1
|
Joshna CR, Atugala DM, Espinoza DNDLT, Muench DG. Analysis of the root mRNA interactome from canola and rice: Crop species that span the eudicot-monocot boundary. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112525. [PMID: 40274193 DOI: 10.1016/j.plantsci.2025.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The advent of RNA interactome capture (RIC) has been important in characterizing the mRNA-binding proteomes (mRBPomes) of several eukaryotic taxa. To date, published plant poly(A)+ RIC studies have been restricted to Arabidopsis thaliana and specific to seedlings, suspension cell cultures, mesophyll protoplasts, leaves and embryos. The focus of this study was to expand RIC to root tissue in two crop species, the oilseed eudicot Brassica napus (canola) and the cereal monocot Oryza sativa (rice). The optimization and application of root RIC in these species resulted in the identification of 499 proteins and 334 proteins comprising the root mRBPomes of canola and rice, respectively, with 182 shared orthologous proteins between these two species. In both mRBPomes, approximately 80 % of captured proteins were linked to RNA biology, with RRM-containing proteins and ribosomal proteins among the most overrepresented protein groups. Consistent with trends observed in other RIC studies, novel RNA-binding proteins were captured that lacked known RNA-binding domains and included numerous metabolic enzymes. The root mRBPomes from canola and rice shared a high degree of similarity at the compositional level, as shown by a comparative analysis of orthologs predicted for captured proteins to the published Arabidopsis RIC-derived mRBPomes, as well as our Arabidopsis root mRBPome data presented here. This analysis also revealed that 46 proteins in the canola and rice root mRBPomes were unique when orthologs were compared to the published Arabidopsis RBPomes, including those identified recently using phase separation approach that identified proteins bound to all RNA types. The results from this research expands the plant mRBPome into root tissue using two crop species that span the eudicot-monocot clade boundary, and provides fundamental knowledge on RNA-binding protein function in post-transcriptional control of gene expression in crop species for possible future development of beneficial traits.
Collapse
Affiliation(s)
- Chris R Joshna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | - Dilini M Atugala
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada
| | | | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N1N4, Canada.
| |
Collapse
|
2
|
Jin C, Ye Y, Gao L, Zhong Z, Zhou C, Wu X, Li X, Zhou G, Chen S, Wei Y, Cai L, Liu S, Xu J. Biological function of RNA-binding proteins in myocardial infarction: a potential emerging therapeutic limelight. Cell Biosci 2025; 15:65. [PMID: 40413549 PMCID: PMC12102849 DOI: 10.1186/s13578-025-01408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Myocardial infarction (MI) is currently one of the most fatal cardiovascular diseases worldwide. The screening, treatment, and prognosis of MI are top priorities for cardiovascular centers globally due to its characteristic occult onset, high lethality, and poor prognosis. MI is caused by coronary artery occlusion induced by coronary atherosclerotic plaque blockage or other factors, leading to ischemic necrosis and apoptosis of cardiomyocytes. Although significant advancements have been made in the study of cardiomyocytes at the cellular and molecular levels, RNA-binding proteins (RBPs) have not been extensively explored in the context of MI. RBPs, as key regulators coordinating cell differentiation and tissue homeostasis, exhibit specific functions in gene transcription, RNA modification and processing, and post-transcriptional gene expression. By binding to their target RNA, RBPs coordinate various RNA dynamics, including cellular metabolism, subcellular localization, and translation efficiency, thereby controlling the expression of encoded proteins. Classical RBPs, including HuR, hnRNPs, and RBM family molecules, have been identified as critical regulators in myocardial hypoxia, oxidative stress, pro-inflammatory responses, and fibrotic repair. These RBPs exert their effects by modulating key pathophysiological pathways in MI, thereby influencing specific cardiac outcomes. Additionally, specific RBPs, such as QKI and fused in sarcoma (FUS), are implicated in the apoptotic pathways activated during MI. This apoptotic pathway represents a significant molecular phenotype in MI, offering novel perspectives and insights for mitigating cardiomyocyte apoptosis and attenuating the progression of MI. Therefore, this review systematically summarizes the role of RBPs in the main pathophysiological stages of MI and explores their potential therapeutic prospects.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidong Cai
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. Dev Cell 2025; 60:1498-1515.e8. [PMID: 39818206 DOI: 10.1016/j.devcel.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation during development, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR suffices to confer temporal dynamics to translation initiation and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, Danio Optimus 5-Prime (DaniO5P), identified a combined role for 5' UTR length, translation initiation site context, upstream AUGs, and sequence motifs on ribosome recruitment. DaniO5P predicts the activities of maternal and zygotic 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alexander F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Hao K, Nguyen T, Nakada Y, Walcott G, Wei Y, Wu Y, Garry DJ, Yao P, Zhang J. Newborn apical resection preserves the proliferative capacity of cardiomyocytes located throughout the left ventricle. Stem Cells 2025; 43:sxaf018. [PMID: 40229986 PMCID: PMC12080357 DOI: 10.1093/stmcls/sxaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND When pigs underwent apical resection (AR) on postnatal day (P) 1 (ARP1) followed by myocardial infarction (MI) on P28, the hearts had little evidence of scarring; meanwhile, hearts underwent MI on P28 without ARP1 showed large infarcts on P56; and the improvement of ARP1 hearts was driven primarily by cardiomyocyte proliferation. AR and MI were performed ~5 mm (AR) and ~20 mm (MI) above the heart apex; thus, we hypothesize that ARP1 preserved the cardiomyocytes cell-cycle throughout the left ventricle, rather than only near the resection site. METHODS Sections of cardiac tissue were collected from the left ventricle of uninjured pigs and from both the border zone (BZ) of AR and uninjured regions (remote zone, [RZ]) in ARP1 hearts. Cardiomyocyte proliferation was evaluated via immunofluorescence analysis of phosphorylated histone 3 [PH3] and symmetric Aurora B (sAuB). Single nucleus RNA sequencing (snRNAseq) data collected from the hearts of fetal pigs, uninjured pigs, and the BZ and RZ of ARP1 pigs was evaluated via our cell-cycle-specific autoencoder to identify proliferating cardiomyocytes. RESULTS Cardiomyocyte PH3 and sAuB expression, and percentage of proliferating cardiomyocytes in snRNA data was significantly more common in both BZ and RZ of ARP1 than uninjured hearts but did not differ significantly between the ARP1-BZ and ARP1-RZ at any time point. Heat shock proteins HSPA5 and HSP90B1 were overexpressed at both ARP1-BZ and ARP1-RZ. In AC16 cell, overexpression (and knockdown) of HSPA5-HSP90B1 increased (and decrease) cell-cycle activity. CONCLUSION ARP1 preserved proliferative capacity of cardiomyocytes located throughout the left ventricle.
Collapse
Affiliation(s)
- Kaili Hao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Thanh Nguyen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Yuji Nakada
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gregory Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Yalin Wu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Daniel J Garry
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Biochemistry & Biophysics, The Center for RNA Biology, School of Medicine, University of Rochester, Rochester, NY 14642, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
5
|
Lei X, Zheng Y, Su W. RNA-binding proteins and autophagy in lung cancer: mechanistic insights and therapeutic perspectives. Discov Oncol 2025; 16:599. [PMID: 40272614 PMCID: PMC12022210 DOI: 10.1007/s12672-025-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality worldwide. Its progression is intricately associated with the dynamic regulation of autophagy and RNA-binding proteins (RBPs), which play crucial roles in mRNA stability, alternative splicing, and cellular stress responses. OBJECTIVES This review aims to systematically analyze the mechanisms through which RBPs and autophagy contribute to lung cancer progression and explore potential therapeutic strategies targeting these pathways. METHODS We reviewed recent studies on the molecular mechanisms by which RBPs regulate tumor proliferation, metabolic adaptation, and their interaction with autophagy. The review also examines the dual roles of autophagy in lung cancer, highlighting its context-dependent effects on cell survival and death. RESULTS The interactions and regulatory networks between RBPs and autophagy involve multiple levels of regulation. RBPs can directly influence autophagy processes and act as microRNA (miRNA) sponges to regulate mRNA stability. The modulation of RBPs affects the expression of autophagy-related genes (ATGs) and autophagosome formation. Additionally, RBPs participate in complex regulatory interactions with non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other proteins. CONCLUSIONS This review proposes innovative therapeutic strategies that combine RBP-targeting approaches (e.g., small molecule inhibitors, CRISPR gene editing) with autophagy modulators (e.g., mTOR inhibitors, chloroquine) to enhance treatment efficacy. Nanoparticle drug delivery systems and epigenetic regulation offer further opportunities for targeted interventions. This review lays a theoretical foundation for advancing lung cancer research and provides novel insights into synergistic therapies that target both RBPs and autophagy to improve treatment outcomes for lung cancer.
