1
|
Rao R, Yang H, Qiu K, Xu M, Liu H, Shen J, Wang W, Nie R, Chen H, Jiang H. Mechanical confinement triggers spreading and migration of immobile cells by deforming nucleus. Biomaterials 2025; 320:123209. [PMID: 40049023 DOI: 10.1016/j.biomaterials.2025.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/18/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
Cells in vivo are often subject to the challenge of spatial confinement from neighboring cells and extracellular matrix (ECM) that are usually adhesive and deformable. Here, we showed that confinement makes initially quiescent round cells on soft adhesive substrates spread and migrate, exhibiting a phenotype similar to that of cells on unconfined stiff substrates. Interestingly, the confinement-induced cell spreading and migration exist widely in many cell types, and depend on formins, cell contractility and endonuclear YAP-TEAD interaction. Finally, we demonstrated the nucleus is a mechanosensor independent of ECM rigidity, and its flattening alone is sufficient to trigger YAP nuclear translocation, assembly of focal adhesions and stress fibers, cell spreading and migration. Thus, our findings revealed a new inside-out mechanism through which the nucleus directly detects and responds to external mechanical confinement, and could have important implications for cell migration in crowded micro-environments during cancer metastasis, wound healing and embryonic development.
Collapse
Affiliation(s)
- Ran Rao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China; Current Address: Department of Pathology, the First Affilliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, China
| | - Haoxiang Yang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kailong Qiu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Min Xu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hao Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jinghao Shen
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Weihao Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Runjie Nie
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Huan Chen
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hongyuan Jiang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
2
|
Wang Y, Shi P, Liu G, Chen W, Wang YJ, Hu Y, Yang A, Wei T, Chen YC, Liang L, Liu Z, Liu YJ, Wu C. Espin enhances confined cell migration by promoting filopodia formation and contributes to cancer metastasis. EMBO Rep 2025:10.1038/s44319-025-00437-1. [PMID: 40185977 DOI: 10.1038/s44319-025-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Genes regulating the finger-like cellular protrusions-filopodia have long been implicated in cancer metastasis. However, depleting the flat lamellipodia but retaining filopodia drastically hampers cell migration on spread surface, obscuring the role of filopodia in cell motility. It has been noticed recently that cells under confinement may employ distinct migratory machineries. However, the regulating factors have mainly been focused on cell blebbing, nuclear deformation and cell rear contractility, without much emphasis on cell protrusions and even less on filopodia. Here, by micropore-based screening, we identified espin as an active regulator for confined migration and that its overexpression was associated with metastasis. In comparison to fascin, espin showed stronger actin bundling in vitro and induced shorter and thicker filopodia in cells. Combining the imaging-compatible microchannels and DNA-based tension probes, we uncovered that espin overexpression induced excessive filopodia at the leading edge and along the sides, exerting force for confined migration. Our results demonstrate an important role for filopodia and the regulating protein-espin in confined cell migration and shed new light on cytoskeletal mechanisms underlying metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Peng Shi
- Cancer Institute, Suzhou Medical College, Soochow University, 215000, Suzhou, Jiangsu, China.
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Yiping Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Ao Yang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China.
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
3
|
Allan C, Chaudhuri O. Regulation of cell migration by extracellular matrix mechanics at a glance. J Cell Sci 2025; 138:jcs263574. [PMID: 40183462 PMCID: PMC11993253 DOI: 10.1242/jcs.263574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cell migration occurs throughout development, tissue homeostasis and regeneration, as well as in diseases such as cancer. Cells migrate along two-dimensional (2D) surfaces or interfaces, within microtracks, or in confining three-dimensional (3D) extracellular matrices. Although the basic mechanisms of 2D migration are known, recent studies have elucidated unexpected migration behaviors associated with more complex substrates and have provided insights into their underlying molecular mechanisms. Studies using engineered biomaterials for 3D culture and microfabricated channels to replicate cell confinement observed in vivo have revealed distinct modes of migration. Across these contexts, the mechanical features of the surrounding microenvironment have emerged as major regulators of migration. In this Cell Science at a Glance article and the accompanying poster, we describe physiological contexts wherein 2D and 3D cell migration are essential, report how mechanical properties of the microenvironment regulate individual and collective cell migration, and review the mechanisms mediating these diverse modes of cell migration.
Collapse
Affiliation(s)
- Cole Allan
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
McKee B, Abolghasemzade S, Wang TC, Harsh K, Kaur S, Blanchard R, Menon KB, Mohajeri M, Dickinson RB, Lele TP. Excess surface area of the nuclear lamina enables unhindered cell migration through constrictions. SCIENCE ADVANCES 2025; 11:eads6573. [PMID: 40153505 PMCID: PMC11952090 DOI: 10.1126/sciadv.ads6573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Cell migration through narrow spaces is essential in wound healing and metastatic spread of cancer. Cells must deform the large nucleus to fit through constricting channels. To understand the role of the nuclear lamina in limiting cell migration through constrictions, we imaged it in cells migrating through periodic constricting channels in a microdevice. The lamina underwent cycles of wrinkling and smoothing as the nucleus changed from an irregular, rounded shape in the wide channel regions between constrictions to a smooth, hourglass shape as the nucleus passed through the center of a constriction. The laminar surface area of nuclei within constrictions was measured to be at or above the computationally predicted threshold area for the nuclear volume. The channels excluded control nuclei that had insufficient excess surface area, but not nuclei lacking lamin A/C. Thus, the excess surface area of the nuclear lamina enables cell migration through constricting channels.
Collapse
Affiliation(s)
- Brendan McKee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ting-Ching Wang
- McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kajol Harsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Simran Kaur
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ryan Blanchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Krishna Belraj Menon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Richard B. Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M University School of Engineering Medicine, 1020 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
5
|
Nakazawa N, Grenci G, Kameo Y, Takeda N, Sawada T, Kurisu J, Zhang Z, Toma K, Adachi T, Nonomura K, Kengaku M. PIEZO1-dependent mode switch of neuronal migration in heterogeneous microenvironments in the developing brain. Cell Rep 2025; 44:115405. [PMID: 40053456 DOI: 10.1016/j.celrep.2025.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
The migration of newborn neurons is essential for brain morphogenesis and circuit formation, yet controversy exists regarding how neurons generate the driving force against strong mechanical stresses in crowded neural tissues. We found that cerebellar granule neurons employ a mechanosensing mechanism to switch the driving forces to maneuver in irregular brain tissue. In two-dimensional (2D) cultures, actomyosin is enriched in the leading process, exerting traction force on the cell soma. In tissue or 3D confinement, however, actomyosin concentrates at the posterior cell membrane, generating contractile forces that assist passage through narrow spaces, working alongside the traction force in the leading process. The 3D migration is initiated by the activation of a mechanosensitive channel, PIEZO1. PIEZO1-induced calcium influx in the soma triggers the PKC-ezrin cascade, which recruits actomyosin and transmits its contractile force to the posterior plasma membrane. Thus, migrating neurons adapt their motility modes in distinct extracellular environments in the developing brain.
