1
|
Rismanchi H, Malek Mohammadi M, Mafi A, Khalilzadeh P, Farahani N, Mirzaei S, Khorramdelazad H, Mahmoodieh B, Rahimzadeh P, Alimohammadi M, Makvandi P. The role of curcumin in modulating circular RNAs and long non-coding RNAs in cancer. Clin Transl Oncol 2025; 27:2416-2436. [PMID: 39623194 DOI: 10.1007/s12094-024-03782-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 05/17/2025]
Abstract
Cancer is one of the primary causes of human disease and death, with high morbidity and mortality rates. Chemotherapy, one of the most common therapeutic techniques, functions through a variety of mechanisms, including the production of apoptosis and the prevention of tumor development. Herbal medicine has been the subject of numerous investigations due to its potential as a valuable source of innovative anti-cancer products that target multiple protein targets and cancer cell genomes. Curcumin, a polyphenol that is the major bioactive ingredient of turmeric, exhibits pharmacological and biological efficacy with antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and hypoglycemic activity in humans and animals. Recent research suggests that curcumin changes noncoding RNA (ncRNA), such as long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in various types of cancers. Both circRNAs and lncRNAs are ncRNAs that can epigenetically modulate the expression of multiple genes via post-transcriptional regulation. In this study, we outline curcumin's activities in modulating signaling pathways and ncRNAs in various malignancies. We also described curcumin's regulatory function, which involves blocking carcinogenic lncRNAs and circRNAs while increasing tumor-suppressive ones. Furthermore, we intend to demonstrate how ncRNAs and signaling pathways interact with each other across regulatory boundaries to gain a better understanding of how curcumin fights cancer and create a framework for its potential future therapeutic uses.
Collapse
Affiliation(s)
- Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Khalilzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| |
Collapse
|
2
|
Zhu Y, Zhang L, Wang Z, Li T, Chen Y, Lu L, Liu H, Kong D, Peng Y, Chen X, Hu C, Chen H, Guo A. Circular RNA ZNF277 Sponges miR-378d to Inhibit the Intracellular Survival of Mycobacterium tuberculosis by Upregulating Rab10. Cells 2025; 14:262. [PMID: 39996735 PMCID: PMC11853707 DOI: 10.3390/cells14040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs formed by back-splicing, lacking a 5' cap and poly-A tail. They could act as important regulatory factors in the host's anti-tuberculosis immune process, but only a few have been identified, and their molecular mechanisms remain largely unclear. Here, we identified a novel circRNA, circ-ZNF277, which responds to Mycobacterium tuberculosis (Mtb) infection in THP-1 cells. Circ-ZNF277 binds microRNA-378d (miR-378d) in vivo. The expression level of circ-ZNF277 affects the clearance of the intracellular Mtb in THP-1 cells. Mechanistically, more circ-ZNF277 molecules could absorb more miR-378d, thereby competitively activating the NF-κB signaling pathway, promoting the release of pro-inflammatory cytokines including interleukins IL-1β and IL-6, and tumor necrosis factor-α (TNF-α), and inhibiting the survival of intracellular Mtb. Expressing miR-378d or si-Rab10 targeting the transcription of Rab10 could antagonize the effects of overexpression of circ-ZNF277, resulting in the reduced intracellular survival of Mtb. In summary, circ-ZNF277 inhibits the intracellular survival of Mtb via the miR-378d/Rab10 axis. This finding represents a novel mechanism of circular RNA in regulating host immune responses during Mtb infection.
Collapse
Affiliation(s)
- Yifan Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijian Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Lu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Delai Kong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Sartorius K, Wang Y, Sartorius B, Antwi SO, Li X, Chuturgoon A, Yu C, Lu Y, Wang Y. The interactive role of microRNA and other non-coding RNA in hepatitis B (HBV) associated fibrogenesis. Funct Integr Genomics 2025; 25:24. [PMID: 39847120 DOI: 10.1007/s10142-024-01519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression. Although extensive research has explained the regulatory role of ncRNA in liver fibrogenesis, most of this research relates to non-CHB etiologies. This review paper outlines the complex interactive regulatory role of microRNA (miRNA) and their interaction with long non-coding RNA (lncRNA), circular RNA (circRNA) and the mainstream epigenetic machinery in CHB induced liver fibrosis. The paper also illustrates some of the difficulties involved in translating candidate ncRNA into approved drugs or diagnostic tools. In conclusion, the important regulatory role of ncRNA in CHB induced liver fibrosis warrants further investigation to exploit their undoubted potential as diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg, South Africa.
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
| | - Yanglong Wang
- Department of General Surgery, Xinyi People's Hospital, Xinyi, Jiangsu, China
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Samuel O Antwi
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
- Division of Epidemiology Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, AL, USA
| | - Xiaodong Li
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, UKZN, Durban, South Africa
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunjie Lu
- Africa Hepatobiliarypancreato Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, AL, USA.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, 213200, Changzhou, Jiangsu, China.
| |
Collapse
|
4
|
Oh S, Park SY, Seo HI, Chung I. L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release. Pharmaceutics 2024; 17:28. [PMID: 39861677 PMCID: PMC11769003 DOI: 10.3390/pharmaceutics17010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Background and objectives: The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; Methods: In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone. LTPU NPs were fabricated by water-in-oil-in-water double emulsion solvent evaporation methods; Results: The polymerization of LTPU was confirmed by 1H-NMR, 13C-NMR, and FT-IR spectroscopies. The molecular weights and polydispersity, determined with GPC, were 28,800 g/mol and 1.46, respectively. The morphology and size of NPs, characterized by DLS, FE-SEM, TEM, and confocal microscopy, showed smooth and spherical particles with diameters less than 200 nm; Conclusions: In addition, the drug loading, encapsulation efficiency, and drug release profiles, using UV-Vis spectroscopy, showed the highest encapsulation efficiency with 2.5% carboplatin and sustained release profile.
Collapse
Affiliation(s)
- Seoeun Oh
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Soo-Yong Park
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea;
| | - Ildoo Chung
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Dong QQ, Yang Y, Tao H, Lu C, Yang JJ. m6A epitranscriptomic and epigenetic crosstalk in liver fibrosis: Special emphasis on DNA methylation and non-coding RNAs. Cell Signal 2024; 122:111302. [PMID: 39025344 DOI: 10.1016/j.cellsig.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Liver fibrosis is a pathological process caused by a variety of chronic liver diseases. Currently, therapeutic options for liver fibrosis are very limited, highlighting the urgent need to explore new treatment approaches. Epigenetic modifications and epitranscriptomic modifications, as reversible regulatory mechanisms, are involved in the development of liver fibrosis. In recent years, researches in epitranscriptomics and epigenetics have opened new perspectives for understanding the pathogenesis of liver fibrosis. Exploring the epigenetic mechanisms of liver fibrosis may provide valuable insights into the development of new therapies for chronic liver diseases. This review primarily focus on the regulatory mechanisms of N6-methyladenosine (m6A) modification, non-coding RNA, and DNA methylation in organ fibrosis. It discusses the interactions between m6A modification and DNA methylation, as well as between m6A modification and non-coding RNA, providing a reference for understanding the interplay between epitranscriptomics and epigenetics.
Collapse
Affiliation(s)
- Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
6
|
Jerala M, Remic T, Hauptman N, Zidar N. Fibrosis-Related microRNAs in Crohn's Disease with Fibrostenosis and Inflammatory Stenosis. Int J Mol Sci 2024; 25:8826. [PMID: 39201512 PMCID: PMC11354456 DOI: 10.3390/ijms25168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Crohn's disease (CD) is frequently complicated by strictures that can be either inflammatory or fibrostenotic. This distinction is important for deciding the best treatment course, but it can be difficult to determine clinically, sometimes even by advanced imaging techniques. We performed miRNA PCR panel screening on pooled samples of ileum with CD fibrostenosis or inflammatory stenosis. Eight miRNAs with profibrotic (miR-93-5p, miR-376c-3p and miR-424-5p), or fibroprotective (miR-133a-3p, miR-133b, miR-193a-5p, miR-335-5p and miR-378a-3p) functions described in the literature were selected for validation on 20 samples each of CD with fibrostenosis or inflammatory stenosis, with a separate sampling of the submucosa and subserosa. The results showed significant differences between the groups in subserosal samples, with upregulation of profibrotic miRNAs and downregulation of fibroprotective miRNAs in fibrostenosis compared to inflammatory stenosis. Only miR-424-5p showed a significant difference in the submucosa. There were significant differences in miRNA expression between subserosa and submucosa. Our results provide further evidence that the major differences between fibrostenosis and inflammatory stenosis are located in the subserosa, which is inaccessible to endoscopic sampling, highlighting the need for cross-sectional imaging or serological markers. We identify several miRNAs previously not connected to fibrosis in CD, which could potentially serve as biomarkers of fibrostenosis.
Collapse
Affiliation(s)
| | | | | | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (M.J.); (T.R.); (N.H.)
| |
Collapse
|
7
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
8
|
Rodimova S, Kozlov D, Krylov D, Mikhailova L, Kozlova V, Gavrina A, Mozherov A, Elagin V, Kuznetsova D. Nanoparticles for Creating a Strategy to Stimulate Liver Regeneration. Sovrem Tekhnologii Med 2024; 16:31-41. [PMID: 39650276 PMCID: PMC11618528 DOI: 10.17691/stm2024.16.3.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 12/11/2024] Open
Abstract
Presently, there is a need in the developing new approaches to stimulate liver regeneration, which would make its recovery more effective after resection. Application of nanoparticles, loaded with small bioactive molecules, with their targeted delivery into the liver is a promising approach. The aim of the investigation is to study the interaction of nanoparticles with various types of hepatic cells on the models of liver slices and primary hepatic cell cultures using the methods of multiphoton microscopy with fluorescence lifetime imaging. Materials and Methods Nanoparticles have been synthetized from polylactide (PLA), gold (Au), and silicon (SiO2), and characterized using scanning and transmission electron microscopy. These types of particles were labeled with a fluorescent Cy5 dye for their visualization. Liver slices and a primary hepatocyte culture were used as models for biological testing of nanoparticles. Biodistribution of the nanoparticles in the tissue and cells, their cytotoxicity, and the effect on the cell metabolism were assessed using optical bioimaging methods. Results The silicon nanoparticles are accumulated mainly by macrophages, which generate reactive oxygen species in a large amount and impair the native metabolic state of hepatocytes. The gold nanoparticles accumulate in all types of the liver cells but possess a marked toxic effect, which is indicated by the appearance of necrotic and apoptotic cells and a sharp change in the hepatocyte metabolic state. The polylactide nanoparticles accumulate most effectively in the liver cells, preferably in hepatocytes, do not change their native metabolic state, making this type of nanoparticles most promising for creating the bioactive molecule delivery systems to stimulate liver regeneration.