Collapse
Affiliation(s)
- Xiao Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuexin Zheng
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Wenmei Su
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China.
- Department of Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
6
|
Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F, Kaifer B, Klostermann M, Will R, Schneider M, Helm D, König J, Zarnack K, Diederichs S, Kettenbach AN, Caudron-Herger M. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. Nat Commun 2025; 16:2325. [PMID: 40057470 PMCID: PMC11890761 DOI: 10.1038/s41467-025-57671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins, which modulate the fate of RNA. Inversely, RNA riboregulates the interactions and functions of the associated proteins. Dysregulation of ribonucleoprotein functions is linked to diseases such as cancer and neurological disorders. In dividing cells, RNA and RNA-binding proteins are present in mitotic structures, but their impact on cell division remains unclear. By applying the proteome-wide R-DeeP strategy to cells synchronized in mitosis versus interphase integrated with the RBP2GO knowledge, we provided an atlas of RNA-dependent proteins in cell division, accessible at R-DeeP3.dkfz.de. We uncovered AURKA, KIFC1 and TPX2 as unconventional RNA-binding proteins. KIFC1 was identified as a new substrate of AURKA, and new TPX2-interacting protein. Their pair-wise interactions were RNA dependent. In addition, RNA stimulated AURKA kinase activity and stabilized its conformation. In this work, we highlighted riboregulation of major mitotic factors as an additional complexity level of cell division.
Collapse
Affiliation(s)
- Varshni Rajagopal
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Seiler
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Simona Cantarella
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Theiss
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herget
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Kaifer
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany.
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Maïwen Caudron-Herger
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Hornisch M, Piazza I. Regulation of gene expression through protein-metabolite interactions. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:7. [PMID: 40052108 PMCID: PMC11879850 DOI: 10.1038/s44324-024-00047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/20/2024] [Indexed: 03/09/2025]
Abstract
Organisms have to adapt to changes in their environment. Cellular adaptation requires sensing, signalling and ultimately the activation of cellular programs. Metabolites are environmental signals that are sensed by proteins, such as metabolic enzymes, protein kinases and nuclear receptors. Recent studies have discovered novel metabolite sensors that function as gene regulatory proteins such as chromatin associated factors or RNA binding proteins. Due to their function in regulating gene expression, metabolite-induced allosteric control of these proteins facilitates a crosstalk between metabolism and gene expression. Here we discuss the direct control of gene regulatory processes by metabolites and recent progresses that expand our abilities to systematically characterize metabolite-protein interaction networks. Obtaining a profound map of such networks is of great interest for aiding metabolic disease treatment and drug target identification.
Collapse
Affiliation(s)
- Maximilian Hornisch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, Berlin, 13092 Germany
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, 171 65 Sweden
| |
Collapse
|
8
|
Goel K, Saraogi I. Harnessing RNA-Protein Interactions for Therapeutic Interventions. Chem Asian J 2025; 20:e202401117. [PMID: 39714962 DOI: 10.1002/asia.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Interactions between RNAs and proteins play a crucial role in various diseases, including viral infections and cancer. Hence, understanding and inhibiting these interactions are important for the development of novel therapeutics. However, the identification of drugs targeting RNA-protein interactions with high specificity and affinity is challenged by our limited molecular understanding of these interactions. Recent focus on structural and biochemical characterization, coupled with high-throughput screening technologies and computational modeling, have accelerated the identification of new RBPs and optimization of potential inhibitors. This review discusses key examples of inhibitors developed over the past decade that effectively disrupt pathogenic RNA-protein interactions. We focus on small molecule and peptide-based inhibitors that have shown promise in disrupting crucial RNA-protein interactions in eukaryotes, prokaryotes, and viruses. We also present the challenges and future directions in this field, emphasizing the need to achieve improved specificity and reduce the off-target effects of the inhibitors. This review aims to contribute to ongoing efforts towards the development of novel therapeutic agents targeting RNA-protein interactions by providing an in-depth analysis of significant developments and emerging trends in this rapidly growing field.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Ishu Saraogi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
9
|
Li L, Xie S, Deng W. RNA binding proteins: Mechanistic considerations and perspectives in controlling cardiovascular diseases. Eur J Pharmacol 2025; 987:177101. [PMID: 39613174 DOI: 10.1016/j.ejphar.2024.177101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) are becoming serious disease that endangering human health due to the increasing morbidity and mortality, and many molecular targets are involved in this complex pathologic process. Recently, RNA-binding proteins (RBPs) have received potential attention as a promising targets for preventing CVDs, including myocardial hypertrophy, dilated cardiomyopathy (DCM), myocardial fibrosis, and pulmonary hypertension (PH). As important regulators of RNA metabolism, RBPs play important roles in all steps of the gene expression cascade,and affect the occurrence and development of various diseases. In this review, we discuss the regulatory role of RBPs on various CVDs at the post transcriptional modification level based on current research. We also highlight the existing and potential RNA-based therapeutics that could impact future CVD treatments.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China; Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
10
|
Ristová M, Shchepachev V, Tollervey D. reCRAC: A Stringent Method for Precise Mapping of Protein-RNA Interactions in Yeast. Methods Mol Biol 2025; 2863:225-251. [PMID: 39535713 DOI: 10.1007/978-1-0716-4176-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Intricate interactions between RNA-binding proteins (RBPs) and RNA play pivotal roles in cellular homeostasis, impacting a spectrum of biological processes vital for survival. UV crosslinking methods to study protein-RNA interactions have been instrumental in elucidating their interactions but can be limited by degradation of target proteins during the process, low signal-to-noise ratios, and nonspecific interactions. Addressing these limitations, we describe reCRAC (reverse CRAC), a novel adaptation of the CRAC (crosslinking and analysis of cDNA) technique, optimized for yeast Saccharomyces cerevisiae. Like CRAC, reCRAC applies tandem affinity purification to yield highly enriched protein preparations. However, reCRAC is redesigned to work with unstable proteins. This is achieved by lysing the cells directly into highly denaturing buffer conditions, followed by stringent purification steps. The reCRAC method was successfully applied to the easily degraded yeast protein Pin4, allowing identification of precise binding sites at base-pair resolution with greatly reduced target protein degradation and improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Michaela Ristová
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Shamloo S, Schloßhauer JL, Tiwari S, Fischer KD, Ghebrechristos Y, Kratzenberg L, Bejoy AM, Aifantis I, Wang E, Imig J. RNA Binding of GAPDH Controls Transcript Stability and Protein Translation in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626357. [PMID: 39677748 PMCID: PMC11642814 DOI: 10.1101/2024.12.02.626357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Dysregulation of RNA binding proteins (RBPs) is a hallmark in cancerous cells. In acute myeloid leukemia (AML) RBPs are key regulators of tumor proliferation. While classical RBPs have defined RNA binding domains, RNA recognition and function in AML by non-canonical RBPs (ncRBPs) remain unclear. Given the inherent complexity of targeting AML broadly, our goal was to uncover potential ncRBP candidates critical for AML survival using a CRISPR/Cas-based screening. We identified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a pro-proliferative factor in AML cells. Based on cross-linking and immunoprecipitation (CLIP), we are defining the global targetome, detecting novel RNA targets mainly located within 5'UTRs, including GAPDH, RPL13a, and PKM. The knockdown of GAPDH unveiled genetic pathways related to ribosome biogenesis, translation initiation, and regulation. Moreover, we demonstrated a stabilizing effect through GAPDH binding to target transcripts including its own mRNA. The present findings provide new insights on the RNA functions and characteristics of GAPDH in AML.