Collapse
Affiliation(s)
- Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan.
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Biomedical Engineering Department, National University of Singapore, Singapore 117583, Singapore
| | - Yoshitaka Kameo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan; College of Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - Noriko Takeda
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Sawada
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Zhejing Zhang
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi Toma
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taiji Adachi
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan; Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Keiko Nonomura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan; National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Faure LM, Venturini V, Roca-Cusachs P. Cell compression - relevance, mechanotransduction mechanisms and tools. J Cell Sci 2025; 138:jcs263704. [PMID: 40145202 DOI: 10.1242/jcs.263704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
From border cell migration during Drosophila embryogenesis to solid stresses inside tumors, cells are often compressed during physiological and pathological processes, triggering major cell responses. Cell compression can be observed in vivo but also controlled in vitro through tools such as micro-channels or planar confinement assays. Such tools have recently become commercially available, allowing a broad research community to tackle the role of cell compression in a variety of contexts. This has led to the discovery of conserved compression-triggered migration modes, cell fate determinants and mechanosensitive pathways, among others. In this Review, we will first address the different ways in which cells can be compressed and their biological contexts. Then, we will discuss the distinct mechanosensing and mechanotransducing pathways that cells activate in response to compression. Finally, we will describe the different in vitro systems that have been engineered to compress cells.
Collapse
Affiliation(s)
- Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
7
|
d'Humières J, Wang L, Sherwood DR, Plastino J. The actin protrusion deforms the nucleus during invasion through basement membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643012. [PMID: 40161654 PMCID: PMC11952552 DOI: 10.1101/2025.03.13.643012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell invasion through basement membrane (BM) extracellular matrix barriers is important during organ development, immune cell trafficking, and cancer metastasis. Here we study an invasion event, anchor cell (AC) invasion, which occurs during Caenorhabditis elegans development. The actin protrusion of the invading AC mechanically displaces the BM, but it is not known how forces are balanced to prevent the growing actin protrusion from pushing itself backward when confronted with a load. Here we observe that the distal end of the actin protrusion in the invading AC abuts the nucleus and deforms it. Further we show that there is a correlation between invasion efficiency and nuclear deformation: under mutant conditions where invasion is reduced, nuclear deformation is diminished. However, nuclear deformation and invasion are unaffected by interfering with the molecular connections between the actin and microtubule cytoskeletons and the nuclear envelope. Together these data suggest that the AC actin protrusion braces against the nucleus to apply forces during invasion, but that nucleus-cytoskeleton molecular connections are not necessary for this to occur. SUMMARY STATEMENT Actin-based membrane protrusions in invading cells apply force to basement membrane (BM) barriers to help break through them. In cell motility in 2D, the actin protrusion uses cell-substrate adhesions for leverage to push forward against obstacles in what is known as the molecular clutch. The situation is different in 3D invasion, where the adhesive substrate is being effaced by the invading cell. It is not clear, in this case, why the growing actin protrusion doesn't push itself backwards instead of extending forwards through the BM. The data presented here provide evidence that the distal end of the invasive actin protrusion is braced against the stiff, immobile nucleus, allowing growth of the proximal end to apply force on the BM.
Collapse
|
8
|
Sentoku M, Endo M, Takei M, Hanamoto W, Yasuda K. Geometrical constraint change determines organized collective migration of follower cells. Sci Rep 2025; 15:8199. [PMID: 40065059 PMCID: PMC11894221 DOI: 10.1038/s41598-025-93283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Spatial confinement plays a critical role in shaping collective cell migration, particularly in regulating interactions between leader and follower cells and among follower cells themselves. However, how changes in confinement geometry influence migration dynamics and cell-to-cell interactions remains poorly understood. This study leverages a novel microchannel design to systematically dissect the interplay between spatial confinement and collective cell behavior in endothelial-like cells (MILE SVEN 1). In a single-cell-wide T-shaped branching structure, rear cells selected alternate pathways, avoiding direct alignment with preceding cells. This highlights how spatial geometry mediates follower-follower interactions by encouraging dynamic rearrangements within the cell train. Ladder-like branching structures with consistent total pathway widths showed that dividing and reassembling cell trains had minimal impact on migration velocity, provided no compression or expansion occurred. Wide-narrow-wide patterns demonstrated distinct effects: stepwise transitions accelerated cells in narrow sections, increasing directional alignment driven by spatial restriction, followed by decreased alignment in wider regions. Gradual transitions maintained stable alignment and minimized disruptions, emphasizing the importance of smooth geometrical transitions in preserving robust collective behavior. These findings reveal how spatial confinement integrates follower-follower interactions and dynamic realignment. By linking geometric transitions to collective cell dynamics, our study advances the understanding of physical guidance mechanisms and offers a platform for investigating spatial influences on migrating cellular systems.
Collapse
Affiliation(s)
- Mitsuru Sentoku
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Masaharu Endo
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Miki Takei
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Wataru Hanamoto
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
9
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2025; 82:111-129. [PMID: 39056295 PMCID: PMC11762371 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
10
|
Karling T, Weavers H. Immune cells adapt to confined environments in vivo to optimise nuclear plasticity for migration. EMBO Rep 2025; 26:1238-1268. [PMID: 39915297 PMCID: PMC11894099 DOI: 10.1038/s44319-025-00381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 03/12/2025] Open
Abstract
Cells navigating in complex 3D microenvironments frequently encounter narrow spaces that physically challenge migration. While in vitro studies identified nuclear stiffness as a key rate-limiting factor governing the movement of many cell types through artificial constraints, how cells migrating in vivo respond dynamically to confinement imposed by local tissue architecture, and whether these encounters trigger molecular adaptations, is unclear. Here, we establish an innovative in vivo model for mechanistic analysis of nuclear plasticity as Drosophila immune cells transition into increasingly confined microenvironments. Integrating live in vivo imaging with molecular genetic analyses, we demonstrate how rapid molecular adaptation upon environmental confinement (including fine-tuning of the nuclear lamina) primes leukocytes for enhanced nuclear deformation while curbing damage (including rupture and micronucleation), ultimately accelerating movement through complex tissues. We find nuclear dynamics in vivo are further impacted by large organelles (phagosomes) and the plasticity of neighbouring cells, which themselves deform during leukocyte passage. The biomechanics of cell migration in vivo are thus shaped both by factors intrinsic to individual immune cells and the malleability of the surrounding microenvironment.
