1
|
Zhao F, Gong L, Wang P, Chen D, Cao S, Yang F, Tang M, Meng Y, Wang Y, Miao L, Li Y, Huang W. Co-encapsulation of norcantharidin prodrugs and lomitapide in nanoparticles to regulate CCL4 expression by inhibiting Wnt/β-catenin pathway for improved anti-tumor immunotherapy. J Nanobiotechnology 2025; 23:369. [PMID: 40394658 PMCID: PMC12093795 DOI: 10.1186/s12951-025-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
In the absence of tumor antigen specificity, direct chemokine administration carries the risk of significant "on-target, off-tumor" toxicities, highlighting the need for small-molecule approaches with reduced immunogenicity. This study investigates the synergistic potential of norcantharidin (NCTD) and lomitapide (lomi) in selectively restoring CCL4 expression by deactivating the tumor intrinsic β-catenin pathway. Due to its similar lipophilicity to lomi and potential to suppress β-catenin, NCTD prodrug (C12) was selected to be co-encapsulated with lomi in a nanoparticle-mediated co-delivery system (NP"C12 + lomi"). The NP"C12 + lomi" formulation exhibited a high encapsulation rate, uniform particle size, and suitability for therapeutic use. It effectively inhibited the proliferation of 4T1 cells and restored CCL4 expression. In both primary breast tumor and surgically resected tumor mouse models, NP"C12 + lomi" significantly increased the proportion of CD8+ cells in primary tumors, blood, and lung metastases, approximately doubling their presence. This led to a prolongation of median survival in mice to 59 days. Furthermore, when combined with an immune checkpoint inhibitor, NP"C12 + lomi" substantially inhibited tumor growth and lung metastasis without affecting body weight or causing major tissue or organ damage. This was attributed to the controlled dissociation of the nanoparticle and the subsequent modulation of C12 and lomi, which mitigated CCL4-related toxicity. This study provides valuable insights into the safe production of chemokines using a small-molecule pair through a nanosystem and presents a robust chemo-immunological cascade therapy strategy, demonstrating significant efficacy against malignant metastatic tumors.
Collapse
Affiliation(s)
- Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dong Chen
- Suzhou Kintor Pharmaceuticals, Inc., Suzhou, 215127, China
| | - Shijie Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feifei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuanyuan Meng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China.
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Kazianka L, Pichler A, Agreiter C, Rohrbeck J, Kornauth C, Porpaczy E, Sillaber C, Sperr WR, Gleixner KV, Hauswirth A, Jäger U, Valent P, Jonak C, Porkert S, Exner R, Willenbacher W, Wolf D, Neumeister P, Prochazka K, Deutsch A, Greil R, Schmitt C, Ristl R, Mayerhoefer M, Simonitsch‐Klupp I, Pemovska T, Staber PB. Comparing functional and genomic-based precision medicine in blood cancer patients. Hemasphere 2025; 9:e70129. [PMID: 40276215 PMCID: PMC12020024 DOI: 10.1002/hem3.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 04/26/2025] Open
Abstract
Tumor-agnostic precision medicine (PM) strategies promise to support treatment decisions in relapsed/refractory blood cancer patients. Genomic-based PM (gPM) and drug screening-based functional PM (fPM) currently represent the most prominent PM methodologies. In this study, we report the feasibility analysis of the first 55 patients enrolled in the multicentric, randomized controlled EXALT-2 trial (NCT04470947) comparing treatment recommendations of gPM, fPM, and physicians' choice (PC) head to head. In 54 patients (98%), the diagnostic workflow was successfully implemented, resulting in treatment recommendations for 42 patients (76%), of whom 29 (69%) received the suggested individualized treatments. Actionable targets were identified in 65% by gPM and 80% by fPM (64% microscopy-based, 86% flow cytometry-based fPM). The median time to report was shorter for fPM than for gPM testing. The two strategies revealed overlapping drug targets in 60% of cases. Both, gPM and fPM can efficiently be integrated into the clinical routine to guide therapy decisions for the majority of patients.
Collapse
Affiliation(s)
- Lukas Kazianka
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyViennaAustria
| | - Alexander Pichler
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Christiane Agreiter
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | | | - Christoph Kornauth
- Department of PathologyMedical University of ViennaViennaAustria
- MLL Munich Leukemia LaboratoryMunichGermany
| | - Edit Porpaczy
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Christian Sillaber
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyViennaAustria
| | - Karoline V. Gleixner
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Alexander Hauswirth
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyViennaAustria
| | - Constanze Jonak
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Stefanie Porkert
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Ruth Exner
- Department of General SurgeryMedical University of ViennaViennaAustria
| | - Wolfgang Willenbacher
- Department of Medicine VMedical University of InnsbruckInnsbruckAustria
- syndena GmbH, connect to cureInnsbruckAustria
| | - Dominik Wolf
- Department of Medicine VMedical University of InnsbruckInnsbruckAustria
| | | | | | | | - Richard Greil
- IIIrd Medical DepartmentParacelsus Medical UniversitySalzburgAustria
- Salzburg Cancer Research Institute‐Center for Clinical Cancer and Immunology Trials, Cancer Cluster SalzburgSalzburgAustria
| | - Clemens Schmitt
- Johannes Kepler UniversityLinzAustria
- Department of Hematology and OncologyKepler University HospitalLinzAustria
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum – MKFZ, Campus Virchow KlinikumCharité ‐ Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Robin Ristl
- Center of Medical Data ScienceMedical University of ViennaViennaAustria
| | - Marius Mayerhoefer
- Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Department of RadiologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | | | - Tea Pemovska
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Philipp B. Staber
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology and OncologyViennaAustria
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology)Saarland University Medical SchoolHomburgGermany
| |
Collapse
|
3
|
Kartnig F, Bonelli M, Goldmann U, Mészáros N, Krall N, Aletaha D, Heinz LX, Superti-Furga G. Ex vivo imaging-based high content phenotyping of patients with rheumatoid arthritis. EBioMedicine 2025; 111:105522. [PMID: 39729885 PMCID: PMC11732195 DOI: 10.1016/j.ebiom.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND High content imaging-based functional precision medicine approaches have been developed and successfully applied in the field of haemato-oncology. For rheumatoid arthritis (RA), treatment selection is still based on a trial-and-error principle, and biomarkers for patient stratification and drug response prediction are needed. METHODS A high content, high throughput microscopy-based phenotyping pipeline for peripheral blood mononuclear cells (PBMCs) was developed, allowing for the quantification of cell type frequencies, cell type specific morphology and intercellular interactions from patients with RA (n = 65) and healthy controls (HC, n = 33). Samples were exposed to a curated set of RA-specific small molecules, biologicals and reference stimuli for 24 h to assess ex vivo drug effects. Data on ex vivo PBMC phenotypes were integrated with information on patients' in vivo medication and disease activity. FINDINGS The unbiased data from in total 6.9e8 individual cells were collected and allowed for the identification of PBMC phenotypes specific to disease activity as well as in vivo and ex vivo treatment. The arrayed ex vivo drug perturbation enabled the systematic characterization of drug effects, clustering by mode of action and uncovered morphologic alterations associated with biologic disease-modifying anti-rheumatic drug (DMARD) treatment. Individual in vivo treatment regimens translated into altered immune cell abundances in patients with a comedication of conventional synthetic DMARDs when compared to HCs. Global integration of PBMC characteristics led to clustering of patients according to disease activity and correlation with clinical data. INTERPRETATION The application of the developed screening tool demonstrates a technical proof-of-concept for feasibility of a functional precision medicine approach to the ex vivo immunophenotypic characterisation of patients with RA. FUNDING This work was supported by the Austrian Academy of Sciences, the Medical University of Vienna and a grant (RMG2235 to L.X.H.) from the European Alliance of Associations for Rheumatology (EULAR).
Collapse
Affiliation(s)
- Felix Kartnig
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Internal Medicine III, Division of Rheumatology, Medical University Vienna; Vienna, Austria
| | - Michael Bonelli
- Department of Internal Medicine III, Division of Rheumatology, Medical University Vienna; Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Noemi Mészáros
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Krall
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniel Aletaha
- Department of Internal Medicine III, Division of Rheumatology, Medical University Vienna; Vienna, Austria
| | - Leonhard X Heinz
- Department of Internal Medicine III, Division of Rheumatology, Medical University Vienna; Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Centre for Physiology and Pharmacology, Medical University of Vienna; Vienna, Austria.
| |
Collapse
|
4
|
Wegmann R, Bonilla X, Casanova R, Chevrier S, Coelho R, Esposito C, Ficek-Pascual J, Goetze S, Gut G, Jacob F, Jacobs A, Kuipers J, Lischetti U, Mena J, Milani ES, Prummer M, Del Castillo JS, Singer F, Sivapatham S, Toussaint NC, Vilinovszki O, Wildschut MHE, Thavayogarajah T, Malani D, Aebersold R, Bacac M, Beerenwinkel N, Beisel C, Bodenmiller B, Heinzelmann-Schwarz V, Koelzer VH, Levesque MP, Moch H, Pelkmans L, Rätsch G, Tolnay M, Wicki A, Wollscheid B, Manz MG, Snijder B, Theocharides APA. Single-cell landscape of innate and acquired drug resistance in acute myeloid leukemia. Nat Commun 2024; 15:9402. [PMID: 39477946 PMCID: PMC11525670 DOI: 10.1038/s41467-024-53535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Deep single-cell multi-omic profiling offers a promising approach to understand and overcome drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML). Here, we combine single-cell ex vivo drug profiling (pharmacoscopy) with single-cell and bulk DNA, RNA, and protein analyses, alongside clinical data from 21 rrAML patients. Unsupervised data integration reveals reduced ex vivo response to the Bcl-2 inhibitor venetoclax (VEN) in patients treated with both a hypomethylating agent (HMA) and VEN, compared to those pre-exposed to chemotherapy or HMA alone. Integrative analysis identifies both known and unreported mechanisms of innate and treatment-related VEN resistance and suggests alternative treatments, like targeting increased proliferation with the PLK inhibitor volasertib. Additionally, high CD36 expression in VEN-resistant blasts associates with sensitivity to CD36-targeted antibody treatment ex vivo. This study demonstrates how single-cell multi-omic profiling can uncover drug resistance mechanisms and treatment vulnerabilities, providing a valuable resource for future AML research.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Single-Cell Analysis
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Female
- Male
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Aged
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ximena Bonilla
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Ruben Casanova
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Stéphane Chevrier
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Ricardo Coelho
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cinzia Esposito
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Sandra Goetze
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gabriele Gut
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ulrike Lischetti
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emanuela S Milani
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Prummer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | | | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | - Sujana Sivapatham
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nora C Toussaint
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
- Swiss Data Science Center, ETH Zürich, Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Disha Malani
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, USA
| | - Rudolf Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- AI Center at ETH Zurich, Zurich, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | |
Collapse
|
5
|
Wegmann R, Bankel L, Festl Y, Lau K, Lee S, Arnold F, Cappelletti V, Fehr A, Picotti P, Dedes KJ, Franzen D, Lenggenhager D, Bode PK, Zoche M, Moch H, Britschgi C, Snijder B. Molecular and functional landscape of malignant serous effusions for precision oncology. Nat Commun 2024; 15:8544. [PMID: 39358333 PMCID: PMC11447229 DOI: 10.1038/s41467-024-52694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
Personalized treatment for patients with advanced solid tumors critically depends on the deep characterization of tumor cells from patient biopsies. Here, we comprehensively characterize a pan-cancer cohort of 150 malignant serous effusion (MSE) samples at the cellular, molecular, and functional level. We find that MSE-derived cancer cells retain the genomic and transcriptomic profiles of their corresponding primary tumors, validating their use as a patient-relevant model system for solid tumor biology. Integrative analyses reveal that baseline gene expression patterns relate to global ex vivo drug sensitivity, while high-throughput drug-induced transcriptional changes in MSE samples are indicative of drug mode of action and acquired treatment resistance. A case study exemplifies the added value of multi-modal MSE profiling for patients who lack genetically stratified treatment options. In summary, our study provides a functional multi-omics view on a pan-cancer solid tumor cohort and underlines the feasibility and utility of MSE-based precision oncology.