Collapse
Affiliation(s)
- S.A. Rodimova
- Junior Researcher, Research Laboratory of Regenerative Medicine; Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - D.S. Kozlov
- Laboratory Assistant, Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia; Student; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - D.P. Krylov
- Laboratory Assistant, Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia Student; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - L.V. Mikhailova
- Engineer, Department of Physics; ITMO University (Saint Petersburg National Research University of Information Technologies, Mechanics and Optics), 49 Kronverksky Pr., Saint Petersburg, 197101, Russia
| | - V.A. Kozlova
- Student; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - A.I. Gavrina
- Junior Researcher, Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - A.M. Mozherov
- Junior Researcher, Research Laboratory of Optical Spectroscopy and Microscopy, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - V.V. Elagin
- PhD, Researcher, Research Laboratory of Optical Spectroscopy and Microscopy; Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Research Laboratory of Molecular Biotechnologies, Institute of Experimental Oncology and Biomedical Technologies; The Institute of Experimental Medicine, 12 Akademika Pavlova St., Saint Petersburg, 197376, Russia
| |
Collapse
|
9
|
Jiang J, Gareev I, Ilyasova T, Shumadalova A, Du W, Yang B. The role of lncRNA-mediated ceRNA regulatory networks in liver fibrosis. Noncoding RNA Res 2024; 9:463-470. [PMID: 38511056 PMCID: PMC10950566 DOI: 10.1016/j.ncrna.2024.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 01/07/2024] [Indexed: 03/22/2024] Open
Abstract
In the dynamic realm of molecular biology and biomedical research, the significance of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) continues to grow, encompassing a broad spectrum of both physiological and pathological conditions. Particularly noteworthy is their pivotal role in the intricate series of events leading to the development of hepatic fibrosis, where hepatic stellate cells (HSCs) play a central role. Recent strides in scientific exploration have unveiled the intricate involvement of lncRNAs as ceRNAs in orchestrating the activation of HSCs. This not only deepens our comprehension of the functioning of proteins, DNA, and the extensive array of coding and noncoding RNAs but also sheds light on the intricate molecular interactions among these molecules. Furthermore, the well-established ceRNA networks, involving classical interactions between lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs), are not mere bystanders; they actively participate in instigating and advancing liver fibrosis. This underscores the pressing need for additional thorough research to fully grasp the potential of ceRNA. The unyielding pursuit of knowledge in this field remains a potent driving force with the capacity to enhance the quality of life for numerous individuals grappling with such diseases. It holds the promise of ushering in a new era of precision medicine, signifying a relentless dedication to unraveling the intricacies of molecular interactions that could pave the way for transformative advancements in the diagnosis and treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Jianhao Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
10
|
Han J, Lee C, Jeong H, Jeon S, Lee M, Lee H, Choi YH, Jung Y. Tumor necrosis factor-inducible gene 6 protein and its derived peptide ameliorate liver fibrosis by repressing CD44 activation in mice with alcohol-related liver disease. J Biomed Sci 2024; 31:54. [PMID: 38790021 PMCID: PMC11127441 DOI: 10.1186/s12929-024-01042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Seunghee Jeon
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myunggyo Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Pusan, 47227, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
11
|
Ciofoaia V, Chen W, Tarek BW, Gay M, Shivapurkar N, Smith JP. The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial. Pharmaceutics 2024; 16:611. [PMID: 38794273 PMCID: PMC11125239 DOI: 10.3390/pharmaceutics16050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic pancreatitis (CP) is a rare but debilitating condition with an 8-fold increased risk of developing pancreatic cancer. In addition to the symptoms that come from the loss of endocrine and exocrine function in CP, the management of chronic pain is problematic. We previously showed that the CCK-receptor antagonist called proglumide could decrease inflammation, acinar-ductal metaplasia, and fibrosis in murine models of CP. We hypothesized that proglumide would be safe and diminish pain caused by CP. A Phase 1 open-labeled safety study was performed in subjects with clinical and radiographic evidence of CP with moderate to severe pain. After a 4-week observation period, the subjects were treated with proglumide in 400 mg capsules three times daily (1200 mg per day) by mouth for 12 weeks, and then subjects returned for a safety visit 4 weeks after the discontinuation of the study medication. The results of three pain surveys (Numeric Rating Scale, COMPAT-SF, and NIH PROMIS) showed that the patients had significantly less pain after 12 weeks of proglumide compared to the pre-treatment observation phase. Of the eight subjects in this study, two experienced nausea and diarrhea with proglumide. These side effects resolved in one subject with doses reduced to 800 mg per day. No abnormalities were noted in the blood chemistries. A blood microRNA blood biomarker panel that corresponded to pancreatic inflammation and fibrosis showed significant improvement. We conclude that proglumide is safe and well tolerated in most subjects with CP at a dose of 1200 mg per day. Furthermore, proglumide therapy may have a beneficial effect by decreasing pain associated with CP.
Collapse
Affiliation(s)
- Victor Ciofoaia
- Departments of Gastroenterology and Medicine, MedStar Washington Hospital Center, Washington, DC 20010, USA; (V.C.); (B.W.T.)
| | - Wenqiang Chen
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| | - Bakain W. Tarek
- Departments of Gastroenterology and Medicine, MedStar Washington Hospital Center, Washington, DC 20010, USA; (V.C.); (B.W.T.)
| | - Martha Gay
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| | - Narayan Shivapurkar
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| | - Jill P. Smith
- Department of Medicine, Georgetown University, Washington, DC 20007, USA; (W.C.); (M.G.); (N.S.)
| |
Collapse
|
12
|
Han L, Lin G, Li J, Zhang Q, Ran T, Huang T, Hu R, Feng S, Zou G, Chen S, Zhao X. Network pharmacology and transcriptomic profiling elucidate the therapeutic effects of Ranunculus ternatus Thunb on liver fibrosis via MK3-NF-κB inhibition. Aging (Albany NY) 2024; 16:4759-4777. [PMID: 38461449 PMCID: PMC10968670 DOI: 10.18632/aging.205629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
Activation of hepatic stellate cells (HSCs) is critical in the progression of liver fibrosis and is a promising target for anti-hepatic fibrosis drug development. Moreover, effective pharmacological interventions targeting this pathomechanism are scarce. Our study confirms the therapeutic value of β-sitosterol, a major constituent of Ranunculus ternatus Thunb, in hepatic fibrosis and identifies its underlying mechanisms. After treatment with β-sitosterol, CCL4-induced hepatic fibrosis was reversed in mice, while inflammatory and hepatic fibrosis indices were improved. Meanwhile, we explored the molecular mechanism of β-sitosterol treatment for hepatic fibrosis and, based on RNA-seq results, found that the ameliorative effect of β-sitosterol on hepatic fibrosis was associated with the MK3 and NF-κB signalling pathways. MK3, an important kinase in the MAPK pathway, plays a role in transmitting upstream and downstream signals, whereas the NF-κB signalling pathway has been shown to be associated with HSC activation. We verified the interaction between MK3 and IκB in HSC cells using endogenous Co-IP, whereas β-sitosterol reduced the binding of MK3 to IκB and the activation of the NF-κB signalling pathway. Our findings reveal the mechanism of β-sitosterol in the treatment of liver fibrosis, suggesting that β-sitosterol may be a promising drug for the treatment of liver fibrosis and deserves further investigation.
Collapse
Affiliation(s)
- Lu Han
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Guoyuan Lin
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jianchao Li
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qingxiu Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Tao Ran
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Tao Huang
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Ruihan Hu
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou Province, China
| | - Shu Feng
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Gaoliang Zou
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shaojie Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
13
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 422] [Impact Index Per Article: 422.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Zein N, Yassin F, Ayoub HG, Elewa YHA, Mohamed SKA, Mahmoud MH, Elfeky M, Batiha GES, Zahran MH. In vivo investigation of the anti-liver fibrosis impact of Balanites aegyptiaca/ chitosan nanoparticles. Biomed Pharmacother 2024; 172:116193. [PMID: 38301419 DOI: 10.1016/j.biopha.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Balanites aegyptiaca (B. aegyptiaca) is an African herb with traditional medical applications. Various pathogenic factors cause hepatic fibrosis and require novel treatment alternatives. Nanoformulation-based natural products can overcome the available drug problems by increasing the efficacy of natural products targeting disease markers. The current study investigated B. aegyptiaca methanolic extract using high-pressure liquid chromatography (HPLC), and B. aegyptiaca/chitosan nanoparticles were prepared. In vivo, evaluation tests were performed to assess the curative effect of the successfully prepared B. aegyptiaca/chitosan nanoparticles. For 30 days, the rats were divided into six groups, typical and fibrosis groups, where the liver fibrosis groups received B. aegyptiaca extract, silymarin, chitosan nanoparticles, and B. aegyptiaca/chitosan nanoparticles daily. In the current investigation, phenolic molecules are the major compounds detected in B. aegyptiaca extract. UV showed that the prepared B. aegyptiaca /chitosan nanoparticles had a single peak at 280 nm, a particle size of 35.0 ± 6.0 nm, and a negative charge at - 8.3 mV. The animal studies showed that the synthetic B. aegyptiaca/chitosan nanoparticles showed substantial anti-fibrotic protective effects against CCl4-induced hepatic fibrosis in rats when compared with other groups through optimization of biochemical and oxidative markers, improved histological changes, and modulated the expression of Col1a1, Acta2 and Cxcl9 genes, which manage liver fibrosis. In conclusion, the current research indicated that the prepared B. aegyptiaca/chitosan nanoparticles improved histological structure and significantly enhanced the biochemical and genetic markers of liver fibrosis in an animal model.
Collapse
Affiliation(s)
- Nabila Zein
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Yassin
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Heba G Ayoub
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Sherif Kh A Mohamed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed H Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Kingdom of Saudi Arabia
| | - Mohamed Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur 22511, AlBeheira, Egypt
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
15
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
16
|
Florczyk-Soluch U, Polak K, Sabo R, Martyniak A, Stępniewski J, Dulak J. Compromised diabetic heart function is not affected by miR-378a upregulation upon hyperglycemia. Pharmacol Rep 2023; 75:1556-1570. [PMID: 37851320 PMCID: PMC10661816 DOI: 10.1007/s43440-023-00535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Cardiac-abundant microRNA-378a (miR-378a) is associated with postnatal repression of insulin-like growth factor 1 receptor (IGF-1R) controlling physiological hypertrophy and survival pathways. IGF-1/IGF-1R axis has been proposed as a therapeutic candidate against the pathophysiological progress of diabetic cardiomyopathy (DCM). We ask whether hyperglycemia-driven changes in miR-378a expression could mediate DCM progression. METHODS Diabetes mellitus was induced by streptozotocin (STZ) (55 mg/kg i.p. for 5 days) in male C57BL/6 wild type (miR-378a+/+) and miR-378a knockout (miR-378a-/-) mice. As a parallel human model, we harnessed human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM miR378a+/+ vs. hiPSC-CM miR378a-/-) subjected to high glucose (HG) treatment. RESULTS We reported miR-378a upregulation in cardiac diabetic milieu arising upon STZ administration to wild-type mice and in HG-treated hiPSC-CMs. Pro-hypertrophic IGF-1R/ERK1/2 pathway and hypertrophic marker expression were activated in miR-378a deficiency and upon STZ/HG treatment of miR-378a+/+ specimens in vivo and in vitro suggesting miR-378a-independent hyperglycemia-promoted hypertrophy. A synergistic upregulation of IGF-1R signaling in diabetic conditions was detected in miR-378a-/- hiPSC-CMs, but not in miR-378a-/- hearts that showed attenuation of this pathway, pointing to the involvement of compensatory mechanisms in the absence of miR-378a. Although STZ administration did not cause pro-inflammatory or pro-fibrotic effects that were detected in miR-378a-/- mice, the compromised diabetic heart function observed in vivo by high-resolution ultrasound imaging upon STZ treatment was not affected by miR-378a presence. CONCLUSIONS Overall, data underline the role of miR-378a in maintaining basal cardiac structural integrity while pointing to miR-378a-independent hyperglycemia-driven cardiac hypertrophy and associated dysfunction.
