1
|
Sun R, Allen JP, Mao Z, Wilson L, Haider M, Alten B, Zhou Z, Wang X, Zhou Q. The postsynaptic density in excitatory synapses is composed of clustered, heterogeneous nanoblocks. J Cell Biol 2025; 224:e202406133. [PMID: 40145863 PMCID: PMC11948668 DOI: 10.1083/jcb.202406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The nanoscale organization of proteins within synapses is critical for maintaining and regulating synaptic transmission and plasticity. Here, we used cryo-electron tomography (cryo-ET) to directly visualize the three-dimensional architecture and supramolecular organization of postsynaptic components in both synaptosomes and synapses from cultured neurons. Cryo-ET revealed that postsynaptic density (PSD) is composed of membrane-associated nanoblocks of various sizes. Subtomogram averaging from synaptosomes showed two types (type A and B) of postsynaptic receptor-like particles at resolutions of 24 and 26 Å, respectively. Furthermore, our analysis suggested that potential presynaptic release sites are closer to nanoblocks with type A/B receptor-like particles than to nanoblocks without type A/B receptor-like particles. The results of this study provide a more comprehensive understanding of synaptic ultrastructure and suggest that PSD is composed of clustering of various nanoblocks. These nanoblocks are heterogeneous in size, assembly, and distribution, which likely contribute to the dynamic nature of PSD in modulating synaptic strength.
Collapse
Affiliation(s)
- Rong Sun
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - James P. Allen
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Zhuqing Mao
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Liana Wilson
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Mariam Haider
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology Cryo-EM Facility, Vanderbilt University, Nashville, TN, USA
| | - Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Zimeng Zhou
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - Xinyi Wang
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Qiangjun Zhou
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Zhu H, Wu Z, Wang J, Zhang E, Zhang S, Yang Y, Li W, Shi H, Yang G, Lv L, Zhang Y. DLG2 rs11607886 polymorphism associated with schizophrenia and precuneus functional changes. Schizophr Res 2025; 280:50-58. [PMID: 40220608 DOI: 10.1016/j.schres.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is a severe mental disorder with high heritability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93, Postsynaptic Density Protein 93), and its variants were associated with an increased risk of SZ. However, the role of DLG2 locus variation in SZ remains elusive. This study aims to investigate the association between DLG2 gene polymorphisms and SZ susceptibility and the relationship between DLG2 and altered brain function and clinical symptoms in SZ patients. STUDY DESIGN Single nucleotide polymorphisms (SNPs) rs11607886 and rs7479949 were genotyped in 350 SZ patients and 407 healthy controls (HCs). 47 SZ patients and 79 HCs were genotyped into two groups: the risk A allele carrier group and the GG-pure group. Functional magnetic resonance imaging (fMRI) indices were further analyzed. Subsequently, data from different brain regions were correlated with clinical symptom assessment. STUDY RESULTS DLG2 rs11607886 was significantly associated with SZ. Significant main effects were found in the ALFF and ReHo, especially for the left precuneus gyrus (PCu). A significant interaction between genotype and diagnosis had a significant effect on FC, which was increased between the left PCu and the right middle temporal gyrus in carriers of the A allele with SZ (r = -0.336, Pun-corrected = 0.042) and negatively correlated with spatial breadth scores (r = 0.444, PFDR-corrected = 0.002). CONCLUSIONS The rs11607886 polymorphism in DLG2 may influence the pathogenesis of SZ and have potential effects on cognitive function. The present study emphasizes DLG2 as a candidate gene for SZ and suggests an important role for PCu in SZ.
Collapse
Affiliation(s)
- HanYu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Zhaoyang Wu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Junxiao Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Enhui Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453002, China; Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang 453002, China.
| |
Collapse
|
3
|
Shi S, Stroebel D, Mony L, Paoletti P. Imaging and Quantifying the Diversity of Native NMDA Receptors. Neurosci Bull 2025:10.1007/s12264-025-01395-3. [PMID: 40304878 DOI: 10.1007/s12264-025-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- Sophie Shi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
4
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy-terminal domain drives dendritic spine plasticity and reverses fragile X phenotypes. Cell Rep 2025; 44:115311. [PMID: 39983718 PMCID: PMC12006837 DOI: 10.1016/j.celrep.2025.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
N-methyl-D-aspartate (NMDA)-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis. Using subtype-selective pharmacological and genetic tools, we find that structural plasticity is dependent on ligand binding to GluN2B-containing NMDA receptors (NMDARs) and signaling via the GluN2B carboxy-terminal domain (CTD). Disruption of non-ionotropic signaling by replacing the GluN2B CTD with the GluN2A CTD leads to an increase in spine density, dysregulated basal protein synthesis, exaggerated long-term depression mediated by G-protein-coupled metabotropic glutamate receptors (mGluR-LTD), and epileptiform activity reminiscent of phenotypes observed in the Fmr1 knockout (KO) model of fragile X syndrome. By crossing the Fmr1 KO mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for the treatment of fragile X and related causes of intellectual disability and autism.
Collapse
Affiliation(s)
- Stephanie A Barnes
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Aurore Thomazeau
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter S B Finnie
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxwell J Heinrich
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arnold J Heynen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Noburu H Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; F.M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Tahiri E, Corti E, Duarte CB. Regulation of Synaptic NMDA Receptor Activity by Post-Translational Modifications. Neurochem Res 2025; 50:110. [PMID: 40029461 PMCID: PMC11876243 DOI: 10.1007/s11064-025-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
NMDA receptors for the neurotransmitter glutamate are widely distributed in the central nervous system, playing important roles in brain development, function and plasticity. Alterations in their activity are also important mediators in neuropsychiatric and neurodegenerative disorders. The different NMDA receptor subunits (GluN1, GluN2A-D and GluN3A, B) share a similar structure and membrane topology, with an intracellular C-terminus tail responsible for the interaction with proteins important for the trafficking of the receptors, and to control their surface distribution and signalling activity. The latter sequence varies among subunits but consistently contains the majority of post-translational modification sites on NMDA receptors. These modifications, including phosphorylation, ubiquitination, and palmitoylation, regulate interactions with intracellular proteins. Differences in the amino acid sequence between NMDA receptor subunits lead to a differential regulation by post-translational modifications. Since NMDA receptors are formed by oligomerization of different subunits, and each subunit is regulated in a specific manner, this creates multiple possibilities for regulation of these receptors, with impact in synaptic function and plasticity. This review addresses the diversity of mechanisms involved in the post-translational modification of NMDA receptor subunits, and their impact on the activity and distribution of the receptors, as well as their function in nerve cells.