Collapse
|
12
|
Pradhan UK, Naha S, Das R, Gupta A, Parsad R, Meher PK. RBProkCNN: Deep learning on appropriate contextual evolutionary information for RNA binding protein discovery in prokaryotes. Comput Struct Biotechnol J 2024; 23:1631-1640. [PMID: 38660008 PMCID: PMC11039349 DOI: 10.1016/j.csbj.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
RNA-binding proteins (RBPs) are central to key functions such as post-transcriptional regulation, mRNA stability, and adaptation to varied environmental conditions in prokaryotes. While the majority of research has concentrated on eukaryotic RBPs, recent developments underscore the crucial involvement of prokaryotic RBPs. Although computational methods have emerged in recent years to identify RBPs, they have fallen short in accurately identifying prokaryotic RBPs due to their generic nature. To bridge this gap, we introduce RBProkCNN, a novel machine learning-driven computational model meticulously designed for the accurate prediction of prokaryotic RBPs. The prediction process involves the utilization of eight shallow learning algorithms and four deep learning models, incorporating PSSM-based evolutionary features. By leveraging a convolutional neural network (CNN) and evolutionarily significant features selected through extreme gradient boosting variable importance measure, RBProkCNN achieved the highest accuracy in five-fold cross-validation, yielding 98.04% auROC and 98.19% auPRC. Furthermore, RBProkCNN demonstrated robust performance with an independent dataset, showcasing a commendable 95.77% auROC and 95.78% auPRC. Noteworthy is its superior predictive accuracy when compared to several state-of-the-art existing models. RBProkCNN is available as an online prediction tool (https://iasri-sg.icar.gov.in/rbprokcnn/), offering free access to interested users. This tool represents a substantial contribution, enriching the array of resources available for the accurate and efficient prediction of prokaryotic RBPs.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| |
Collapse
|
13
|
Teng X, Shang J, Du L, Huang W, Wang Y, Liu M, Ma Y, Wang M, Tang H, Bai L. RNA-binding protein Trx regulates alternative splicing and promotes metastasis of HCC via interacting with LINC00152. J Gastroenterol Hepatol 2024; 39:2892-2902. [PMID: 39343436 PMCID: PMC11660213 DOI: 10.1111/jgh.16735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is central to HCC metastasis, in which RNA-binding proteins (RBPs) play a key role. METHODS To explore the role of RBPs in metastasis of hepatocellular carcinoma (HCC), whole transcriptome sequencing was conducted to identify differential RBPs between HCC with metastasis and HCC without metastasis. The influence of RBPs on metastasis of HCC was verified by in vitro and in vivo experiments. The interaction of RBPs with non-coding RNAs was evaluated by RNA immunoprecipitation and pull-down assays. RNA sequencing, whole-genome sequencing, and alternative splicing analysis were further performed to clarify post-transcriptional regulation mechanisms. RESULTS Whole transcriptome sequencing results showed that expression of thioredoxin (Trx) was significantly upregulated in HCC patients with metastasis. Trx was also found to be associated with poor prognosis in HCC patients. Overexpression of Trx could promote migration and invasion of HCC cells in vitro and increase the rate of lung metastasis of HCC cells in vivo. Moreover, binding assays showed that Trx could bind to LINC00152. As a result, LINC00152 was verified to determine the pro-metastasis function of Trx by knockdown assay. Furthermore, we revealed that Trx could regulate metastasis-associated alternative splicing program. Specifically, angiopoietin 1 (ANGPT1) was the splicing target; the splicing isoform switching of ANGPT1 could activate the PI3K-Akt pathway, upregulate EMT-associated proteins, and promote migration and invasion of HCC cells. CONCLUSIONS We found that Trx could interact with LINC00152 and promote HCC metastasis via regulating alternative splicing, indicating that Trx may serve as a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiangnan Teng
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Jin Shang
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
- Liver Transplantation Center and HBP Surgery, Sichuan Clinical Research Center for Cancer Sichuan Cancer Hospital & Institute, Sichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Lingyao Du
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Wei Huang
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Yonghong Wang
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Miao Liu
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Yuanji Ma
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Ming Wang
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Hong Tang
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| | - Lang Bai
- Center of Infectious DiseasesWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Cao Y, Yang Y, Guo C, Zong J, Li M, Li X, Yu T. Role of RNA-binding Proteins in Regulating Cell Adhesion and Progression of the Atherosclerotic Plaque and Plaque Erosion. Curr Atheroscler Rep 2024; 27:8. [PMID: 39576410 DOI: 10.1007/s11883-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE OF REVIEW RNA-binding proteins (RBPs) have emerged as crucial regulators of post-transcriptional processes, influencing the fate of RNA. This review delves into the biological functions of RBPs and their role in alternative splicing concerning atherosclerosis (AS), highlighting their participation in essential cellular processes. Our goal is to offer new insights for cardiovascular disease research and treatment. RECENT FINDING Dysregulation of RBPs is associated with various human diseases, including autoimmune and neurological disorders. The role of RBPs in the pathogenesis of AS is progressively being elucidated, as they influence plaque formation and disease progression by regulating cell function and gene expression. RBPs play intricate biological roles in regulating pre-mRNA, including editing, splicing, stability and translation. Alternative splicing has been demonstrated to enhance biological complexity and diversity. Our findings indicate that alternative splicing is extensively involved in the pathogenesis of AS. The dysregulated expression of specific RBPs in AS is linked to the production of adhesion molecules and vascular endothelium damage. Further research on RBPs could pave the way for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Ying Cao
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, 266000, People's Republic of China
| | - Chuan Guo
- Industrial Synergy Innovation Center, Linyi Vocational University of Science and Technology, Linyi, 276000, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Min Li
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| |
Collapse
|
15
|
Zigdon I, Carmi M, Brodsky S, Rosenwaser Z, Barkai N, Jonas F. Beyond RNA-binding domains: determinants of protein-RNA binding. RNA (NEW YORK, N.Y.) 2024; 30:1620-1633. [PMID: 39353735 PMCID: PMC11571813 DOI: 10.1261/rna.080026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.
Collapse
Affiliation(s)
- Inbal Zigdon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Rosenwaser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
16
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
17
|
Castello A, Álvarez L, Kamel W, Iselin L, Hennig J. Exploring the expanding universe of host-virus interactions mediated by viral RNA. Mol Cell 2024; 84:3706-3721. [PMID: 39366356 DOI: 10.1016/j.molcel.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
RNA is a central molecule in RNA virus biology; however, the interactions that it establishes with the host cell are only starting to be elucidated. In recent years, a methodology revolution has dramatically expanded the scope of host-virus interactions involving the viral RNA (vRNA). A second wave of method development has enabled the precise study of these protein-vRNA interactions in a life cycle stage-dependent manner, as well as providing insights into the interactome of specific vRNA species. This review discusses these technical advances and describes the new regulatory mechanisms that have been identified through their use. Among these, we discuss the importance of vRNA in regulating protein function through a process known as riboregulation. We envision that the elucidation of vRNA interactomes will open new avenues of research, including pathways to the discovery of host factors with therapeutic potential against viruses.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK.
| | - Lucía Álvarez
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Louisa Iselin
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany; Department of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
18
|
Street LA, Rothamel KL, Brannan KW, Jin W, Bokor BJ, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Gorhe D, Abdou A, Wolin E, Mizrahi O, Ahdout J, Mujumdar M, Doron-Mandel E, Jovanovic M, Yeo GW. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol Cell 2024; 84:3790-3809.e8. [PMID: 39303721 PMCID: PMC11530141 DOI: 10.1016/j.molcel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Collapse
Affiliation(s)
- Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Kristopher W Brannan
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA; Sanford Stem Cell Institute, Innovation Center, San Diego, CA, USA.
| |
Collapse
|
19
|
Chu LC, Christopoulou N, McCaughan H, Winterbourne S, Cazzola D, Wang S, Litvin U, Brunon S, Harker PJ, McNae I, Granneman S. pyRBDome: a comprehensive computational platform for enhancing RNA-binding proteome data. Life Sci Alliance 2024; 7:e202402787. [PMID: 39079742 PMCID: PMC11289467 DOI: 10.26508/lsa.202402787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
High-throughput proteomics approaches have revolutionised the identification of RNA-binding proteins (RBPome) and RNA-binding sequences (RBDome) across organisms. Yet, the extent of noise, including false positives, associated with these methodologies, is difficult to quantify as experimental approaches for validating the results are generally low throughput. To address this, we introduce pyRBDome, a pipeline for enhancing RNA-binding proteome data in silico. It aligns the experimental results with RNA-binding site (RBS) predictions from distinct machine-learning tools and integrates high-resolution structural data when available. Its statistical evaluation of RBDome data enables quick identification of likely genuine RNA-binders in experimental datasets. Furthermore, by leveraging the pyRBDome results, we have enhanced the sensitivity and specificity of RBS detection through training new ensemble machine-learning models. pyRBDome analysis of a human RBDome dataset, compared with known structural data, revealed that although UV-cross-linked amino acids were more likely to contain predicted RBSs, they infrequently bind RNA in high-resolution structures. This discrepancy underscores the limitations of structural data as benchmarks, positioning pyRBDome as a valuable alternative for increasing confidence in RBDome datasets.