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenz Bankel
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Kate Lau
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Fabian Arnold
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Valentina Cappelletti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Aaron Fehr
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Konstantin J Dedes
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Franzen
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter K Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Christian Britschgi
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
- Medical Oncology and Hematology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
6
|
Gao J, Xie Y, Zhang J, Chen H, Zou Y, Cen S, Zhou J. A novel hydrophobic tag leads to the efficient degradation of programmed death-ligand 1. RSC Med Chem 2024; 15:3038-3047. [PMID: 39309365 PMCID: PMC11411611 DOI: 10.1039/d4md00320a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
The interaction of PD-L1 and PD-1 transmits the inhibitory signal to reduce the proliferation of antigen-specific T-cells in lymph nodes. The expression of PD-L1 confers a potential escaping mechanism of tumors from the host immune system. Blocking the interaction of PD-1 and PD-L1 enables tumor-reactive T cells to overcome regulatory mechanisms and induce an effective antitumor response. The hydrophobic tag tethering degrader (HyTTD) contains a hydrophobic moiety, binding to the protein of interest (POI) to mimic the misfolding state of the POI, thereby inducing the degradation of POI. In this work, using the HyTTD strategy, we selected the diphenylmethyl derivatives as the PD-L1 binding motif for PD-L1 to develop the degraders for PD-L1, and multiple hydrophobic tags were attached. As a result, two HyTTDs Z2d and Z3d efficiently decreased the protein level of PD-L1 in both NCI-H460 and HT-1080 cells with low cytotoxicity. Meanwhile, the reduction of PD-L1 protein levels by Z2d/Z3d was counteracted by MG132, which indicated that Z2d/Z3d degraded PD-L1 through the proteasome pathway. Moreover, the molecular modeling results indicated that the HyT group of Z2d or Z3d extended the surface of the protein to mimic the misfold. Importantly, our work also identified a novel HyT, which could be applied to develop the HyTTD for other target proteins.
Collapse
Affiliation(s)
- Jieke Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science Beijing China
| | - Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Huirong Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science Beijing China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
7
|
Wang H, Shen L, Chen L, Gao Y, Ma L, Lian W, Zhang Z, Liu H, Yang H, Wang J, Zhao D, Cheng M. Design, synthesis, pharmacological evaluation, and computational study of benzo[d] isothiazol-based small molecule inhibitors targeting PD-1/PD-l1 interaction. Eur J Med Chem 2024; 275:116622. [PMID: 38959727 DOI: 10.1016/j.ejmech.2024.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024]
Abstract
Blockade of the programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy, but the clinical application of small molecule PD-1/PD-L1 inhibitors remains unclear. In this work, based on BMS-202 and our previous work YLW-106, a series of compounds with benzo[d]isothiazol structure as scaffold were designed and synthesized. Their inhibitory activity against PD-1/PD-L1 interaction was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay. Among them, LLW-018 (27c) exhibited the most potent inhibitory activity with an IC50 value of 2.61 nM. The cellular level assays demonstrated that LLW-018 exhibited low cytotoxicity against Jurkat T and MDA-MB-231. Further cell-based PD-1/PD-L1 blockade bioassays based on PD-1 NFAT-Luc Jurkat cells and PD-L1 TCR Activator CHO cells indicated that LLW-018 could interrupt PD-1/PD-L1 interaction with an IC50 value of 0.88 μM. Multi-computational methods, including molecular docking, molecular dynamics, MM/GBSA, MM/PBSA, Metadynamics, and QM/MM MD were utilized on PD-L1 dimer complexes, which revealed the binding modes and dissociation process of LLW-018 and C2-symmetric small molecule inhibitor LCH1307. These results suggested that LLW-018 exhibited promising potency as a PD-1/PD-L1 inhibitor for further investigation.
Collapse
Affiliation(s)
- Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Lanlan Shen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yinli Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Lanyan Ma
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Wenxiong Lian
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Zhihao Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Haihan Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
8
|
Zhang F, Yu Q, Wu C, Sun S, Wang Y, Wang R, Chen Z, Zhang H, Xiong X, Awadasseid A, Rao G, Zhao X, Zhang W. Design, synthesis, anti-tumor activity and mechanism of novel PROTACs as degraders of PD-L1 and inhibitors of PD-1/PD-L1 interaction. Bioorg Med Chem 2024; 111:117867. [PMID: 39121678 DOI: 10.1016/j.bmc.2024.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Currently, antibody drugs targeting programmed cell death ligand 1 (PD-L1) have achieved promising results in cancer treatment, while the development of small-molecule drugs lags behind. In this study, we designed and synthesized a series of PD-L1-degrading agents based on the PROTAC design principle, utilizing the PD-L1 inhibitor A56. Through systematic screening of ligands and linkers and investigating the structure-activity relationship of the degraders, we identified two highly active compounds, 9i and 9j. These compounds enhance levels of CD4+, CD8+, granzyme B, and perforin, demonstrating significant in vivo antitumor effects with a tumor growth inhibition (TGI) of up to 57.35 %. Both compounds facilitate the internalization of PD-L1 from the cell surface and promote its degradation through proteasomal and lysosomal pathways, while also maintaining inhibition of the PD-1/PD-L1 interaction. In summary, our findings provide a novel strategy and mechanism for developing biphenyl-based PROTAC antitumor drugs targeting and degrading PD-L1.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Yu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Rui Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Zejie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Hua Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Xuqiong Xiong
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Moganshan Institute, Zhejiang University of Technology, Deqing 313200, China
| | - Guowu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Xiaoyin Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou 311113, China.
| |
Collapse
|
9
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
10
|
Shilts J, Wright GJ. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Annu Rev Biomed Data Sci 2024; 7:155-177. [PMID: 38723658 DOI: 10.1146/annurev-biodatasci-102523-103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Proteins on the surfaces of cells serve as physical connection points to bridge one cell with another, enabling direct communication between cells and cohesive structure. As biomedical research makes the leap from characterizing individual cells toward understanding the multicellular organization of the human body, the binding interactions between molecules on the surfaces of cells are foundational both for computational models and for clinical efforts to exploit these influential receptor pathways. To achieve this grander vision, we must assemble the full interactome of ways surface proteins can link together. This review investigates how close we are to knowing the human cell surface protein interactome. We summarize the current state of databases and systematic technologies to assemble surface protein interactomes, while highlighting substantial gaps that remain. We aim for this to serve as a road map for eventually building a more robust picture of the human cell surface protein interactome.
Collapse
Affiliation(s)
- Jarrod Shilts
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom;
- School of the Biological Sciences, University of Cambridge, Cambridge, United Kingdom;
| | - Gavin J Wright
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom;
| |
Collapse
|
11
|
Solomon BJ, Dagogo-Jack I, Lee SH, Boyer MJ, Ramalingam SS, Carcereny E, Felip E, Han JY, Hida T, Hughes BG, Kim SW, Nishio M, Seto T, Okamoto T, Zhang X, Martini JF, Wang E, De Beukelaer S, Bauer TM. Avelumab in Combination With Lorlatinib or Crizotinib in Patients With Previously Treated Advanced NSCLC: Phase 1b/2 Results From the JAVELIN Lung 101 Trial. JTO Clin Res Rep 2024; 5:100685. [PMID: 39034968 PMCID: PMC11260014 DOI: 10.1016/j.jtocrr.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction The JAVELIN Lung 101 phase 1b/2 trial evaluated avelumab (immune checkpoint inhibitor) combined with lorlatinib or crizotinib (tyrosine kinase inhibitors) in ALK-positive or ALK-negative advanced NSCLC, respectively. Methods Starting doses of lorlatinib 100 mg once daily or crizotinib 250 mg twice daily were administered with avelumab 10 mg/kg every 2 weeks. Primary objectives were assessment of maximum tolerated dose (MTD) and recommended phase 2 dose in phase 1 and objective response rate in phase 2. Primary end points were dose-limiting toxicity (DLT) and confirmed objective response per Response Evaluation Criteria in Solid Tumors, version 1.1. Results In the avelumab plus lorlatinib group (ALK-positive; n = 31; 28 in phase 1b; three in phase 2), two of 28 assessable patients (7%) had DLT, and the MTD and recommended phase 2 dose was avelumab 10 mg/kg every 2 weeks plus lorlatinib 100 mg once daily. In the avelumab plus crizotinib group (ALK-negative; n = 12; all phase 1b), five of 12 assessable patients (42%) had DLT, and the MTD was exceeded with avelumab 10 mg/kg every 2 weeks plus crizotinib 250 mg twice daily; alternative crizotinib doses were not assessed. Objective response rate was 52% (95% confidence interval, 33%-70%) with avelumab plus lorlatinib (complete response, 3%; partial response, 48%) and 25% (95% confidence interval, 6%-57%) with avelumab plus crizotinib (all partial responses). Conclusions Avelumab plus lorlatinib treatment in ALK-positive NSCLC was feasible, but avelumab plus crizotinib treatment in ALK-negative NSCLC could not be administered at the doses tested. No evidence of increased antitumor activity was observed in either group. ClinicalTrialsgov identifier NCT02584634.
Collapse
Affiliation(s)
| | - Ibiayi Dagogo-Jack
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Se-Hoon Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | - Enric Carcereny
- Institut Català d'Oncologia de Badalona, Servicio de Oncología Médica, Badalona, Spain
| | - Enriqueta Felip
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology, Centro Cellex, Barcelona, Spain
| | - Ji-Youn Han
- National Cancer Center, Gyeonggi-do, South Korea
| | - Toyoaki Hida
- Aichi Cancer Center Central Hospital, Nagoya, Japan
| | - Brett G.M. Hughes
- The Prince Charles Hospital, Cancer Care Services, Chermside, Queensland, Australia
| | - Sang-We Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Makoto Nishio
- The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Seto
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Tatsuro Okamoto
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | - Erjian Wang
- Pfizer, San Diego, California
- Present address: IDEAYA Biosciences, South San Francisco, California
| | - Steven De Beukelaer
- Pfizer, Zurich, Switzerland
- Present address: Monte Rosa Therapeutics, Basel, Switzerland
| | | |
Collapse
|
12
|
Abdel-Rahman S, Ovchinnikov V, Gabr MT. Structure-Based Rational Design of Constrained Peptides as TIM-3 Inhibitors. ACS Med Chem Lett 2024; 15:806-813. [PMID: 38894912 PMCID: PMC11181482 DOI: 10.1021/acsmedchemlett.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Blocking the immunosuppressive function of T-cell immunoglobulin mucin-3 (TIM-3) is an established therapeutic strategy to maximize the efficacy of immune checkpoint inhibitors for cancer immunotherapy. Currently, effective inhibition of TIM-3 interactions relies on monoclonal antibodies (mAbs), which come with drawbacks such as immunogenicity risk, limited tumor penetration, and high manufacturing costs. Guided by the X-ray cocrystal structures of TIM-3 with mAbs, we report an in silico structure-based rational design of constrained peptides as potent TIM-3 inhibitors. The top cyclic peptide from our study (P2) binds TIM-3 with a K D value of 166.3 ± 12.1 nM as determined by surface plasmon resonance (SPR) screening. Remarkably, P2 efficiently inhibits key TIM-3 interactions with natural TIM-3 ligands at submicromolar concentrations in a panel of cell-free and cell-based assays. The capacity of P2 to reverse immunosuppression in T-cell/cancer cell cocultures, coupled with favorable in vitro pharmacokinetic properties, highlights the potential of P2 for further evaluation in preclinical models of immuno-oncology.