Collapse
Affiliation(s)
- Emanuel Tahiri
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Elisa Corti
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- III- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CiBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal.
| |
Collapse
|
6
|
Micheva KD, Simhal AK, Schardt J, Smith SJ, Weinberg RJ, Owen SF. Data-driven synapse classification reveals a logic of glutamate receptor diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628056. [PMID: 39713368 PMCID: PMC11661198 DOI: 10.1101/2024.12.11.628056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenna Schardt
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27514
| | - Scott F. Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Lead contact
| |
Collapse
|
7
|
Daly S, Bulovaite E, Handa A, Morris K, Muresan L, Adams C, Kaizuka T, Kitching A, Spark A, Chant G, O′Holleran K, Grant SGN, Horrocks MH, Lee SF. 3D Super-Resolution Imaging of PSD95 Reveals an Abundance of Diffuse Protein Supercomplexes in the Mouse Brain. ACS Chem Neurosci 2025; 16:40-51. [PMID: 39702971 PMCID: PMC11697326 DOI: 10.1021/acschemneuro.4c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
PSD95 is an abundant scaffolding protein that assembles multiprotein complexes controlling synaptic physiology and behavior. Confocal microscopy has previously shown that PSD95 is enriched in the postsynaptic terminals of excitatory synapses and two-dimensional (2D) super-resolution microscopy further revealed that it forms nanoclusters. In this study, we utilized three-dimensional (3D) super-resolution microscopy to examine the nanoarchitecture of PSD95 in the mouse brain, characterizing the spatial arrangement of over 8 million molecules. While we were able to identify molecular arrangements that have been previously reported, imaging in 3D allowed us to classify these with higher accuracy. Furthermore, 3D super-resolution microscopy enabled the quantification of protein levels, revealing that an abundance of PSD95 molecules existed outside of synapses as a diffuse population of supercomplexes, containing multiple copies of PSD95. Further analysis of the supercomplexes containing two units identified two populations: one that had PSD95 molecules separated by 39 ± 2 nm, and a second with a separation of 94 ± 27 nm. The finding that there exists supercomplexes containing two PSD95 units outside of the synapse suggests that supercomplexes containing multiple protein copies assemble outside the synapse and then integrate into the synapse to form a supramolecular nanocluster architecture.
Collapse
Affiliation(s)
- Sam Daly
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Edita Bulovaite
- Genes
to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, U.K.
| | - Anoushka Handa
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Katie Morris
- RR Chemistry
Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, U.K.
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Leila Muresan
- Cambridge
Advanced Imaging Centre, University of Cambridge, Cambridge CB2 3DY, U.K.
| | - Candace Adams
- RR Chemistry
Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, U.K.
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Takeshi Kaizuka
- RR Chemistry
Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, U.K.
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | | | | | - Gregory Chant
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Kevin O′Holleran
- Cambridge
Advanced Imaging Centre, University of Cambridge, Cambridge CB2 3DY, U.K.
- ZOMP, Maxwell
Centre, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Seth G. N. Grant
- Genes
to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, U.K.
| | - Mathew H. Horrocks
- RR Chemistry
Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, U.K.
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Steven F. Lee
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
8
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy terminal domain drives morphological plasticity of dendritic spines and reverses fragile X phenotypes in mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628559. [PMID: 39764032 PMCID: PMC11703159 DOI: 10.1101/2024.12.15.628559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission. By using selective pharmacological and genetic tools, we find that structural plasticity is dependent on the ligand binding domain (LBD) of GluN2B-containing NMDA receptors and that metabotropic signaling occurs via the GluN2B carboxyterminal domain (CTD). Disruption of signaling by replacing the GluN2B CTD with the GluN2A CTD leads to increased spine density, dysregulated basal protein synthesis, and epileptiform activity in area CA3 reminiscent of phenotypes observed in the Fmr1 -/y model of fragile X syndrome. By crossing the Fmr1 -/y mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for treatment of fragile X and related causes of intellectual disability and autism.
Collapse
|
9
|
Morris K, Bulovaite E, Kaizuka T, Schnorrenberg S, Adams CT, Komiyama N, Mendive-Tapia L, Grant SGN, Horrocks MH. Sequential replacement of PSD95 subunits in postsynaptic supercomplexes is slowest in the cortex. eLife 2024; 13:RP99303. [PMID: 39570289 PMCID: PMC11581426 DOI: 10.7554/elife.99303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
The concept that dimeric protein complexes in synapses can sequentially replace their subunits has been a cornerstone of Francis Crick's 1984 hypothesis, explaining how long-term memories could be maintained in the face of short protein lifetimes. However, it is unknown whether the subunits of protein complexes that mediate memory are sequentially replaced in the brain and if this process is linked to protein lifetime. We address these issues by focusing on supercomplexes assembled by the abundant postsynaptic scaffolding protein PSD95, which plays a crucial role in memory. We used single-molecule detection, super-resolution microscopy and MINFLUX to probe the molecular composition of PSD95 supercomplexes in mice carrying genetically encoded HaloTags, eGFP, and mEoS2. We found a population of PSD95-containing supercomplexes comprised of two copies of PSD95, with a dominant 12.7 nm separation. Time-stamping of PSD95 subunits in vivo revealed that each PSD95 subunit was sequentially replaced over days and weeks. Comparison of brain regions showed subunit replacement was slowest in the cortex, where PSD95 protein lifetime is longest. Our findings reveal that protein supercomplexes within the postsynaptic density can be maintained by gradual replacement of individual subunits providing a mechanism for stable maintenance of their organization. Moreover, we extend Crick's model by suggesting that synapses with slow subunit replacement of protein supercomplexes and long-protein lifetimes are specialized for long-term memory storage and that these synapses are highly enriched in superficial layers of the cortex where long-term memories are stored.
Collapse
Affiliation(s)
- Katie Morris
- EaStCHEM School of Chemistry, University of EdinburghEdinburghUnited Kingdom
| | - Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Takeshi Kaizuka
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | | | - Candace T Adams
- EaStCHEM School of Chemistry, University of EdinburghEdinburghUnited Kingdom
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of EdinburghEdinburghUnited Kingdom
| | - Noboru Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Lorena Mendive-Tapia
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of EdinburghEdinburghUnited Kingdom
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Seth GN Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of EdinburghEdinburghUnited Kingdom
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
10
|
Bessières B, Dupuis J, Groc L, Bontempi B, Nicole O. Synaptic rearrangement of NMDA receptors controls memory engram formation and malleability in the cortex. SCIENCE ADVANCES 2024; 10:eado1148. [PMID: 39213354 PMCID: PMC11364093 DOI: 10.1126/sciadv.ado1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Initially hippocampal dependent, memory representations rely on a broadly distributed cortical network as they mature over time. How these cortical engrams acquire stability during systems-level memory consolidation without compromising their dynamic nature remains unclear. We identified a highly responsive "consolidation switch" in the synaptic composition of N-methyl-d-aspartate receptors (NMDARs), which dictates the progressive embedding and persistence of enduring memories in the rat cortex. Cortical GluN2B subunit-containing NMDARs were preferentially recruited upon encoding of associative olfactory memory to support neuronal allocation of memory engrams. As consolidation proceeds, a learning-induced redistribution of GluN2B subunit-containing NMDARs outward synapses increased synaptic GluN2A subunit contribution and enabled stabilization of remote memories. In contrast, synaptic reincorporation of GluN2B subunits occurred during subsequent forgetting. By manipulating the surface distribution of GluN2A and GluN2B subunit-containing NMDARs at cortical synapses, we uncovered that the rearrangement of GluN2B-containing NMDARs constitutes an essential tuning mechanism that determines the fate of cortical memory engrams and controls their malleability.