Collapse
Affiliation(s)
- Urszula Florczyk-Soluch
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Polak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Reece Sabo
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
17
|
Li F, Yan T, Wang S, Wen X. Exosome-associated miRNA-99a-5p targeting BMPR2 promotes hepatocyte apoptosis during the process of hepatic fibrosis. Clin Exp Med 2023; 23:4021-4031. [PMID: 37354366 DOI: 10.1007/s10238-023-01122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Liver fibrosis is a serious stage of chronic liver injury. Inhibition of hepatic stellate cells activation and hepatocytes apoptosis is important measures in the treatment of liver fibrosis. Studies have shown that exosomes are involved in regulating the information transmission between cells, but there are few studies on the interaction between exosomes from HSC and hepatocytes. This study screened miRNAs with significant differences related to liver fibrosis in the database. Then, we activated HSC applying transforming growth factor β1 (TGF-β1) and collected exosomes. The expression of miRNA in HSC-derived exosomes was verified by quantitative real-time PCR (qRT-PCR). The results of cell function test showed that HSC-derived exocrine miRNA-99a-5p could inhibit hepatocytes proliferation and promote hepatocytes apoptosis. Conversely, inhibition of miRNA-99a-5p can promote hepatocytes proliferation and inhibit apoptosis. Target gene prediction and luciferase assay show that miRNA can specifically bind to BMPR2 site sequence. In addition, we also detected the expression of BMPR2 and apoptosis-related protein by qRT-PCR and Western blot (WB). In conclusion, this study demonstrates that HSC-derived exocrine miRNA-99a-5p can promote hepatocytes apoptosis and participate in the process of liver fibrosis by targeting BMPR2. Our findings highlight the therapeutic potential of HSC-derived exocrine miRNA-99a-5p in hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, China.
| | - Tengfei Yan
- Baoding First Central Hospital, Baoding, 071000, Heibei, China
| | - Shunlan Wang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| |
Collapse
|
18
|
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Kobara H, Ono M, Himoto T, Masaki T. MicroRNAs and Nonalcoholic Steatohepatitis: A Review. Int J Mol Sci 2023; 24:14482. [PMID: 37833930 PMCID: PMC10572537 DOI: 10.3390/ijms241914482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome caused by fat deposition in hepatocytes. Patients with nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD with severe fibrosis, are at high risk for liver-related complications, including hepatocellular carcinoma (HCC). However, the mechanism of progression from simple fat deposition to NASH is complex, and previous reports have linked NAFLD to gut microbiota, bile acids, immunity, adipokines, oxidative stress, and genetic or epigenetic factors. NASH-related liver injury involves multiple cell types, and intercellular signaling is thought to be mediated by extracellular vesicles. MicroRNAs (miRNAs) are short, noncoding RNAs that play important roles as post-transcriptional regulators of gene expression and have been implicated in the pathogenesis of various diseases. Recently, many reports have implicated microRNAs in the pathogenesis of NALFD/NASH, suggesting that exosomal miRNAs are potential non-invasive and sensitive biomarkers and that the microRNAs involved in the mechanism of the progression of NASH may be potential therapeutic target molecules. We are interested in which miRNAs are involved in the pathogenesis of NASH and which are potential target molecules for therapy. We summarize targeted miRNAs associated with the etiology and progression of NASH and discuss each miRNA in terms of its pathophysiology, potential therapeutic applications, and efficacy as a NASH biomarker.
Collapse
Affiliation(s)
| | | | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Japan; (A.M.); (K.O.); (K.F.); (J.T.); (H.K.); (M.O.); (T.H.); (T.M.)
| | | | | | | | | | | | | |
Collapse
|
19
|
Mucha O, Podkalicka P, Żukowska M, Pośpiech E, Dulak J, Łoboda A. miR-378 influences muscle satellite cells and enhances adipogenic potential of fibro-adipogenic progenitors but does not affect muscle regeneration in the glycerol-induced injury model. Sci Rep 2023; 13:13434. [PMID: 37596327 PMCID: PMC10439181 DOI: 10.1038/s41598-023-40729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023] Open
Abstract
Skeletal muscle regeneration relies on the reciprocal interaction between many types of cells. Regenerative capacity may be altered in different disorders. In our study, we investigated whether the deletion of miR-378a (miR-378) affects muscle regeneration. We subjected 6-week-old wild-type (WT) and miR-378 knockout (miR-378-/-) animals to the glycerol-induced muscle injury and performed analyses in various time-points. In miR-378-/- animals, an elevated abundance of muscle satellite cells (mSCs) on day 3 was found. Furthermore, fibro-adipogenic progenitors (FAPs) isolated from the muscle of miR-378-/- mice exhibited enhanced adipogenic potential. At the same time, lack of miR-378 did not affect inflammation, fibrosis, adipose tissue deposition, centrally nucleated fiber count, muscle fiber size, FAP abundance, and muscle contractility at any time point analyzed. To conclude, our study revealed that miR-378 deletion influences the abundance of mSCs and the adipogenic potential of FAPs, but does not affect overall regeneration upon acute, glycerol-induced muscle injury.
Collapse
Affiliation(s)
- Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Monika Żukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology in Krakow, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
20
|
Ma N, Hou A, Pan X, Sun F, Xu X, Yu C, Lai R, Huang R, Gong L, Xie Q, Chen J, Ren J. MiR-552-3p Regulates Multiple Fibrotic and Inflammatory genes Concurrently in Hepatic Stellate Cells Improving NASH-associated Phenotypes. Int J Biol Sci 2023; 19:3456-3471. [PMID: 37496991 PMCID: PMC10367551 DOI: 10.7150/ijbs.80760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/13/2023] [Indexed: 07/28/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by hepatic steatosis, inflammation, and progressive fibrosis. Our previous study demonstrated that microRNA-552-3p (miR-552-3p) was down-regulated in the livers of patients with NASH and alleviated hepatic glycolipid metabolic disorders. However, whether miR-552-3p affects NASH progression remains unclear. In this current study, we found that hepatic miR-552-3p expression was negatively correlated with the degree of liver fibrosis and inflammation of NASH patients. Interestingly, the level of miR-552-3p was decreased during hepatic stellate cell (HSC) activation in vitro. Overexpression of miR-552-3p could not only inhibit the expression of fibrotic and inflammatory genes, but also restrain the activation of TGF-β1/Smad3 signaling pathway by down-regulating the expression of TGFBR2 and SMAD3 in HSCs, finally suppressing HSC activation. More importantly, overexpression of miR-552-3p ameliorated liver fibrosis and inflammation in two murine models: high fat/high fructose/high cholesterol diet-induced NASH model and carbon tetrachloride (CCl4)-treated liver fibrosis model. In conclusion, miR-552-3p plays a crucial role in the pathogenesis of NASH by limiting multiple fibrotic and inflammatory pathways in HSCs, which may shed light on its therapeutic potential in NASH.
Collapse
Affiliation(s)
- Ningning Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| | - Aijun Hou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| | - Xiangyu Pan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Fuguang Sun
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| | - Xiaoding Xu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chuwei Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ruimin Huang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road Beijing 100049, China
| |
Collapse
|
21
|
Li H, Liu T, Yang Y, Cho WC, Flynn RJ, Harandi MF, Song H, Luo X, Zheng Y. Interplays of liver fibrosis-associated microRNAs: Molecular mechanisms and implications in diagnosis and therapy. Genes Dis 2023; 10:1457-1469. [PMID: 37397560 PMCID: PMC10311052 DOI: 10.1016/j.gendis.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/22/2022] Open
Abstract
microRNAs (miRNAs) are a class of non-coding functional small RNA composed of 21-23 nucleotides, having multiple associations with liver fibrosis. Fibrosis-associated miRNAs are roughly classified into pro-fibrosis or anti-fibrosis types. The former is capable of activating hepatic stellate cells (HSCs) by modulating pro-fibrotic signaling pathways, mainly including TGF-β/SMAD, WNT/β-catenin, and Hedgehog; the latter is responsible for maintenance of the quiescent phenotype of normal HSCs, phenotypic reversion of activated HSCs (aHSCs), inhibition of HSCs proliferation and suppression of the extracellular matrix-associated gene expression. Moreover, several miRNAs are involved in regulation of liver fibrosis via alternative mechanisms, such as interacting between hepatocytes and other liver cells via exosomes and increasing autophagy of aHSCs. Thus, understanding the role of these miRNAs may provide new avenues for the development of novel interventions against hepatic fibrosis.
Collapse
Affiliation(s)
- Hong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Tingli Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yongchun Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China
| | - Robin J. Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
- Graduate Studies Office, Department of Research, Innovation and Graduate Studies, Waterford Institute of Technology, X91 K0EK, Ireland
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
22
|
Kim J, Lee C, Han J, Jeong H, Wang S, Choi YH, Jung Y. Targeted Deletion of Thymosin Beta 4 in Hepatic Stellate Cells Ameliorates Liver Fibrosis in a Transgenic Mouse Model. Cells 2023; 12:1658. [PMID: 37371128 PMCID: PMC10297343 DOI: 10.3390/cells12121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Liver fibrosis is the most common feature of liver disease, and activated hepatic stellate cells (HSCs) are the main contributors to liver fibrosis. Thus, finding key targets that modulate HSC activation is important to prevent liver fibrosis. Previously, we showed that thymosin β4 (Tβ4) influenced HSC activation by interacting with the Hedgehog pathway in vitro. Herein, we generated Tβ4 conditional knockout (Tβ4-flox) mice to investigate in vivo functions of Tβ4 in liver fibrosis. To selectively delete Tβ4 in activated HSCs, double-transgenic (DTG) mice were generated by mating Tβ4-flox mice with α-smooth muscle actin (α-Sma)-Cre-ERT2 mice, and these mice were administered carbon tetrachloride (CCl4) or underwent bile duct ligation to induce liver fibrosis. Tβ4 was selectively suppressed in the activated HSCs of DTG mouse liver, and this reduction attenuated liver injury, including fibrosis, in both fibrotic models by repressing Hedgehog (Hh) signaling. In addition, the re-expression of Tβ4 by an adeno-associated virus reversed the effect of HSC-specific Tβ4 deletion and led to liver fibrosis with Hh activation in CCl4-exposed mice treated with tamoxifen. In conclusion, our results demonstrate that Tβ4 is a crucial regulator of HSC activation, suggesting it as a novel therapeutic target for curing liver fibrosis.