Collapse
Affiliation(s)
- Liang-Cui Chu
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Niki Christopoulou
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Hugh McCaughan
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Sophie Winterbourne
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Davide Cazzola
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - Shichao Wang
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Ulad Litvin
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Salomé Brunon
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | - Patrick Jb Harker
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Iain McNae
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| | - Sander Granneman
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F, Kaifer B, Schneider M, Helm D, König J, Zarnack K, Diederichs S, Kettenbach AN, Caudron-Herger M. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614981. [PMID: 39386702 PMCID: PMC11463612 DOI: 10.1101/2024.09.25.614981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins (RBPs), which can modulate the fate of the RNA molecules from transcription to degradation. Vice versa, RNA can regulate the interactions and functions of the associated proteins. Dysregulation of RBPs is linked to diseases such as cancer and neurological disorders. RNA and RBPs are present in mitotic structures like the centrosomes and spindle microtubules, but their influence on mitotic spindle integrity remains unknown. Thus, we applied the R-DeeP strategy for the proteome-wide identification of RNA-dependent proteins and complexes to cells synchronized in mitosis versus interphase. The resulting atlas of RNA-dependent proteins in cell division can be accessed through the R-DeeP 3.0 database (R-DeeP3.dkfz.de). It revealed key mitotic factors as RNA-dependent such as AURKA, KIFC1 and TPX2 that were linked to RNA despite their lack of canonical RNA-binding domains. KIFC1 was identified as a new interaction partner and phosphorylation substrate of AURKA at S349 and T359. In addition, KIFC1 interacted with both, AURKA and TPX2, in an RNA-dependent manner. Our data suggest a riboregulation of mitotic protein-protein interactions during spindle assembly, offering new perspectives on the control of cell division processes by RNA-protein complexes.
Collapse
Affiliation(s)
- Varshni Rajagopal
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Seiler
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Simona Cantarella
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Theiss
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herget
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Kaifer
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Maïwen Caudron-Herger
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Cogan JA, Benova N, Kuklinkova R, Boyne JR, Anene CA. Meta-analysis of RNA interaction profiles of RNA-binding protein using the RBPInper tool. BIOINFORMATICS ADVANCES 2024; 4:vbae127. [PMID: 39233897 PMCID: PMC11374027 DOI: 10.1093/bioadv/vbae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Motivation Recent RNA-centric experimental methods have significantly expanded our knowledge of proteins with known RNA-binding functions. However, the complete regulatory network and pathways for many of these RNA-binding proteins (RBPs) in different cellular contexts remain unknown. Although critical to understanding the role of RBPs in health and disease, experimentally mapping the RBP-RNA interactomes in every single context is an impossible task due the cost and manpower required. Additionally, identifying relevant RNAs bound by RBPs is challenging due to their diverse binding modes and function. Results To address these challenges, we developed RBP interaction mapper RBPInper an integrative framework that discovers global RBP interactome using statistical data fusion. Experiments on splicing factor proline and glutamine rich (SFPQ) datasets revealed cogent global SFPQ interactome. Several biological processes associated with this interactome were previously linked with SFPQ function. Furthermore, we conducted tests using independent dataset to assess the transferability of the SFPQ interactome to another context. The results demonstrated robust utility in generating interactomes that transfers to unseen cellular context. Overall, RBPInper is a fast and user-friendly method that enables a systems-level understanding of RBP functions by integrating multiple molecular datasets. The tool is designed with a focus on simplicity, minimal dependencies, and straightforward input requirements. This intentional design aims to empower everyday biologists, making it easy for them to incorporate the tool into their research. Availability and implementation The source code, documentation, and installation instructions as well as results for use case are freely available at https://github.com/AneneLab/RBPInper. A user can easily compile similar datasets for a target RBP.
Collapse
Affiliation(s)
- Joseph A Cogan
- School of Biological Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Natalia Benova
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
| | - Rene Kuklinkova
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
| | - James R Boyne
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
| | - Chinedu A Anene
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, United Kingdom
- Centre for Cancer Genomics and Computation Biology, Barts Cancer Institute, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
22
|
Aydin E, Schreiner S, Böhme J, Keil B, Weber J, Žunar B, Glatter T, Kilchert C. DEAD-box ATPase Dbp2 is the key enzyme in an mRNP assembly checkpoint at the 3'-end of genes and involved in the recycling of cleavage factors. Nat Commun 2024; 15:6829. [PMID: 39122693 PMCID: PMC11315920 DOI: 10.1038/s41467-024-51035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
mRNA biogenesis in the eukaryotic nucleus is a highly complex process. The numerous RNA processing steps are tightly coordinated to ensure that only fully processed transcripts are released from chromatin for export from the nucleus. Here, we present the hypothesis that fission yeast Dbp2, a ribonucleoprotein complex (RNP) remodelling ATPase of the DEAD-box family, is the key enzyme in an RNP assembly checkpoint at the 3'-end of genes. We show that Dbp2 interacts with the cleavage and polyadenylation complex (CPAC) and localises to cleavage bodies, which are enriched for 3'-end processing factors and proteins involved in nuclear RNA surveillance. Upon loss of Dbp2, 3'-processed, polyadenylated RNAs accumulate on chromatin and in cleavage bodies, and CPAC components are depleted from the soluble pool. Under these conditions, cells display an increased likelihood to skip polyadenylation sites and a delayed transcription termination, suggesting that levels of free CPAC components are insufficient to maintain normal levels of 3'-end processing. Our data support a model in which Dbp2 is the active component of an mRNP remodelling checkpoint that licenses RNA export and is coupled to CPAC release.
Collapse
Affiliation(s)
- Ebru Aydin
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Silke Schreiner
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Jacqueline Böhme
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Birte Keil
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Jan Weber
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| | - Bojan Žunar
- Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Zagreb, Croatia
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
23
|
Wassmer E, Koppány G, Hermes M, Diederichs S, Caudron-Herger M. Refining the pool of RNA-binding domains advances the classification and prediction of RNA-binding proteins. Nucleic Acids Res 2024; 52:7504-7522. [PMID: 38917322 PMCID: PMC11260472 DOI: 10.1093/nar/gkae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
From transcription to decay, RNA-binding proteins (RBPs) influence RNA metabolism. Using the RBP2GO database that combines proteome-wide RBP screens from 13 species, we investigated the RNA-binding features of 176 896 proteins. By compiling published lists of RNA-binding domains (RBDs) and RNA-related protein family (Rfam) IDs with lists from the InterPro database, we analyzed the distribution of the RBDs and Rfam IDs in RBPs and non-RBPs to select RBDs and Rfam IDs that were enriched in RBPs. We also explored proteins for their content in intrinsically disordered regions (IDRs) and low complexity regions (LCRs). We found a strong positive correlation between IDRs and RBDs and a co-occurrence of specific LCRs. Our bioinformatic analysis indicated that RBDs/Rfam IDs were strong indicators of the RNA-binding potential of proteins and helped predicting new RBP candidates, especially in less investigated species. By further analyzing RBPs without RBD, we predicted new RBDs that were validated by RNA-bound peptides. Finally, we created the RBP2GO composite score by combining the RBP2GO score with new quality factors linked to RBDs and Rfam IDs. Based on the RBP2GO composite score, we compiled a list of 2018 high-confidence human RBPs. The knowledge collected here was integrated into the RBP2GO database at https://RBP2GO-2-Beta.dkfz.de.
Collapse
Affiliation(s)
- Elsa Wassmer
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gergely Koppány
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Malte Hermes
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, and German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Maïwen Caudron-Herger
- Research Group “RNA-Protein Complexes & Cell Proliferation”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Noble M, Chatterjee A, Sekaran T, Schwarzl T, Hentze MW. Cytosolic RNA binding of the mitochondrial TCA cycle enzyme malate dehydrogenase. RNA (NEW YORK, N.Y.) 2024; 30:839-853. [PMID: 38609156 PMCID: PMC11182015 DOI: 10.1261/rna.079925.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Several enzymes of intermediary metabolism have been identified to bind RNA in cells, with potential consequences for the bound RNAs and/or the enzyme. In this study, we investigate the RNA-binding activity of the mitochondrial enzyme malate dehydrogenase 2 (MDH2), which functions in the tricarboxylic acid (TCA) cycle and the malate-aspartate shuttle. We confirmed in cellulo RNA binding of MDH2 using orthogonal biochemical assays and performed enhanced cross-linking and immunoprecipitation (eCLIP) to identify the cellular RNAs associated with endogenous MDH2. Surprisingly, MDH2 preferentially binds cytosolic over mitochondrial RNAs, although the latter are abundant in the milieu of the mature protein. Subcellular fractionation followed by RNA-binding assays revealed that MDH2-RNA interactions occur predominantly outside of mitochondria. We also found that a cytosolically retained N-terminal deletion mutant of MDH2 is competent to bind RNA, indicating that mitochondrial targeting is dispensable for MDH2-RNA interactions. MDH2 RNA binding increased when cellular NAD+ levels (MDH2's cofactor) were pharmacologically diminished, suggesting that the metabolic state of cells affects RNA binding. Taken together, our data implicate an as yet unidentified function of MDH2-binding RNA in the cytosol.