Collapse
Affiliation(s)
- Benjamin Bessières
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
| | - Julien Dupuis
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| | - Laurent Groc
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| | - Bruno Bontempi
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Université de Bordeaux, Bordeaux 33000, France
| | - Olivier Nicole
- Institut des Maladies Neurodégénératives, CNRS UMR 5293, Université de Bordeaux, Bordeaux 33000, France
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux 33000, France
| |
Collapse
|
11
|
Koukaroudi D, Qiu Z, Fransén E, Gokhale R, Bulovaite E, Komiyama NH, Seibt J, Grant SGN. Sleep maintains excitatory synapse diversity in the cortex and hippocampus. Curr Biol 2024; 34:3836-3843.e5. [PMID: 39096907 PMCID: PMC11359089 DOI: 10.1016/j.cub.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 08/05/2024]
Abstract
Insufficient sleep is a global problem with serious consequences for cognition and mental health.1 Synapses play a central role in many aspects of cognition, including the crucial function of memory consolidation during sleep.2 Interference with the normal expression or function of synapse proteins is a cause of cognitive, mood, and other behavioral problems in over 130 brain disorders.3 Sleep deprivation (SD) has also been reported to alter synapse protein composition and synapse number, although with conflicting results.4,5,6,7 In our study, we conducted synaptome mapping of excitatory synapses in 125 regions of the mouse brain and found that sleep deprivation selectively reduces synapse diversity in the cortex and in the CA1 region of the hippocampus. Sleep deprivation targeted specific types and subtypes of excitatory synapses while maintaining total synapse density (synapse number/area). Synapse subtypes with longer protein lifetimes exhibited resilience to sleep deprivation, similar to observations in aging and genetic perturbations. Moreover, the altered synaptome architecture affected the responses to neural oscillations, suggesting that sleep plays a vital role in preserving cognitive function by maintaining the brain's synaptome architecture.
Collapse
Affiliation(s)
- Dimitra Koukaroudi
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Julie Seibt
- Surrey Sleep Research Centre, School of Biosciences, University of Surrey, Guildford, Surrey GU2 7XP, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
12
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz A, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. d-Serine Inhibits Non-ionotropic NMDA Receptor Signaling. J Neurosci 2024; 44:e0140242024. [PMID: 38942470 PMCID: PMC11308331 DOI: 10.1523/jneurosci.0140-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.
Collapse
Affiliation(s)
- Eden V Barragan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Vishnu Vijayakumar
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Deborah K Park
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Raghava Jagadeesh Salaka
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
| | - Atheer F K Nisan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Samuel Petshow
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - John A Gray
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
- Psychiatry and Behavioral Sciences, University of California, Davis, California 95618
| |
Collapse
|
13
|
Kaizuka T, Takumi T. Alteration of synaptic protein composition during developmental synapse maturation. Eur J Neurosci 2024; 59:2894-2914. [PMID: 38571321 DOI: 10.1111/ejn.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
The postsynaptic density (PSD) is a collection of specialized proteins assembled beneath the postsynaptic membrane of dendritic spines. The PSD proteome comprises ~1000 proteins, including neurotransmitter receptors, scaffolding proteins and signalling enzymes. Many of these proteins have essential roles in synaptic function and plasticity. During brain development, changes are observed in synapse density and in the stability and shape of spines, reflecting the underlying molecular maturation of synapses. Synaptic protein composition changes in terms of protein abundance and the assembly of protein complexes, supercomplexes and the physical organization of the PSD. Here, we summarize the developmental alterations of postsynaptic protein composition during synapse maturation. We describe major PSD proteins involved in postsynaptic signalling that regulates synaptic plasticity and discuss the effect of altered expression of these proteins during development. We consider the abnormality of synaptic profiles and synaptic protein composition in the brain in neurodevelopmental disorders such as autism spectrum disorders. We also explain differences in synapse development between rodents and primates in terms of synaptic profiles and protein composition. Finally, we introduce recent findings related to synaptic diversity and nanoarchitecture and discuss their impact on future research. Synaptic protein composition can be considered a major determinant and marker of synapse maturation in normality and disease.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
14
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz AC, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. D-Serine inhibits non-ionotropic NMDA receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596266. [PMID: 38854020 PMCID: PMC11160797 DOI: 10.1101/2024.05.29.596266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g. d -serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results can be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of LTD induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker, MK801. Conversely, a saturating concentration of d -serine completely inhibited both LTD and spine shrinkage induced by glutamate binding in the presence of MK801. Using a FRET-based assay in cultured neurons, we further found that d -serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d -serine inhibits ion flux-independent NMDAR signaling and plasticity, and thus d -serine availability could serve to modulate NMDAR signaling even when the NMDAR is blocked by magnesium. Significance Statement NMDARs are glutamate-gated cation channels that are key regulators of neurodevelopment and synaptic plasticity and unique in their requirement for binding of a co-agonist (e.g. d -serine) in order for the channel to open. NMDARs have been found to drive synaptic plasticity via non-ionotropic (ion flux-independent) signaling upon the binding of glutamate in the absence of co-agonist, though conflicting results have led to controversy. Here, we found that d -serine inhibits non-ionotropic NMDAR-mediated LTD and LTD-associated spine shrinkage. Thus, a major source of the contradictory findings might be attributed to experimental variability in d -serine availability. In addition, the developmental regulation of d -serine levels suggests a role for non-ionotropic NMDAR plasticity during critical periods of plasticity.