Collapse
Affiliation(s)
- Jieun Kim
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea; (J.K.); (C.L.)
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea; (J.H.); (H.J.)
| | - Chanbin Lee
- Institute of System Biology, Pusan National University, Pusan 46241, Republic of Korea; (J.K.); (C.L.)
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea; (J.H.); (H.J.)
| | - Jinsol Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea; (J.H.); (H.J.)
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea; (J.H.); (H.J.)
| | - Sihyung Wang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Pusan 47227, Republic of Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea; (J.H.); (H.J.)
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
23
|
Wu T, Qi Y, Xu C, Sui D, Xu FJ. HSC-targeted delivery of shRNA-TGFβ1 by vitamin A-functionalized polyaminoglycoside for hepatic fibrosis therapy. NANO TODAY 2023; 50:101887. [DOI: 10.1016/j.nantod.2023.101887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Jolly G, Duka T, Shivapurkar N, Chen W, Bansal S, Cheema A, Smith JP. Cholecystokinin Receptor Antagonist Induces Pancreatic Stellate Cell Plasticity Rendering the Tumor Microenvironment Less Oncogenic. Cancers (Basel) 2023; 15:2811. [PMID: 37345148 PMCID: PMC10216345 DOI: 10.3390/cancers15102811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CCK receptors are expressed on pancreatic cancer epithelial cells, and blockade with receptor antagonists decreases tumor growth. Activated pancreatic stellate cells or myofibroblasts have also been described to express CCK receptors, but the contribution of this novel pathway in fibrosis of the pancreatic cancer microenvironment has not been studied. We examined the effects of the nonselective CCK receptor antagonist proglumide on the activation, proliferation, collagen deposition, differential expression of genes, and migration in both murine and human PSCs. CCK receptor expression was examined using western blot analysis. Collagen production using activated PSCs was analyzed by mass spectroscopy and western blot. Migration of activated PSCs was prevented in vitro by proglumide and the CCK-B receptor antagonist, L365,260, but not by the CCK-A receptor antagonist L365,718. Proglumide effectively decreased the expression of extracellular matrix-associated genes and collagen-associated proteins in both mouse and human PSCs. Components of fibrosis, including hydroxyproline and proline levels, were significantly reduced in PSC treated with proglumide compared to controls. CCK peptide stimulated mouse and human PSC proliferation, and this effect was blocked by proglumide. These investigations demonstrate that targeting the CCK-B receptor signaling pathway with proglumide may alter the plasticity of PSC, rendering them more quiescent and leading to a decrease in fibrosis in the pancreatic cancer microenvironment.
Collapse
Affiliation(s)
- Gurbani Jolly
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Tetyana Duka
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Narayan Shivapurkar
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Wenqiang Chen
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Sunil Bansal
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Amrita Cheema
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Jill P. Smith
- Department of Oncology, College of Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Medicine, College of Medicine, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
25
|
Pan Y, You B, Zhao X, Li W. MicroRNA-30a depresses hepatic stellate cell activation against liver fibrosis through blockade of the TGF-β1/Smad2/3 pathway. Biotechnol Genet Eng Rev 2023; 40:2036-2050. [PMID: 37018431 DOI: 10.1080/02648725.2023.2197714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
This study explored the mechanism of microRNA (miR)-30a in the activation of hepatic stellate cells (HSCs) to deepen the understanding of the pathogenesis of liver fibrosis. Subsequent to knockdown and ectopic experiments, HSCs were induced with 10 ng/mL transforming growth factor (TGF)-β1 to inspect the role of the miR-30a/TGF-β receptor 1 (TGFBR1) axis in HSC proliferation and activation. qRT-PCR was utilized to examine TGFBR1 mRNA and miR-30a expression and western blot to test TGFBR1, alpha smooth muscle actin (α-SMA), Collagen I and mothers against DPP homolog 2/3 (Smad2/3) protein expression. The fluorescence intensity of α-SMA was measured with immunofluorescence staining. The interaction of TGFBR1 with miR-30a was tested with a dual-luciferase reporter assay. TGF-β1 treated HSCs had upregulated expressions of α-SMA and Collagen I. In addition, downregulated miR-30a, upregulated TGFBR1 and activated TGF-β1/Smad2/3 pathway were found in activated HSCs. Upregulation of miR-30a or downregulation of TGFBR1 suppressed the activation and growth of HSCs. miR-30a repression activated the TGF-β1/Smad2/3 pathway and promoted HSC proliferation and activation, while suppression of TGFBR1 revered these effects. miR-30a was an upstream regulatory factor of TGFBR1. miR-30a blocks the TGF-β1/Smad2/3 pathway to inhibit HSC activation against liver fibrosis by targeting TGFBR1.
Collapse
Affiliation(s)
- Yipeng Pan
- Department of Transplantation, Hospital of Hainan Medical University, Haikou, China
| | - Bo You
- Department of Transplantation, The Hainan General Hospital, Haikou, China
| | - Xue Zhao
- Department of Transplantation, Hospital of Hainan Medical University, Haikou, China
| | - Wei Li
- Department of Transplantation, Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
26
|
Xu Y, Cai J, Zhong K, Wen Y, Cai L, He G, Liao H, Zhang C, Fu S, Chen T, Cai J, Zhong X, Chen C, Huang M, Cheng Y, Pan M. Plasma-only circulating tumor DNA analysis detects minimal residual disease and predicts early relapse in hepatocellular carcinoma patients undergoing curative resection. Front Oncol 2023; 13:1119744. [PMID: 36959801 PMCID: PMC10028131 DOI: 10.3389/fonc.2023.1119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Background Minimal residual disease (MRD) is considered an essential factor leading to relapse within 2 years (early relapse) after radical surgery, which is challenging to be detected by conventional imaging. Circulating tumor DNA (ctDNA) provides a novel approach for detecting MRD and predicting clinical outcomes. Here, we tried to construct a fixed panel for plasma-only ctDNA NGS to enable tumor-uninformed MRD detection in hepatocellular carcinoma (HCC). Methods Here, we performed the followings: (i) profiling genomic alteration spectrum of ctDNA from the Chinese HCC cohort consisting of 493 individuals by NGS; (ii) screening of MRD monitoring genes; and (iii) performance evaluation of MRD monitoring genes in predicting early relapse in the ZJZS2020 cohort comprising 20 HCC patients who underwent curative resection. Results A total of 493 plasma samples from the Chinese HCC cohort were detected using a 381/733-gene NGS panel to characterize the mutational spectrum of ctDNA. Most patients (94.1%, 464/493) had at least one mutation in ctDNA. The variants fell most frequently in TP53 (45.1%), LRP1B (20.2%), TERT (20.2%), FAT1 (16.2%), and CTNNB1 (13.4%). By customized filtering strategy, 13 MRD monitoring genes were identified, and any plasma sample with one or more MRD monitoring gene mutations was considered MRD-positive. In the ZJZS2020 cohort, MRD positivity presented a sensitivity of 75% (6/8) and a specificity of 100% (6/6) in identifying early postoperative relapse. The Kaplan-Meier analysis revealed a significantly short relapse-free survival (RFS; median RFS, 4.2 months vs. NR, P=0.002) in the MRD-positive patients versus those with MRD negativity. Cox regression analyses revealed MRD positivity as an independent predictor of poor RFS (HR 13.00, 95% CI 2.60-69.00, P=0.002). Conclusions We successfully developed a 13-gene panel for plasma-only MRD detection, which was effective and convenient for predicting the risk of early postoperative relapse in HCC.
Collapse
Affiliation(s)
- Yuyan Xu
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianpeng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaihang Zhong
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaohong Wen
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Cai
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guolin He
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hangyu Liao
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shunjun Fu
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Xuefeng Zhong
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Chunzhu Chen
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Mengli Huang
- Medical Affairs, 3D Medicines, Inc., Shanghai, China
| | - Yuan Cheng
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
28
|
The context-dependent role of transforming growth factor-β/miR-378a-3p/connective tissue growth factor in vascular calcification: a translational study. Aging (Albany NY) 2023; 15:830-845. [PMID: 36787443 PMCID: PMC9970315 DOI: 10.18632/aging.204518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Vascular calcification (VC) constitutes an important vascular pathology with prognostic importance. The pathogenic role of transforming growth factor-β (TGF-β) in VC remains unclear, with heterogeneous findings that we aimed to evaluate using experimental models and clinical specimens. METHODS Two approaches, exogenous administration and endogenous expression upon osteogenic media (OM) exposure, were adopted. Aortic smooth muscle cells (ASMCs) were subjected to TGF-β1 alone, OM alone, or both, with calcification severity determined. We evaluated miR-378a-3p and TGF-β1 effectors (connective tissue growth factor; CTGF) at different periods of calcification. Results were validated in an ex vivo model and further in sera from older adults without or with severe aortic arch calcification. RESULTS TGF-β1 treatment induced a significant dose-responsive increase in ASMC calcification without or with OM at the mature but not early or mid-term VC period. On the other hand, OM alone induced VC accompanied by suppressed TGF-β1 expressions over time; this phenomenon paralleled the declining miR-378a-3p and CTGF expressions since early VC. TGF-β1 treatment led to an upregulation of CTGF since early VC but not miR-378a-3p until mid-term VC, while miR-378a-3p overexpression suppressed CTGF expressions without altering TGF-β1 levels. The OM-induced down-regulation of TGF-β1 and CTGF was also observed in the ex vivo models, with compatible results identified from human sera. CONCLUSIONS We showed that TGF-β1 played a context-dependent role in VC, involving a time-dependent self-regulatory loop of TGF-β1/miR-378a-3p/CTGF signaling. Our findings may assist subsequent studies in devising potential therapeutics against VC.
Collapse
|
29
|
Feng Z, Bao S, Kong L, Chen X. MicroRNA-378 inhibits hepatocyte apoptosis during acute liver failure by targeting caspase-9 in mice. GASTROENTEROLOGIA Y HEPATOLOGIA 2023; 46:124-134. [PMID: 35964807 DOI: 10.1016/j.gastrohep.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/18/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. It has been demonstrated that micro ribonucleic acids (miRNAs) are crucial mediators of nearly all pathological processes, including liver disease. OBJECTIVE The present study investigates the role of miR-378 in ALF. An ALF mouse model was induced using intraperitoneal injections of d-galactosamine/lipopolysaccharide (d-GalN/LPS). A hepatocyte cell line and miR-378 analogue were used in vitro to investigate the possible roles of miR-378 in ALF. METHODS The expressions of miR-378 and predicted target genes were measured via reverse transcription-quantitative polymerase chain reaction and western blotting, and cell apoptosis was assayed using flow cytometry. RESULTS Compared with mice in the control group, the mice challenged with d-GalN/LPS showed higher levels of alanine aminotransferase, aspartate aminotransferase, tumour necrosis factor-alpha and interleukin-6, more severe liver damage and increased numbers of apoptotic hepatocytes. Hepatic miR-378 was distinctly downregulated, while messenger RNA and protein levels of cysteinyl aspartate specific proteinase 9 (caspase-9) were upregulated in the ALF model. Furthermore, miR-378 was downregulated in d-GalN/TNF-induced hepatocyte cells, and miR-378 was found to inhibit hepatocyte apoptosis by targeting caspase-9. CONCLUSION Together, the present results indicate that miR-378 is a previously unrecognised post-ALF hepatocyte apoptosis regulator and may be a potential therapeutic target in the context of ALF.
