ion recognition and energy conversion, which also shows great application prospects in the field of membrane science and water purification.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Hui Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Xin Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Jie Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Qirui Liang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
44
|
Meng Z, Yang X, Li H. DFT-based theoretical simulation on electronic transition for graphene oxides in solvent media. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Ye F, Zhang Z, Ao Y, Li B, Chen L, Shen L, Feng X, Yang Y, Yuan H, Mi Y. Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks. CHEMOSPHERE 2022; 288:132656. [PMID: 34710449 DOI: 10.1016/j.chemosphere.2021.132656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Removing emulsified water from a water-in-crude oil (W/O) emulsion is critically required prior to downstream processing in the petroleum industry. In this work, environmentally friendly and amphipathic rice husk carbon (RHC) demulsifier was prepared by a simple carbonization process in a muffle furnace using rice husks as starting materials. RHC was characterized by field-emission scanning electron microscope, energy dispersive spectrometer, Fourier transform infrared spectrometer, ultraviolet-visible spectrometer, powder X-ray diffraction, zeta potential and synchronal thermal analyzer. The factors such as dosage, temperature, settling time, pH value and salinity were systematically investigated. The results indicated that the dehydration efficiency (DE) reached as high as 96.99% with 600 mg/L of RHC for 80 min at 70 °C. RHC exhibited an optimal DE under neutral condition, but it was also effective under acidic and alkaline conditions. Also, it had an excellent salt tolerance. The possible demulsification mechanism was explored by interfacial properties, different treatment methods for RHC and microexamination. The demulsification of RHC is attributed to its high interfacial activity, oxygen-containing groups and content of silica. It indicates that RHC is an effective demulsifier for the treatment of the W/O emulsion.
Collapse
Affiliation(s)
- Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yiling Ao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Bin Li
- Xinjiang Tarim Oilfield Construction Engineering Co., Ltd., PetroChina Tarim Oilfield Company, Korla, 841000, PR China
| | - Lihan Chen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Huaikui Yuan
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
46
|
Rabchinskii MK, Sysoev VV, Ryzhkov SA, Eliseyev IA, Stolyarova DY, Antonov GA, Struchkov NS, Brzhezinskaya M, Kirilenko DA, Pavlov SI, Palenov ME, Mishin MV, Kvashenkina OE, Gabdullin PG, Varezhnikov AS, Solomatin MA, Brunkov PN. A Blueprint for the Synthesis and Characterization of Thiolated Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:45. [PMID: 35009995 PMCID: PMC8746421 DOI: 10.3390/nano12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 06/12/2023]
Abstract
Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials.
Collapse
Affiliation(s)
- Maxim K. Rabchinskii
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., 410054 Saratov, Russia; (V.V.S.); (A.S.V.); (M.A.S.)
| | - Sergei A. Ryzhkov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Ilya A. Eliseyev
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Dina Yu. Stolyarova
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
| | - Grigorii A. Antonov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Nikolai S. Struchkov
- Center for Probe Microscopy and Nanotechnology, National Research University of Electronic Technology, Bld. 1, Shokin Square, 124498 Moscow, Russia;
| | - Maria Brzhezinskaya
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany;
| | - Demid A. Kirilenko
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Sergei I. Pavlov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| | - Mihail E. Palenov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Maxim V. Mishin
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Olga E. Kvashenkina
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Pavel G. Gabdullin
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya 29, 195251 Saint Petersburg, Russia; (M.E.P.); (M.V.M.); (O.E.K.); (P.G.G.)
| | - Alexey S. Varezhnikov
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., 410054 Saratov, Russia; (V.V.S.); (A.S.V.); (M.A.S.)
| | - Maksim A. Solomatin
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya St., 410054 Saratov, Russia; (V.V.S.); (A.S.V.); (M.A.S.)
| | - Pavel N. Brunkov
- Ioffe Institute, Politekhnicheskaya St. 26, 194021 Saint Petersburg, Russia; (S.A.R.); (I.A.E.); (G.A.A.); (D.A.K.); (S.I.P.); (P.N.B.)