Collapse
Affiliation(s)
- Michelle Noble
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | | | - Thileepan Sekaran
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| |
Collapse
|
26
|
Reichel M, Schmidt O, Rettel M, Stein F, Köster T, Butter F, Staiger D. Revealing the Arabidopsis AtGRP7 mRNA binding proteome by specific enhanced RNA interactome capture. BMC PLANT BIOLOGY 2024; 24:552. [PMID: 38877390 PMCID: PMC11177498 DOI: 10.1186/s12870-024-05249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The interaction of proteins with RNA in the cell is crucial to orchestrate all steps of RNA processing. RNA interactome capture (RIC) techniques have been implemented to catalogue RNA- binding proteins in the cell. In RIC, RNA-protein complexes are stabilized by UV crosslinking in vivo. Polyadenylated RNAs and associated proteins are pulled down from cell lysates using oligo(dT) beads and the RNA-binding proteome is identified by quantitative mass spectrometry. However, insights into the RNA-binding proteome of a single RNA that would yield mechanistic information on how RNA expression patterns are orchestrated, are scarce. RESULTS Here, we explored RIC in Arabidopsis to identify proteins interacting with a single mRNA, using the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) transcript, one of the most abundant transcripts in Arabidopsis, as a showcase. Seedlings were treated with UV light to covalently crosslink RNA and proteins. The AtGRP7 transcript was captured from cell lysates with antisense oligonucleotides directed against the 5'untranslated region (UTR). The efficiency of RNA capture was greatly improved by using locked nucleic acid (LNA)/DNA oligonucleotides, as done in the enhanced RIC protocol. Furthermore, performing a tandem capture with two rounds of pulldown with the 5'UTR oligonucleotide increased the yield. In total, we identified 356 proteins enriched relative to a pulldown from atgrp7 mutant plants. These were benchmarked against proteins pulled down from nuclear lysates by AtGRP7 in vitro transcripts immobilized on beads. Among the proteins validated by in vitro interaction we found the family of Acetylation Lowers Binding Affinity (ALBA) proteins. Interaction of ALBA4 with the AtGRP7 RNA was independently validated via individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP). The expression of the AtGRP7 transcript in an alba loss-of-function mutant was slightly changed compared to wild-type, demonstrating the functional relevance of the interaction. CONCLUSION We adapted specific RNA interactome capture with LNA/DNA oligonucleotides for use in plants using AtGRP7 as a showcase. We anticipate that with further optimization and up scaling the protocol should be applicable for less abundant transcripts.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
- Department of Biology, University of Copenhagen, København N, 2200, Denmark.
| | - Olga Schmidt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Mandy Rettel
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL, 69117, Heidelberg, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
27
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
28
|
Mansfield KD. RNA Binding by the m6A Methyltransferases METTL16 and METTL3. BIOLOGY 2024; 13:391. [PMID: 38927271 PMCID: PMC11200852 DOI: 10.3390/biology13060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Methyltransferases are a wide-ranging, yet well-conserved, class of molecules that have been found to modify a wide variety of substrates. Interest in RNA methylation has surged in recent years with the identification of the major eukaryotic mRNA m6A methyltransferase METTL3. METTL16 has also been identified as an RNA m6A methyltransferase; however, much less is known about its targets and actions. Interestingly, in addition to their catalytic activities, both METTL3 and METTL16 also have "methylation-independent" functions, including translational regulation, which have been discovered. However, evidence suggests that METTL16's role as an RNA-binding protein may be more significant than is currently recognized. In this review, we will introduce RNA methylation, specifically m6A, and the enzymes responsible for its deposition. We will discuss the varying roles that these enzymes perform and delve deeper into their RNA targets and possible roles as methylation-independent RNA binding proteins. Finally, we will touch upon the many open questions still remaining.
Collapse
Affiliation(s)
- Kyle D Mansfield
- Biochemistry and Molecular Biology Department, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
29
|
Manzoor Y, Aouida M, Ramadoss R, Moovarkumudalvan B, Ahmed N, Sulaiman AA, Mohanty A, Ali R, Mifsud B, Ramotar D. Loss of the yeast transporter Agp2 upregulates the pleiotropic drug-resistant pump Pdr5 and confers resistance to the protein synthesis inhibitor cycloheximide. PLoS One 2024; 19:e0303747. [PMID: 38776347 PMCID: PMC11111045 DOI: 10.1371/journal.pone.0303747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
The transmembrane protein Agp2, initially shown as a transporter of L-carnitine, mediates the high-affinity transport of polyamines and the anticancer drug bleomycin-A5. Cells lacking Agp2 are hyper-resistant to polyamine and bleomycin-A5. In these earlier studies, we showed that the protein synthesis inhibitor cycloheximide blocked the uptake of bleomycin-A5 into the cells suggesting that the drug uptake system may require de novo synthesis. However, our recent findings demonstrated that cycloheximide, instead, induced rapid degradation of Agp2, and in the absence of Agp2 cells are resistant to cycloheximide. These observations raised the possibility that the degradation of Agp2 may allow the cell to alter its drug resistance network to combat the toxic effects of cycloheximide. In this study, we show that membrane extracts from agp2Δ mutants accentuated several proteins that were differentially expressed in comparison to the parent. Mass spectrometry analysis of the membrane extracts uncovered the pleiotropic drug efflux pump, Pdr5, involved in the efflux of cycloheximide, as a key protein upregulated in the agp2Δ mutant. Moreover, a global gene expression analysis revealed that 322 genes were differentially affected in the agp2Δ mutant versus the parent, including the prominent PDR5 gene and genes required for mitochondrial function. We further show that Agp2 is associated with the upstream region of the PDR5 gene, leading to the hypothesis that cycloheximide resistance displayed by the agp2Δ mutant is due to the derepression of the PDR5 gene.
Collapse
Affiliation(s)
- Yusra Manzoor
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ramya Ramadoss
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - Balasubramanian Moovarkumudalvan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Nisar Ahmed
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Ashima Mohanty
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Borbala Mifsud
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
30
|
Kristofich J, Nicchitta CV. High-throughput quantitation of protein-RNA UV-crosslinking efficiencies as a predictive tool for high-confidence identification of RNA-binding proteins. RNA (NEW YORK, N.Y.) 2024; 30:644-661. [PMID: 38423626 PMCID: PMC11098464 DOI: 10.1261/rna.079848.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
UV-crosslinking has proven to be an invaluable tool for the identification of RNA-protein interactomes. The paucity of methods for distinguishing background from bona fide RNA-protein interactions, however, makes attribution of RNA-binding function on UV-crosslinking alone challenging. To address this need, we previously reported an RNA-binding protein (RBP) confidence scoring metric (RCS), incorporating both signal-to-noise (S:N) and protein abundance determinations to distinguish high- and low-confidence candidate RBPs. Although RCS has utility, we sought a direct metric for quantification and comparative evaluation of protein-RNA interactions. Here we propose the use of protein-specific UV-crosslinking efficiency (%CL), representing the molar fraction of a protein that is crosslinked to RNA, for functional evaluation of candidate RBPs. Application to the HeLa RNA interactome yielded %CL values for 1097 proteins. Remarkably, %CL values span over five orders of magnitude. For the HeLa RNA interactome, %CL values comprise a range from high efficiency, high specificity interactions, e.g., the Elav protein HuR and the Pumilio homolog Pum2, with %CL values of 45.9 and 24.2, respectively, to very low efficiency and specificity interactions, for example, the metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and alpha-enolase, with %CL values of 0.0016, 0.006, and 0.008, respectively. We further extend the utility of %CL through prediction of protein domains and classes with known RNA-binding functions, thus establishing it as a useful metric for RNA interactome analysis. We anticipate that this approach will benefit efforts to establish functional RNA interactomes and support the development of more predictive computational approaches for RBP identification.
Collapse
Affiliation(s)
- JohnCarlo Kristofich
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Christopher V Nicchitta
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
31
|
Wang J, Liu J, Huang R, Chu T, Tang Q, Chen X. Proteomic Profiling of Messenger Ribonucleoproteins in Mouse Tissues Based on Formaldehyde Cross-Linking. J Proteome Res 2024; 23:1370-1378. [PMID: 38472149 DOI: 10.1021/acs.jproteome.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Messenger ribonucleoprotein particles (mRNPs) are vital for tissue-specific gene expression via mediating posttranscriptional regulations. However, proteomic profiling of proteins in mRNPs, i.e., mRNA-associated proteins (mRAPs), has been challenging at the tissue level. Herein, we report the development of formaldehyde cross-linking-based mRNA-associated protein profiling (FAXRAP), a chemical strategy that enables the identification of mRAPs in both cultured cells and intact mouse organs. Applying FAXRAP, tissue-specific mRAPs were systematically profiled in the mouse liver, kidney, heart, and brain. Furthermore, brain mRAPs in Parkinson's disease (PD) mouse model were investigated, which revealed a global decrease of mRNP assembly in the brain of mice with PD. We envision that FAXRAP will facilitate uncovering the posttranscriptional regulation networks in various biological systems.