Collapse
Affiliation(s)
- Zhiwen Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Shenghua Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Lianbao Kong
- Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopeng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| |
Collapse
|
30
|
Atic AI, Thiele M, Munk A, Dalgaard LT. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2023; 324:C588-C602. [PMID: 36645666 DOI: 10.1152/ajpcell.00253.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are secreted from cells as either protein-bound or enclosed in extracellular vesicles. Circulating liver-derived miRNAs are modifiable by weight-loss or insulin-sensitizing treatments, indicating that they could be important biomarker candidates for diagnosis, monitoring, and prognosis in nonalcoholic liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Unfortunately, the noninvasive diagnosis of NASH and fibrosis remains a key challenge, which limits case finding. Current diagnostic guidelines, therefore, recommend liver biopsies, with risks of pain and bleeding for the patient and substantial healthcare costs. Here, we summarize mechanisms of RNA secretion and review circulating RNAs associated with NAFLD and NASH for their biomarker potential. Few circulating miRNAs are consistently associated with NAFLD/NASH: miR-122, miR-21, miR-34a, miR-192, miR-193, and the miR-17-92 miRNA-cluster. The hepatocyte-enriched miRNA-122 is consistently increased in NAFLD and NASH but decreased in liver cirrhosis. Circulating miR-34a, part of an existing diagnostic algorithm for NAFLD, and miR-21 are consistently increased in NAFLD and NASH. MiR-192 appears to be prominently upregulated in NASH compared with NAFDL, whereas miR-193 was reported to distinguish NASH from fibrosis. Various members of miRNA cluster miR-17-92 are reported to be associated with NAFLD and NASH, although with less consistency. Several other circulating miRNAs have been reported to be associated with fatty liver in a few studies, indicating the existence of more circulating miRNAs with relevant as diagnostic markers for NAFLD or NASH. Thus, circulating miRNAs show potential as biomarkers of fatty liver disease, but more information about phenotype specificity and longitudinal regulation is needed.
Collapse
Affiliation(s)
- Amila Iriskic Atic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Novo Nordisk A/S, Obesity Research, Måløv, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
31
|
Ouyang X, Wang S, Xie J, Kong J, Chunmei M, Pan H, Cao J, Chen D, Liu A. rno-miR-90 promotes chondrogenic differentiation of bone marrow mesenchymal stem cells by targeting SPARC-related modular calcium binding 2. Anat Rec (Hoboken) 2023. [PMID: 36691370 DOI: 10.1002/ar.25163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate into chondrocytes. In the differentiation of BMSCs into chondrocytes, micro-RNAs (miRNAs) play an important role. rno-miR-90 is a new miRNA discovered by our research team, and its role in chondrogenic differentiation of BMSCs is unknown. This study aimed to investigate whether rno-miR-90 could promote chondrogenic differentiation of BMSCs by regulating secreted protein acidic and rich in cysteine-related modular calcium binding 2 (Smoc2). First, BMSCs chondroblast differentiation was successfully induced in vitro by classical induction method of transforming growth factor (TGF)-β3. On this basis, we transfected rno-miR-90 mimic and inhibitor, and confirmed that rno-miR-90 mimic could promote the differentiation of BMSCs into chondrocytes by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. In addition, we demonstrated that Smoc2 was a target gene of rno-miR-90 by dual-luciferase reporter assay, and confirmed that rno-miR-90 mimic could inhibit the expression of Smoc2 by RT-qPCR and western blotting. In order to further prove the targeting relationship between rno-miR-90 and Smoc2, we constructed three interfering fragments of Smoc2, and proved that silencing Smoc2 could promote the differentiation of BMSCs into chondrocytes at the transcriptional and protein levels. Finally, we constructed a carrier scaffold for ectopic chondrogenic differentiation in vivo, and confirmed that rno-miR-90 mimic and siSmoc2 could promote chondrogenic differentiation of BMSCs by Alcian blue staining and immunohistochemistry. In summary, our results suggested that rno-miR-90 could promote chondrogenic differentiation of BMSCs by down-regulating the expression of Smoc2. rno-miR-90 mimic and Smoc2 may be therapeutic targets of osteoarthritis.
Collapse
Affiliation(s)
- Xiyan Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Shuxian Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jinqi Xie
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiechen Kong
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Ma Chunmei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Hao Pan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jiahui Cao
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Aijun Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
32
|
Stein RA, Thompson LM. Epigenetic changes induced by pathogenic Chlamydia spp. Pathog Dis 2023; 81:ftad034. [PMID: 38031337 DOI: 10.1093/femspd/ftad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
Chlamydia trachomatis, C. pneumoniae, and C. psittaci, the three Chlamydia species known to cause human disease, have been collectively linked to several pathologies, including conjunctivitis, trachoma, respiratory disease, acute and chronic urogenital infections and their complications, and psittacosis. In vitro, animal, and human studies also established additional correlations, such as between C. pneumoniae and atherosclerosis and between C. trachomatis and ovarian cancer. As part of their survival and pathogenesis strategies as obligate intracellular bacteria, Chlamydia spp. modulate all three major types of epigenetic changes, which include deoxyribonucleic acid (DNA) methylation, histone post-translational modifications, and microRNA-mediated gene silencing. Some of these epigenetic changes may be implicated in key aspects of pathogenesis, such as the ability of the Chlamydia spp. to induce epithelial-to-mesenchymal transition, interfere with DNA damage repair, suppress cholesterol efflux from infected macrophages, act as a co-factor in human papillomavirus (HPV)-mediated cervical cancer, prevent apoptosis, and preserve the integrity of mitochondrial networks in infected host cells. A better understanding of the individual and collective contribution of epigenetic changes to pathogenesis will enhance our knowledge about the biology of Chlamydia spp. and facilitate the development of novel therapies and biomarkers. Pathogenic Chlamydia spp. contribute to epigenetically-mediated gene expression changes in host cells by multiple mechanisms.
Collapse
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Lily M Thompson
- NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, NY 11201, United States
| |
Collapse
|
33
|
Bhandari R, Shaikh II, Bhandari R, Chapagain S. LINC01023 Promotes the Hepatoblastoma Tumorigenesis via miR-378a-5p/WNT3 Axis. Mol Cell Biochem 2022:10.1007/s11010-022-04636-5. [PMID: 36576714 DOI: 10.1007/s11010-022-04636-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Hepatoblastoma is the most common type of hepatic tumors occurring in children between 0 and 5 years. And the exact pathophysiology of the disease is still mysterious. Accumulating studies on LncRNA have shown its pivotal role in the development and progression of distinct human cancers. However, the role of LINC01023 in hepatoblastoma is unknown. The relative expression of LINC01023, miR-378a-5p, and Wnt3 on hepatoblastoma tissue and cell lines was determined by quantitative polymerase chain reaction (qRT-PCR). The effect of LINC01023 downregulation and upregulation on cell proliferation, colony formation and apoptosis activities in HUH6 and HepG2 Cells was assessed by CKK8, clonogenic and flow cytometry analysis, respectively. Dual luciferase, RNA immunoprecipitation (RIP), and RNA pull-down were performed to confirm the interaction between LINC01023 and miR-378a-5p. Similarly, Dual luciferase assay was performed to confirmed the interaction between Wnt3 and miR-378a-5p. The xenograft tumorgenicity test was performed to elucidate the tumorgenicity potential of LINC01023. LINC01023 was significantly upregulated in hepatoblastoma tissue and cell lines rather than in adjacent normal hepatic tissue and QSG7701 cell lines. LINC01023 silencing attenuated cell proliferation, colony formation and increased cell apoptosis. Conversely, LINC01023 upregulation results in significant increase in cell proliferation, and colony formation activities however, a significant reduction in apoptosis activity was reported. Interaction between the LINC01023 and WNT3 was confirmed by dual luciferase assay. Xenograft animal tumorgenicity test confirmed the in-vivo tumorigenesis potential of LINC01203. To the best of our knowledge, this study is the first study demonstrating the role of LINC01023 in hepatoblastoma tumorigenesis through the LINC01023/miR-378a-5p/Wnt3 axis. It could be a potential therapeutic target and a prognostic biomarker in hepatoblastoma.
Collapse
Affiliation(s)
- Ramesh Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Imran Ibrahim Shaikh
- Department of Orthopedics, Tongji Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Rajeev Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Sadikchha Chapagain
- Department of Clinical Laboratory Medicine, Shanghai Tenth Peoples Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| |
Collapse
|
34
|
Sola IM, Karin-Kujundzic V, Paic F, Lijovic L, Glibo M, Serman N, Duic T, Skrtic A, Kuna K, Vranic S, Serman L. WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction. Mol Med Rep 2022; 27:28. [PMID: 36524356 PMCID: PMC9813565 DOI: 10.3892/mmr.2022.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
Placental insufficiency is a common cause of intrauterine growth restriction (IUGR). It affects ~10% of pregnancies and increases fetal and neonatal morbidity and mortality. Although Wnt and Hh pathways are crucial for embryonic development and placentation, their role in the pathology of IUGR is still not sufficiently explored. The present study analyzed the expression of positive regulators of the Wnt pathway, WNT5A and β‑catenin, and the expression of the Hh pathway negative regulator suppressor of fused (SUFU). Immunohistochemical and reverse transcription‑quantitative PCR (RT‑qPCR) assays were performed on 34 IUGR and 18 placental tissue samples from physiologic singleton‑term pregnancies. Epigenetic mechanisms of SUFU gene regulation were also investigated by methylation‑specific PCR analysis of its promoter and RT‑qPCR analysis of miR‑214‑3p and miR‑378a‑5p expression. WNT5A protein expression was higher in endothelial cells of placental villi from IUGR compared with control tissues. That was also the case for β‑catenin protein expression in trophoblasts and endothelial cells and SUFU protein expression in trophoblasts from IUGR placentas. The SUFU gene promoter remained unmethylated in all tissue samples, while miR‑214‑3p and miR‑378a‑5p were downregulated in IUGR. The present results suggested altered Wnt and Hh signaling in IUGR. DNA methylation did not appear to be a mechanism of SUFU regulation in the pathogenesis of IUGR, but its expression could be regulated by miRNA targeting.