| |
Collapse
|
47
|
Kumar P, Bajpai H, Gopinath CS, Luwang MN. Sulfur Functionalization via Epoxide Ring Opening on a Reduced Graphene Oxide Surface to Form Metal (II) Organo-bis-[1,2]-oxathiin. Inorg Chem 2021; 61:279-286. [PMID: 34932334 DOI: 10.1021/acs.inorgchem.1c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The epoxide ring-opening reaction in graphene oxide (GO) by nucleophiles is a very fascinating and advanced methodology to develop novel functional material. Herewith, we report an advanced strategy for opening the epoxide ring on the rGO surface via easily an available nucleophile (Na2S), which is further functionalized with O atom to obtain four-membered rings (FMRs). The Cd coordination with the S atom puts extra stress on the FMR leading to the C-C bond cleavage of the four-membered heteroatomic rings on the rGO surface. This strategic approach leads to the fabrication of an innovative metal (II) organo-bis-[1,2]-oxathiin (MOBOT) chemical moiety (M = Cd, Zn). The MOBOT compound further shows enhanced H2 generation activity and hence is promising as a potential photocatalyst for solar hydrogen generation. This compound might also be a potential candidate for optoelectronic applications.
Collapse
Affiliation(s)
- Praveen Kumar
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| | - Himanshu Bajpai
- Catalysis and Inorganic Chemistry Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| | - Chinnakonda S Gopinath
- Catalysis and Inorganic Chemistry Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| | - Meitram Niraj Luwang
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
48
|
Jia P, Du X, Chen R, Zhou J, Agostini M, Sun J, Xiao L. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Molecules 2021; 26:molecules26175343. [PMID: 34500776 PMCID: PMC8434357 DOI: 10.3390/molecules26175343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Salinity gradient energy, as a type of blue energy, is a promising sustainable energy source. Its energy conversion efficiency is significantly determined by the selective membranes. Recently, nanofluidic membrane made by two-dimensional (2D) nanomaterials (e.g., graphene) with densely packed nanochannels has been considered as a high-efficient membrane in the osmotic power generation research field. Herein, the graphene oxide-cellulose acetate (GO-CA) heterogeneous membrane was assembled by combining a porous CA membrane and a layered GO membrane; the combination of 2D nanochannels and 3D porous structures make it show high surface-charge-governed property and excellent ion transport stability, resulting in an efficient osmotic power harvesting. A power density of about 0.13 W/m2 is achieved for the sea-river mimicking system and up to 0.55 W/m2 at a 500-fold salinity gradient. With different functions, the CA and GO membranes served as ion storage layer and ion selection layer, respectively. The GO-CA heterogeneous membrane open a promising avenue for fabrication of porous and layered platform for wide potential applications, such as sustainable power generation, water purification, and seawater desalination.
Collapse
Affiliation(s)
- Pan Jia
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (P.J.); (X.D.); (J.Z.)
| | - Xinyi Du
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (P.J.); (X.D.); (J.Z.)
| | - Ruiqi Chen
- Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, 41296 Göteborg, Sweden; (R.C.); (J.S.)
| | - Jinming Zhou
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (P.J.); (X.D.); (J.Z.)
| | - Marco Agostini
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden;
| | - Jinhua Sun
- Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, 41296 Göteborg, Sweden; (R.C.); (J.S.)