Collapse
Affiliation(s)
- Somaya
A. Abdel-Rahman
- Department
of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Victor Ovchinnikov
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Moustafa T. Gabr
- Department
of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
13
|
Hale BD, Severin Y, Graebnitz F, Stark D, Guignard D, Mena J, Festl Y, Lee S, Hanimann J, Zangger NS, Meier M, Goslings D, Lamprecht O, Frey BM, Oxenius A, Snijder B. Cellular architecture shapes the naïve T cell response. Science 2024; 384:eadh8697. [PMID: 38843327 DOI: 10.1126/science.adh8967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.
Collapse
MESH Headings
- Animals
- Mice
- Calcium/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/ultrastructure
- Cell Differentiation
- Immunologic Memory
- Lymphocyte Activation
- Mice, Inbred C57BL
- Nuclear Envelope/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Microscopy, Fluorescence
- Fluorescent Antibody Technique
- Humans
Collapse
Affiliation(s)
- Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabienne Graebnitz
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Guignard
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jacob Hanimann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nathan S Zangger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Michelle Meier
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Olga Lamprecht
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zürich, Switzerland
| |
Collapse
|
14
|
Guo J, Yu F, Zhang K, Jiang S, Zhang X, Wang T. Beyond inhibition against the PD-1/PD-L1 pathway: development of PD-L1 inhibitors targeting internalization and degradation of PD-L1. RSC Med Chem 2024; 15:1096-1108. [PMID: 38665824 PMCID: PMC11042118 DOI: 10.1039/d3md00636k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 04/28/2024] Open
Abstract
Tumor cells hijack the programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway to suppress the immune response through overexpressing PD-L1 to interact with PD-1 of T cells. With in-depth ongoing research, tumor-intrinsic PD-L1 is found to play important roles in tumor progression without interaction with PD-1 expressed on T cells, which provides an additional important target and therapeutic approach for development of PD-L1 inhibitors. Existing monoclonal antibody (mAb) drugs against the PD-1/PD-L1 pathway generally behave by conformationally blocking the interactions of PD-1 with PD-L1 on the cell surface. Beyond general inhibition of the protein-protein interaction (PPI), inhibitors targeting PD-L1 currently focus on the functional inhibition of the interaction between PD-1/PD-L1 and degradation of tumor-intrinsic PD-L1. This perspective will clarify the evolution of PD-L1 inhibitors and provide insights into the current development of PD-L1 inhibitors, especially targeting internalization and degradation of PD-L1.
Collapse
Affiliation(s)
- Jiazheng Guo
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Fengyi Yu
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
15
|
Wu X, Li H, Liu H, Ding X, Chen X, Yin C, Gao Y, Ma J. Design, Synthesis, and Evaluation of 8-( o-Tolyl)quinazoline Derivatives as Small-Molecule PD-1/PD-L1 Antagonists. ACS Med Chem Lett 2024; 15:518-523. [PMID: 38628793 PMCID: PMC11017391 DOI: 10.1021/acsmedchemlett.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Small-molecule inhibitors targeting programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interactions can compensate for the shortcomings of antibody-based inhibitors and have attracted considerable attention, some of which have already entered clinical trials. Herein, based on our previous study on small-molecule PD-L1 inhibitors, we reported a series of 8-(o-tolyl)quinazoline derivatives by the skeleton merging strategy. Homogenous time-resolved fluorescence (HTRF) assay against PD-1/PD-L1 interaction identified compound A5, which showed the most potent inhibition with an IC50 value of 23.78 nM. Meanwhile, based on the results of HTRF assay, the structure-activity relationships (SARs) of the tail were focused on. Cell-based PD-1/PD-L1 blockade assay further revealed that A5 significantly blocked the PD-1/PD-L1 interaction at 1.1 μM in the co-culture system of Jurkat-NFAT-PD-1 cells and Hep3B-OS8-hPD-L1 cells with no significant cytotoxicity on Jurkat cells. Moreover, the proposed binding mode of A5 was investigated by a docking analysis. These results indicate that compound A5 is a promising lead compound that deserves further investigation.
Collapse
Affiliation(s)
- Xingye Wu
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - He Li
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Han Liu
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Xueyan Ding
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Xinting Chen
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Chenxi Yin
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Yali Gao
- Pharmacy
Department, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, 362002, China
| | - Junjie Ma
- School
of Medicine, Huaqiao University, Quanzhou, 362000, China
| |
Collapse
|
16
|
Lunn-Halbert MC, Laszlo GS, Erraiss S, Orr MT, Jessup HK, Thomas HJ, Chan H, Jahromi MA, Lloyd J, Cheung AF, Chang GP, Dichwalkar T, Fallon D, Grinberg A, Rodríguez-Arbolí E, Lim SYT, Kehret AR, Huo J, Cole FM, Scharffenberger SC, Walter RB. Preclinical Characterization of the Anti-Leukemia Activity of the CD33/CD16a/NKG2D Immune-Modulating TriNKET ® CC-96191. Cancers (Basel) 2024; 16:877. [PMID: 38473239 PMCID: PMC10931532 DOI: 10.3390/cancers16050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing efforts are focusing on natural killer (NK) cell immunotherapies for AML. Here, we characterized CC-96191, a novel CD33/CD16a/NKG2D immune-modulating TriNKET®. CC-96191 simultaneously binds CD33, NKG2D, and CD16a, with NKG2D and CD16a co-engagement increasing the avidity for, and activation of, NK cells. CC-96191 was broadly active against human leukemia cells in a strictly CD33-dependent manner, with maximal efficacy requiring the co-engagement of CD16a and NKG2D. A frequent CD33 single nucleotide polymorphism, R69G, reduced CC-96191 potency but not maximal activity, likely because of reduced CD33 binding. Similarly, the potency, but not the maximal activity, of CC-96191 was reduced by high concentrations of soluble CD33; in contrast, the soluble form of the NKG2D ligand MICA did not impact activity. In the presence of CD33+ AML cells, CC-96191 activated NK cells but not T cells; while maximum anti-AML efficacy was similar, soluble cytokine levels were 10- to >100-fold lower than with a CD33/CD3 bispecific antibody. While CC-96191-mediated cytolysis was not affected by ABC transporter proteins, it was reduced by anti-apoptotic BCL-2 family proteins. Finally, in patient marrow specimens, CC-96191 eliminated AML cells but not normal monocytes, suggesting selectivity of TriNKET-induced cytotoxicity toward neoplastic cells. Together, these findings support the clinical exploration of CC-96191 as in NCT04789655.
Collapse
Affiliation(s)
- Margaret C. Lunn-Halbert
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George S. Laszlo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sarah Erraiss
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mark T. Orr
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Heidi K. Jessup
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Heather J. Thomas
- Immuno-Oncology Cellular Therapy Thematic Research Center, Bristol Myers Squibb, Seattle, WA 98109, USA
| | - Henry Chan
- Bristol Myers Squibb, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | - Eduardo Rodríguez-Arbolí
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), University of Seville, 41013 Seville, Spain
| | - Sheryl Y. T. Lim
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Allie R. Kehret
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jenny Huo
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frances M. Cole
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Samuel C. Scharffenberger
- Molecular Medicine and Mechanisms of Disease (M3D) Ph.D. Program, University of Washington, Seattle, WA 98195, USA
| | - Roland B. Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Abdel-Rahman SA, Santini BL, Calvo-Barreiro L, Zacharias M, Gabr M. Design of cyclic peptides as novel inhibitors of ICOS/ICOSL interaction. Bioorg Med Chem Lett 2024; 99:129599. [PMID: 38185345 DOI: 10.1016/j.bmcl.2024.129599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Compared to small molecules and antibodies, cyclic peptides exhibit unique biochemical and therapeutic attributes in the realm of pharmaceutical applications. The interaction between the inducible costimulator (ICOS) and its ligand (ICOSL) plays a key role in T-cell differentiation and activation. ICOS/ICOSL inhibition results in a reduction in the promotion of immunosuppressive regulatory T cells (Tregs) in both hematologic malignancies and solid tumors. Herein, we implement the computational cPEPmatch approach to design the first examples of cyclic peptides that inhibit ICOS/ICOSL interaction. The top cyclic peptide from our approach possessed an IC50 value of 1.87 ± 0.15 μM as an ICOS/ICOSL inhibitor and exhibited excellent in vitro pharmacokinetic properties as a drug candidate. Our work will lay the groundwork for future endeavors in cancer drug discovery, with the goal of developing cyclic peptides that target the ICOS/ICOSL interaction.
Collapse
Affiliation(s)
- Somaya A Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Brianda L Santini
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Laura Calvo-Barreiro
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
| | - Martin Zacharias
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, Garching, Germany
| | - Moustafa Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
18
|
Bhalla M, Mittal R, Kumar M, Bhatia R, Kushwah AS. Metabolomics: A Tool to Envisage Biomarkers in Clinical Interpretation of Cancer. Curr Drug Res Rev 2024; 16:333-348. [PMID: 37702236 DOI: 10.2174/2589977516666230912120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Cancer is amongst the most dreadful ailments of modern times, and its impact continuously worsens global health systems. Early diagnosis and suitable therapeutic agents are the prime keys to managing this disease. Metabolomics deals with the complete profiling of cells and physiological phenomena in their organelles, thus helping in keen knowledge of the pathological status of the disease. It has been proven to be one of the best strategies in the early screening of cancer. OBJECTIVE This review has covered the recent updates on the promising role of metabolomics in the identification of significant biochemical markers in cancer-prone individuals that could lead to the identification of cancer in the early stages. METHODS The literature was collected through various databases, like Scopus, PubMed, and Google Scholar, with stress laid on the last ten years' publications. CONCLUSION It was assessed in this review that early recognition of cancerous growth could be achieved via complete metabolic profiling in association with transcriptomics and proteomics. The outcomes are rooted in various clinical studies that anticipated various biomarkers like tryptophan, phenylalanine, lactates, and different metabolic pathways associated with the Warburg effect. This metabolite imaging has been a fundamental step for the target acquisition, evaluation of predictive cancer biomarkers for early detection, and outlooks into cancer therapy along with critical evaluation. Significant efforts should be made to make this technique most reliable and easy.