Collapse
Affiliation(s)
- Tua Karling
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
11
|
Agrawal A, Javanmardi Y, Watson SA, Serwinski B, Djordjevic B, Li W, Aref AR, Jenkins RW, Moeendarbary E. Mechanical signatures in cancer metastasis. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:3. [PMID: 39917412 PMCID: PMC11794153 DOI: 10.1038/s44341-024-00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/20/2024] [Indexed: 02/09/2025]
Abstract
The cancer metastatic cascade includes a series of mechanical barrier-crossing events, involving the physical movement of cancer cells from their primary location to a distant organ. This review describes the physical changes that influence tumour proliferation, progression, and metastasis. We identify potential mechanical signatures at every step of the metastatic cascade and discuss some latest mechanobiology-based therapeutic interventions to highlight the importance of interdisciplinary approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Mechanical Engineering, University College London, London, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, UK
| | - Sara A. Watson
- Department of Mechanical Engineering, University College London, London, UK
- Division of Biosciences, University College London, London, UK
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, UK
- Northeastern University London, London, UK
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, UK
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Amir R. Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
12
|
Li K, Jan YN. Experimental tools and emerging principles of organellar mechanotransduction. Trends Cell Biol 2025:S0962-8924(24)00279-4. [PMID: 39828483 DOI: 10.1016/j.tcb.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Mechanotransduction is the process by which cells detect mechanical forces and convert them into biochemical or electrical signals. This process occurs across various cellular compartments, including the plasma membrane, cytoskeleton, and intracellular organelles. While research has focused mainly on force sensing at the plasma membrane, the mechanisms and significance of intracellular mechanotransduction are just beginning to be understood. This review summarizes current techniques for studying organellar mechanobiology, and highlights advances in our understanding of the mechanosensitive events occurring in organelles such as the endoplasmic reticulum (ER), Golgi apparatus, and endolysosomes. Additionally, some open questions and promising directions are identified for future research.
Collapse
Affiliation(s)
- Kai Li
- Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, 100069, China; School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
You Y, Du Z, Tian Z, Li S, Yu F, Xiao M, He Y, Wang Y. Tumor-associated macrophages drive heterogenetic CD10 High cancer stem cells to implement tumor-associated neutrophils reprogramming in oral squamous cell carcinoma. Int J Biol Sci 2025; 21:1110-1126. [PMID: 39897030 PMCID: PMC11781160 DOI: 10.7150/ijbs.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) widely participate in the malignant progression in cancer. Previously, we have demonstrated that M1-like TAMs cascaded a stem-like phenotype of oral squamous cell carcinoma (OSCC). Yet, the underlying mechanisms still need to be demonstrated for the regulation of TAMs on cancer stem cells (CSCs) in OSCC. In this study, we investigated a group of CSCs with increased expression of cluster differentiation 10 (CD10), which acted as a mediator in the interaction network between TAMs and tumor-associated neutrophils (TANs) in OSCC. The results showed a significant association between TAMs infiltrations and increased expression of CD10 among all the CSCs-related molecules in OSCC. Then, we validated that OSCC cells with high CD10 expression possessed increased CSCs characteristics. TAMs could drive the heterogenetic CD10High CSCs by activating the IL6/STAT3/CD10 pathway. Furthermore, CD10High CSCs could recruit and reprogram tumor-associated neutrophils (TANs) in an immunosuppressive state by secreting S100A8/A9 in OSCC. These finding indicated that CD10High CSCs played great roles in signaling crosstalk between TAMs and TANs in OSCC, by which infiltrated TAMs drive CD 10High CSCs to recruit and reprogram TANs in an immunosuppressive state. Herein, we managed to demonstrate that TAMs could directly regulate a heterogenetic cluster of CSCs with high CD10 expression, and CD10High CSCs could recruit and reprogram TANs in OSCC. The novel crosstalk among OSCC-TAMs-CD10High CSCs-TANs might bring new prospects for improving the treatment strategies for OSCC patients.
Collapse
Affiliation(s)
- Yuanhe You
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhong Du
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhuowei Tian
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shunshun Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Fan Yu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Meng Xiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yue He
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yanan Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
14
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
15
|
Wang TC, Abolghasemzade S, McKee BP, Singh I, Pendyala K, Mohajeri M, Patel H, Shaji A, Kersey AL, Harsh K, Kaur S, Dollahon CR, Chukkapalli S, Lele PP, Conway DE, Gaharwar AK, Dickinson RB, Lele TP. Matrix stiffness drives drop like nuclear deformation and lamin A/C tension-dependent YAP nuclear localization. Nat Commun 2024; 15:10151. [PMID: 39578439 PMCID: PMC11584751 DOI: 10.1038/s41467-024-54577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Extracellular matrix (ECM) stiffness influences cancer cell fate by altering gene expression. Previous studies suggest that stiffness-induced nuclear deformation may regulate gene expression through YAP nuclear localization. We investigated the role of the nuclear lamina in this process. We show that the nuclear lamina exhibits mechanical threshold behavior: once unwrinkled, the nuclear lamina is inextensible. A computational model predicts that the unwrinkled lamina is under tension, which is confirmed using a lamin tension sensor. Laminar unwrinkling is caused by nuclear flattening during cell spreading on stiff ECM. Knockdown of lamin A/C eliminates nuclear surface tension and decreases nuclear YAP localization. These findings show that nuclear deformation in cells conforms to the nuclear drop model and reveal a role for lamin A/C tension in controlling YAP localization in cancer cells.
Collapse
Affiliation(s)
- Ting-Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Brendan P McKee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kavya Pendyala
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakansha Shaji
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Anna L Kersey
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kajol Harsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Simran Kaur
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Christina R Dollahon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sasanka Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
16
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Sawant ND, Tatke PA, Desai ND. Systematic Approach in the Development of Chitosan Functionalized Iloperidone Nanoemulsions for Transnasal Delivery, In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:247. [PMID: 39433704 DOI: 10.1208/s12249-024-02964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Iloperidone, a second-generation USFDA approved antipsychotic and BCS class II drug shows poor oral bioavailability of 28%. The present research deals with optimization of transnasal nanoemulsions of Iloperidone using Design Expert (Version 11) and further surface functionalization with chitosan for potentiating nose to brain delivery. Chitosan functionalized transnasal Iloperidone nanoemulsions were developed using oleic acid, charge inducer, Tween 80, Transcutol HP and chitosan using ultrasonication technique and evaluated. Droplet size, polydispersity index and zeta potential of Iloperidone nanoemulsions was found to be 173 ± 0.5 nm, 0.413 ± 0.2 and - 22.5 ± 0.1 mV while that of chitosan functionalized Iloperidone nanoemulsions was 146.4 ± 0.5 nm, 0.291 ± 0.02 and + 23.6 ± 0.3 mV respectively. Ninhydrin assay, TEM and FTIR studies confirmed surface functionalization of Iloperidone nanoemulsion droplets with chitosan. In vitro release of Iloperidone from nanoemulsions and chitosan functionalized nanoemulsions was 90.41 ± 2.1% and 72.02 ± 0.21% while ex vivo permeation of Iloperidone across goat nasal mucosa was 1270.58 ± 0.023 μg/cm2 and 1096.13 ± 0.043 μg/cm2 respectively at the end of 8 h. Studies in RPMI 2650 nasal and Neuro2A brain cell line lines indicated safety of chitosan functionalized transnasal Iloperidone nanoemulsions. Studies in Wistar rats showed increased cataleptic effects, reduced cognitive impairment and anxiety-related behaviour with greater brain accumulation indicating promising potential of this approach in nose to brain drug delivery.