Collapse
Affiliation(s)
- Jiankun Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Rongbing Huang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Tianyu Chu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Yang H, Sui L, Cai C, Chu H, Diao Y. SETDB1 promotes progression through upregulation of SF3B4 expression and regulates the immunity in ovarian cancer. J Ovarian Res 2024; 17:34. [PMID: 38317200 PMCID: PMC10840244 DOI: 10.1186/s13048-024-01358-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecologic malignant tumour. The mechanism promoting OC initiation and progression remains unclear. SET domain bifurcated histone lysine methyltransferase 1(SETDB1) acts as an oncogene in a variety of tumours. This study aims to explore the role of SETDB1 in OC. METHODS GEO, TCGA, CSIOVDB and CPTAC databases jointly analysed SETDB1 mRNA and protein expression. Effect of SETDB1 expression on the clinical prognosis of OC patients was analysed through online Kaplan‒Meier plotter and CSIOVDB database. Then, the effect of SETDB1 in OC cells progression and mobility was examined using MTT, EdU, colony formation and transwell assay. Additionally, Cistrome DB database was used to visualize the binding of SETDB1 protein and splicing factor 3b subunit 4 (SF3B4) promoter, and dual-luciferase reporter gene assay was performed to confirm the interaction. Finally, bioinformatics analysis was employed to reveal the relationship between SETDB1 and the microenvironment of OC. RESULTS In the present study, we found that SETDB1 was obviously upregulated in OC and its overexpression predicted poor prognosis of OC patients. Then, we verified that SETDB1 promoted the progression and motility of OC cells in vitro. Knockdown of SETDB1 had the opposite effect. Further research showed that SETDB1 acted as a transcription factor to activate SF3B4 expression. SF3B4 knockdown impaired the effect of SETDB1 to promote the proliferative capacity and motility of OC cells. Finally, the results of bioinformatics analysis confirmed that SETDB1 regulated the immune microenvironment of ovarian cancer. CONCLUSION SETDB1 promoted ovarian cancer progression by upregulating the expression of SF3B4 and inhibiting the tumour immunity. SETDB1 may be a promising prognostic and therapeutic marker for OC.
Collapse
Affiliation(s)
- Hongjuan Yang
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Lei Sui
- Department of Gynecological Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266000, Shandong, China
| | - Cuicui Cai
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Huijun Chu
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Yuchao Diao
- Department of Obstetrics and Gynecology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
33
|
Avila-Lopez P, Lauberth SM. Exploring new roles for RNA-binding proteins in epigenetic and gene regulation. Curr Opin Genet Dev 2024; 84:102136. [PMID: 38128453 PMCID: PMC11245729 DOI: 10.1016/j.gde.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous biological processes. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
34
|
Sun H, Fu B, Qian X, Xu P, Qin W. Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction. Nat Commun 2024; 15:852. [PMID: 38286993 PMCID: PMC10825125 DOI: 10.1038/s41467-024-44987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
The key role of RNA-binding proteins (RBPs) in posttranscriptional regulation of gene expression is intimately tied to their subcellular localization. Here, we show a subcellular-specific RNA labeling method for efficient enrichment and deep profiling of nuclear and cytoplasmic RBPs. A total of 1221 nuclear RBPs and 1333 cytoplasmic RBPs were enriched and identified using nuclear/cytoplasm targeting enrichment probes, representing an increase of 54.4% and 85.7% compared with previous reports. The probes were further applied in the omics-level investigation of subcellular-specific RBP-RNA interactions upon ferroptosis induction. Interestingly, large-scale RBPs display enhanced interaction with RNAs in nucleus but reduced association with RNAs in cytoplasm during ferroptosis process. Furthermore, we discovered dozens of nucleoplasmic translocation candidate RBPs upon ferroptosis induction and validated representative ones by immunofluorescence imaging. The enrichment of Tricarboxylic acid cycle in the translocation candidate RBPs may provide insights for investigating their possible roles in ferroptosis induced metabolism dysregulation.
Collapse
Affiliation(s)
- Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
35
|
Zhang X, Yang L, Liu X, Nie Z, Liu M, Wang T, Lu Y, Pan Y, Zhan Y, Wang Z, Luo J. Regulatory role of RBM39 in acute myeloid leukemia: Mediation through the PI3K/AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119607. [PMID: 37852323 DOI: 10.1016/j.bbamcr.2023.119607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) presents ongoing therapeutic challenges due to its intricate molecular pathogenesis. This study aimed to elucidate the role of RNA binding motif protein 39 (RBM39) in AML cell proliferation, apoptosis, and chemosensitivity, and its potential modulation of the PI3K/AKT pathway. METHODS In vitro and in vivo experiments were conducted using AML cell lines (K562 and U937) and bone marrow mononuclear cells (BM-MNCs) from AML patients and healthy donors. RBM39 mRNA and protein levels were measured using qRT-PCR and Western blotting. Cells were transfected with sh-RBM39 or sh-control, and then treated with daunorubicin (DNR) or homoharringtonine (HHT) at varied concentrations. Cell proliferation, chemosensitivity, and apoptosis were assessed through CCK-8 assay and Annexin V-APC/PI staining. RNA sequencing identified differentially expressed genes (DEGs) post RBM39 knockdown. An in vivo xenograft AML model using E7070, a selective RBM39 inhibitor, was employed to evaluate RBM39 modulation effects. RESULTS Elevated RBM39 levels were found in AML patients and cell lines compared to controls. RBM39 knockdown promoted apoptosis, curtailed cell proliferation, and enhanced chemosensitivity to DNR and HHT in vitro. Drug-resistant or relapsed AML patients displayed higher RBM39 levels. RNA sequencing after RBM39 knockdown revealed downregulated PI3K/AKT signaling. The xenograft model validated in vitro results, as E7070 treatment suppressed AML xenograft growth via RBM39-mediated PI3K/AKT pathway suppression. CONCLUSION RBM39 plays a pivotal role in AML progression through the PI3K/AKT signaling pathway. Targeting RBM39, potentially with E7070, could inhibit proliferation and induce apoptosis in AML cells, offering a promising avenue for future AML research and treatment.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Lin Yang
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaojun Liu
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziyuan Nie
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Menghan Liu
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianyang Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqiong Lu
- Department of Hematology Oncology, Hebei Children's Hospital, Shijiazhuang, China
| | - Yuxia Pan
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Zhan
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Wang
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianmin Luo
- Department of Hematology, Key Laboratory of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
36
|
Çakırca G, Öztürk MT, Telkoparan-Akillilar P, Güllülü Ö, Çetinkaya A, Tazebay UH. Proteomics analysis identifies the ribosome associated coiled-coil domain-containing protein-124 as a novel interaction partner of nucleophosmin-1. Biol Cell 2024; 116:e202300049. [PMID: 38029384 DOI: 10.1111/boc.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND INFORMATION Coiled-coil domain-containing protein-124 (Ccdc124) is a conserved eukaryotic ribosome-associated RNA-binding protein which is involved in resuming ribosome activity after stress-related translational shutdown. Ccdc124 protein is also detected at cellular localizations devoid of ribosomes, such as the centrosome, or the cytokinetic midbody, but its translation-independent cellular function is currently unknown. RESULTS By using an unbiased LC-MS/MS-based proteomics approach in human embryonic kidney (HEK293) cells, we identified novel Ccdc124 partners and mapped the cellular organization of interacting proteins, a subset of which are known to be involved in nucleoli biogenesis and function. We then identified a novel interaction between the cancer-associated multifunctional nucleolar marker nucleophosmin (Npm1) and Ccdc124, and we characterized this interaction both in HEK293 (human embryonic kidney) and U2OS (osteosarcoma) cells. As expected, in both types of cells, Npm1 and Ccdc124 proteins colocalized within the nucleolus when assayed by immunocytochemical methods, or by monitoring the localization of green fluorescent protein-tagged Ccdc124. CONCLUSIONS The nucleolar localization of Ccdc124 was impaired when Npm1 translocates from the nucleolus to the nucleoplasm in response to treatment with the DNA-intercalator and Topo2 inhibitor chemotherapeutic drug doxorubicin. Npm1 is critically involved in maintaining genomic stability by mediating various DNA-repair pathways, and over-expression of Npm1 or specific NPM1 mutations have been previously associated with proliferative diseases, such as acute myelogenous leukemia, anaplastic large-cell lymphoma, and solid cancers originating from different tissues. SIGNIFICANCE Identification of Ccdc124 as a novel interaction partner of Nmp1 within the frame of molecular mechanisms involving nucleolar stress-sensing and DNA-damage response is expected to provide novel insights into the biology of cancers associated with aberrations in NPM1.