Collapse
Affiliation(s)
- Medha Bhalla
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| | - Roopal Mittal
- Department of Pharmacology, IKG Punjab Technical University, Jalandhar, 144601, India
- Department of Pharmacology, R.K.S.D. College of Pharmacy, Kaithal, 136027, India
| | - Manish Kumar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Indo Soviet Friendship College of Pharmacy, Moga, 142001, India
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, 140111, India
| |
Collapse
|
19
|
Wildschut MHE, Mena J, Dördelmann C, van Oostrum M, Hale BD, Settelmeier J, Festl Y, Lysenko V, Schürch PM, Ring A, Severin Y, Bader MS, Pedrioli PGA, Goetze S, van Drogen A, Balabanov S, Skoda RC, Lopes M, Wollscheid B, Theocharides APA, Snijder B. Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis. Nat Commun 2023; 14:6414. [PMID: 37828014 PMCID: PMC10570306 DOI: 10.1038/s41467-023-42101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Myelofibrosis is a hematopoietic stem cell disorder belonging to the myeloproliferative neoplasms. Myelofibrosis patients frequently carry driver mutations in either JAK2 or Calreticulin (CALR) and have limited therapeutic options. Here, we integrate ex vivo drug response and proteotype analyses across myelofibrosis patient cohorts to discover targetable vulnerabilities and associated therapeutic strategies. Drug sensitivities of mutated and progenitor cells were measured in patient blood using high-content imaging and single-cell deep learning-based analyses. Integration with matched molecular profiling revealed three targetable vulnerabilities. First, CALR mutations drive BET and HDAC inhibitor sensitivity, particularly in the absence of high Ras pathway protein levels. Second, an MCM complex-high proliferative signature corresponds to advanced disease and sensitivity to drugs targeting pro-survival signaling and DNA replication. Third, homozygous CALR mutations result in high endoplasmic reticulum (ER) stress, responding to ER stressors and unfolded protein response inhibition. Overall, our integrated analyses provide a molecularly motivated roadmap for individualized myelofibrosis patient treatment.
Collapse
Affiliation(s)
- Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cyril Dördelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Settelmeier
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael S Bader
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Stefan Balabanov
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
20
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
21
|
Qiu S, Li W, Deng T, Bi A, Yang Y, Jiang X, Li JP. Ru(bpy) 3 2+ -Enabled Cell-Surface Photocatalytic Proximity Labeling toward More Efficient Capture of Physically Interacting Cells. Angew Chem Int Ed Engl 2023; 62:e202303014. [PMID: 37165969 DOI: 10.1002/anie.202303014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Intercellular proximity labeling has emerged as a promising approach to enable the study of cell-cell interactions (CCIs), but the efficiency of current platforms is limited. Here, we use Ru(bpy)3 2+ to construct an efficient photocatalytic proximity labeling (PPL) system on the cell surface that allows the highly discriminative CCI detection with spatiotemporal resolution. Through the mechanism study and quantitative characterization on living cells, we demonstrate that the singlet-oxygen (1 O2 ) mechanism is more efficient and specific than the single electron transfer (SET) mechanism in Ru-mediated PPL. Ru(bpy)3 2+ catalysts with different cell-anchoring moieties are prepared to facilitate the catalyst loading on primary cells. Finally, based on this system, we develop a "live" T cell receptor (TCR) multimer with TCR-T cells that could sensitively identify and discriminate cells presenting antigens of different affinity, providing a powerful tool to better understand the heterogeneity of antigen presenting cells.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Tao Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Angzhi Bi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Xi Jiang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Forlin R, James A, Brodin P. Making human immune systems more interpretable through systems immunology. Trends Immunol 2023:S1471-4906(23)00113-8. [PMID: 37402600 DOI: 10.1016/j.it.2023.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The human immune system is a distributed system of specialized cell populations with unique functions that collectively give rise to immune responses to infections and during immune-mediated diseases. Cell composition, plasma proteins, and functional responses vary among individuals, making the system difficult to interpret, but this variation is nonrandom. With careful analyses using novel experimental and computational tools, human immune system composition and function carry interpretable information. Here, we propose that systems-level analyses offer an opportunity to make human immune responses more interpretable in the future, and we discuss herein important considerations and lessons learned to this end. Predictable human immunology holds implications for better diagnostic and curative precision in patients with infectious and immune-associated diseases.
Collapse
Affiliation(s)
- Rikard Forlin
- Unit for Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | - Anna James
- Unit for Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden
| | - Petter Brodin
- Unit for Clinical Pediatrics, Department of Women's and Children's Health, Karolinska Institutet, 17165, Solna, Sweden; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; Medical Research Council London Institute of Medical Sciences (LMS), Imperial College Hammersmith Campus, London W12 0NN, UK.
| |
Collapse
|
23
|
Kropivsek K, Kachel P, Goetze S, Wegmann R, Festl Y, Severin Y, Hale BD, Mena J, van Drogen A, Dietliker N, Tchinda J, Wollscheid B, Manz MG, Snijder B. Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. NATURE CANCER 2023; 4:734-753. [PMID: 37081258 DOI: 10.1038/s43018-023-00544-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/17/2023] [Indexed: 04/22/2023]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy defined by complex genetics and extensive patient heterogeneity. Despite a growing arsenal of approved therapies, MM remains incurable and in need of guidelines to identify effective personalized treatments. Here, we survey the ex vivo drug and immunotherapy sensitivities across 101 bone marrow samples from 70 patients with MM using multiplexed immunofluorescence, automated microscopy and deep-learning-based single-cell phenotyping. Combined with sample-matched genetics, proteotyping and cytokine profiling, we map the molecular regulatory network of drug sensitivity, implicating the DNA repair pathway and EYA3 expression in proteasome inhibitor sensitivity and major histocompatibility complex class II expression in the response to elotuzumab. Globally, ex vivo drug sensitivity associated with bone marrow microenvironmental signatures reflecting treatment stage, clonality and inflammation. Furthermore, ex vivo drug sensitivity significantly stratified clinical treatment responses, including to immunotherapy. Taken together, our study provides molecular and actionable insights into diverse treatment strategies for patients with MM.
Collapse
Affiliation(s)
- Klara Kropivsek
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Kachel
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra Goetze
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Audrey van Drogen
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Nadja Dietliker
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Joëlle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Multi-Omics Center, PHRT-CPAC, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
24
|
Duran-Frigola M, Cigler M, Winter GE. Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence. J Am Chem Soc 2023; 145:2711-2732. [PMID: 36706315 PMCID: PMC9912273 DOI: 10.1021/jacs.2c11098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 01/28/2023]
Abstract
Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.
Collapse
Affiliation(s)
- Miquel Duran-Frigola
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
- Ersilia
Open Source Initiative, 28 Belgrave Road, CB1 3DE, Cambridge, United Kingdom
| | - Marko Cigler
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| | - Georg E. Winter
- CeMM
Research Center for Molecular Medicine of the Austrian Academy of
Sciences, 1090 Vienna, Austria
| |
Collapse
|
25
|
Preglej T, Brinkmann M, Steiner G, Aletaha D, Göschl L, Bonelli M. Advanced immunophenotyping: A powerful tool for immune profiling, drug screening, and a personalized treatment approach. Front Immunol 2023; 14:1096096. [PMID: 37033944 PMCID: PMC10080106 DOI: 10.3389/fimmu.2023.1096096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Various autoimmune diseases are characterized by distinct cell subset distributions and activation profiles of peripheral blood mononuclear cells (PBMCs). PBMCs can therefore serve as an ideal biomarker material, which is easily accessible and allows for screening of multiple cell types. A detailed understanding of the immune landscape is critical for the diagnosis of patients with autoimmune diseases, as well as for a personalized treatment approach. In our study, we investigate the potential of multi-parameter spectral flow cytometry for the identification of patients suffering from autoimmune diseases and its power as an evaluation tool for in vitro drug screening approaches (advanced immunophenotyping). We designed a combination of two 22-color immunophenotyping panels for profiling cell subset distribution and cell activation. Downstream bioinformatics analyses included percentages of individual cell populations and median fluorescent intensity of defined markers which were then visualized as heatmaps and in dimensionality reduction approaches. In vitro testing of epigenetic immunomodulatory drugs revealed an altered activation status upon treatment, which supports the use of spectral flow cytometry as a high-throughput drug screening tool. Advanced immunophenotyping might support the exploration of novel therapeutic drugs and contribute to future personalized treatment approaches in autoimmune diseases and beyond.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Göschl
- *Correspondence: Lisa Göschl, ; Michael Bonelli,
| | | |
Collapse
|
26
|
Qiu S, Zhao Z, Wu M, Xue Q, Yang Y, Ouyang S, Li W, Zhong L, Wang W, Yang R, Wu P, Li JP. Use of intercellular proximity labeling to quantify and decipher cell-cell interactions directed by diversified molecular pairs. SCIENCE ADVANCES 2022; 8:eadd2337. [PMID: 36542702 PMCID: PMC9770995 DOI: 10.1126/sciadv.add2337] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
FucoID is an intercellular proximity labeling technique for studying cell-cell interactions (CCIs) via fucosyltransferase (FT)-meditated fucosyl-biotinylation, which has been applied to probe antigen-specific dendritic cell (DC)-T cell interactions. In this system, bait cells of interest with cell surface-anchored FT are used to capture the interacting prey cells by transferring a biotin-modified substrate to prey cells. Here, we leveraged FucoID to study CCIs directed by different molecular pairs, e.g., programmed cell death protein-1(PD-1)/programmed cell death protein-ligand-1 (PD-L1), and identify unknown or little studied CCIs, e.g., the interaction of DCs and B cells. To expand the application of FucoID to complex systems, we also synthesized site-specific antibody-based FT conjugate, which substantially improves the ability of FucoID to probe molecular signatures of specific CCI when cells of interest (bait cells) cannot be purified, e.g., in clinical samples. Collectively, these studies demonstrate the general applicability of FucoID to study unknown CCIs in complex systems at a molecular resolution.
Collapse
Affiliation(s)
- Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengyao Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shian Ouyang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Lingyu Zhong
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenjian Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jie P. Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Severin Y, Hale BD, Mena J, Goslings D, Frey BM, Snijder B. Multiplexed high-throughput immune cell imaging reveals molecular health-associated phenotypes. SCIENCE ADVANCES 2022; 8:eabn5631. [PMID: 36322666 PMCID: PMC9629716 DOI: 10.1126/sciadv.abn5631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phenotypic plasticity is essential to the immune system, yet the factors that shape it are not fully understood. Here, we comprehensively analyze immune cell phenotypes including morphology across human cohorts by single-round multiplexed immunofluorescence, automated microscopy, and deep learning. Using the uncertainty of convolutional neural networks to cluster the phenotypes of eight distinct immune cell subsets, we find that the resulting maps are influenced by donor age, gender, and blood pressure, revealing distinct polarization and activation-associated phenotypes across immune cell classes. We further associate T cell morphology to transcriptional state based on their joint donor variability and validate an inflammation-associated polarized T cell morphology and an age-associated loss of mitochondria in CD4+ T cells. Together, we show that immune cell phenotypes reflect both molecular and personal health information, opening new perspectives into the deep immune phenotyping of individual people in health and disease.