Collapse
|
15
|
Fatemi SH, Eschenlauer A, Aman J, Folsom TD, Chekouo T. Quantitative proteomics of dorsolateral prefrontal cortex reveals an early pattern of synaptic dysmaturation in children with idiopathic autism. Cereb Cortex 2024; 34:161-171. [PMID: 38696595 PMCID: PMC11484494 DOI: 10.1093/cercor/bhae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 05/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Arthur Eschenlauer
- Minnesota Supercomputing Institute, 599 Walter Library, 117 Pleasant Street, Minneapolis, MN 55455, USA
| | - Justin Aman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Timothy D Folsom
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Thierry Chekouo
- University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Kaizuka T, Suzuki T, Kishi N, Tamada K, Kilimann MW, Ueyama T, Watanabe M, Shimogori T, Okano H, Dohmae N, Takumi T. Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development. Nat Commun 2024; 15:2496. [PMID: 38548776 PMCID: PMC10979008 DOI: 10.1038/s41467-024-46529-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Noriyuki Kishi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Manfred W Kilimann
- Max Planck Institute for Experimental Medicine, Göttingen, 37075, Germany
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Kita, Sapporo, 060-8638, Japan
| | | | - Hideyuki Okano
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8585, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
17
|
Dharmasri PA, DeMarco EM, Anderson MC, Levy AD, Blanpied TA. Loss of postsynaptic NMDARs drives nanoscale reorganization of Munc13-1 and PSD-95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574705. [PMID: 38260705 PMCID: PMC10802569 DOI: 10.1101/2024.01.12.574705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoscale protein organization within the active zone (AZ) and post-synaptic density (PSD) influences synaptic transmission. Nanoclusters of presynaptic Munc13-1 are associated with readily releasable pool size and neurotransmitter vesicle priming, while postsynaptic PSD-95 nanoclusters coordinate glutamate receptors across from release sites to control their opening probability. Nanocluster number, size, and protein density vary between synapse types and with development and plasticity, supporting a wide range of functional states at the synapse. Whether or how the receptors themselves control this critical architecture remains unclear. One prominent PSD molecular complex is the NMDA receptor (NMDAR). NMDARs coordinate several modes of signaling within synapses, giving them the potential to influence synaptic organization through direct protein interactions or through signaling. We found that loss of NMDARs results in larger synapses that contain smaller, denser, and more numerous PSD-95 nanoclusters. Intriguingly, NMDAR loss also generates retrograde reorganization of the active zone, resulting in denser, more numerous Munc13-1 nanoclusters, more of which are aligned with PSD-95 nanoclusters. Together, these changes to synaptic nanostructure predict stronger AMPA receptor-mediated transmission in the absence of NMDARs. Notably, while prolonged antagonism of NMDAR activity increases Munc13-1 density within nanoclusters, it does not fully recapitulate these trans-synaptic effects. Thus, our results confirm that NMDARs play an important role in maintaining pre- and postsynaptic nanostructure and suggest that both decreased NMDAR expression and suppressed NMDAR activity may exert distinct effects on synaptic function, yet through unique architectural mechanisms.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
- Current address: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Emily M. DeMarco
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Michael C. Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| |
Collapse
|
18
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
19
|
Griesius S, Waldron S, Kamenish KA, Cherbanich N, Wilkinson LS, Thomas KL, Hall J, Mellor JR, Dwyer DM, Robinson ESJ. A mild impairment in reversal learning in a bowl-digging substrate deterministic task but not other cognitive tests in the Dlg2+/- rat model of genetic risk for psychiatric disorder. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12865. [PMID: 37705179 PMCID: PMC10733576 DOI: 10.1111/gbb.12865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.
Collapse
Affiliation(s)
- Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Sophie Waldron
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
| | - Katie A. Kamenish
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Nick Cherbanich
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Schools of Medicine and Genetics and Genomics, Schools of Medicine and PsychologyCardiffUK
| | - Kerrie L. Thomas
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of Medicine and PsychologyCardiffUK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Schools of Medicine and Genetics and Genomics, Schools of Medicine and PsychologyCardiffUK
- Department of Medicine and PsychologyCardiffUK
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Dominic M. Dwyer
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
| | - Emma S. J. Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| |
Collapse
|
20
|
Pitcher GM, Garzia L, Morrissy AS, Taylor MD, Salter MW. Synapse-specific diversity of distinct postsynaptic GluN2 subtypes defines transmission strength in spinal lamina I. Front Synaptic Neurosci 2023; 15:1197174. [PMID: 37503309 PMCID: PMC10368998 DOI: 10.3389/fnsyn.2023.1197174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
The unitary postsynaptic response to presynaptic quantal glutamate release is the fundamental basis of excitatory information transfer between neurons. The view, however, of individual glutamatergic synaptic connections in a population as homogenous, fixed-strength units of neural communication is becoming increasingly scrutinized. Here, we used minimal stimulation of individual glutamatergic afferent axons to evoke single synapse resolution postsynaptic responses from central sensory lamina I neurons in an ex vivo adult rat spinal slice preparation. We detected unitary events exhibiting a NMDA receptor component with distinct kinetic properties across synapses conferred by specific GluN2 subunit composition, indicative of GluN2 subtype-based postsynaptic heterogeneity. GluN2A, 2A and 2B, or 2B and 2D synaptic predominance functioned on distinct lamina I neuron types to narrowly, intermediately, or widely tune, respectively, the duration of evoked unitary depolarization events from resting membrane potential, which enabled individual synapses to grade differentially depolarizing steps during temporally patterned afferent input. Our results lead to a model wherein a core locus of proteomic complexity prevails at this central glutamatergic sensory synapse that involves distinct GluN2 subtype configurations. These findings have major implications for subthreshold integrative capacity and transmission strength in spinal lamina I and other CNS regions.
Collapse
Affiliation(s)
- Graham M. Pitcher
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Livia Garzia
- Department of Surgery, Faculty of Medicine, McGill University, and Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - A. Sorana Morrissy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael D. Taylor
- Brain Tumor Program, Texas Medical Centre, Houston, TX, United States
| | - Michael W. Salter
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Inyang D, Saumtally T, Nnadi CN, Devi S, So PW. A Systematic Review of the Effects of Capsaicin on Alzheimer's Disease. Int J Mol Sci 2023; 24:10176. [PMID: 37373321 DOI: 10.3390/ijms241210176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterised by cognitive impairment, and amyloid-β plaques and neurofibrillary tau tangles at neuropathology. Capsaicin is a spicy-tasting compound found in chili peppers, with anti-inflammatory, antioxidant, and possible neuroprotective properties. Capsaicin intake has been associated with greater cognitive function in humans, and attenuating aberrant tau hyperphosphorylation in a rat model of AD. This systematic review discusses the potential of capsaicin in improving AD pathology and symptoms. A systematic analysis was conducted on the effect of capsaicin on AD-associated molecular changes, cognitive and behaviour resulting in 11 studies employing rodents and/or cell cultures, which were appraised with the Cochrane Risk of Bias tool. Ten studies showed capsaicin attenuated tau deposition, apoptosis, and synaptic dysfunction; was only weakly effective on oxidative stress; and had conflicting effects on amyloid processing. Eight studies demonstrated improved spatial and working memory, learning, and emotional behaviours in rodents following capsaicin treatment. Overall, capsaicin showed promise in improving AD-associated molecular, cognitive, and behavioural changes in cellular and animal models, and further investigations are recommended to test the readily available bioactive, capsaicin, to treat AD.
Collapse
Affiliation(s)
- Deborah Inyang
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Tasneem Saumtally
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Chinelo Nonyerem Nnadi
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Sharmila Devi
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| |
Collapse
|
22
|
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 2023:S0896-6273(23)00344-6. [PMID: 37236178 DOI: 10.1016/j.neuron.2023.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
N-Methyl-D-aspartate ionotropic glutamate receptors (NMDARs) play key roles in synaptogenesis, synaptic maturation, long-term plasticity, neuronal network activity, and cognition. Mirroring this wide range of instrumental functions, abnormalities in NMDAR-mediated signaling have been associated with numerous neurological and psychiatric disorders. Thus, identifying the molecular mechanisms underpinning the physiological and pathological contributions of NMDAR has been a major area of investigation. Over the past decades, a large body of literature has flourished, revealing that the physiology of ionotropic glutamate receptors cannot be restricted to fluxing ions, and involves additional facets controlling synaptic transmissions in health and disease. Here, we review newly discovered dimensions of postsynaptic NMDAR signaling supporting neural plasticity and cognition, such as the nanoscale organization of NMDAR complexes, their activity-dependent redistributions, and non-ionotropic signaling capacities. We also discuss how dysregulations of these processes may directly contribute to NMDAR-dysfunction-related brain diseases.