Collapse
Affiliation(s)
- Niserga D Sawant
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India
| | - Pratima A Tatke
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India
| | - Namita D Desai
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India.
| |
Collapse
|
18
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Li J, Bennin D, Robertson T, Juang TD, Ahmed A, Li C, Huttenlocher A, Beebe D. Confinement by liquid-liquid interface replicates in vivo neutrophil deformations and elicits bleb based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544898. [PMID: 38106211 PMCID: PMC10723256 DOI: 10.1101/2023.06.14.544898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leukocytes navigate through interstitial spaces resulting in deformation of both the motile leukocytes and surrounding cells. Creating an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, we engineer microchannels with a liquid-liquid interface that exerts confining pressures (200-3000 Pa) similar to cells in tissues, and, thus, is deformable by cell generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations are made to match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. We discover that, in this context, neutrophils employ a bleb-based mechanism of force generation to deform a barrier exerting cell-scale confining pressures.
Collapse
|
19
|
Dickinson RB, Abolghasemzade S, Lele TP. Rethinking nuclear shaping: insights from the nuclear drop model. SOFT MATTER 2024; 20:7558-7565. [PMID: 39105242 PMCID: PMC11446230 DOI: 10.1039/d4sm00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Changes in the nuclear shape caused by cellular shape changes are generally assumed to reflect an elastic deformation from a spherical nuclear shape. Recent evidence, however, suggests that the nuclear lamina, which forms the outer nuclear surface together with the nuclear envelope, possesses more area than that of a sphere of the same volume. This excess area manifests as folds/wrinkles in the nuclear surface in rounded cells and allows facile nuclear flattening during cell spreading without any changes in nuclear volume or surface area. When the lamina becomes smooth and taut, it is inextensible, and supports a surface tension. At this point, it is possible to mathematically calculate the limiting nuclear shape purely based on geometric considerations. In this paper, we provide a commentary on the "nuclear drop model" which seeks to integrate the above features. We outline its testable physical properties and explore its biological implications.
Collapse
Affiliation(s)
- Richard B Dickinson
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL, 32611, USA.
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
| |
Collapse
|
20
|
Caruso AP, Logue JS. The biophysics of cell motility through mechanochemically challenging environments. Curr Opin Cell Biol 2024; 90:102404. [PMID: 39053178 PMCID: PMC11392632 DOI: 10.1016/j.ceb.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Challenging mechanochemical environments (i.e., with varied mechanical and adhesive properties) are now known to induce a wide range of adaptive phenomena in motile cells. For instance, confinement and low adhesion may trigger a phenotypic transition to fast amoeboid (leader bleb-based) migration. The molecular mechanisms that underly these phenomena are beginning to be understood. Due to its size, the mechanical properties of the nucleus have been shown to limit and facilitate cell migration. Additionally, the activity of various transient receptor potential (TRP) channels is now known to be integral to cell migration in response to a multitude of biophysical stimuli. How cells integrate signals from the nucleus and plasma membrane, however, is unclear. The development of therapeutics that suppress cancer or enhance immune cell migration for immuno-oncology applications, etc., will require additional work to completely understand the molecular mechanisms that enable cells to navigate mechanochemically challenging environments.
Collapse
Affiliation(s)
- Alexa P Caruso
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Jeremy S Logue
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA.
| |
Collapse
|
21
|
Ju RJ, Falconer AD, Schmidt CJ, Enriquez Martinez MA, Dean KM, Fiolka RP, Sester DP, Nobis M, Timpson P, Lomakin AJ, Danuser G, White MD, Haass NK, Oelz DB, Stehbens SJ. Compression-dependent microtubule reinforcement enables cells to navigate confined environments. Nat Cell Biol 2024; 26:1520-1534. [PMID: 39160291 DOI: 10.1038/s41556-024-01476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Cells migrating through complex three-dimensional environments experience considerable physical challenges, including tensile stress and compression. To move, cells need to resist these forces while also squeezing the large nucleus through confined spaces. This requires highly coordinated cortical contractility. Microtubules can both resist compressive forces and sequester key actomyosin regulators to ensure appropriate activation of contractile forces. Yet, how these two roles are integrated to achieve nuclear transmigration in three dimensions is largely unknown. Here, we demonstrate that compression triggers reinforcement of a dedicated microtubule structure at the rear of the nucleus by the mechanoresponsive recruitment of cytoplasmic linker-associated proteins, which dynamically strengthens and repairs the lattice. These reinforced microtubules form the mechanostat: an adaptive feedback mechanism that allows the cell to both withstand compressive force and spatiotemporally organize contractility signalling pathways. The microtubule mechanostat facilitates nuclear positioning and coordinates force production to enable the cell to pass through constrictions. Disruption of the mechanostat imbalances cortical contractility, stalling migration and ultimately resulting in catastrophic cell rupture. Our findings reveal a role for microtubules as cellular sensors that detect and respond to compressive forces, enabling movement and ensuring survival in mechanically demanding environments.
Collapse
Affiliation(s)
- Robert J Ju
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Alistair D Falconer
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
| | - Christanny J Schmidt
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Marco A Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto P Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David P Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Max Nobis
- Faculty of Medicine, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Paul Timpson
- Faculty of Medicine, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alexis J Lomakin
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Institute of Medical Chemistry and Pathobiochemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. and Ida Green Centre for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie D White
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Nikolas K Haass
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Dietmar B Oelz
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia.
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
22
|
Stöberl S, Flommersfeld J, Kreft MM, Benoit M, Broedersz CP, Rädler JO. Nuclear deformation and dynamics of migrating cells in 3D confinement reveal adaptation of pulling and pushing forces. SCIENCE ADVANCES 2024; 10:eadm9195. [PMID: 39167661 PMCID: PMC11338266 DOI: 10.1126/sciadv.adm9195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotic cells show an astounding ability to remodel their shape and cytoskeleton and to migrate through pores and constrictions smaller than their nuclear diameter. However, the relation of nuclear deformation and migration dynamics in confinement remains unclear. Here, we study the mechanics and dynamics of mesenchymal cancer cell nuclei transitioning through three-dimensional compliant hydrogel channels. We find a biphasic dependence of migration speed and transition frequency on channel width, peaking at widths comparable to the nuclear diameter. Using confocal imaging and hydrogel bead displacement, we determine nuclear deformations and corresponding forces during confined migration. The nucleus deforms reversibly with a reduction in volume during confinement. With decreasing channel width, the nuclear shape during transmigration changes biphasically, concomitant with the transitioning dynamics. Our proposed physical model explains the observed nuclear shapes and transitioning dynamics in terms of the cytoskeletal force generation adapting from purely pulling-based to a combined pulling- and pushing-based mechanism with increasing nuclear confinement.