Collapse
Affiliation(s)
- Yannik Severin
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | - Benjamin D. Hale
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | - Julien Mena
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, SRC, 8952 Schlieren, Switzerland
| | - Beat M. Frey
- Blood Transfusion Service Zürich, SRC, 8952 Schlieren, Switzerland
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
- Corresponding author.
| |
Collapse
|
28
|
Heinemann T, Kornauth C, Severin Y, Vladimer GI, Pemovska T, Hadzijusufovic E, Agis H, Krauth MT, Sperr WR, Valent P, Jäger U, Simonitsch-Klupp I, Superti-Furga G, Staber PB, Snijder B. Deep Morphology Learning Enhances Ex Vivo Drug Profiling-Based Precision Medicine. Blood Cancer Discov 2022; 3:502-515. [PMID: 36125297 PMCID: PMC9894727 DOI: 10.1158/2643-3230.bcd-21-0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/08/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Drug testing in patient biopsy-derived cells can identify potent treatments for patients suffering from relapsed or refractory hematologic cancers. Here we investigate the use of weakly supervised deep learning on cell morphologies (DML) to complement diagnostic marker-based identification of malignant and nonmalignant cells in drug testing. Across 390 biopsies from 289 patients with diverse blood cancers, DML-based drug responses show improved reproducibility and clustering of drugs with the same mode of action. DML does so by adapting to batch effects and by autonomously recognizing disease-associated cell morphologies. In a post hoc analysis of 66 patients, DML-recommended treatments led to improved progression-free survival compared with marker-based recommendations and physician's choice-based treatments. Treatments recommended by both immunofluorescence and DML doubled the fraction of patients achieving exceptional clinical responses. Thus, DML-enhanced ex vivo drug screening is a promising tool in the identification of effective personalized treatments. SIGNIFICANCE We have recently demonstrated that image-based drug screening in patient samples identifies effective treatment options for patients with advanced blood cancers. Here we show that using deep learning to identify malignant and nonmalignant cells by morphology improves such screens. The presented workflow is robust, automatable, and compatible with clinical routine. This article is highlighted in the In This Issue feature, p. 476.
Collapse
Affiliation(s)
- Tim Heinemann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich,
Zurich, Switzerland
| | | | - Yannik Severin
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich,
Zurich, Switzerland
| | - Gregory I. Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of
Sciences, Vienna, Austria
| | - Tea Pemovska
- CeMM Research Center for Molecular Medicine of the Austrian Academy of
Sciences, Vienna, Austria
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
| | - Hermine Agis
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
| | - Maria-Theresa Krauth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
| | - Wolfgang R. Sperr
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medial University of
Vienna, Austria
| | - Peter Valent
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medial University of
Vienna, Austria
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of
Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna,
Vienna, Austria
| | - Philipp B. Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical
University of Vienna, Vienna, Austria
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich,
Zurich, Switzerland
| |
Collapse
|
29
|
Shilts J, Severin Y, Galaway F, Müller-Sienerth N, Chong ZS, Pritchard S, Teichmann S, Vento-Tormo R, Snijder B, Wright GJ. A physical wiring diagram for the human immune system. Nature 2022; 608:397-404. [PMID: 35922511 PMCID: PMC9365698 DOI: 10.1038/s41586-022-05028-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
The human immune system is composed of a distributed network of cells circulating throughout the body, which must dynamically form physical associations and communicate using interactions between their cell-surface proteomes1. Despite their therapeutic potential2, our map of these surface interactions remains incomplete3,4. Here, using a high-throughput surface receptor screening method, we systematically mapped the direct protein interactions across a recombinant library that encompasses most of the surface proteins that are detectable on human leukocytes. We independently validated and determined the biophysical parameters of each novel interaction, resulting in a high-confidence and quantitative view of the receptor wiring that connects human immune cells. By integrating our interactome with expression data, we identified trends in the dynamics of immune interactions and constructed a reductionist mathematical model that predicts cellular connectivity from basic principles. We also developed an interactive multi-tissue single-cell atlas that infers immune interactions throughout the body, revealing potential functional contexts for new interactions and hubs in multicellular networks. Finally, we combined targeted protein stimulation of human leukocytes with multiplex high-content microscopy to link our receptor interactions to functional roles, in terms of both modulating immune responses and maintaining normal patterns of intercellular associations. Together, our work provides a systematic perspective on the intercellular wiring of the human immune system that extends from systems-level principles of immune cell connectivity down to mechanistic characterization of individual receptors, which could offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jarrod Shilts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK.
| | - Yannik Severin
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK
| | | | - Zheng-Shan Chong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK
| | - Sophie Pritchard
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Sarah Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Roser Vento-Tormo
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK.
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
30
|
Mostböck S, Wu HH, Fenn T, Riegler B, Strahlhofer S, Huang Y, Hansen G, Kroe-Barrett R, Tirapu I, Vogt AB. Distinct immune stimulatory effects of anti-human VISTA antibodies are determined by Fc-receptor interaction. Front Immunol 2022; 13:862757. [PMID: 35967294 PMCID: PMC9367637 DOI: 10.3389/fimmu.2022.862757] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
VISTA (PD-1H) is an immune regulatory molecule considered part of the next wave of immuno-oncology targets. VISTA is an immunoglobulin (Ig) superfamily cell surface molecule mainly expressed on myeloid cells, and to some extent on NK cells and T cells. In previous preclinical studies, some VISTA-targeting antibodies provided immune inhibitory signals, while other antibodies triggered immune stimulatory signals. Importantly, for therapeutic antibodies, the isotype backbone can have a strong impact on antibody function. To elucidate the mode of action of immune stimulatory anti-VISTA antibodies, we studied three different anti-human VISTA antibody clones, each on three different IgG isotypes currently used for therapeutic antibodies: unaltered IgG1 (IgG1-WT), IgG1-KO (IgG1-LL234,235AA-variant with reduced Fc-effector function), and IgG4-Pro (IgG4- S228P-variant with stabilized hinge region). Antibody functionality was analysed in mixed leukocyte reaction (MLR) of human peripheral blood mononuclear cells (PBMCs), as a model system for ongoing immune reactions, on unstimulated human PBMCs, as a model system for a resting immune system, and also on acute myeloid leukemia (AML) patient samples to evaluate anti-VISTA antibody effects on primary tumor material. The functions of three anti-human VISTA antibodies were determined by their IgG isotype backbones. An MLR of healthy donor PBMCs was effectively augmented by anti-VISTA-IgG4-Pro and anti-VISTA-IgG1-WT antibodies, as indicated by increased levels of cytokines, T cell activation markers and T cell proliferation. However, in a culture of unstimulated PBMCs of single healthy donors, only anti-VISTA-IgG1-WT antibodies increased the activation marker HLA-DR on resting myeloid cells, and chemokine levels. Interestingly, interactions with different Fc-receptors were required for these effects, namely CD64 for augmentation of MLR, and CD16 for activation of resting myeloid cells. Furthermore, anti-VISTA-IgG1-KO antibodies had nearly no impact in any model system. Similarly, in AML patient samples, anti-VISTA-antibody on IgG4-Pro backbone, but not on IgG1-KO backbone, increased interactions, as a novel readout of activity, between immune cells and CD34+ AML cancer cells. In conclusion, the immune stimulatory effects of antagonistic anti-VISTA antibodies are defined by the antibody isotype and interaction with different Fc-gamma-receptors, highlighting the importance of understanding these interactions when designing immune stimulatory antibody therapeutics for immuno-oncology applications.
Collapse
Affiliation(s)
- Sven Mostböck
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- *Correspondence: Sven Mostböck,
| | - Helen Haixia Wu
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Timothy Fenn
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Bettina Riegler
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Susanne Strahlhofer
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Yining Huang
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Gale Hansen
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Rachel Kroe-Barrett
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Iñigo Tirapu
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Anne B. Vogt
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| |
Collapse
|
31
|
Design, Synthesis and Biological Evaluation of New Dihydropyridine Derivatives as PD-L1 Degraders for Enhancing Antitumor Immunity. Bioorg Chem 2022; 125:105820. [DOI: 10.1016/j.bioorg.2022.105820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022]
|
32
|
Kornauth C, Pemovska T, Vladimer GI, Bayer G, Bergmann M, Eder S, Eichner R, Erl M, Esterbauer H, Exner R, Felsleitner-Hauer V, Forte M, Gaiger A, Geissler K, Greinix HT, Gstöttner W, Hacker M, Hartmann BL, Hauswirth AW, Heinemann T, Heintel D, Hoda MA, Hopfinger G, Jaeger U, Kazianka L, Kenner L, Kiesewetter B, Krall N, Krajnik G, Kubicek S, Le T, Lubowitzki S, Mayerhoefer ME, Menschel E, Merkel O, Miura K, Müllauer L, Neumeister P, Noesslinger T, Ocko K, Öhler L, Panny M, Pichler A, Porpaczy E, Prager GW, Raderer M, Ristl R, Ruckser R, Salamon J, Schiefer AI, Schmolke AS, Schwarzinger I, Selzer E, Sillaber C, Skrabs C, Sperr WR, Srndic I, Thalhammer R, Valent P, van der Kouwe E, Vanura K, Vogt S, Waldstein C, Wolf D, Zielinski CC, Zojer N, Simonitsch-Klupp I, Superti-Furga G, Snijder B, Staber PB. Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematologic Cancers and Identifies Exceptional Responders. Cancer Discov 2022; 12:372-387. [PMID: 34635570 PMCID: PMC9762339 DOI: 10.1158/2159-8290.cd-21-0538] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023]
Abstract
Personalized medicine aims to match the right drug with the right patient by using specific features of the individual patient's tumor. However, current strategies of personalized therapy matching provide treatment opportunities for less than 10% of patients with cancer. A promising method may be drug profiling of patient biopsy specimens with single-cell resolution to directly quantify drug effects. We prospectively tested an image-based single-cell functional precision medicine (scFPM) approach to guide treatments in 143 patients with advanced aggressive hematologic cancers. Fifty-six patients (39%) were treated according to scFPM results. At a median follow-up of 23.9 months, 30 patients (54%) demonstrated a clinical benefit of more than 1.3-fold enhanced progression-free survival compared with their previous therapy. Twelve patients (40% of responders) experienced exceptional responses lasting three times longer than expected for their respective disease. We conclude that therapy matching by scFPM is clinically feasible and effective in advanced aggressive hematologic cancers. SIGNIFICANCE: This is the first precision medicine trial using a functional assay to instruct n-of-one therapies in oncology. It illustrates that for patients lacking standard therapies, high-content assay-based scFPM can have a significant value in clinical therapy guidance based on functional dependencies of each patient's cancer.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Christoph Kornauth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna and Vienna General Hospital, Vienna, Austria
| | - Tea Pemovska
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gregory I Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Exscientia GmbH, Vienna, Austria
| | - Günther Bayer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Sandra Eder
- Department of Internal Medicine and Hematology/Oncology, Klinikum Klagenfurt, Klagenfurt, Austria
| | - Ruth Eichner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Erl
- Abteilung für Innere Medizin, Krankenhaus der Barmherzigen Brüder Salzburg, Salzburg, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ruth Exner
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Maurizio Forte
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Alexander Gaiger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna and Vienna General Hospital, Vienna, Austria
| | - Klaus Geissler
- Medical School, Sigmund Freud University, Vienna, Austria
| | - Hildegard T Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Wolfgang Gstöttner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Alexander W Hauswirth
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Tim Heinemann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Heintel
- Division of Medicine I, Klinik Ottakring, Vienna, Austria
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Georg Hopfinger
- Third Medical Department, Centre for Oncology and Haematology, Klinik Favoriten, Vienna, Austria
| | - Ulrich Jaeger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna and Vienna General Hospital, Vienna, Austria
| | - Lukas Kazianka
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Krall
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Exscientia GmbH, Vienna, Austria
| | - Gerhard Krajnik
- Department of Medicine I, Universitätsklinikum St. Pölten, St. Pölten, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Trang Le
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Simone Lubowitzki
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisabeth Menschel
- Third Medical Department, Hematology & Oncology, Hanusch Hospital, Vienna, Austria
| | - Olaf Merkel
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Katsuhiro Miura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Peter Neumeister
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Thomas Noesslinger
- Third Medical Department, Hematology & Oncology, Hanusch Hospital, Vienna, Austria
| | - Katharina Ocko
- Pharmacy Department, Vienna General Hospital, Vienna, Austria
| | - Leopold Öhler
- Internal Medicine I, Department of Oncology, St. Josef Hospital, Vienna, Austria
| | - Michael Panny
- Third Medical Department, Hematology & Oncology, Hanusch Hospital, Vienna, Austria
| | - Alexander Pichler
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Gerald W Prager
- Comprehensive Cancer Center Vienna, Medical University of Vienna and Vienna General Hospital, Vienna, Austria
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- Comprehensive Cancer Center Vienna, Medical University of Vienna and Vienna General Hospital, Vienna, Austria
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Robin Ristl
- Section for Medical Statistics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Julius Salamon
- Department of Medicine, Landesklinikum Waidhofen a.d. Ybbs, Waidhofen-Ybbs, Austria
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ann-Sofie Schmolke
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Ilse Schwarzinger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Edgar Selzer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Christian Sillaber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang R Sperr
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Ismet Srndic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Renate Thalhammer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Emiel van der Kouwe
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Katrina Vanura
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Stefan Vogt
- Department of Medicine and Oncology, LKH Wiener Neustadt, Wiener Neustadt, Austria
| | - Cora Waldstein
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Department of Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Niklas Zojer
- Division of Medicine I, Klinik Ottakring, Vienna, Austria
| | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Philipp B Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center Vienna, Medical University of Vienna and Vienna General Hospital, Vienna, Austria
| |
Collapse
|
33
|
Advances of biphenyl small-molecule inhibitors targeting PD-1/PD-L1 interaction in cancer immunotherapy. Future Med Chem 2021; 14:97-113. [PMID: 34870447 DOI: 10.4155/fmc-2021-0256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy inhibiting the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) interaction has emerged as one of the most attractive cancer treatment strategies. So far, the clinically used PD-1/PD-L1 inhibitors are monoclonal antibodies, but monoclonal antibodies have several limitations, such as poor pharmacokinetic properties, unchecked immune responses and high production cost. The development of small-molecule inhibitors targeting PD-1/PD-L1 interaction is showing great promise as a potential alternative or complementary therapeutic approach of monoclonal antibodies. In this article, the authors classify the reported biphenyl small-molecule inhibitors into symmetrical and asymmetrical types based on their structural features and further review their representative inhibitors and biological activities, as well as the binding models for providing insight into further exploration of more potent biphenyl small-molecule inhibitors targeting PD-1/PD-L1 interaction.