Collapse
Affiliation(s)
- Ida Marija Sola
- Department of Obstetrics and Gynecology, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia,Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia,Correspondence to: Dr Valentina Karin-Kujundzic, Department of Biology, School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia, E-mail:
| | - Frane Paic
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia
| | - Lada Lijovic
- Department of Anesthesiology and Critical Care, General Hospital Fra Mihovil Sučić, 80101 Livno, Bosnia and Herzegovina
| | - Mislav Glibo
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikola Serman
- Zagreb Emergency Medicine Service, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tihana Duic
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia,Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia,Department of Pathology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Krunoslav Kuna
- Department of Obstetrics and Gynecology, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia,Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Rabiee A, Gay MD, Shivapurkar N, Cao H, Nadella S, Smith CI, Lewis JH, Bansal S, Cheema A, Kwagyan J, Smith JP. Safety and Dosing Study of a Cholecystokinin Receptor Antagonist in Non-alcoholic Steatohepatitis. Clin Pharmacol Ther 2022; 112:1271-1279. [PMID: 36087237 PMCID: PMC9691615 DOI: 10.1002/cpt.2745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
High saturated fat diets have been shown to raise blood levels of cholecystokinin (CCK) and induce nonalcoholic steatohepatitis (NASH). CCK receptors are expressed on stellate cells and are responsible for hepatic fibrosis when activated. The purpose of this study was to test the safety and dose of a CCK receptor antagonist, proglumide, in human participants with NASH. An open-label single ascending dose study was conducted in 18 participants with clinical NASH based upon steatosis by liver ultrasound, elevated hepatic transaminases, and a component of the metabolic syndrome. Three separate cohorts (N = 6 each) were treated with oral proglumide for 12 weeks in a sequential ascending fashion with 800 (Cohort 1), 1,200 (Cohort 2), and 1,600 (Cohort 3) mg/day, respectively. Blood hematology, chemistries, proglumide levels, a biomarker panel for fibrosis, and symptom surveys were determined at baseline and every 4 weeks. Abdominal ultrasounds and transient elastography utilizing FibroScan were obtained at baseline and at Week 12. Proglumide was well tolerated at all doses without any serious adverse events. There was no change in body weight from baseline to Week 12. For Cohorts 1, 2, and 3, the median percent change in alanine aminotransferase was 8.42, -5.05, and -22.23 and median percent change in fibrosis score by FibroScan was 8.13, -5.44, and -28.87 (kPa), respectively. Hepatic steatosis as measured by controlled attenuation parameter score significantly decreased with proglumide, (P < 0.05). Blood microRNA biomarkers and serum 4-hydroxyproline were consistent with decreased fibrosis at Week 12 compared with baseline. These findings suggest proglumide exhibits anti-inflammatory and anti-fibrotic properties and this compound is well tolerated in participants with NASH.
Collapse
Affiliation(s)
- Atoosa Rabiee
- Department of MedicineWashington DC Veterans Affairs Medical CenterWashingtonDCUSA
| | - Martha D. Gay
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | | | - Hong Cao
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | - Sandeep Nadella
- Departments of Gastroenterology and Transplant SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - Coleman I. Smith
- Departments of Gastroenterology and Transplant SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - James H. Lewis
- Departments of Gastroenterology and Transplant SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - Sunil Bansal
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | - Amrita Cheema
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| | - John Kwagyan
- Department of StatisticsHoward UniversityWashingtonDCUSA
| | - Jill P. Smith
- Department of MedicineWashington DC Veterans Affairs Medical CenterWashingtonDCUSA
- Department of MedicineGeorgetown University Medical CenterWashingtonDCUSA
| |
Collapse
|
36
|
Kawahara A, Kanno K, Yonezawa S, Otani Y, Kobayashi T, Tazuma S, Ito M. Depletion of hepatic stellate cells inhibits hepatic steatosis in mice. J Gastroenterol Hepatol 2022; 37:1946-1954. [PMID: 35933582 DOI: 10.1111/jgh.15974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Hepatic stellate cells (HSCs), the main source of extracellular matrix in hepatic fibrogenesis, produce various cytokines, growth factors, and morphogenetic proteins. Among these, several factors are known to promote hepatocyte lipid accumulation, suggesting that HSCs can be efficient therapeutic targets for non-alcoholic steatohepatitis (NASH). This study aimed to investigate the effects of HSC depletion on the development of hepatic steatosis and fibrosis in a murine NASH model. METHODS C57BL/6 mice were treated with gliotoxin (GTX), an apoptosis inducer of activated HSCs under the feeding of a choline-deficient l-amino acid-defined high-fat diet for 4 weeks. For in vitro study, Hc3716 cells, immortalized human hepatocytes, were treated with fatty acids in the presence or absence of LX2, immortalized HSCs. RESULTS Choline-deficient l-amino acid-defined high-fat diet increased pronounced hepatic steatosis, which was attenuated by GTX treatment, together with a reduction in the number of activated HSCs. This change was associated with the downregulation of the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream genes, including adipocyte protein 2, cluster of differentiation 36 (CD36), and fatty acid transport protein 1, all of which increase the fatty acid uptake into hepatocytes. As expected, GTX treatment improved hepatic fibrosis. Co-culture of hepatocytes with HSCs enhanced intracellular lipid accumulation, together with the upregulation of PPARγ and CD36 protein expressions. CONCLUSIONS In addition to the improvement in hepatic fibrogenesis, depletion of HSCs had a favorable effect on hepatic lipid metabolism in a mouse NASH model, suggesting that HSCs are potentially efficient targets for the treatment of NASH.
Collapse
Affiliation(s)
- Akihiro Kawahara
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Keishi Kanno
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Sayaka Yonezawa
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuichiro Otani
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomoki Kobayashi
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- JA Onomichi General Hospital, Onomichi, Hiroshima, Japan
| | - Masanori Ito
- Department of General Internal Medicine, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
37
|
MicroRNA-34b-5p binds enhancer of zeste 2 to inhibit milk fat globule-EGF factor 8 expression, affecting liver fibrosis. J Physiol Biochem 2022; 78:885-895. [PMID: 36138295 DOI: 10.1007/s13105-022-00914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/18/2022] [Indexed: 10/14/2022]
Abstract
Activated hepatic stellate cells (HSCs) are considered the major drivers in the process of hepatic fibrosis. This study intends to explore the mechanism underlying microRNA (miR)-34b-5p effects over liver fibrosis through the enhancer of zeste 2 (EZH2)/milk fat globule-EGF factor 8 (MFGE8) axis in HSCs. A liver fibrosis model was generated by carbon tetrachloride (CCl4) in C57BL/6 J mice and subjected to histological examinations and detection of HSC activation and miR-34b-5p/EZH2/MFGE8 expression. Primary HSCs were treated with transforming growth factor (TGF)-β and tested for proliferation, activation, and expression of fibrosis-related factors. A dual luciferase reporter assay was performed for confirming the targeted relationship between miR-34b-5p and EZH2. Chromatin immunoprecipitation was used to measure EZH2 enrichment in the MFGE8 promoter region. We found that miR-34b-5p was lowly expressed in the CCl4-induced mouse model. Overexpression of miR-34b-5p suppressed both TGF-β-induced HSC proliferation and the expression of fibrosis-related factors and HSC activation markers. A dual luciferase assay showed a binding relationship between miR-34b-5p and EZH2. Overexpression of miR-34b-5p reduced TGF-β-induced HSC activation by inhibiting EZH2 to promote MFGE8 expression. Overexpression of miR-34b-5p inhibited liver fibrosis in vivo through the EZH2/MFGE8 axis. Conclusively, overexpressing miR-34b-5p reduced TGF-β-induced HSC activation by inhibiting EZH2 and thereby promoting MFGE8 expression, and inhibited liver fibrosis in vivo through the EZH2/MFGE8 axis.
Collapse
|
38
|
HajiEsmailPoor Z, Tabnak P, Ahmadzadeh B, Ebrahimi SS, Faal B, Mashatan N. Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions. Biomed Pharmacother 2022; 153:113507. [DOI: 10.1016/j.biopha.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/23/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022] Open
|
39
|
Wang T, Zhu J, Gao L, Wei M, Zhang D, Chen L, Wu H, Ma J, Li L, Zhang N, Wang Y, Xing Q, He L, Hong F, Qin S. Identification of circular RNA biomarkers for Pien Tze Huang treatment of CCl4‑induced liver fibrosis using RNA‑sequencing. Mol Med Rep 2022; 26:309. [PMID: 36004475 PMCID: PMC9437966 DOI: 10.3892/mmr.2022.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Pien Tze Huang (PZH), a common hepatoprotective Traditional Chinese Medicine that has been found to be an effective treatment for carbon tetrachloride-induced hepatic damage, including liver fibrosis. Circular RNAs (circRNAs) serve a crucial role in regulating gene expression levels via circRNA/micro (mi)RNA/mRNA networks in several human diseases and biological processes. However, whether circRNAs are involved in the underlying mechanism of the therapeutic effects of PZH on liver fibrosis remains unclear. Therefore, the aim of the present study was to investigate these effects using circRNA expression profiles from PZH-treated fibrotic livers in model mice. A case-control study on >59,476 circRNAs from CCl4-induced (control group, n=6) and PZH-treated (case group, n=6) mice was performed using circRNA sequencing in liver tissues. PZH treatment resulted in the differential expression of 91 circRNAs, including 58 upregulated and 33 downregulated circRNAs. Furthermore, the construction of competing endogenous networks also indicated that differentially expressed circRNAs acted as miRNA sponges. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of miRNA targets demonstrated that PZH-affected circRNAs were mainly involved in biological processes such as ‘positive regulation of fibroblast proliferation’, ‘cellular response to interleukin-1’ and ‘regulation of DNA-templated transcription in response to stress’ and in a number of important pathways, such as ‘TNF signaling pathway’, ‘PI3K-Akt signaling pathway’, ‘IL-17 signaling pathway’ and ‘MAPK signaling pathway’. To further validate the bioinformatics data, reverse transcription–quantitative PCR was performed on seven miRNA targets in a human hepatic stellate LX-2 cell model. The results suggested that seven of the miRNAs exhibited regulatory patterns that were consistent with those of the transcriptome sequencing results. Kaplan-Meier survival analysis demonstrated that the expression levels of dihydrodiol dehydrogenase and solute carrier family 7, member 11 gene were significantly associated with patient survival, 269 patients with liver hepatocellular carcinoma from The Cancer Genome Atlas database. To the best of our knowledge, this was the first study to provide evidence that PZH affects circRNA expression levels, which may serve important roles in PZH-treated fibrotic liver through the regulation of functional gene expression. In conclusion, the present study provided new insights into the mechanism underlying the pathogenesis of liver fibrosis and identified potential novel, efficient, therapeutic targets against liver injury.