Collapse
Affiliation(s)
- Gamze Çakırca
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoğlu Öztürk
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | | | - Ömer Güllülü
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
| | - Agit Çetinkaya
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| | - Uygar Halis Tazebay
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Turkey
- Gebze Technical University, Central Research Laboratory (GTU-MAR), Gebze, Kocaeli, Turkey
| |
Collapse
|
37
|
Ottoz DSM, Tang LC, Dyatel AE, Jovanovic M, Berchowitz LE. Assembly and function of the amyloid-like translational repressor Rim4 is coupled with nutrient conditions. EMBO J 2023; 42:e113332. [PMID: 37921330 PMCID: PMC10690475 DOI: 10.15252/embj.2022113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Amyloid-like protein assemblies have been associated with toxic phenotypes because of their repetitive and stable structure. However, evidence that cells exploit these structures to control function and activity of some proteins in response to stimuli has questioned this paradigm. How amyloid-like assembly can confer emergent functions and how cells couple assembly with environmental conditions remains unclear. Here, we study Rim4, an RNA-binding protein that forms translation-repressing assemblies during yeast meiosis. We demonstrate that in its assembled and repressive state, Rim4 binds RNA more efficiently than in its monomeric and idle state, revealing a causal connection between assembly and function. The Rim4-binding site location within the transcript dictates whether the assemblies can repress translation, underscoring the importance of the architecture of this RNA-protein structure for function. Rim4 assembly depends exclusively on its intrinsically disordered region and is prevented by the Ras/protein kinase A signaling pathway, which promotes growth and suppresses meiotic entry in yeast. Our results suggest a mechanism whereby cells couple a functional protein assembly with a stimulus to enforce a cell fate decision.
Collapse
Affiliation(s)
- Diana SM Ottoz
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Lauren C Tang
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Annie E Dyatel
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Marko Jovanovic
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Taub Institute for Research on Alzheimer's and the Aging BrainNew YorkNYUSA
| |
Collapse
|
38
|
Blank HM, Griffith WP, Polymenis M. Targeting APEX2 to the mRNA encoding fatty acid synthase β in yeast identifies interacting proteins that control its abundance in the cell cycle. Mol Biol Cell 2023; 34:br20. [PMID: 37792491 PMCID: PMC10848943 DOI: 10.1091/mbc.e23-05-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Profiling the repertoire of proteins associated with a given mRNA during the cell cycle is unstudied. Furthermore, it is easier to ask and answer what mRNAs a specific protein might bind to than the other way around. Here, we implemented an RNA-centric proximity labeling technology at different points in the cell cycle in highly synchronous yeast cultures. To understand how the abundance of FAS1, encoding fatty acid synthase, peaks late in the cell cycle, we identified proteins that interact with the FAS1 transcript in a cell cycle-dependent manner. We used dCas13d-APEX2 fusions to target FAS1 and label nearby proteins, which were then identified by mass spectrometry. The glycolytic enzyme Tdh3p, a known RNA-binding protein, interacted with the FAS1 mRNA, and it was necessary for the periodic abundance of Fas1p in the cell cycle. These results point to unexpected connections between major metabolic pathways. They also underscore the role of mRNA-protein interactions for gene expression during cell division.
Collapse
Affiliation(s)
- Heidi M. Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Wendell P. Griffith
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| |
Collapse
|
39
|
Pierzynska-Mach A, Czada C, Vogel C, Gwosch E, Osswald X, Bartoschek D, Diaspro A, Kappes F, Ferrando-May E. DEK oncoprotein participates in heterochromatin replication via SUMO-dependent nuclear bodies. J Cell Sci 2023; 136:jcs261329. [PMID: 37997922 PMCID: PMC10753498 DOI: 10.1242/jcs.261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.
Collapse
Affiliation(s)
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Eva Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Xenia Osswald
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Denis Bartoschek
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, Genoa 16152, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Ferdinand Kappes
- Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan 215316, People's Republic of China
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
- German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
40
|
Asada R, Dominguez A, Montpetit B. Single-molecule quantitation of RNA-binding protein occupancy and stoichiometry defines a role for Yra1 (Aly/REF) in nuclear mRNP organization. Cell Rep 2023; 42:113415. [PMID: 37963019 PMCID: PMC10841842 DOI: 10.1016/j.celrep.2023.113415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
RNA-binding proteins (RBPs) interact with mRNA to form supramolecular complexes called messenger ribonucleoprotein (mRNP) particles. These dynamic assemblies direct and regulate individual steps of gene expression; however, their composition and functional importance remain largely unknown. Here, we develop a total internal reflection fluorescence-based single-molecule imaging assay to investigate stoichiometry and co-occupancy of 15 RBPs within mRNPs from Saccharomyces cerevisiae. We show compositional heterogeneity of single mRNPs and plasticity across different growth conditions, with major co-occupants of mRNPs containing the nuclear cap-binding complex identified as Yra1 (1-10 copies), Nab2 (1-6 copies), and Npl3 (1-6 copies). Multicopy Yra1-bound mRNPs are specifically co-occupied by the THO complex and assembled on mRNAs biased by transcript length and RNA secondary structure. Yra1 depletion results in decreased compaction of nuclear mRNPs demonstrating a packaging function. Together, we provide a quantitative framework for gene- and condition-dependent RBP occupancy and stoichiometry in individual nuclear mRNPs.
Collapse
Affiliation(s)
- Ryuta Asada
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Andrew Dominguez
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Meyer L, Courtin B, Gomard M, Namane A, Permal E, Badis G, Jacquier A, Fromont-Racine M. eIF2A represses cell wall biogenesis gene expression in Saccharomyces cerevisiae. PLoS One 2023; 18:e0293228. [PMID: 38011112 PMCID: PMC10681259 DOI: 10.1371/journal.pone.0293228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 11/29/2023] Open
Abstract
Translation initiation is a complex and highly regulated process that represents an important mechanism, controlling gene expression. eIF2A was proposed as an alternative initiation factor, however, its role and biological targets remain to be discovered. To further gain insight into the function of eIF2A in Saccharomyces cerevisiae, we identified mRNAs associated with the eIF2A complex and showed that 24% of the most enriched mRNAs encode proteins related to cell wall biogenesis and maintenance. In agreement with this result, we showed that an eIF2A deletion sensitized cells to cell wall damage induced by calcofluor white. eIF2A overexpression led to a growth defect, correlated with decreased synthesis of several cell wall proteins. In contrast, no changes were observed in the transcriptome, suggesting that eIF2A controls the expression of cell wall-related proteins at a translational level. The biochemical characterization of the eIF2A complex revealed that it strongly interacts with the RNA binding protein, Ssd1, which is a negative translational regulator, controlling the expression of cell wall-related genes. Interestingly, eIF2A and Ssd1 bind several common mRNA targets and we found that the binding of eIF2A to some targets was mediated by Ssd1. Surprisingly, we further showed that eIF2A is physically and functionally associated with the exonuclease Xrn1 and other mRNA degradation factors, suggesting an additional level of regulation. Altogether, our results highlight new aspects of this complex and redundant fine-tuned regulation of proteins expression related to the cell wall, a structure required to maintain cell shape and rigidity, providing protection against harmful environmental stress.
Collapse
Affiliation(s)
- Laura Meyer
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Baptiste Courtin
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Maïté Gomard
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Abdelkader Namane
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Emmanuelle Permal
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Gwenael Badis
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Alain Jacquier
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| | - Micheline Fromont-Racine
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, UMR 3525, Paris, France
| |
Collapse
|
42
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568470. [PMID: 38045294 PMCID: PMC10690280 DOI: 10.1101/2023.11.23.568470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR is sufficient to confer temporal dynamics to translation initiation, and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, DaniO5P, revealed a combined role for 5' UTR length, translation initiation site context, upstream AUGs and sequence motifs on in vivo ribosome recruitment. DaniO5P predicts the activities of 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in early vertebrate development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, United States
| |
Collapse
|
43
|
Curtis NJ, Patel KJ, Rizwan A, Jeffery CJ. Moonlighting Proteins: Diverse Functions Found in Fungi. J Fungi (Basel) 2023; 9:1107. [PMID: 37998912 PMCID: PMC10672435 DOI: 10.3390/jof9111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Moonlighting proteins combine multiple functions in one polypeptide chain. An increasing number of moonlighting proteins are being found in diverse fungal taxa that vary in morphology, life cycle, and ecological niche. In this mini-review we discuss examples of moonlighting proteins in fungi that illustrate their roles in transcription and DNA metabolism, translation and RNA metabolism, protein folding, and regulation of protein function, and their interaction with other cell types and host proteins.