Collapse
Affiliation(s)
- Stefan Stöberl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Johannes Flommersfeld
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-University Munich, Theresienstraße 37, D-80333 Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
| | - Maximilian M. Kreft
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Martin Benoit
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | - Chase P. Broedersz
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-University Munich, Theresienstraße 37, D-80333 Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV Amsterdam, Netherlands
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| |
Collapse
|
23
|
Du WW, Zhou C, Yang H, Wen S, Chen Y, Chen EX, Yang XH, Li F, Du KY, Yuan H, Ye T, Qadir J, Yang BB. Aggravated Ulcerative Colitis via circNlgn-Mediated Suppression of Nuclear Actin Polymerization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0441. [PMID: 39183944 PMCID: PMC11342054 DOI: 10.34133/research.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Colitis is a chronic bowel disease characterized by damage to the lining of the large intestine, with its precise underlying causes remaining incompletely understood. In this study, we provide evidence that circular RNA circNlgn plays a pivotal role in promoting the development of colitis. Colitis patients produce significant higher levels of circNlgn. Transgenic mice expressing circNlgn exhibit heightened susceptibility to colitis development and progression, primarily attributed to the presence of the protein isoform Nlgn173 encoded by circNlgn. Nlgn173 undergoes translocation into cell nuclei, where it interacts with actin, impeding the binding of actin-related protein 2 and 3 (Arp2/3) complex to actin molecules. Consequently, this leads to a reduction in actin polymerization. Mechanistically, Nlgn173 enhances tyrosine-53 phosphorylation of nuclear actin, diminishing its capacity to interact with the Arp2/3 complex and causing a decrease in filamentous actin levels. These alterations in actin dynamics result in inhibited cell cycle progression, increased apoptosis, and decreased proliferation of colonic epithelial cells, thereby exacerbating colitis development and progression. In contrast, the silencing of circNlgn or the targeted inhibition of Nlgn173 translation and nuclear translocation leads to the promotion of nuclear actin polymerization, enhanced cell survival, and reduced apoptosis and ultimately improves the outcome of colitis in vivo. Interestingly, nuclear actin polymerization is highly related with expression of PIAS3, which modulates signal transducer and activator of transcription 3 and NF-κB activity in colitis. Strategies such as circNlgn knockdown and targeting nuclear actin polymerization of the colonic epithelium may explore a novel avenue for acute ulcerative colitis clinical intervention.
Collapse
Affiliation(s)
- William W. Du
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Chi Zhou
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Colorectal Surgery,
Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,
Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuoyang Wen
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Yu Chen
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine,
University of Kentucky, Lexington, KY, USA
| | - Feiya Li
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Kevin Y. Du
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Ting Ye
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Javeria Qadir
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Burton B. Yang
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
25
|
Wang X, Yang Y, Wang Y, Lu C, Hu X, Kawazoe N, Yang Y, Chen G. Focal adhesion and actin orientation regulated by cellular geometry determine stem cell differentiation via mechanotransduction. Acta Biomater 2024; 182:81-92. [PMID: 38734287 DOI: 10.1016/j.actbio.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Tuning cell adhesion geometry can affect cytoskeleton organization and the distribution of cytoskeleton forces, which play critical roles in controlling cell functions. To elucidate the geometrical relationship with cytoskeleton force distribution, it is necessary to control cell morphology. In this study, a series of dextral vortex micropatterns were prepared to precisely control cell morphology for investigating the influence of the curvature degree of adhesion curves on intracellular force distribution and stem cell differentiation at a sub-cellular level. Peripherial actin filaments of micropatterned cells were assembled along the adhesion curves and showed different orientations, filament thicknesses and densities. Focal adhesion and cytoskeleton force distribution were dependent on the curvature degree. Intracellular force distribution was also regulated by adhesion curves. The cytoskeleton and force distribution affected the osteogenic differentiation of mesenchymal stem cells through a YAP/TAZ-mediated mechanotransduction process. Thus, regulation of cell adhesion curvature, especially at cytoskeletal filament level, is critical for cell function manipulation. STATEMENT OF SIGNIFICANCE: In this study, a series of dextral micro-vortexes were prepared and used for the culture of human mesenchymal stem cells (hMSCs) to precisely control adhesive curvatures (0°, 30°, 60°, and 90°). The single MSCs on the micropatterns had the same size and shape but showed distinct focal adhesion (FA) and cytoskeleton orientations. Cellular nanomechanics were observed to be correlated with the curvature degrees, subsequently influencing nuclear morphological features. As a consequence, the localization of the mechanotransduction sensor and activator-YAP/TAZ was affected, influencing osteogenic differentiation. The results revealed the pivotal role of adhesive curvatures in the manipulation of stem cell differentiation via the machanotransduction process, which has rarely been investigated.
Collapse
Affiliation(s)
- Xinlong Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yingjun Yang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yongtao Wang
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Chengyu Lu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Xiaohong Hu
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
26
|
Alraies Z, Rivera CA, Delgado MG, Sanséau D, Maurin M, Amadio R, Maria Piperno G, Dunsmore G, Yatim A, Lacerda Mariano L, Kniazeva A, Calmettes V, Sáez PJ, Williart A, Popard H, Gratia M, Lamiable O, Moreau A, Fusilier Z, Crestey L, Albaud B, Legoix P, Dejean AS, Le Dorze AL, Nakano H, Cook DN, Lawrence T, Manel N, Benvenuti F, Ginhoux F, Moreau HD, P F Nader G, Piel M, Lennon-Duménil AM. Cell shape sensing licenses dendritic cells for homeostatic migration to lymph nodes. Nat Immunol 2024; 25:1193-1206. [PMID: 38834865 PMCID: PMC11224020 DOI: 10.1038/s41590-024-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKβ-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.
Collapse
Affiliation(s)
- Zahraa Alraies
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Claudia A Rivera
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Doriane Sanséau
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Mathieu Maurin
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Aline Yatim
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Anna Kniazeva
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Vincent Calmettes
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Williart
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Henri Popard
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Gratia
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Aurélie Moreau
- Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, Nantes, France
| | - Zoé Fusilier
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
- INSERM U932, Immunity and Cancer, Institut Curie, Paris-Cité University, Paris, France
| | - Lou Crestey
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | | | - Patricia Legoix
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Anne S Dejean
- INSERM UMR1291, CNRS UMR5051, Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Université Toulouse III, Toulouse, France
| | - Anne-Louise Le Dorze
- INSERM UMR1291, CNRS UMR5051, Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITy), Université Toulouse III, Toulouse, France
| | - Hideki Nakano
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, INSERM, CNRS, Université Aix-Marseille, Marseille, France
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Nicolas Manel
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Hélène D Moreau
- INSERM U932, Immunity and Cancer, Institut Curie, PSL University, Paris, France
| | - Guilherme P F Nader
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthieu Piel
- CNRS UMR144, Institut Curie, PSL Research University, Paris, France.