Collapse
Affiliation(s)
- Julien P Dupuis
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Olivier Nicole
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- University of Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France.
| |
Collapse
|
23
|
Ramírez-Hernández E, Sánchez-Maldonado C, Patricio-Martínez A, Limón ID. Amyloid-β (25-35) induces the morphological alteration of dendritic spines and decreases NR2B and PSD-95 expression in the hippocampus. Neurosci Lett 2023; 795:137030. [PMID: 36572143 DOI: 10.1016/j.neulet.2022.137030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Research on the memory impairment caused by the Amyloid-β 25-35 (Aβ25-35) peptide in animal models has provided an understanding of the causes that occurs in Alzheimer's disease. However, it is uncertain whether this cognitive impairment occurs due to disruption of information encoding and consolidation or impaired retrieval of stored memory. The aim of this study was to determine the effect of the Aβ25-35 peptide on the morphology of dendritic spines and the changes in the expression of NR2B and PSD-95 in the hippocampus associated with learning and memory deficit. Vehicle or Aβ25-35 peptide (0.1 µg/µL) was bilaterally administered into the CA1 subfield of the rat hippocampus, then tested for spatial learning and memory in the Morris Water Maze. On Day 39, the morphological changes in the CA1 of the hippocampus and dentate gyrus were examined via Golgi-Cox stain. It was observed that the Aβ25-35 peptide administered in the CA1 region of the rat hippocampus induced changes to the morphology of dendritic spines and the expression of the NR2B subunit of the NMDA receptor co-localized with both the spatial memory and PSD-95 protein in the hippocampus of learning rats. We conclude that, in soluble form, the Aβ25-35 peptide perturbs synaptic plasticity, specifically in the formation of new synapses, thus promoting the progression of memory impairment.
Collapse
Affiliation(s)
- Eleazar Ramírez-Hernández
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Sánchez-Maldonado
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico; Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhiucamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma Puebla, Puebla, Puebla, Mexico.
| |
Collapse
|
24
|
Fan H, Wang Y, Zou Y, Song W, Xie J, Tang X, Chen S. ARC/Arg3.1 expression in the lateral geniculate body of monocular form deprivation amblyopic kittens. BMC Ophthalmol 2023; 23:3. [PMID: 36597053 PMCID: PMC9809052 DOI: 10.1186/s12886-022-02757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The present study compared the expression of activity-regulated cytoskeleton-associated protein (ARC/Arg3.1) in the lateral geniculate body between form deprivation amblyopia kittens and normal kittens to examine the significance of ARC/Arg3.1 in the lateral geniculate body in the pathogenesis of amblyopia. METHODS Twenty kittens were randomly divided into an experimental group (n = 10) and a control group (n = 10). Black opaque covering cloth was used to cover the right eye of kittens in the experimental group. Pattern visual evoked potentials (PVEP) were detected weekly in all kittens. The expression of the ARC/Arg3.1 gene was detected by immunohistochemistry and in situ hybridization, and apoptosis of lateral geniculate body cells was detected by TUNEL. RESULTS PVEP detection showed that at the age of 5 and 7 weeks, the latency of P100 in the right eye of the experimental group was higher than that of the other three groups (P < 0.05), and the amplitude of P100 was lower than that of the other three groups (P < 0.05). The expression of ARC/Arg3.1 protein (P < 0.05) and mRNA (P < 0.05) in the lateral geniculate body of the experimental group was significantly lower than that of the control group. The level of neuronal apoptosis in the experimental group was higher than that in the control group (P < 0.05). The expression of the ARC/Arg3.1 gene was negatively correlated with the apoptosis level of lateral geniculate body neurons. CONCLUSIONS The expression of ARC/Arg3.1 is associated with monocular form deprivation amblyopia and apoptosis of lateral geniculate body cells.
Collapse
Affiliation(s)
- Haobo Fan
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
- Department of Optometry and Pediatric Ophthalmology, Ineye Hospital of Chengdu University of TCM, Chengdu, China
| | - Ying Wang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Yunchun Zou
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China.
- Department of Ophthalmology, the Second Clinical College of North Sichuan Medical College (Nanchong Central Hospital), Nanchong, China.
| | - Weiqi Song
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Juan Xie
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Xiuping Tang
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| | - Siyu Chen
- Department of Optometry, North Sichuan Medical College, No.234 FuJiang Road, Nanchong, 637000, China
| |
Collapse
|
25
|
Bulovaite E, Qiu Z, Kratschke M, Zgraj A, Fricker DG, Tuck EJ, Gokhale R, Koniaris B, Jami SA, Merino-Serrais P, Husi E, Mendive-Tapia L, Vendrell M, O'Dell TJ, DeFelipe J, Komiyama NH, Holtmaat A, Fransén E, Grant SGN. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 2022; 110:4057-4073.e8. [PMID: 36202095 PMCID: PMC9789179 DOI: 10.1016/j.neuron.2022.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
Collapse
Affiliation(s)
- Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maximilian Kratschke
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Adrianna Zgraj
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David G Fricker
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eleanor J Tuck
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Shekib A Jami
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
26
|
Tomas-Roca L, Qiu Z, Fransén E, Gokhale R, Bulovaite E, Price DJ, Komiyama NH, Grant SGN. Developmental disruption and restoration of brain synaptome architecture in the murine Pax6 neurodevelopmental disease model. Nat Commun 2022; 13:6836. [PMID: 36369219 PMCID: PMC9652404 DOI: 10.1038/s41467-022-34131-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodevelopmental disorders of genetic origin delay the acquisition of normal abilities and cause disabling phenotypes. Nevertheless, spontaneous attenuation and even complete amelioration of symptoms in early childhood and adolescence can occur in many disorders, suggesting that brain circuits possess an intrinsic capacity to overcome the deficits arising from some germline mutations. We examined the molecular composition of almost a trillion excitatory synapses on a brain-wide scale between birth and adulthood in mice carrying a mutation in the homeobox transcription factor Pax6, a neurodevelopmental disorder model. Pax6 haploinsufficiency had no impact on total synapse number at any age. By contrast, the molecular composition of excitatory synapses, the postnatal expansion of synapse diversity and the acquisition of normal synaptome architecture were delayed in all brain regions, interfering with networks and electrophysiological simulations of cognitive functions. Specific excitatory synapse types and subtypes were affected in two key developmental age-windows. These phenotypes were reversed within 2-3 weeks of onset, restoring synapse diversity and synaptome architecture to the normal developmental trajectory. Synapse subtypes with rapid protein turnover mediated the synaptome remodeling. This brain-wide capacity for remodeling of synapse molecular composition to recover and maintain the developmental trajectory of synaptome architecture may help confer resilience to neurodevelopmental genetic disorders.