Collapse
Affiliation(s)
- Ting Wang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jinhang Zhu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Longhui Gao
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Muyun Wei
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Di Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Luan Chen
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hao Wu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jingsong Ma
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lixing Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Na Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai 201102, P.R. China
| | - Lin He
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fei Hong
- Fujian Provincial Key Laboratory of Pien Tze Huang Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian 363000, P.R. China
| | - Shengying Qin
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
40
|
Feng Y, Li Y, Xu M, Meng H, Dai C, Yao Z, Lin N. Bone marrow mesenchymal stem cells inhibit hepatic fibrosis via the AABR07028795.2/rno-miR-667-5p axis. Stem Cell Res Ther 2022; 13:375. [PMID: 35902883 PMCID: PMC9331515 DOI: 10.1186/s13287-022-03069-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background The mechanism of bone marrow mesenchymal stem cells (BMSCs) in treating hepatic fibrosis remains unclear. Methods TGF-β1-induced hepatic stellate cell (HSC)-T6 and CCl4-induced hepatic fibrosis rats were treated with BMSCs. HSC-T6 cell activity was determined using the cell counting kit-8 assay, and the histology change was evaluated using hematoxylin and eosin and Masson staining. The expression of fibrosis markers was determined using real-time quantitative PCR, Western blotting, and immunocytochemistry. RNA sequencing (RNA-seq) was used to screen the lncRNAs involved in the effect of BMSCs in fibrosis, and the function of fibrosis-associated lncRNA in fibrosis histology change and fibrosis marker expression was investigated. The potential miRNA target of lncRNA was predicted using R software. The interaction between lncRNA and miRNA was verified using luciferase report system and RNA immunoprecipitation (RIP) in 293T and HSC-T6 cells. Results BMSC attenuated TGF-β1-induced HSC-T6 activation and suppressed the expression of fibrosis-associated gene (MMP2, Collagen I, and αSMA) expression at the transcription and translation levels. BMSC treatment also improves hepatic fibrosis in rats with CCl4-induced fibrosis by decreasing the expression of fibrosis-associated genes and suppressing collagen deposition in the liver. RNA-seq revealed that AABR07028795.2 (lnc-BIHAA1) was downregulated in the TGF-β1-induced HSC-T6 after treatment with BMSCs as compared with those in TGF-β1-induced HSC-T6, and subsequently, functional analysis showed that lnc-BIHAA1 plays a beneficial role in suppressing hepatic fibrosis. Luciferase activity assay and RIP revealed that lnc-BIHAA1 interacted with the miRNA, rno-miR-667-5p, functioning as a fibrosis phenotype suppressor in TGF-β1-induced HSC-T6. Moreover, overexpression of rno-miR-667-5p significantly reverses the effect of lnc-BIHAA1 on HSC-T6. Conclusions BMSC treatment suppresses hepatic fibrosis by downregulating the lnc-BIHAA1/rno-miR-667-5p signaling pathway in HSCs. Our results provide a scientific basis for establishing BMSCs as a biological treatment method for liver fibrosis.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Hongyu Meng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Cao Dai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
41
|
Whyte SS, Karns R, Min K, Cho J, Lee S, Lake C, Bondoc A, Yoon J, Shin S. Integrated analysis using ToppMiR uncovers altered miRNA- mRNA regulatory networks in pediatric hepatocellular carcinoma-A pilot study. Cancer Rep (Hoboken) 2022; 6:e1685. [PMID: 35859536 PMCID: PMC9875636 DOI: 10.1002/cnr2.1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pediatric hepatocellular carcinoma (HCC) is a group of liver cancers whose mechanisms behind their pathogenesis and progression are poorly understood. AIM We aimed to identify alterations in the expression of miRNAs and their putative target mRNAs in not only tumor tissues of patients with pediatric HCC but also in corresponding non-tumorous background livers by using liver tissues without underlying liver disease as a control. METHODS AND RESULTS We performed a small-scale miRNA and mRNA profiling of pediatric HCC (consisting of fibrolamellar carcinoma [FLC] and non-FLC HCC) and paired liver tissues to identify miRNAs whose expression levels differed significantly from control livers without underlying liver disease. ToppMiR was used to prioritize both miRNAs and their putative target mRNAs in a gene-annotation network, and the mRNA profile was used to refine the prioritization. Our analysis generated prioritized lists of miRNAs and mRNAs from the following three sets of analyses: (a) pediatric HCC versus control; (b) FLC versus control; and (c) corresponding non-tumorous background liver tissues from the same patients with pediatric HCC versus control. No liver disease liver tissues were used as the control group for all analyses. Many miRNAs whose expressions were deregulated in pediatric HCC were consistent with their roles in adult HCC and/or other non-hepatic cancers. Our gene ontology analysis of target mRNAs revealed enrichment of biological processes related to the sustenance and propagation of cancer and significant downregulation of metabolic processes. CONCLUSION Our pilot study indicates that alterations in miRNA-mRNA networks were detected in not only tumor tissues but also corresponding non-tumorous liver tissues from patients with pediatric HCC, suggesting multi-faceted roles of miRNAs in disease progression. Our results may lead to novel hypotheses for future large-scale studies.
Collapse
Affiliation(s)
- Senyo S. Whyte
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology & NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kyung‐Won Min
- Department of BiologyGangneung‐Wonju National UniversityGangneungRepublic of Korea
| | - Jung‐Hyun Cho
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Sanghoon Lee
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charissa Lake
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Je‐Hyun Yoon
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Soona Shin
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
42
|
Yang G, Li S, Jin J, Xuan Y, Ding L, Huang M, Liu J, Wang B, Lan T. Protective effects of Longhu Rendan on chronic liver injury and fibrosis in mice. LIVER RESEARCH (BEIJING, CHINA) 2022; 6:93-102. [PMID: 39958622 PMCID: PMC11791823 DOI: 10.1016/j.livres.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 02/16/2023]
Abstract
Background and aim Liver fibrosis resulting from persistent liver injury represents a major healthcare problem globally. Traditional Chinese medicine has played an essential role in the treatment of liver fibrosis in recent years. Thus, this study aims to assess the effect of Longhu Rendan (LHRD), a Chinese traditional patent medicine, on liver fibrosis and its potential mechanism. Methods The liver fibrosis in mice was induced via the intraperitoneal injection of carbon tetrachloride (CCl4) for 6 weeks or bile duct ligation for 15 days. Various methods were used to judge the therapeutic effect of LHRD. Results LHRD significantly suppressed the activity of serum index of abnormal liver function, liver cell apoptosis, and necrosis, attenuating liver injury. Moreover, LHRD treatment alleviated liver fibrotic features, such as the reduction of collagen deposition and hepatic stellate cell activation as well as profibrotic gene expression. Mechanistically, LHRD treatment inhibited nuclear transcription factor-kappa B signaling and inflammatory gene expression and diminished the production of reactive oxygen species and 4-hydroxynonenal, along with the downregulation of NADPH oxidase 4. Conclusions Overall, the present study demonstrates that LHRD ameliorates liver injury and fibrosis via the inhibition of inflammation and oxidative stress in mice, indicating that LHRD is a potential medicine for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengwen Li
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiahua Jin
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Yuanyuan Xuan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Liqin Ding
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Minxia Huang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jun Liu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Biye Wang
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Safran M, Masoud R, Sultan M, Tachlytski I, Chai Gadot C, Pery R, Balint-Lahat N, Pappo O, Buzaglo N, Ben-Ari Z. Extracellular Vesicular Transmission of miR-423-5p from HepG2 Cells Inhibits the Differentiation of Hepatic Stellate Cells. Cells 2022; 11:cells11101715. [PMID: 35626751 PMCID: PMC9139792 DOI: 10.3390/cells11101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Liver fibrosis (LF) is a major cause of morbidity and mortality worldwide. Hepatic stellate cells (HSCs) are the primary source of extracellular matrix in the liver and their activation is a central event in LF development. Extracellular vesicles (EVs) are intercellular communication agents, which play important roles in physiological processes in chronic liver diseases. The aim of this study was to examine the crosstalk between hepatocytes and HSCs mediated by hepatocyte-secreted EVs. EVs were purified from primary mouse hepatocytes, HepG2 cell lines, under normal or stressed conditions. The effect of EVs on primary HSCs (pHSCs) differentiation was evaluated by measuring of differentiation markers. In addition, their impact on the carbon tetrachloride (CCl4)-induced fibrosis mouse model was evaluated. The results demonstrated that HepG2-EVs regulate HSC differentiation and that under stress conditions, promoted pHSCs differentiation into the myofibroblast phenotype. The evaluation of miRNA sequences in the HepG2 secreted EVs demonstrated high levels of miR-423-5p. The examination of EV cargo following stress conditions identified a significant reduction of miR-423-5p in HepG2-EVs relative to HepG2-EVs under normal conditions. In addition, pHSCs transfected with miR-423-5p mimic and exhibit lower mRNA levels of alpha smooth muscle actin and Collagen type 1 alpha, and the mRNA expression level of genes targeted the family with sequence-similarity-3 (FAM3) and Monoacylglycerol lipase (Mgll). This study strengthened the hypothesis that EVs are involved in LF and that their cargo changes in stress conditions. In addition, miR-423-5p was shown to be involved in HSCs differentiation and hence, fibrosis development.
Collapse
Affiliation(s)
- Michal Safran
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Rula Masoud
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Maya Sultan
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Irena Tachlytski
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Chofit Chai Gadot
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Ron Pery
- Department of General Surgery, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel;
| | - Nora Balint-Lahat
- Pathology Department, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (N.B.-L.); (O.P.)
| | - Orit Pappo
- Pathology Department, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (N.B.-L.); (O.P.)
| | - Nahum Buzaglo
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
| | - Ziv Ben-Ari
- Liver Diseases Center, Chaim Sheba Medical Center Tel-Hashomer, Ramat-Gan 5262000, Israel; (M.S.); (R.M.); (M.S.); (I.T.); (C.C.G.); (N.B.)
- Pathology Sackler School of Medicine, Tel Aviv University, Tel-Aviv 6329302, Israel
- Correspondence: ; Tel.: +972-3-5307180
| |
Collapse
|
44
|
Lu J, Zhang Y, Wang YZ, Li YY, Wang R, Zhong YJ, Chen L, Song MW, Shi L, Li L, Li YW. Caffeic acid dimethyl ether alleviates alcohol-induced hepatic steatosis via microRNA-378b-mediated CaMKK2-AMPK pathway. Bioengineered 2022; 13:11122-11136. [PMID: 35481488 PMCID: PMC9208468 DOI: 10.1080/21655979.2022.2060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Alcoholic liver disease (ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Caffeic Acid Dimethyl Ether (CADE) significantly inhibits alcohol-induced hepatic steatosis in vivo through AMP-activated protein kinase (AMPK) pathway, but its in-depth mechanism remains unclear. This work aimed to clarify further mechanism of CADE in improving hepatic lipid accumulation in ALD through the microRNA-378b (miR-378b)-mediated Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-AMPK signaling pathway. Here, we reported that the hepatic or serum triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT), and aspartate transaminase (AST) levels were sharply escalated by ethanol while prominently decreased by CADE. Ethanol sharply up-regulated miR-378b expression while CADE effectively prevented the elevation of miR-378b in vivo. And treatment of CADE surely increased mRNA and protein expression of CaMKK2 as a kinase of AMPK and reduced lipid accumulation in the livers of alcohol-fed C57BL/6 mice. MiR-378b escalation exacerbated hepatic steatosis and inhibited CaMKK2-AMPK signaling, while miR-378b deficiency alleviated lipid accumulation and activated the CaMKK2 cascade. Furthermore, CADE alleviated the lipid deposition and reversed the disorder of CaMKK2-AMPK signaling pathway induced by miR-378b over-expression. However, knockdown of miR-378b eliminated the beneficial effect of CADE on lipid metabolism. In brief, our results showed that CADE ultimately improved hepatic lipid deposition by regulating the CaMKK2-AMPK signaling pathway through miR-378b.