| | | |
Collapse
|
27
|
Liu Y, Wang Y, Lin M, Liu H, Pan Y, Wu J, Guo Z, Li J, Yan B, Zhou H, Fan Y, Hu G, Liang H, Zhang S, Siu MFF, Wu Y, Bai J, Liu C. Cellular Scale Curvature in Bioceramic Scaffolds Enhanced Bone Regeneration by Regulating Skeletal Stem Cells and Vascularization. Adv Healthc Mater 2024:e2401667. [PMID: 38923234 DOI: 10.1002/adhm.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Critical-sized segmental bone defects cannot heal spontaneously, leading to disability and significant increase in mortality. However, current treatments utilizing bone grafts face a variety of challenges from donor availability to poor osseointegration. Drugs such as growth factors increase cancer risk and are very costly. Here, a porous bioceramic scaffold that promotes bone regeneration via solely mechanobiological design is reported. Two types of scaffolds with high versus low pore curvatures are created using high-precision 3D printing technology to fabricate pore curvatures radius in the 100s of micrometers. While both are able to support bone formation, the high-curvature pores induce higher ectopic bone formation and increased vessel invasion. Scaffolds with high-curvature pores also promote faster regeneration of critical-sized segmental bone defects by activating mechanosensitive pathways. High-curvature pore recruits skeletal stem cells and type H vessels from both the periosteum and the marrow during the early phase of repair. High-curvature pores have increased survival of transplanted GFP-labeled skeletal stem cells (SSCs) and recruit more host SSCs. Taken together, the bioceramic scaffolds with defined micrometer-scale pore curvatures demonstrate a mechanobiological approach for orthopedic scaffold design.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongzhi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yonghao Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ziyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiawei Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Bingtong Yan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yuanhao Fan
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ganqing Hu
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Haowen Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Shibo Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Ming-Fung Francis Siu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yongbo Wu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
28
|
Stehbens SJ, Scarpa E, White MD. Perspectives in collective cell migration - moving forward. J Cell Sci 2024; 137:jcs261549. [PMID: 38904172 DOI: 10.1242/jcs.261549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Collective cell migration, where cells move as a cohesive unit, is a vital process underlying morphogenesis and cancer metastasis. Thanks to recent advances in imaging and modelling, we are beginning to understand the intricate relationship between a cell and its microenvironment and how this shapes cell polarity, metabolism and modes of migration. The use of biophysical and mathematical models offers a fresh perspective on how cells migrate collectively, either flowing in a fluid-like state or transitioning to more static states. Continuing to unite researchers in biology, physics and mathematics will enable us to decode more complex biological behaviours that underly collective cell migration; only then can we understand how this coordinated movement of cells influences the formation and organisation of tissues and directs the spread of metastatic cancer. In this Perspective, we highlight exciting discoveries, emerging themes and common challenges that have arisen in recent years, and possible ways forward to bridge the gaps in our current understanding of collective cell migration.
Collapse
Affiliation(s)
- Samantha J Stehbens
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Keys J, Cheung BCH, Elpers MA, Wu M, Lammerding J. Rear cortex contraction aids in nuclear transit during confined migration by increasing pressure in the cell posterior. J Cell Sci 2024; 137:jcs260623. [PMID: 38832512 PMCID: PMC11234373 DOI: 10.1242/jcs.260623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
As cells migrate through biological tissues, they must frequently squeeze through micron-sized constrictions in the form of interstitial pores between extracellular matrix fibers and/or other cells. Although it is now well recognized that such confined migration is limited by the nucleus, which is the largest and stiffest organelle, it remains incompletely understood how cells apply sufficient force to move their nucleus through small constrictions. Here, we report a mechanism by which contraction of the cell rear cortex pushes the nucleus forward to mediate nuclear transit through constrictions. Laser ablation of the rear cortex reveals that pushing forces behind the nucleus are the result of increased intracellular pressure in the rear compartment of the cell. The pushing forces behind the nucleus depend on accumulation of actomyosin in the rear cortex and require Rho kinase (ROCK) activity. Collectively, our results suggest a mechanism by which cells generate elevated intracellular pressure in the posterior compartment to facilitate nuclear transit through three-dimensional (3D) constrictions. This mechanism might supplement or even substitute for other mechanisms supporting nuclear transit, ensuring robust cell migrations in confined 3D environments.
Collapse
Affiliation(s)
- Jeremy Keys
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C. H. Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Margaret A. Elpers
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Chojowski R, Schwarz US, Ziebert F. The role of the nucleus for cell mechanics: an elastic phase field approach. SOFT MATTER 2024; 20:4488-4503. [PMID: 38804018 DOI: 10.1039/d4sm00345d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The nucleus of eukaryotic cells typically makes up around 30% of the cell volume and has significantly different mechanics, which can make it effectively up to ten times stiffer than the surrounding cytoplasm. Therefore it is an important element for cell mechanics, but a quantitative understanding of its mechanical role during whole cell dynamics is largely missing. Here we demonstrate that elastic phase fields can be used to describe dynamical cell processes in adhesive or confining environments in which the nucleus acts as a stiff inclusion in an elastic cytoplasm. We first introduce and verify our computational method and then study several prevalent cell-mechanical measurement methods. For cells on adhesive patterns, we find that nuclear stress is shielded by the adhesive pattern. For cell compression between two parallel plates, we obtain force-compression curves that allow us to extract an effective modulus for the cell-nucleus composite. For micropipette aspiration, the effect of the nucleus on the effective modulus is found to be much weaker, highlighting the complicated interplay between extracellular geometry and cell mechanics that is captured by our approach. We also show that our phase field approach can be used to investigate the effects of Kelvin-Voigt-type viscoelasticity and cortical tension.
Collapse
Affiliation(s)
- Robert Chojowski
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
32
|
Graziani V, Crosas-Molist E, George SL, Sanz-Moreno V. Organelle adaptations in response to mechanical forces during tumour dissemination. Curr Opin Cell Biol 2024; 88:102345. [PMID: 38479111 DOI: 10.1016/j.ceb.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 06/16/2024]
Abstract
Cell migration plays a pivotal role in various biological processes including cancer dissemination and successful metastasis, where the role of mechanical signals is increasingly acknowledged. This review focuses on the intricate mechanisms through which cancer cells modulate their migratory strategies via organelle adaptations in response to the extracellular matrix (ECM). Specifically, the nucleus and mitochondria emerge as pivotal mediators in this process. These organelles serve as sensors, translating mechanical stimuli into rapid metabolic alterations that sustain cell migration. Importantly, prolonged exposure to such stimuli can induce transcriptional or epigenetic changes, ultimately enhancing metastatic traits. Deciphering the intricate interplay between ECM properties and organelle adaptations not only advances our understanding of cytoskeletal dynamics but also holds promise for the development of innovative anti-metastatic therapeutic strategies.
Collapse
Affiliation(s)
- Vittoria Graziani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK
| | - Eva Crosas-Molist
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK
| | - Samantha L George
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
Liang L, Song X, Zhao H, Lim CT. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng 2024; 8:021506. [PMID: 38841688 PMCID: PMC11151435 DOI: 10.1063/5.0195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.