Collapse
|
34
|
Wang Y, Gao Y, Yuan D, Ling L, Liu J, Wu S, Chen R, Li H, Xiong Y, Liu H, Ma J. Discovery of quinazoline derivatives as novel small-molecule inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interaction. Eur J Med Chem 2021; 229:113998. [PMID: 34839997 DOI: 10.1016/j.ejmech.2021.113998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
Development of small molecule PD-1/PD-L1 inhibitors as a novel immunotherapy strategy exhibits great promise. Herein, a novel series of quinazoline derivatives were designed, synthesized and their inhibitory activity against the PD-1/PD-L1 interaction was evaluated through a homogenous time-resolved fluorescence (HTRF) assay. Among them, the compound 39 exhibited the most potent inhibitory activity with an IC50 value of 1.57 nM. Furthermore, the cellular level assays revealed that 39 could inhibit the PD-1/PD-L1 interaction and restore T-cell function, and showed low toxicity on the PBMCs. In addition, the structure-activity relationships (SARs) of the novel quinazoline derivatives were explored and the binding mode of 39 with dimeric PD-L1 was analyzed by molecular docking. This work demonstrates that incorporation of pyrimidine group between the 2 and 3-positions of the biphenyl structure is an effective strategy for designing novel and more potent small molecule PD-1/PD-L1 inhibitors, and 39 can be regarded as a promising lead compound for further investigation.
Collapse
Affiliation(s)
- Yu Wang
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Dandan Yuan
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Lin Ling
- Quanzhou First Hospital, Fujian Medical University, Fuzhou, 350108, China
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Sihai Wu
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Roufen Chen
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - He Li
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Yizu Xiong
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Han Liu
- School of Medicine, Huaqiao University, Quanzhou, 362000, China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou, 362000, China.
| |
Collapse
|
35
|
Scholes NS, Mayor-Ruiz C, Winter GE. Identification and selectivity profiling of small-molecule degraders via multi-omics approaches. Cell Chem Biol 2021; 28:1048-1060. [PMID: 33811812 DOI: 10.1016/j.chembiol.2021.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
The therapeutic modality of targeted protein degradation promises to overcome limitations of traditional pharmacology. Small-molecule degraders recruit disease-causing proteins to E3 ubiquitin ligases, prompting their ubiquitination and degradation by the proteasome. The discovery, mechanistic elucidation, and selectivity profiling of novel degraders are often conducted in cellular systems. This highlights the need for unbiased multi-omics strategies that inform on the functionally involved components. Here, we review how proteomics and functional genomics can be integrated to identify and mechanistically understand degraders, their target selectivity as well as putative resistance mechanisms.
Collapse
Affiliation(s)
- Natalie S Scholes
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; IRB Barcelona - Institute for Research in Biomedicine, 08028 Barcelona, Spain
| | - Georg E Winter
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
36
|
Preusse C, Eede P, Heinzeling L, Freitag K, Koll R, Froehlich W, Schneider U, Allenbach Y, Benveniste O, Schänzer A, Goebel HH, Stenzel W, Radke J. NanoString technology distinguishes anti-TIF-1γ + from anti-Mi-2 + dermatomyositis patients. Brain Pathol 2021; 31:e12957. [PMID: 34043263 PMCID: PMC8412076 DOI: 10.1111/bpa.12957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dermatomyositis (DM) is a systemic idiopathic inflammatory disease affecting skeletal muscle and skin, clinically characterized by symmetrical proximal muscle weakness and typical skin lesions. Recently, myositis-specific autoantibodies (MSA) became of utmost importance because they strongly correlate with distinct clinical manifestations and prognosis. Antibodies against transcription intermediary factor 1γ (TIF-1γ) are frequently associated with increased risk of malignancy, a specific cutaneous phenotype and limited response to therapy in adult DM patients. Anti-Mi-2 autoantibodies, in contrast, are typically associated with classic DM rashes, prominent skeletal muscle weakness, better therapeutic response and prognosis, and less frequently with cancer. Nevertheless, the sensitivity of autoantibody testing is only moderate, and alternative reliable methods for DM patient stratification and prediction of cancer risk are needed. To further investigate these clinically distinct DM subgroups, we herein analyzed 30 DM patients (n = 15 Mi-2+ and n = 15 TIF-1 γ+ ) and n = 8 non-disease controls (NDC). We demonstrate that the NanoString technology can be used as a very sensitive method to clearly differentiate these two clinically distinct DM subgroups. Using the nCounter PanCancer Immune Profiling Panel™, we identified a set of significantly dysregulated genes in anti-TIF-1γ+ patient muscle biopsies including VEGFA, DDX58, IFNB1, CCL5, IL12RB2, and CD84. Investigation of type I IFN-regulated transcripts revealed a striking type I interferon signature in anti-Mi-2+ patient biopsies. Our results help to stratify both subgroups and predict, which DM patients require an intensified diagnostic procedure and might have a poorer outcome. Potentially, this could also have implications for the therapeutic approach.
Collapse
Affiliation(s)
- Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, Münster University Hospital (UKM), Münster, Germany
| | - Pascale Eede
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Lucie Heinzeling
- Department of Dermatology, University Hospital of Erlangen, Erlangen, Germany.,Department of Dermatology, LMU, Munich, Germany
| | - Kiara Freitag
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Randi Koll
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany
| | - Waltraud Froehlich
- Department of Dermatology, University Hospital of Erlangen, Erlangen, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Anne Schänzer
- Department of Neuropathology, Justus Liebig Universität Giessen, Giessen, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Josefine Radke
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
37
|
Conde J, Pumroy RA, Baker C, Rodrigues T, Guerreiro A, Sousa BB, Marques MC, de Almeida BP, Lee S, Leites EP, Picard D, Samanta A, Vaz SH, Sieglitz F, Langini M, Remke M, Roque R, Weiss T, Weller M, Liu Y, Han S, Corzana F, Morais VA, Faria C, Carvalho T, Filippakopoulos P, Snijder B, Barbosa-Morais NL, Moiseenkova-Bell VY, Bernardes GJL. Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. ACS CENTRAL SCIENCE 2021; 7:868-881. [PMID: 34079902 PMCID: PMC8161495 DOI: 10.1021/acscentsci.1c00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 05/04/2023]
Abstract
The use of computational tools to identify biological targets of natural products with anticancer properties and unknown modes of action is gaining momentum. We employed self-organizing maps to deconvolute the phenotypic effects of piperlongumine (PL) and establish a link to modulation of the human transient receptor potential vanilloid 2 (hTRPV2) channel. The structure of the PL-bound full-length rat TRPV2 channel was determined by cryo-EM. PL binds to a transient allosteric pocket responsible for a new mode of anticancer activity against glioblastoma (GBM) in which hTRPV2 is overexpressed. Calcium imaging experiments revealed the importance of Arg539 and Thr522 residues on the antagonistic effect of PL and calcium influx modulation of the TRPV2 channel. Downregulation of hTRPV2 reduces sensitivity to PL and decreases ROS production. Analysis of GBM patient samples associates hTRPV2 overexpression with tumor grade, disease progression, and poor prognosis. Extensive tumor abrogation and long term survival was achieved in two murine models of orthotopic GBM by formulating PL in an implantable scaffold/hydrogel for sustained local therapy. Furthermore, in primary tumor samples derived from GBM patients, we observed a selective reduction of malignant cells in response to PL ex vivo. Our results establish a broadly applicable strategy, leveraging data-motivated research hypotheses for the discovery of novel means tackling cancer.