Collapse
Affiliation(s)
- Laura Tomas-Roca
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Erik Fransén
- Science for Life Laboratory, KTH Royal Institute of Technology, SE-171 65, Solna, Sweden
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David J Price
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
27
|
Lovatt M, Leistner C, Frank RAW. Bridging length scales from molecules to the whole organism by cryoCLEM and cryoET. Faraday Discuss 2022; 240:114-126. [PMID: 35959706 PMCID: PMC9642002 DOI: 10.1039/d2fd00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023]
Abstract
Resolving atomic structures of isolated proteins has uncovered mechanisms and fundamental processes in biology. However, many functions can only be tested in the context of intact cells and tissues that are many orders of magnitude larger than the macromolecules on which they depend. Therefore, methods that interrogate macromolecular structure in situ provide a means of directly relating structure to function across length scales. Here, we developed several workflows using cryogenic correlated light and electron microscopy (cryoCLEM) and electron tomography (cryoET) that can bridge this gap to reveal the molecular infrastructure that underlies higher order functions within cells and tissues. We also describe experimental design considerations, including cryoCLEM labelling, sample preparation, and quality control, for determining the in situ molecular architectures within native, hydrated cells and tissues.
Collapse
Affiliation(s)
- Megan Lovatt
- Astbury Centre of Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| | - Conny Leistner
- Astbury Centre of Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| | - René A W Frank
- Astbury Centre of Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
28
|
Mathew B, Bathla S, Williams KR, Nairn AC. Deciphering Spatial Protein-Protein Interactions in Brain Using Proximity Labeling. Mol Cell Proteomics 2022; 21:100422. [PMID: 36198386 PMCID: PMC9650050 DOI: 10.1016/j.mcpro.2022.100422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/18/2023] Open
Abstract
Cellular biomolecular complexes including protein-protein, protein-RNA, and protein-DNA interactions regulate and execute most biological functions. In particular in brain, protein-protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell-cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte-neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.
Collapse
Affiliation(s)
- Boby Mathew
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, Connecticut, USA; Department of Psychiatry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
29
|
Haddow K, Kind PC, Hardingham GE. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease. Int J Mol Sci 2022; 23:ijms231911392. [PMID: 36232696 PMCID: PMC9570437 DOI: 10.3390/ijms231911392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kirsty Haddow
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter C. Kind
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Correspondence:
| |
Collapse
|
30
|
Cappelli S, Spalloni A, Feiguin F, Visani G, Šušnjar U, Brown AL, De Bardi M, Borsellino G, Secrier M, Phatnani H, Romano M, Fratta P, Longone P, Buratti E. NOS1AP is a novel molecular target and critical factor in TDP-43 pathology. Brain Commun 2022; 4:fcac242. [PMID: 36267332 PMCID: PMC9576154 DOI: 10.1093/braincomms/fcac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many lines of evidence have highlighted the role played by heterogeneous nuclear ribonucleoproteins in amyotrophic lateral sclerosis. In this study, we have aimed to identify transcripts co-regulated by TAR DNA-binding protein 43 kDa and highly conserved heterogeneous nuclear ribonucleoproteins which have been previously shown to regulate TAR DNA-binding protein 43 kDa toxicity (deleted in azoospermia-associated protein 1, heterogeneous nuclear ribonucleoprotein -Q, -D, -K and -U). Using the transcriptome analyses, we have uncovered that Nitric Oxide Synthase 1 Adaptor Protein mRNA is a direct TAR DNA-binding protein 43 kDa target, and in flies, its modulation alone can rescue TAR DNA-binding protein 43 kDa pathology. In primary mouse cortical neurons, we show that TAR DNA-binding protein 43 kDa mediated downregulation of Nitric Oxide Synthase 1 Adaptor Protein expression strongly affects the NMDA-receptor signalling pathway. In human patients, the downregulation of Nitric Oxide Synthase 1 Adaptor Protein mRNA strongly correlates with TAR DNA-binding protein 43 kDa proteinopathy as measured by cryptic Stathmin-2 and Unc-13 homolog A cryptic exon inclusion. Overall, our results demonstrate that Nitric Oxide Synthase 1 Adaptor Protein may represent a novel disease-relevant gene, potentially suitable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Alida Spalloni
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Fabian Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Giulia Visani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Urša Šušnjar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Marco De Bardi
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Patrizia Longone
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
31
|
Durankuş F, Albayrak Y, Erdoğan F, Albayrak N, Erdoğan MA, Erbaş O. Granulocyte Colony-Stimulating Factor Has a Sex-Dependent Positive Effect in the Maternal Immune Activation-Induced Autism Model. Int J Dev Neurosci 2022; 82:716-726. [PMID: 35904498 DOI: 10.1002/jdn.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The medical intervention for autism spectrum disorder (ASD) is restricted to ameliorating comorbid situations. Granulocyte colony-stimulating factor (G-CSF) is a growth factor that enhances the proliferation, differentiation and survival of hematopoietic progenitor cells. In the present study, we aimed to investigate the effects of G-CSF in a maternal immune activation-induced autism model. METHODS Sixteen female and 6 male Wistar adult rats were included in the study. After 21 days, forty-eight littermates (8 male controls, 8 female controls, 16 male lipopolysaccharide (LPS)-exposed rats and 16 female LPS-exposed rats) were divided into groups. Sixteen male LPS-exposed and 16 female LPS-exposed rats were divided into saline and G-CSF treatment groups. RESULTS In male rats, the LPS-exposed group was found to have significantly higher levels of TNF-α, IL-2, and IL-17 than the LPS-exposed G-CSF group. Levels of nerve growth factor, brain PSD-95 and brain GAD67 were higher in the LPS-exposed G-CSF group than in the LPS-exposed group in male rats. In female rats, brain NGF levels were similar between groups. There was no difference between groups in terms of brain GAD 67 levels. Brain PSD-95 levels were higher in the control group than in both the LPS-exposed and LPS-exposed G-CSF groups in female rats. Both neuronal CA1 and neuronal CA2 levels were lower, and the GFAP immunostaining index (CA1) and GFAP immunostaining index (CA3) were higher in the LPS-exposed group than in the LPS-exposed G-CSF group in male rats. However, neuronal count CA1 and Neuronal count CA3 values were found to be similar between groups in female rats. CONCLUSIONS The present research is the first to demonstrate the beneficial effects of G-CSF on core symptoms of ASD experimentally depending on male sex. G-CSF can be a good candidate for ameliorating the core symptoms of ASD without serious side effects in males.