Collapse
Affiliation(s)
- Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiao Song
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
34
|
Gregory EF, Luxton GWG, Starr DA. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595380. [PMID: 38826247 PMCID: PMC11142143 DOI: 10.1101/2024.05.22.595380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nuclei adjust their deformability while migrating through constrictions to enable structural changes and maintain nuclear integrity. The effect of heterochromatin anchored at the nucleoplasmic face of the inner nuclear membrane on nuclear morphology and deformability during in vivo nuclear migration through constricted spaces remains unclear. Here, we show that abolishing peripheral heterochromatin anchorage by eliminating CEC-4, a chromodomain protein that tethers H3K9-methylated chromatin to the nuclear periphery, disrupts constrained P-cell nuclear migration in Caenorhabditis elegans larvae in the absence of the established LINC complex-dependent pathway. CEC-4 acts in parallel to an actin and CDC-42-based pathway. We also demonstrate the necessity for the chromatin methyltransferases MET-2 and JMJD-1.2 during P-cell nuclear migration in the absence of functional LINC complexes. We conclude that H3K9-nethylated chromatin needs to be anchored to the nucleoplasmic face of the inner nuclear membrane to help facilitate nuclear migration through constricted spaces in vivo.
Collapse
Affiliation(s)
- Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| |
Collapse
|
35
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
36
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
37
|
Przyklenk M, Karmacharya S, Bonasera D, Pasanen-Zentz AL, Kmoch S, Paulsson M, Wagener R, Liccardi G, Schiavinato A. ANTXR1 deficiency promotes fibroblast senescence: implications for GAPO syndrome as a progeroid disorder. Sci Rep 2024; 14:9321. [PMID: 38653789 PMCID: PMC11039612 DOI: 10.1038/s41598-024-59901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.
Collapse
Affiliation(s)
- Matthias Przyklenk
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Shreya Karmacharya
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Debora Bonasera
- Genetic Instability, Cell Death and Inflammation Laboratory, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Arthur-Lauri Pasanen-Zentz
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Stanislav Kmoch
- Research Unit of Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Gianmaria Liccardi
- Genetic Instability, Cell Death and Inflammation Laboratory, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
38
|
Lightsey S, Sharma B. Natural Killer Cell Mechanosensing in Solid Tumors. Bioengineering (Basel) 2024; 11:328. [PMID: 38671750 PMCID: PMC11048000 DOI: 10.3390/bioengineering11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Natural killer (NK) cells, which are an exciting alternative cell source for cancer immunotherapies, must sense and respond to their physical environment to traffic to and eliminate cancer cells. Herein, we review the mechanisms by which NK cells receive mechanical signals and explore recent key findings regarding the impact of the physical characteristics of solid tumors on NK cell functions. Data suggest that different mechanical stresses present in solid tumors facilitate NK cell functions, especially infiltration and degranulation. Moreover, we review recent engineering advances that can be used to systemically study the role of mechanical forces on NK cell activity. Understanding the mechanisms by which NK cells interpret their environment presents potential targets to enhance NK cell immunotherapies for the treatment of solid tumors.
Collapse
Affiliation(s)
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 23610, USA;
| |
Collapse
|
39
|
Warner H, Franciosa G, van der Borg G, Coenen B, Faas F, Koenig C, de Boer R, Classens R, Maassen S, Baranov MV, Mahajan S, Dabral D, Bianchi F, van Hilten N, Risselada HJ, Roos WH, Olsen JV, Cano LQ, van den Bogaart G. Atypical cofilin signaling drives dendritic cell migration through the extracellular matrix via nuclear deformation. Cell Rep 2024; 43:113866. [PMID: 38416638 DOI: 10.1016/j.celrep.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-μm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.
Collapse
Affiliation(s)
- Harry Warner
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guus van der Borg
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Britt Coenen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Felix Faas
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rinse de Boer
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Maksim V Baranov
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Shweta Mahajan
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Deepti Dabral
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands; Department of Physics, TU Dortmund, Dortmund, Germany
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Jesper Velgaard Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
40
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
41
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
42
|
Moser M, Groves NR, Meier I. Plant KASH proteins SINE1 and SINE2 have synergistic and antagonistic interactions with actin-branching and actin-bundling factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:73-87. [PMID: 37819623 DOI: 10.1093/jxb/erad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of outer nuclear membrane KASH proteins, interacting in the nuclear envelope lumen with inner nuclear membrane SUN proteins and connecting the nucleus and cytoskeleton. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light-dark transitions and abscisic acid (ABA), which requires F-actin reorganization. SINE2 influences actin depolymerization and SINE1 actin repolymerization. The actin-related protein 2/3 (ARP2/3) complex, an actin nucleator, and the plant actin-bundling and -stabilizing factor SCAB1 are involved in stomatal aperture control. Here, we have tested the genetic interaction of SINE1 and SINE2 with SCAB1 and the ARP2/3 complex. We show that SINE1 and the ARP2/3 complex function in the same pathway during ABA-induced stomatal closure, while SINE2 and the ARP2/3 complex play opposing roles. The actin repolymerization defect observed in sine1-1 is partially rescued in scab1-2 sine1-1, while SINE2 is epistatic to SCAB1. In addition, SINE1 and ARP2/3 act synergistically in lateral root development. The absence of SINE2 renders trichome development independent of the ARP2/3 complex. Together, these data reveal complex and differential interactions of the two KASH proteins with the actin-remodeling apparatus and add evidence to the proposed differential role of SINE1 and SINE2 in actin dynamics.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
43
|
Bastianello G, Porcella G, Beznoussenko GV, Kidiyoor G, Ascione F, Li Q, Cattaneo A, Matafora V, Disanza A, Quarto M, Mironov AA, Oldani A, Barozzi S, Bachi A, Costanzo V, Scita G, Foiani M. Cell stretching activates an ATM mechano-transduction pathway that remodels cytoskeleton and chromatin. Cell Rep 2023; 42:113555. [PMID: 38088930 DOI: 10.1016/j.celrep.2023.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| | | | | | - Gururaj Kidiyoor
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flora Ascione
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qingsen Li
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | | | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Micaela Quarto
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Sara Barozzi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Vincenzo Costanzo
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy; Oncology and Haemato-Oncology Department, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
44
|
Kroll J, Hauschild R, Kuznetcov A, Stefanowski K, Hermann MD, Merrin J, Shafeek L, Müller‐Taubenberger A, Renkawitz J. Adaptive pathfinding by nucleokinesis during amoeboid migration. EMBO J 2023; 42:e114557. [PMID: 37987147 PMCID: PMC10711653 DOI: 10.15252/embj.2023114557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Motile cells encounter microenvironments with locally heterogeneous mechanochemical composition. Individual compositional parameters, such as chemokines and extracellular matrix pore sizes, are well known to provide guidance cues for pathfinding. However, motile cells face diverse cues at the same time, raising the question of how they respond to multiple and potentially competing signals on their paths. Here, we reveal that amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical micro-environments. Using mammalian immune cells and the amoeba Dictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step polarity switch and is driven by myosin-II forces that readjust the nuclear to the cellular path. Impaired nucleokinesis distorts path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that many immune cells, amoebae, and some cancer cells utilize an amoeboid migration strategy, these results suggest that nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Robert Hauschild
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Artur Kuznetcov
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Kasia Stefanowski
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Monika D Hermann
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| | - Jack Merrin
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Lubuna Shafeek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Annette Müller‐Taubenberger
- Biomedical Center Munich (BMC), Department of Cell Biology (Anatomy III)Ludwig Maximilians University MunichMunichGermany
| | - Jörg Renkawitz
- Biomedical Center Munich (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, University HospitalLudwig Maximilians University MunichMunichGermany
| |
Collapse
|
45
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
46
|
Ibanez J, Hebbar N, Thanekar U, Yi Z, Houke H, Ward M, Nevitt C, Tian L, Mack SC, Sheppard H, Chiang J, Velasquez MP, Krenciute G. GRP78-CAR T cell effector function against solid and brain tumors is controlled by GRP78 expression on T cells. Cell Rep Med 2023; 4:101297. [PMID: 37992682 PMCID: PMC10694756 DOI: 10.1016/j.xcrm.2023.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress. We show that GRP78 is highly expressed on the cell surface of multiple solid and brain tumors, making cell surface GRP78 a promising chimeric antigen receptor (CAR) T cell target. We demonstrate that GRP78-CAR T cells can recognize and kill GRP78+ brain and solid tumors in vitro and in vivo. Additionally, our findings demonstrate that GRP78 is upregulated on CAR T cells upon T cell activation; however, this expression is tumor-cell-line specific and results in heterogeneous GRP78-CAR T cell therapeutic response.