Collapse
Affiliation(s)
- João Conde
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ruth A. Pumroy
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Charlotte Baker
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Guerreiro
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bárbara B. Sousa
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marta C. Marques
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Bernardo P. de Almeida
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sohyon Lee
- Institute
of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Elvira P. Leites
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Daniel Picard
- Department
of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg 69120, Germany
- Department of Pediatric Neuro-Oncogenomics, DKTK, Essen D-45147, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Amrita Samanta
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sandra H. Vaz
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Florian Sieglitz
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maike Langini
- Department
of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg 69120, Germany
- Department of Pediatric Neuro-Oncogenomics, DKTK, Essen D-45147, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Marc Remke
- Department
of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg 69120, Germany
- Department of Pediatric Neuro-Oncogenomics, DKTK, Essen D-45147, Germany
- Department
of Pediatric Oncology, Hematology, and Clinical Immunology, Medical
Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Rafael Roque
- Laboratório
de Neuropatologia, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHLN) EPE, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tobias Weiss
- Department
of Neurology and Brain Tumour Center, University
Hospital Zürich and University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Michael Weller
- Department
of Neurology and Brain Tumour Center, University
Hospital Zürich and University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Yuhang Liu
- Discovery
Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Discovery
Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Francisco Corzana
- Departamento
de Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Vanessa A. Morais
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Cláudia
C. Faria
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Department
of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN) EPE, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tânia Carvalho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Panagis Filippakopoulos
- Structural
Genomics Consortium, Oxford University, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Berend Snijder
- Institute
of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Nuno L. Barbosa-Morais
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vera Y. Moiseenkova-Bell
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- E-mail:
| | - Gonçalo J. L. Bernardes
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- E-mail: ;
| |
Collapse
|
38
|
Wang Y, Gu T, Tian X, Li W, Zhao R, Yang W, Gao Q, Li T, Shim JH, Zhang C, Liu K, Lee MH. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy. Front Immunol 2021; 12:654463. [PMID: 34054817 PMCID: PMC8160380 DOI: 10.3389/fimmu.2021.654463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint inhibitors, such as monoclonal antibodies targeting programmed death 1 (PD-1) and programmed death ligand-1 (PD-L1), have achieved enormous success in the treatment of several cancers. However, monoclonal antibodies are expensive to produce, have poor tumor penetration, and may induce autoimmune side effects, all of which limit their application. Here, we demonstrate that PDI-1 (also name PD1/PD-L1 inhibitor 1), a small molecule antagonist of PD-1/PD-L1 interactions, shows potent anti-tumor activity in vitro and in vivo and acts by relieving PD-1/PD-L1-induced T cell exhaustion. We show that PDI-1 binds with high affinity to purified human and mouse PD-1 and PD-L1 proteins and is a competitive inhibitor of human PD-1/PD-L1 binding in vitro. Incubation of ex vivo activated human T cells with PDI-1 enhanced their cytotoxicity towards human lung cancer and melanoma cells, and concomitantly increased the production of granzyme B, perforin, and inflammatory cytokines. Luciferase reporter assays showed that PDI-1 directly increases TCR-mediated activation of NFAT in a PD-1/PD-L1-dependent manner. In two syngeneic mouse tumor models, the intraperitoneal administration of PDI-1 reduced the growth of tumors derived from human PD-L1-transfected mouse lung cancer and melanoma cells; increased and decreased the abundance of tumor-infiltrating CD8+ and FoxP3+ CD4+ T cells, respectively; decreased the abundance of PD-L1-expressing tumor cells, and increased the production of inflammatory cytokines. The anti-tumor effect of PDI-1 in vivo was comparable to that of the anti-PD-L1 antibody atezolizumab. These results suggest that the small molecule inhibitors of PD-1/PD-L1 may be effective as an alternative or complementary immune checkpoint inhibitor to monoclonal antibodies.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xueli Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenwen Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Wenqian Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Quanli Gao
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Tiepeng Li
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Mokpo, South Korea
| | - Chengjuan Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, DongShin University, Naju, South Korea
| |
Collapse
|
39
|
Zhai W, Zhou X, Zhai M, Li W, Ran Y, Sun Y, Du J, Zhao W, Xing L, Qi Y, Gao Y. Blocking of the PD-1/PD-L1 interaction by a novel cyclic peptide inhibitor for cancer immunotherapy. SCIENCE CHINA. LIFE SCIENCES 2021; 64:548-562. [PMID: 32737851 DOI: 10.1007/s11427-020-1740-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Abstract
The interaction of PD-1/PD-L1 allows tumor cells to escape from immune surveillance. Clinical success of the antibody drugs has proven that blockade of PD-1/PD-L1 pathway is a promising strategy for cancer immunotherapy. Here, we developed a cyclic peptide C8 by using Ph.D.-C7C phage display technology. C8 showed high binding affinity with hPD-1 and could effectively interfere the interaction of PD-1/PD-L1. Furthermore, C8 could stimulate CD8+ T cell activation in human peripheral blood mononuclear cells (PBMCs). We also observed that C8 could suppress tumor growth in CT26 and B16-OVA, as well as anti-PD-1 antibody resistant B16 mouse model. CD8 T cells infiltration significantly increased in tumor microenvironment, and IFN-γ secretion by CD8+ T cells in draining lymph nodes also increased. Simultaneously, we exploited T cells depletion models and confirmed that C8 exerted anti-tumor effects via activating CD8+ T cells dependent manner. The interaction model of C8 with hPD-1 was simulated and confirmed by alanine scanning. In conclusion, C8 shows anti-tumor capability by blockade of PD-1/PD-L1 interaction, and C8 may provide an alternative candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingxia Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunhui Ran
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingxiao Xing
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
40
|
Irmisch A, Bonilla X, Chevrier S, Lehmann KV, Singer F, Toussaint NC, Esposito C, Mena J, Milani ES, Casanova R, Stekhoven DJ, Wegmann R, Jacob F, Sobottka B, Goetze S, Kuipers J, Sarabia Del Castillo J, Prummer M, Tuncel MA, Menzel U, Jacobs A, Engler S, Sivapatham S, Frei AL, Gut G, Ficek J, Miglino N, Aebersold R, Bacac M, Beerenwinkel N, Beisel C, Bodenmiller B, Dummer R, Heinzelmann-Schwarz V, Koelzer VH, Manz MG, Moch H, Pelkmans L, Snijder B, Theocharides APA, Tolnay M, Wicki A, Wollscheid B, Rätsch G, Levesque MP. The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell 2021; 39:288-293. [PMID: 33482122 DOI: 10.1016/j.ccell.2021.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.
Collapse
Affiliation(s)
- Anja Irmisch
- University Hospital Zurich, Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Ximena Bonilla
- ETH Zurich, Department of Computer Science, Institute of Machine Learning, Universitätstrasse 6, 8092 Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Hospital Zurich, Biomedical Informatics, Schmelzbergstrasse 26, 8006 Zurich, Switzerland
| | - Stéphane Chevrier
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Kjong-Van Lehmann
- ETH Zurich, Department of Computer Science, Institute of Machine Learning, Universitätstrasse 6, 8092 Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Hospital Zurich, Biomedical Informatics, Schmelzbergstrasse 26, 8006 Zurich, Switzerland
| | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, NEXUS Personalized Health Technologies, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Nora C Toussaint
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, NEXUS Personalized Health Technologies, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Cinzia Esposito
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Julien Mena
- ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Emanuela S Milani
- ETH Zurich, Department of Health Sciences and Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Ruben Casanova
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel J Stekhoven
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, NEXUS Personalized Health Technologies, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Rebekka Wegmann
- ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Francis Jacob
- University Hospital Basel and University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Bettina Sobottka
- University Hospital Zurich, Department of Pathology and Molecular Pathology, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Sandra Goetze
- ETH Zurich, Department of Health Sciences and Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Jack Kuipers
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jacobo Sarabia Del Castillo
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael Prummer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, NEXUS Personalized Health Technologies, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Mustafa A Tuncel
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ulrike Menzel
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andrea Jacobs
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefanie Engler
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Sujana Sivapatham
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anja L Frei
- University Hospital Zurich, Department of Pathology and Molecular Pathology, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Gabriele Gut
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joanna Ficek
- ETH Zurich, Department of Computer Science, Institute of Machine Learning, Universitätstrasse 6, 8092 Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Hospital Zurich, Biomedical Informatics, Schmelzbergstrasse 26, 8006 Zurich, Switzerland
| | - Nicola Miglino
- University Hospital Zurich, Department of Medical Oncology and Hematology, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | - Rudolf Aebersold
- ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Wagistrasse 10, 8952 Schlieren, Switzerland
| | - Niko Beerenwinkel
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Beisel
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Bernd Bodenmiller
- University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland; ETH Zurich, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Reinhard Dummer
- University Hospital Zurich, Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Viola Heinzelmann-Schwarz
- University Hospital Basel and University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel, Switzerland; University Hospital Basel, Gynecological Cancer Center, Spitalstrasse 21, 4031 Basel, Switzerland
| | - Viktor H Koelzer
- University Hospital Zurich, Department of Pathology and Molecular Pathology, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Markus G Manz
- University Hospital Zurich, Department of Medical Oncology and Hematology, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Holger Moch
- University Hospital Zurich, Department of Pathology and Molecular Pathology, Schmelzbergstrasse 12, 8091 Zurich, Switzerland
| | - Lucas Pelkmans
- University of Zurich, Department of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Berend Snijder
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; ETH Zurich, Department of Biology, Institute of Molecular Systems Biology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Alexandre P A Theocharides
- University Hospital Zurich, Department of Medical Oncology and Hematology, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Markus Tolnay
- University Hospital Basel, Institute of Medical Genetics and Pathology, Schönbeinstrasse 40, 4031 Basel, Switzerland
| | - Andreas Wicki
- University Hospital Zurich, Department of Medical Oncology and Hematology, Rämistrasse 100, 8091 Zurich, Switzerland; University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Bernd Wollscheid
- ETH Zurich, Department of Health Sciences and Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Gunnar Rätsch
- ETH Zurich, Department of Computer Science, Institute of Machine Learning, Universitätstrasse 6, 8092 Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland; University Hospital Zurich, Biomedical Informatics, Schmelzbergstrasse 26, 8006 Zurich, Switzerland; ETH Zurich, Department of Biology, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland.
| | - Mitchell P Levesque
- University Hospital Zurich, Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.
| |
Collapse
|
41
|
Cheng B, Xiao Y, Xue M, Cao H, Chen J. Recent Advances in the Development of PD-L1 Modulators: Degraders, Downregulators, and Covalent Inhibitors. J Med Chem 2020; 63:15389-15398. [PMID: 33272018 DOI: 10.1021/acs.jmedchem.0c01362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Therapeutic interference of the programmed cell death protein 1(PD-1)/immunosuppressive programmed cell death ligand 1 (PD-L1) signaling pathway by monoclonal antibodies has achieved spectacular success for treating various tumors. However, the development of small molecule inhibitors of PD-1/PD-L1 has lagged far behind due to the challenge of targeting the highly hydrophobic and relatively flat binding interface, despite the benefits small molecule can bring over therapeutic antibodies. This technical challenge provokes the adoption of different strategies in searching for small, medium-sized, and large molecule modulators (e.g., degraders, downregulators, and covalent inhibitors) of the PD-1/PD-L1 protein-protein interaction. In this review article, we discuss latest advances in the development of PD-L1 modulators, with a focus on degraders, downregulators, and covalent inhibitors.
Collapse
Affiliation(s)
- Binbin Cheng
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, China
| | - Mingming Xue
- Tianjin Tiancheng Chemical Co., Ltd., Chemical Street, Binhai New District, Tianjin 300480, China
| | - Hao Cao
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| | - Jianjun Chen
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
42
|
Morganti S, Curigliano G. Combinations using checkpoint blockade to overcome resistance. Ecancermedicalscience 2020; 14:1148. [PMID: 33574893 PMCID: PMC7864692 DOI: 10.3332/ecancer.2020.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 12/11/2022] Open
Abstract
The advent of immunotherapy for cancer represented a paradigm shift in the treatment approach of neoplasia. Immune-checkpoint inhibitors (ICIs) were demonstrated to significantly improve outcomes, including overall survival across several cancer types, with yearly-durable responses. Nevertheless, many patients derive minor or no benefit with immune checkpoint (IC)-blockade, including patients with cancer types traditionally considered immunogenic. Combination strategies of ICIs with chemotherapy, radiotherapy, targeted therapies or other immunotherapy compounds have been conceived in order to boost the immune-responses and potentially overcome resistance to ICIs. This review focuses on mechanisms underlying resistance to IC-blockade and provides an overview of potential advantages and limitations of combination strategies currently under investigation.