| | - Linhong Xiao
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
- Correspondence: ; Tel.: +46-(0)729401213
| |
Collapse
|
49
|
Bardhan NM, Jansen P, Belcher AM. Graphene, Carbon Nanotube and Plasmonic Nanosensors for Detection of Viral Pathogens: Opportunities for Rapid Testing in Pandemics like COVID-19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.733126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the emergence of global pandemics such as the Black Death (Plague), 1918 influenza, smallpox, tuberculosis, HIV/AIDS, and currently the COVID-19 outbreak caused by the SARS-CoV-2 virus, there is an urgent, pressing medical need to devise methods of rapid testing and diagnostics to screen a large population of the planet. The important considerations for any such diagnostic test include: 1) high sensitivity (to maximize true positive rate of detection); 2) high specificity (to minimize false positives); 3) low cost of testing (to enable widespread adoption, even in resource-constrained settings); 4) rapid turnaround time from sample collection to test result; and 5) test assay without the need for specialized equipment. While existing testing methods for COVID-19 such as RT-PCR (real-time reverse transcriptase polymerase chain reaction) offer high sensitivity and specificity, they are quite expensive – in terms of the reagents and equipment required, the laboratory expertise needed to run and interpret the test data, and the turnaround time. In this review, we summarize the recent advances made using carbon nanotubes for sensors; as a nanotechnology-based approach for diagnostic testing of viral pathogens; to improve the performance of the detection assays with respect to sensitivity, specificity and cost. Carbon nanomaterials are an attractive platform for designing biosensors due to their scalability, tunable functionality, photostability, and unique opto-electronic properties. Two possible approaches for pathogen detection using carbon nanomaterials are discussed here: 1) optical sensing, and 2) electrochemical sensing. We explore the chemical modifications performed to add functionality to the carbon nanotubes, and the physical, optical and/or electronic considerations used for testing devices or sensors fabricated using these carbon nanomaterials. Given this progress, it is reason to be cautiously optimistic that nanosensors based on carbon nanotubes, graphene technology and plasmonic resonance effects can play an important role towards the development of accurate, cost-effective, widespread testing capacity for the world’s population, to help detect, monitor and mitigate the spread of disease outbreaks.
Collapse
|
50
|
Cham Sa-Ard W, Fawcett D, Fung CC, Chapman P, Rattan S, Poinern GEJ. Synthesis, characterisation and thermo-physical properties of highly stable graphene oxide-based aqueous nanofluids for potential low-temperature direct absorption solar applications. Sci Rep 2021; 11:16549. [PMID: 34400658 PMCID: PMC8367989 DOI: 10.1038/s41598-021-94406-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Two types of highly stable 0.1% graphene oxide-based aqueous nanofluids were synthesised and investigated. The first nanofluid (GO) was prepared under the influence of ultrasonic irradiation without surfactant. The second nanofluid was treated with tetra ethyl ammonium hydroxide to reduce the graphene oxide to form reduced graphene oxide (RGO) during ultrasonic irradiation. The GO and RGO powders were characterised by various techniques such as field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman. Also UV–visible absorption spectroscopy was carried out and band gap energies were determined. Optical band gap energies for indirect transitions ranged from 3.4 to 4.4 eV and for direct transitions they ranged between 2.2 and 3.7 eV. Thermal conductivity measurements of the GO-based aqueous nanofluid revealed an enhancement of 9.5% at 40 °C compared to pure water, while the RGO-based aqueous nanofluid at 40 °C had a value 9.23% lower than pure water. Furthermore, the photothermal response of the RGO-based aqueous nanofluid had a temperature increase of 13.5 °C, (enhancement of 60.2%) compared to pure water, the GO-based aqueous nanofluid only displayed a temperature rise of 10.9 °C, (enhancement of 46.6%) after 20 min exposure to a solar irradiance of 1000 W m−2. Both nanofluid types displayed good long-term stability, with the GO-based aqueous nanofluid having a zeta potential of 30.3 mV and the RGO-based aqueous nanofluid having a value of 47.6 mV after 6 months. The good dispersion stability and photothermal performance makes both nanofluid types very promising working fluids for low-temperature direct absorption solar collectors.
Collapse
Affiliation(s)
- Wisut Cham Sa-Ard
- Murdoch Applied Innovation Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Derek Fawcett
- Murdoch Applied Innovation Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Chun Che Fung
- School of Engineering and Energy, Murdoch University, Murdoch, WA, 6150, Australia
| | - Peter Chapman
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA, 6102, Australia
| | - Supriya Rattan
- Murdoch Applied Innovation Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Innovation Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|