Collapse
Affiliation(s)
- Ferit Durankuş
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | - Yakup Albayrak
- Faculty of Medicine, Department of Psychiatry, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Fırat Erdoğan
- Department of Pediatrics, Istanbul Medeniyet University, İstanbul, Turkey
| | | | - Mümin Alper Erdoğan
- Department of Physiology, Katip Çelebi University Medical School, İzmir, Turkey
| | - Oytun Erbaş
- Medical School, Department of Physiology, Demiroğlu Bilim University, İstanbul, Turkey
| |
Collapse
|
32
|
Stachowicz K. Is PSD-95 entangled in the side effects of antidepressants? Neurochem Int 2022; 159:105391. [PMID: 35817245 DOI: 10.1016/j.neuint.2022.105391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
PSD-95 is a component and a building block of an excitatory synapse. PSD-95 is a specialized protein that is part of a "combination lock" system responsible for plastic events at the synapse, such as receptor expression, which consequently induces changes in the PSD structure and thus affects synaptic plasticity. The possible involvement of PSD-95 in antidepressant side effects related to cognitive function and psychosis will be considered. An attempt will be made to trace the sequence of events in the proposed mechanism leading to these disorders, focusing mainly on NMDA receptors. Understanding the mechanisms of action of compounds with antidepressant potential may facilitate the design of safer drugs.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna, 12, 31-343, Kraków, Poland.
| |
Collapse
|
33
|
Shi Y, Cui W, Wang Q, Zhou J, Wu X, Wang J, Zhang S, Hu Q, Han L, Du Y, Ge S, Liu H, Qu Y. MicroRNA-124/Death-Associated Protein Kinase 1 Signaling Regulates Neuronal Apoptosis in Traumatic Brain Injury via Phosphorylating NR2B. Front Cell Neurosci 2022; 16:892197. [PMID: 35783103 PMCID: PMC9240278 DOI: 10.3389/fncel.2022.892197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine-protein kinase, promotes neurons apoptosis in ischemic stroke and Alzheimer’s disease (AD). We hypothesized that knockdown DAPK1 may play a protective role in traumatic brain injury (TBI) and explore underlying molecular mechanisms. ELISA, Western blotting, immunofluorescence, dual-luciferase assay, and Reverse Transcription and quantitative Polymerase Chain Reaction (RT-qPCR) were used to determine the mechanism for the role of DAPK1 in TBI. Open field and novel objective recognition tests examined motor and memory functions. The morphology and number of synapses were observed by transmission electron microscopy and Golgi staining. DAPK1 was mainly found in neurons and significantly increased in TBI patients and TBI mice. The dual-luciferase assay showed that DAPK1 was upregulated by miR-124 loss. The number of TUNEL+ cells, expression levels of cleaved caspase3 and p-NR2B/NR2B were significantly reduced after knocking-down DAPK1 or overexpressing miR-124 in TBI mice; and motor and memory dysfunction was recovered. After Tat-NR2B were injected in TBI mice, pathological and behavioral changes were mitigated while the morphology while the number of synapses were not affected. Overall, DAPK1 is a downstream target gene of miR-124 that regulates neuronal apoptosis in TBI mice via NR2B. What’s more, DAPK1 restores motor and memory dysfunctions without affecting the number and morphology of synapses.
Collapse
|
34
|
Griesius S, O'Donnell C, Waldron S, Thomas KL, Dwyer DM, Wilkinson LS, Hall J, Robinson ESJ, Mellor JR. Reduced expression of the psychiatric risk gene DLG2 (PSD93) impairs hippocampal synaptic integration and plasticity. Neuropsychopharmacology 2022; 47:1367-1378. [PMID: 35115661 PMCID: PMC9117295 DOI: 10.1038/s41386-022-01277-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/15/2022]
Abstract
Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Cian O'Donnell
- Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Sophie Waldron
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
| | - Dominic M Dwyer
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Emma S J Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
35
|
Re-examination of the determinants of synaptic strength from the perspective of superresolution imaging. Curr Opin Neurobiol 2022; 74:102540. [DOI: 10.1016/j.conb.2022.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|
36
|
Li J, Xu Y, Zhu H, Wang Y, Li P, Wang D. The dark side of synaptic proteins in tumours. Br J Cancer 2022; 127:1184-1192. [PMID: 35624299 DOI: 10.1038/s41416-022-01863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Research in the past decade has uncovered the essential role of the nervous system in the tumour microenvironment. The recent advances in cancer neuroscience, especially the discovery of neuron-tumour synaptic/perisynaptic structures, have revealed the dark side of synaptic proteins in the progression of brain tumours. Here, we provide an overview of the synaptic proteins expressed by tumour cells and analyse their molecular functions and organisation by comparing them with neuronal synaptic proteins. We focus on the studies of neuroligin-3, the glutamate receptors AMPAR and NMDAR and the synaptic scaffold protein DLGAP1, for their newly discovered regulatory role in the proliferation and progression of tumours. Progress in cancer neuroscience has brought novel insights into the treatment of cancers. In the last part of this review, we discuss the therapeutical strategies targeting synaptic proteins and the current challenges and possible toolkits regarding their clinical application in cancer treatment. Our understanding of cancer neuroscience is still in its infancy; deeper investigation of how tumour cells co-opt synaptic signaling will help fulfil the therapeutical potential of the synaptic proteins as promising anti-tumour targets.
Collapse
Affiliation(s)
- Jing Li
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China.
| | - Yalan Xu
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, 266011, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Medical College, Qingdao University, 266021, Qingdao, China
| |
Collapse
|
37
|
Waldron S, Pass R, Griesius S, Mellor JR, Robinson ESJ, Thomas KL, Wilkinson LS, Humby T, Hall J, Dwyer DM. Behavioural and molecular characterisation of the Dlg2 haploinsufficiency rat model of genetic risk for psychiatric disorder. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12797. [PMID: 35075790 PMCID: PMC9393932 DOI: 10.1111/gbb.12797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Genetic studies implicate disruption to the DLG2 gene in copy number variants as increasing risk for schizophrenia, autism spectrum disorders and intellectual disability. To investigate psychiatric endophenotypes associated with DLG2 haploinsufficiency (and concomitant PSD-93 protein reduction) a novel clinically relevant Dlg2+/- rat was assessed for abnormalities in anxiety, sensorimotor gating, hedonic reactions, social behaviour, and locomotor response to the N-Methyl-D-aspartic acid receptor antagonist phencyclidine. Dlg gene and protein expression were also investigated to assess model validity. Reductions in PSD-93 messenger RNA and protein were observed in the absence of compensation by other related genes or proteins. Behaviourally Dlg2+/- rats show a potentiated locomotor response to phencyclidine, as is typical of psychotic disorder models, in the absence of deficits in the other behavioural phenotypes assessed here. This shows that the behavioural effects of Dlg2 haploinsufficiency may specifically relate to psychosis vulnerability but are subtle, and partially dissimilar to behavioural deficits previously reported in Dlg2+/- mouse models demonstrating issues surrounding the comparison of models with different aetiology and species. Intact performance on many of the behavioural domains assessed here, such as anxiety and reward processing, will remove these as confounds when continuing investigation into this model using more complex cognitive tasks.