Collapse
Affiliation(s)
- Jorge Ibanez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nikhil Hebbar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Unmesha Thanekar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zhongzhen Yi
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haley Houke
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Meghan Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chris Nevitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephen C Mack
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
47
|
Penfield L, Montell DJ. Nuclear lamin facilitates collective border cell invasion into confined spaces in vivo. J Cell Biol 2023; 222:e202212101. [PMID: 37695420 PMCID: PMC10494525 DOI: 10.1083/jcb.202212101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Cells migrate collectively through confined environments during development and cancer metastasis. The nucleus, a stiff organelle, impedes single cells from squeezing into narrow channels within artificial environments. However, how nuclei affect collective migration into compact tissues is unknown. Here, we use border cells in the fly ovary to study nuclear dynamics in collective, confined in vivo migration. Border cells delaminate from the follicular epithelium and squeeze into tiny spaces between cells called nurse cells. The lead cell nucleus transiently deforms within the lead cell protrusion, which then widens. The nuclei of follower cells deform less. Depletion of the Drosophila B-type lamin, Lam, compromises nuclear integrity, hinders expansion of leading protrusions, and impedes border cell movement. In wildtype, cortical myosin II accumulates behind the nucleus and pushes it into the protrusion, whereas in Lam-depleted cells, myosin accumulates but does not move the nucleus. These data suggest that the nucleus stabilizes lead cell protrusions, helping to wedge open spaces between nurse cells.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Denise J. Montell
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
48
|
King MC. Dynamic regulation of LINC complex composition and function across tissues and contexts. FEBS Lett 2023; 597:2823-2832. [PMID: 37846646 DOI: 10.1002/1873-3468.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The concept of mechanotransduction to the nucleus through a direct force transmission mechanism has fascinated cell biologists for decades. Central to such a mechanism is the linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope to couple the cytoplasmic cytoskeleton to the nuclear lamina. In reality, there is not one LINC complex identity, but instead, a family of protein configurations of varied composition that exert both shared and unique functions. Regulated expression of LINC complex components, splice variants, and mechanoresponsive protein turnover mechanisms together shape the complement of LINC complex forms present in a given cell type. Disrupting specific gene(s) encoding LINC complex components therefore gives rise to a range of organismal defects. Moreover, evidence suggests that the mechanical environment remodels LINC complexes, providing a feedback mechanism by which cellular context influences the integration of the nucleus into the cytoskeleton. In particular, evidence for crosstalk between the nuclear and cytoplasmic intermediate filament networks communicated through the LINC complex represents an emerging theme in this active area of ongoing investigation.
Collapse
Affiliation(s)
- Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
49
|
Ho J, Guerrero LA, Libuda DE, Luxton GWG, Starr DA. Actin and CDC-42 contribute to nuclear migration through constricted spaces in C. elegans. Development 2023; 150:dev202115. [PMID: 37756590 PMCID: PMC10617605 DOI: 10.1242/dev.202115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Successful nuclear migration through constricted spaces between cells or in the extracellular matrix relies on the ability of the nucleus to deform. Little is known about how this takes place in vivo. We have studied confined nuclear migration in Caenorhabditis elegans larval P cells, which is mediated by the LINC complex to pull nuclei towards the minus ends of microtubules. Null mutations of the LINC component unc-84 lead to a temperature-dependent phenotype, suggesting a parallel pathway for P-cell nuclear migration. A forward genetic screen for enhancers of unc-84 identified cgef-1 (CDC-42 guanine nucleotide exchange factor). Knockdown of CDC-42 in the absence of the LINC complex led to a P-cell nuclear migration defect. Expression of constitutively active CDC-42 partially rescued nuclear migration in cgef-1; unc-84 double mutants, suggesting that CDC-42 functions downstream of CGEF-1. The Arp2/3 complex and non-muscle myosin II (NMY-2) were also found to function parallel to the LINC pathway. In our model, CGEF-1 activates CDC-42, which induces actin polymerization through the Arp2/3 complex to deform the nucleus during nuclear migration, and NMY-2 helps to push the nucleus through confined spaces.
Collapse
Affiliation(s)
- Jamie Ho
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Leslie A. Guerrero
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Diana E. Libuda
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
50
|
Gajardo T, Bernard M, Lô M, Turck E, Leveau C, El-Daher MT, Deslys A, Panikulam P, Menche C, Kurowska M, Le Lay G, Barbier L, Moshous D, Neven B, Farin HF, Fischer A, Ménasché G, de Saint Basile G, Vargas P, Sepulveda FE. Actin dynamics regulation by TTC7A/PI4KIIIα limits DNA damage and cell death under confinement. J Allergy Clin Immunol 2023; 152:949-960. [PMID: 37390900 DOI: 10.1016/j.jaci.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.
Collapse
Affiliation(s)
- Tania Gajardo
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Mathilde Bernard
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Marie Lô
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Elisa Turck
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Claire Leveau
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Marie-Thérèse El-Daher
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Alexandre Deslys
- Leukomotion Lab, Université de Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, F-75015 Paris, France
| | - Patricia Panikulam
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Mathieu Kurowska
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Gregoire Le Lay
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Lucie Barbier
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Despina Moshous
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France
| | - Bénédicte Neven
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Alain Fischer
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France; Collège de France, Paris, France
| | - Gaël Ménasché
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Geneviève de Saint Basile
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France; Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Pablo Vargas
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France; Leukomotion Lab, Université de Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, F-75015 Paris, France.
| | - Fernando E Sepulveda
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France; CNRS, Paris, France.
| |
Collapse
|