Collapse
Affiliation(s)
- Jun Lu
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yan Zhang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Ying-Zhao Wang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yuan-Yuan Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Rui Wang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yu-Juan Zhong
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Li Chen
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Meng-Wei Song
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Lin Shi
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Li Li
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yong-Wen Li
- College of Pharmacy, Guilin Medical University, Guilin, China.,Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin, China
| |
Collapse
|
45
|
Tan S, Chen W, Kong G, Wei L. ASPM May be Related to the Malignant Progression of Hepatitis B and is Associated With a Poor Prognosis of Hepatocellular Carcinoma. FRONTIERS IN BIOINFORMATICS 2022; 2:871027. [PMID: 36304312 PMCID: PMC9580902 DOI: 10.3389/fbinf.2022.871027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Hepatitis B virus (HBV) is a causative agent of hepatocellular carcinoma (HCC). Until now, the mechanism behind the progress of hepatitis B fibrosis to HCC remains largely unknown. This study aims to examine the candidate biomarkers and pathways involved in HBV-associated HCC. Methods: Gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the GEO2R tool after which functional enrichment analysis, protein-protein interaction (PPI) analysis, genetic alteration analysis, prognostic analysis, immune infiltration analysis, co-expression genes prediction, and miRNA-gene network construction, and pathway correlation analysis were performed. Results: 22 hub genes were identified, which were all highly expressed in HCC, and overexpression of these genes was all associated with significantly worse survival in HCC patients. More significantly, ASPM also showed increased expression levels in non-tumor tissues with advanced liver fibrosis. With the progression of liver fibrosis and the closer tumor center of HCC, the higher expression of ASPM was identified. ASPM was considered to be the most promising biomarker because it also showed the highest genetic alteration frequency among the hub genes and the expression level of ASPM in HBV (+) HCC tissues was significantly higher than that in HBV (-) HCC tissues. Also, the infiltration levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells were all positively correlated with the expression of ASPM. Conclusion: These findings may help in the development of strategies and candidate drugs for the treatment of HBV-related HCC and improve the effectiveness of personalized treatment in the future. ASPM was upregulated in both hepatitis B cirrhosis and HCC and could be a potential predicting biomarker.
Collapse
|
46
|
Habash NW, Sehrawat TS, Shah VH, Cao S. Epigenetics of alcohol-related liver diseases. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100466. [PMID: 35462859 PMCID: PMC9018389 DOI: 10.1016/j.jhepr.2022.100466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.
Collapse
Key Words
- 3C, chromosome conformation capture
- 4C, chromosome conformation capture-on-chip
- AH, alcohol-related hepatitis
- ARLD, alcohol-related liver disease
- ASH, alcohol-related steatohepatitis
- ATAC, assay for transposase-accessible chromatin
- Acetylation
- Alcohol liver disease
- BET, bromodomain and extraterminal motif
- BETi, BET inhibitor
- BRD, bromodomain
- CCL2, C-C motif chemokine ligand 2
- CTCF, CCCTC-binding factor
- CXCL, C-X-C motif chemokine ligand
- Chromatin architecture
- Computational biology
- DNA methylation
- DNMT, DNA methyltransferase
- E-P, enhancer-promoter
- Epidrugs
- Epigenetics
- FKBP5, FK506-binding protein 5
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HIF1α, hypoxia inducible factor-1α
- HMGB1, high-mobility group box protein 1
- HNF4α, hepatocyte nuclear factor 4α
- HSC, hepatic stellate cell
- Hi-C, chromosome capture followed by high-throughput sequencing
- Histones
- IL, interleukin
- LPS, lipopolysaccharide
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MECP2, methyl-CpG binding protein 2
- NAFLD, non-alcohol-related fatty liver disease
- PPARG, peroxisome proliferator activated receptor-γ
- SAA, salvianolic acid A
- SIRT, sirtuin
- SREBPs, sterol regulatory element-binding proteins
- Single cell epigenome
- TAD, topologically associating domain
- TEAD, TEA domain transcription factor
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- YAP, Yes-associated protein
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
Affiliation(s)
| | | | - Vijay H. Shah
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| | - Sheng Cao
- Corresponding authors. Address: Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. Tel. 507-255-6028, fax: 507-255-6318.
| |
Collapse
|
47
|
Johnson K, Leary PJ, Govaere O, Barter MJ, Charlton SH, Cockell SJ, Tiniakos D, Zatorska M, Bedossa P, Brosnan MJ, Cobbold JF, Ekstedt M, Aithal GP, Clément K, Schattenberg JM, Boursier J, Ratziu V, Bugianesi E, Anstee QM, Daly AK. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Rep 2022; 4:100409. [PMID: 35072021 PMCID: PMC8762473 DOI: 10.1016/j.jhepr.2021.100409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND & AIMS Serum microRNA (miRNA) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages. METHODS We profiled 2,083 serum miRNAs in a discovery cohort (183 cases with NAFLD representing the complete NAFLD spectrum and 10 population controls). miRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional cases with NAFLD and 15 population controls by quantitative reverse transcriptase PCR. RESULTS Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages, but miR-193a-5p consistently showed increased levels in all comparisons. Relative to NAFL/non-alcoholic steatohepatitis (NASH) with mild fibrosis (stage 0/1), 3 miRNAs (miR-193a-5p, miR-378d, and miR378d) were increased in cases with NASH and clinically significant fibrosis (stages 2-4), 7 (miR193a-5p, miR-378d, miR-378e, miR-320b, miR-320c, miR-320d, and miR-320e) increased in cases with NAFLD activity score (NAS) 5-8 compared with lower NAS, and 3 (miR-193a-5p, miR-378d, and miR-378e) increased but 1 (miR-19b-3p) decreased in steatosis, activity, and fibrosis (SAF) activity score 2-4 compared with lower SAF activity. The significant findings for miR-193a-5p were replicated in the additional cohort with NAFLD. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n = 80); liver GPX8 levels correlated positively with serum miR-193a-5p. CONCLUSIONS Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD. LAY SUMMARY MicroRNAs (miRNAs) are small pieces of nucleic acid that may turn expression of genes on or off. These molecules can be detected in the blood circulation, and their levels in blood may change in liver disease including non-alcoholic fatty liver disease (NAFLD). To see if we could detect specific miRNA associated with advanced stages of NAFLD, we carried out miRNA sequencing in a group of 183 patients with NAFLD of varying severity together with 10 population controls. We found that a number of miRNAs showed changes, mainly increases, in serum levels but that 1 particular miRNA miR-193a-5p consistently increased. We confirmed this increase in a second group of cases with NAFLD. Measuring this miRNA in a blood sample may be a useful way to determine whether a patient has advanced NAFLD without an invasive liver biopsy.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUROC, area under the receiver operating characteristic
- Biomarker
- CPM, counts per million
- Ct, cycle threshold
- ER, endoplasmic reticulum
- FC, fold change
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- GTEx, Genotype-Tissue Expression
- MicroRNA
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, non-alcoholic steatohepatitis
- Non-alcoholic fatty liver disease
- PCA, principal component analysis
- SAF, steatosis–activity–fibrosis
- Sequencing
- TGF-β, transforming growth factor-beta
- cDNA, complementary DNA
- logFC, log2 fold change
- miRNA, microRNA
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Katherine Johnson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter J. Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J. Barter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah H. Charlton
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon J. Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michalina Zatorska
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pierre Bedossa
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M. Julia Brosnan
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Jeremy F. Cobbold
- Oxford Liver Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Mattias Ekstedt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Guruprasad P. Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, Pitié Salpêtrière Hospital, Paris, France
- Assistance Publique – Hopitaux de Paris, Paris, France
| | - Jörn M. Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center of Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jerome Boursier
- Hepatology Department, Angers University Hospital, Angers, France
| | - Vlad Ratziu
- Institute of Cardiometabolism and Nutrition, Pitié Salpêtrière Hospital, Paris, France
- Assistance Publique – Hopitaux de Paris, Paris, France
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Ann K. Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Lee C, Kim J, Han J, Oh D, Kim M, Jeong H, Kim TJ, Kim SW, Kim JN, Seo YS, Suzuki A, Kim JH, Jung Y. Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nat Commun 2022; 13:578. [PMID: 35102146 PMCID: PMC8803937 DOI: 10.1038/s41467-022-28138-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an important health concern worldwide and progresses into nonalcoholic steatohepatitis (NASH). Although prevalence and severity of NAFLD/NASH are higher in men than premenopausal women, it remains unclear how sex affects NAFLD/NASH pathophysiology. Formyl peptide receptor 2 (FPR2) modulates inflammatory responses in several organs; however, its role in the liver is unknown. Here we show that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH. NASH-like liver injury was induced in both sexes during choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) feeding, but compared with females, male mice had more severe hepatic damage. Fpr2 was more highly expressed in hepatocytes and healthy livers from females than males, and FPR2 deletion exacerbated liver damage in CDAHFD-fed female mice. Estradiol induced Fpr2 expression, which protected hepatocytes and the liver from damage. In conclusion, our results demonstrate that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH, suggesting a novel therapeutic target for NAFLD/NASH.
Collapse
Affiliation(s)
- Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jieun Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Dayoung Oh
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Minju Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Jeong Nam Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Ayako Suzuki
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC, USA
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
49
|
MicroRNA-494-3p prevents liver fibrosis and attenuates hepatic stellate cell activation by inhibiting proliferation and inducing apoptosis through targeting TRAF3. Ann Hepatol 2022; 23:100305. [PMID: 33434689 DOI: 10.1016/j.aohep.2021.100305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Alcoholic hepatitis (AH) is characterized by high morbidity and mortality. MicroRNA-494-3p is possibly involved in the regulation of cancers, but its role in AH has been rarely studied. MATERIALS AND METHODS AH mice model and primarily cultured mice hepatic stellate cells (HSCs) model were constructed. Levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were analyzed by ELISA. Expressions of miRNAs, HSC activation-related proteins and fibrosis-related protein were analyzed by qRT-PCR and Western blot. Cell counting kit, colony formation and flow cytometry assays were used to detect cell viability, proliferation and apoptosis, respectively. The relationship between TNF receptor-associated factor 3 (TRAF3) and miR-494-3p was predicted and verified by TargetScan and dual-luciferase assay, respectively. Results of the above experiments were verified by rescue experiments using TRAF3. RESULTS Liver damage and miRNA expression were observed in AH mice, and AST and ALT levels were increased in serum of AH mice. MiR-494-3p was reduced in AH liver tissues, and it decreased the levels of α-SMA and fibrosis-related proteins. HSCs were isolated, and activating HSCs or upregulating miR-494-3p had a regulatory effect on the levels of miR-494-3p, HSC activation-related proteins and fibrosis-related proteins as well as cell viability, proliferation and apoptosis. In addition, miR-494-3p targeted TRAF3 and inhibited TRAF3 expression, while overexpressed TRAF3 promoted TRAF3 expression and rescued the regulatory effect of miR-494-3p on the levels of related proteins as well as cell viability, proliferation and apoptosis. CONCLUSIONS This study provided a novel mechanistic comprehension of the anti-fibrotic effect of miR-494-3p.
Collapse
|
50
|
Song M, Yang C. MiRNAs in liver fibrosis: new targets and opportunities for therapy. Microrna 2022:363-372. [DOI: 10.1016/b978-0-323-89774-7.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|