Collapse
Affiliation(s)
- Stefania Morganti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology (IEO), IRCCS, Via Ripamonti n.435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono n. 7, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology (IEO), IRCCS, Via Ripamonti n.435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono n. 7, 20122 Milan, Italy
| |
Collapse
|
43
|
Cheng B, Ren Y, Niu X, Wang W, Wang S, Tu Y, Liu S, Wang J, Yang D, Liao G, Chen J. Discovery of Novel Resorcinol Dibenzyl Ethers Targeting the Programmed Cell Death-1/Programmed Cell Death–Ligand 1 Interaction as Potential Anticancer Agents. J Med Chem 2020; 63:8338-8358. [DOI: 10.1021/acs.jmedchem.0c00574] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Binbin Cheng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Xiaoge Niu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jin Wang
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
44
|
Patient-derived model systems and the development of next-generation anticancer therapeutics. Curr Opin Chem Biol 2020; 56:72-78. [DOI: 10.1016/j.cbpa.2020.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
45
|
Zhai W, Zhou X, Wang H, Li W, Chen G, Sui X, Li G, Qi Y, Gao Y. A novel cyclic peptide targeting LAG-3 for cancer immunotherapy by activating antigen-specific CD8 + T cell responses. Acta Pharm Sin B 2020; 10:1047-1060. [PMID: 32642411 PMCID: PMC7332792 DOI: 10.1016/j.apsb.2020.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/10/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
PD-1 and CTLA-4 antibodies offer great hope for cancer immunotherapy. However, many patients are incapable of responding to PD-1 and CTLA-4 blockade and show low response rates due to insufficient immune activation. The combination of checkpoint blockers has been proposed to increase the response rates. Besides, antibody drugs have disadvantages such as inclined to cause immune-related adverse events and infiltration problems. In this study, we developed a cyclic peptide C25 by using Ph.D.-C7C phage display technology targeting LAG-3. As a result, C25 showed a relative high affinity with human LAG-3 protein and could effectively interfere the binding between LAG-3 and HLA-DR (MHC-II). Additionally, C25 could significantly stimulate CD8+ T cell activation in human PBMCs. The results also demonstrated that C25 could inhibit tumor growth of CT26, B16 and B16-OVA bearing mice, and the infiltration of CD8+ T cells was significantly increased while FOXP3+ Tregs significantly decreased in the tumor site. Furthermore, the secretion of IFN-γ by CD8+ T cells in spleen, draining lymph nodes and especially in the tumors was promoted. Simultaneously, we exploited T cells depletion models to study the anti-tumor mechanisms for C25 peptide, and the results combined with MTT assay confirmed that C25 exerted anti-tumor effects via CD8+ T cells but not direct killing. In conclusion, cyclic peptide C25 provides a rationale for targeting the immune checkpoint, by blockade of LAG-3/HLA-DR interaction in order to enhance anti-tumor immunity, and C25 may provide an alternative for cancer immunotherapy besides antibody drugs.
Collapse
Affiliation(s)
- Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongfei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Corresponding authors. Tel.: +86 20 84723750.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors. Tel.: +86 20 84723750.
| |
Collapse
|
46
|
Abstract
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
|
47
|
Dufva O, Koski J, Maliniemi P, Ianevski A, Klievink J, Leitner J, Pölönen P, Hohtari H, Saeed K, Hannunen T, Ellonen P, Steinberger P, Kankainen M, Aittokallio T, Keränen MAI, Korhonen M, Mustjoki S. Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood 2020; 135:597-609. [PMID: 31830245 PMCID: PMC7098811 DOI: 10.1182/blood.2019002121] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven effective in relapsed and refractory B-cell malignancies, but resistance and relapses still occur. Better understanding of mechanisms influencing CAR T-cell cytotoxicity and the potential for modulation using small-molecule drugs could improve current immunotherapies. Here, we systematically investigated druggable mechanisms of CAR T-cell cytotoxicity using >500 small-molecule drugs and genome-scale CRISPR-Cas9 loss-of-function screens. We identified several tyrosine kinase inhibitors that inhibit CAR T-cell cytotoxicity by impairing T-cell signaling transcriptional activity. In contrast, the apoptotic modulator drugs SMAC mimetics sensitized B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma cells to anti-CD19 CAR T cells. CRISPR screens identified death receptor signaling through FADD and TNFRSF10B (TRAIL-R2) as a key mediator of CAR T-cell cytotoxicity and elucidated the RIPK1-dependent mechanism of sensitization by SMAC mimetics. Death receptor expression varied across genetic subtypes of B-cell malignancies, suggesting a link between mechanisms of CAR T-cell cytotoxicity and cancer genetics. These results implicate death receptor signaling as an important mediator of cancer cell sensitivity to CAR T-cell cytotoxicity, with potential for pharmacological targeting to enhance cancer immunotherapy. The screening data provide a resource of immunomodulatory properties of cancer drugs and genetic mechanisms influencing CAR T-cell cytotoxicity.
Collapse
MESH Headings
- Cell Line, Tumor
- Clustered Regularly Interspaced Short Palindromic Repeats
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic/immunology
- Drug Resistance, Neoplasm/immunology
- Drug Screening Assays, Antitumor/methods
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Chimeric Antigen
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jan Koski
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Judith Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; and
| | - Helena Hohtari
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
- Department of Mathematics and Statistics, University of Turku, Quantum, Turku, Finland
| | - Mikko A I Keränen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | | | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program and
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
48
|
|
49
|
Brown DG, Smith GF, Wobst HJ. Promiscuity of in Vitro Secondary Pharmacology Assays and Implications for Lead Optimization Strategies. J Med Chem 2019; 63:6251-6275. [PMID: 31714773 DOI: 10.1021/acs.jmedchem.9b01625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We conducted an analysis on screening data generated from 1445 compounds against a panel of 130 enzymes, ion channels, and receptors to assess secondary pharmacological risks. Hit rates of these targets as well as physicochemical properties for those hits were evaluated. A majority of targets yielded hits with higher clogP, molecular weight, and more basic character than inactive compounds. Although most targets favored lipophilic hits, the average clogP of hits at a given target did not correlate with its hit rate. Furthermore, a matched pair analysis was completed to determine structural changes that impacted off-target activities. A correlation of binding assays used in this analysis illustrated that some pharmacologically related binding assays are highly correlative and may be substituted for a smaller set of surrogate assays.
Collapse
Affiliation(s)
- Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Graham F Smith
- Data Science and Artificial Intelligence, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
50
|
Liu P, Zhao L, Pol J, Levesque S, Petrazzuolo A, Pfirschke C, Engblom C, Rickelt S, Yamazaki T, Iribarren K, Senovilla L, Bezu L, Vacchelli E, Sica V, Melis A, Martin T, Xia L, Yang H, Li Q, Chen J, Durand S, Aprahamian F, Lefevre D, Broutin S, Paci A, Bongers A, Minard-Colin V, Tartour E, Zitvogel L, Apetoh L, Ma Y, Pittet MJ, Kepp O, Kroemer G. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun 2019; 10:1486. [PMID: 30940805 PMCID: PMC6445096 DOI: 10.1038/s41467-019-09415-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Immunogenic cell death (ICD) converts dying cancer cells into a therapeutic vaccine and stimulates antitumor immune responses. Here we unravel the results of an unbiased screen identifying high-dose (10 µM) crizotinib as an ICD-inducing tyrosine kinase inhibitor that has exceptional antineoplastic activity when combined with non-ICD inducing chemotherapeutics like cisplatin. The combination of cisplatin and high-dose crizotinib induces ICD in non-small cell lung carcinoma (NSCLC) cells and effectively controls the growth of distinct (transplantable, carcinogen- or oncogene induced) orthotopic NSCLC models. These anticancer effects are linked to increased T lymphocyte infiltration and are abolished by T cell depletion or interferon-γ neutralization. Crizotinib plus cisplatin leads to an increase in the expression of PD-1 and PD-L1 in tumors, coupled to a strong sensitization of NSCLC to immunotherapy with PD-1 antibodies. Hence, a sequential combination treatment consisting in conventional chemotherapy together with crizotinib, followed by immune checkpoint blockade may be active against NSCLC. Certain chemotherapeutic agents can exert their anticancer effect through indirect immune-dependent mechanism. Here, the authors screen a library of tyrosine kinase inhibitors and show that crizotinib is an effective stimulator of immunogenic cell death and can potentiate the efficacy of immune checkpoint blockade.
Collapse
Affiliation(s)
- Peng Liu
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, 94270, France.,Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Liwei Zhao
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, 94270, France.,Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Jonathan Pol
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Sarah Levesque
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, 94270, France.,Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Adriana Petrazzuolo
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, 94270, France.,Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, 02139, MA, USA
| | - Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, 02139, MA, USA.,Graduate Program in Immunology, Harvard Medical School, Boston, 02238, MA, USA
| | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, 14853, NY, USA
| | - Kristina Iribarren
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Laura Senovilla
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Lucillia Bezu
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, 94270, France.,Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France.,Department of Anaesthesiology, Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Erika Vacchelli
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Valentina Sica
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Andréa Melis
- Centre de Recherche INSERM LNC-, UMR1231, Dijon, France.,Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, 21000, France
| | - Tiffany Martin
- Centre de Recherche INSERM LNC-, UMR1231, Dijon, France.,Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, 21000, France
| | - Lin Xia
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Heng Yang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Qingqing Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Jinfeng Chen
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Sylvère Durand
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Fanny Aprahamian
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Deborah Lefevre
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France.,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France.,Université Pierre et Marie Curie, Paris, 75006, France
| | - Sophie Broutin
- Department of Pharmacology, Institut Gustave Roussy, Villejuif, 94805, France
| | - Angelo Paci
- Department of Pharmacology, Institut Gustave Roussy, Villejuif, 94805, France.,School of Pharmacy, Université Paris Sud, Châtenay-Malabry, 92 296, France
| | - Amaury Bongers
- Department of Pharmacology, Institut Gustave Roussy, Villejuif, 94805, France
| | | | - Eric Tartour
- INSERM U970, Université Paris Descartes Sorbonne Paris-Cité, Paris, 75006, France.,Department of Immunology, Hôpital Européen Georges Pompidou, Paris, 75015, France
| | - Laurence Zitvogel
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, 94270, France.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Institut de Cancérologie, Gustave Roussy Cancer Campus (GRCC), Villejuif, 94805, France.,INSERM U1015, Villejuif, 94805, France.,Center of Clinical Investigations CIC1428, Villejuif, 94805, France
| | - Lionel Apetoh
- Centre de Recherche INSERM LNC-, UMR1231, Dijon, France.,Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, 21000, France
| | - Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, 02139, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Oliver Kepp
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, 94270, France. .,Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France. .,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France. .,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France. .,Université Pierre et Marie Curie, Paris, 75006, France.
| | - Guido Kroemer
- Cell Biology and Metabolomics Platforms, Gustave Roussy Cancer Campus, Villejuif, 94805, France. .,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, 75006, France. .,Institut National de la Santé et de la Recherche Médicale, UMR1138, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, 75006, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France. .,Université Pierre et Marie Curie, Paris, 75006, France. .,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France. .,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 141 86, Sweden.
| |
Collapse
|