Collapse
Affiliation(s)
- Nicole J. Curtis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | - Krupa J. Patel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| | | | - Constance J. Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (N.J.C.); (K.J.P.)
| |
Collapse
|
44
|
Pradhan UK, Meher PK, Naha S, Pal S, Gupta S, Gupta A, Parsad R. RBPLight: a computational tool for discovery of plant-specific RNA-binding proteins using light gradient boosting machine and ensemble of evolutionary features. Brief Funct Genomics 2023; 22:401-410. [PMID: 37158175 DOI: 10.1093/bfgp/elad016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
RNA-binding proteins (RBPs) are essential for post-transcriptional gene regulation in eukaryotes, including splicing control, mRNA transport and decay. Thus, accurate identification of RBPs is important to understand gene expression and regulation of cell state. In order to detect RBPs, a number of computational models have been developed. These methods made use of datasets from several eukaryotic species, specifically from mice and humans. Although some models have been tested on Arabidopsis, these techniques fall short of correctly identifying RBPs for other plant species. Therefore, the development of a powerful computational model for identifying plant-specific RBPs is needed. In this study, we presented a novel computational model for locating RBPs in plants. Five deep learning models and ten shallow learning algorithms were utilized for prediction with 20 sequence-derived and 20 evolutionary feature sets. The highest repeated five-fold cross-validation accuracy, 91.24% AU-ROC and 91.91% AU-PRC, was achieved by light gradient boosting machine. While evaluated using an independent dataset, the developed approach achieved 94.00% AU-ROC and 94.50% AU-PRC. The proposed model achieved significantly higher accuracy for predicting plant-specific RBPs as compared to the currently available state-of-art RBP prediction models. Despite the fact that certain models have already been trained and assessed on the model organism Arabidopsis, this is the first comprehensive computer model for the discovery of plant-specific RBPs. The web server RBPLight was also developed, which is publicly accessible at https://iasri-sg.icar.gov.in/rbplight/, for the convenience of researchers to identify RBPs in plants.
Collapse
Affiliation(s)
- Upendra K Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina K Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Soumen Pal
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sagar Gupta
- CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur (HP) 176061, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| |
Collapse
|
45
|
Heindel AJ, Brulet JW, Wang X, Founds MW, Libby AH, Bai DL, Lemke MC, Leace DM, Harris TE, Hafner M, Hsu KL. Chemoproteomic capture of RNA binding activity in living cells. Nat Commun 2023; 14:6282. [PMID: 37805600 PMCID: PMC10560261 DOI: 10.1038/s41467-023-41844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023] Open
Abstract
Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells. Our photo-activatable-competition and chemoproteomic enrichment (PACCE) method facilitated detection of >5500 cysteine sites across ~3000 proteins displaying RNA-sensitive alterations in probe binding. Importantly, PACCE enabled functional profiling of canonical RNA-binding domains as well as discovery of moonlighting RNA binding activity in the human proteome. Collectively, we present a chemoproteomic platform for global quantification of protein-RNA binding activity in living cells.
Collapse
Affiliation(s)
- Andrew J Heindel
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jeffrey W Brulet
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Michael W Founds
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Adam H Libby
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David M Leace
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, 20892, USA
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
46
|
Kristofich J, Nicchitta CV. Signal-noise metrics for RNA binding protein identification reveal broad spectrum protein-RNA interaction frequencies and dynamics. Nat Commun 2023; 14:5868. [PMID: 37735163 PMCID: PMC10514315 DOI: 10.1038/s41467-023-41284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Recent efforts towards the comprehensive identification of RNA-bound proteomes have revealed a large, surprisingly diverse family of candidate RNA-binding proteins (RBPs). Quantitative metrics for characterization and validation of protein-RNA interactions and their dynamic interactions have, however, proven analytically challenging and prone to error. Here we report a method termed LEAP-RBP (Liquid-Emulsion-Assisted-Purification of RNA-Bound Protein) for the selective, quantitative recovery of UV-crosslinked RNA-protein complexes. By virtue of its high specificity and yield, LEAP-RBP distinguishes RNA-bound and RNA-free protein levels and reveals common sources of experimental noise in RNA-centric RBP enrichment methods. We introduce strategies for accurate RBP identification and signal-based metrics for quantifying protein-RNA complex enrichment, relative RNA occupancy, and method specificity. In this work, the utility of our approach is validated by comprehensive identification of RBPs whose association with mRNA is modulated in response to global mRNA translation state changes and through in-depth benchmark comparisons with current methodologies.
Collapse
Affiliation(s)
- JohnCarlo Kristofich
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | |
Collapse
|
47
|
Hamilton DJ, Hein AE, Wuttke DS, Batey RT. The DNA binding high mobility group box protein family functionally binds RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1778. [PMID: 36646476 PMCID: PMC10349909 DOI: 10.1002/wrna.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
|
48
|
Hao L, Zhang J, Liu Z, Zhang Z, Mao T, Guo J. Role of the RNA-binding protein family in gynecologic cancers. Am J Cancer Res 2023; 13:3799-3821. [PMID: 37693158 PMCID: PMC10492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Gynecological cancers pose a threat to women's health. Although early-stage gynecological cancers show good outcomes after standardized treatment, the prognosis of patients with advanced, met-astatic, and recurrent cancers is poor. RNA-binding proteins (RBPs) are important cellular proteins that interact with RNA through RNA-binding domains and participate extensively in post-transcriptional regulatory processes, such as mRNA alternative splicing, polyadenylation, intracellular localization and stability, and translation. Abnormal RBP expression affects the normal function of oncogenes and tumor suppressor genes in many malignancies, thus leading to the occurrence or progression of cancers. Similarly, RBPs play crucial roles in gynecological carcinogenesis. We summarize the role of RBPs in gynecological malignancies and explore their potential in the diagnosis and treatment of cancers. The findings summarized in this review may provide a guide for future research on the functions of RBPs.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Zhiliang Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Tiezhu Mao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
49
|
Zhang Y, Xu Y, Skaggs TH, Ferreira JFS, Chen X, Sandhu D. Plant phase extraction: A method for enhanced discovery of the RNA-binding proteome and its dynamics in plants. THE PLANT CELL 2023; 35:2750-2772. [PMID: 37144845 PMCID: PMC10396368 DOI: 10.1093/plcell/koad124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
RNA-binding proteins (RBPs) play critical roles in posttranscriptional gene regulation. Current methods of systematically profiling RBPs in plants have been predominantly limited to proteins interacting with polyadenylated (poly(A)) RNAs. We developed a method called plant phase extraction (PPE), which yielded a highly comprehensive RNA-binding proteome (RBPome), uncovering 2,517 RBPs from Arabidopsis (Arabidopsis thaliana) leaf and root samples with a highly diverse array of RNA-binding domains. We identified traditional RBPs that participate in various aspects of RNA metabolism and a plethora of nonclassical proteins moonlighting as RBPs. We uncovered constitutive and tissue-specific RBPs essential for normal development and, more importantly, revealed RBPs crucial for salinity stress responses from a RBP-RNA dynamics perspective. Remarkably, 40% of the RBPs are non-poly(A) RBPs that were not previously annotated as RBPs, signifying the advantage of PPE in unbiasedly retrieving RBPs. We propose that intrinsically disordered regions contribute to their nonclassical binding and provide evidence that enzymatic domains from metabolic enzymes have additional roles in RNA binding. Taken together, our findings demonstrate that PPE is an impactful approach for identifying RBPs from complex plant tissues and pave the way for investigating RBP functions under different physiological and stress conditions at the posttranscriptional level.
Collapse
Affiliation(s)
- Yong Zhang
- U.S. Salinity Lab (USDA-ARS), Riverside, CA 92507, USA
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Ye Xu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Todd H Skaggs
- U.S. Salinity Lab (USDA-ARS), Riverside, CA 92507, USA
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
50
|
Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol 2023; 33:667-681. [PMID: 36737375 PMCID: PMC10363204 DOI: 10.1016/j.tcb.2023.01.002] [Citation(s) in RCA: 320] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
The study of extracellular vesicles (EVs) and nanoparticles (NPs) is rapidly expanding because recent discoveries have revealed a much greater complexity and diversity than was appreciated only a few years ago. New types of EVs and NPs have recently been described. Proteins and nucleic acids previously thought to be packaged in exosomes appear to be more enriched in different types of EVs and in two recently identified amembranous NPs, exomeres and supermeres. Thus, our understanding of the cell biology and intercellular communication facilitated by the release of EVs and NPs is in a state of flux. In this review, we describe the different types of EVs and NPs, highlight recent advances, and present major outstanding questions.
Collapse
Affiliation(s)
- Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|