Collapse
Affiliation(s)
| | - Rachel Pass
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
- Neurobiology Research UnitOkinawa Institute of Science and TechnologyOnna‐sonOkinawaJapan
| | - Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBristolUK
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBristolUK
| | - Emma S. J. Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and NeuroscienceUniversity of Bristol, University WalkBristolUK
| | - Kerrie L. Thomas
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
| | - Lawrence S. Wilkinson
- School of PsychologyCardiff UniversityCardiffUK
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
| | | | - Jeremy Hall
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
- Medical Research Council Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | | |
Collapse
|
38
|
Hoffe B, Holahan MR. Hyperacute Excitotoxic Mechanisms and Synaptic Dysfunction Involved in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:831825. [PMID: 35283730 PMCID: PMC8907921 DOI: 10.3389/fnmol.2022.831825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The biological response of brain tissue to biomechanical strain are of fundamental importance in understanding sequela of a brain injury. The time after impact can be broken into four main phases: hyperacute, acute, subacute and chronic. It is crucial to understand the hyperacute neural outcomes from the biomechanical responses that produce traumatic brain injury (TBI) as these often result in the brain becoming sensitized and vulnerable to subsequent TBIs. While the precise physical mechanisms responsible for TBI are still a matter of debate, strain-induced shearing and stretching of neural elements are considered a primary factor in pathology; however, the injury-strain thresholds as well as the earliest onset of identifiable pathologies remain unclear. Dendritic spines are sites along the dendrite where the communication between neurons occurs. These spines are dynamic in their morphology, constantly changing between stubby, thin, filopodia and mushroom depending on the environment and signaling that takes place. Dendritic spines have been shown to react to the excitotoxic conditions that take place after an impact has occurred, with a shift to the excitatory, mushroom phenotype. Glutamate released into the synaptic cleft binds to NMDA and AMPA receptors leading to increased Ca2+ entry resulting in an excitotoxic cascade. If not properly cleared, elevated levels of glutamate within the synaptic cleft will have detrimental consequences on cellular signaling and survival of the pre- and post-synaptic elements. This review will focus on the synaptic changes during the hyperacute phase that occur after a TBI. With repetitive head trauma being linked to devastating medium – and long-term maladaptive neurobehavioral outcomes, including chronic traumatic encephalopathy (CTE), understanding the hyperacute cellular mechanisms can help understand the course of the pathology and the development of effective therapeutics.
Collapse
|
39
|
Sanders B, D'Andrea D, Collins MO, Rees E, Steward TGJ, Zhu Y, Chapman G, Legge SE, Pardiñas AF, Harwood AJ, Gray WP, O'Donovan MC, Owen MJ, Errington AC, Blake DJ, Whitcomb DJ, Pocklington AJ, Shin E. Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nat Commun 2022; 13:27. [PMID: 35031607 PMCID: PMC8760302 DOI: 10.1038/s41467-021-27601-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/01/2021] [Indexed: 12/28/2022] Open
Abstract
Coordinated programs of gene expression drive brain development. It is unclear which transcriptional programs, in which cell-types, are affected in neuropsychiatric disorders such as schizophrenia. Here we integrate human genetics with transcriptomic data from differentiation of human embryonic stem cells into cortical excitatory neurons. We identify transcriptional programs expressed during early neurogenesis in vitro and in human foetal cortex that are down-regulated in DLG2−/− lines. Down-regulation impacted neuronal differentiation and maturation, impairing migration, morphology and action potential generation. Genetic variation in these programs is associated with neuropsychiatric disorders and cognitive function, with associated variants predominantly concentrated in loss-of-function intolerant genes. Neurogenic programs also overlap schizophrenia GWAS enrichment previously identified in mature excitatory neurons, suggesting that pathways active during prenatal cortical development may also be associated with mature neuronal dysfunction. Our data from human embryonic stem cells, when combined with analysis of available foetal cortical gene expression data, de novo rare variants and GWAS statistics for neuropsychiatric disorders and cognition, reveal a convergence on transcriptional programs regulating excitatory cortical neurogenesis. Coordinated programs of gene expression drive brain development. Here, the authors use human embryonic stem cells and foetal cortical tissue as well as available GWAS statistics and analysis of genetic variants associated with neuropsychiatric disorders and cognition revealing a convergence on transcriptional programs regulating excitatory cortical neurogenesis.
Collapse
Affiliation(s)
- Bret Sanders
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Daniel D'Andrea
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Mark O Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Tom G J Steward
- Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Ying Zhu
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Gareth Chapman
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - William P Gray
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adam C Errington
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Derek J Blake
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK.
| | - Eunju Shin
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK. .,School of Life Sciences, Keele University, Keele, ST5 5BG, UK.
| |
Collapse
|
40
|
Gakare SG, Varghese SS, Patni PP, Wagh SA, Ugale RR. Prevention of glutamate excitotoxicity in lateral habenula alleviates ethanol withdrawal-induced somatic and behavioral effects in ethanol dependent mice. Behav Brain Res 2022; 416:113557. [PMID: 34453973 DOI: 10.1016/j.bbr.2021.113557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Ethanol withdrawal commonly leads to anxiety-related disorder, a central factor toward negative reinforcement leading to relapse. The lateral habenula (LHb), an epithalamic nucleus, has emerged to be critical for both reward and aversion processing. Recent studies have also implicated the hyperactivity of LHb, adding to the emergence of negative emotional states during withdrawal from addictive drugs. Herein, we have studied the effects of glutamate transporter inhibitor (PDC), GluN2B-containing NMDAR antagonist (Ro25-6981), and intracellular calcium chelator (BAPTA-AM) injection in LHb on ethanol withdrawal symptoms. We found that ethanol 4 g/kg 20 % w/v intragastric (i.g.) for 10 days followed by 24 h of withdrawal showed a significant increase in somatic signs characterized by vocalization, shaking, and scratching. It also increased locomotor activity and anxiety-like behavior, collectively showing expression of ethanol withdrawal symptoms. The intra-LHb administration of PDC (0.5 ng) worsened the effect of ethanol withdrawal, whereas Ro25-6981 (2 and 4 ng) and BAPTA-AM (6.5 and 13 ng) significantly reversed ethanol withdrawal-induced behavior evident by a decrease in somatic signs, locomotor activity, and anxiety-like behavior. Further, pretreatment of Ro25-6981 and BAPTA-AM reduced the neuronal loss, whereas PDC increased it compared to the vehicle-treated group, as evidenced by NeuN staining. Altogether, our results suggest that increased glutamate, GluN2B activation, and likely calcium increase indicative of glutamate excitotoxicity-induced neuronal loss in LHb possibly endorse the emergence of ethanol withdrawal symptoms, while their inhibition might help in alleviating the ethanol withdrawal symptoms.
Collapse
Affiliation(s)
- Sukanya G Gakare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Shejin S Varghese
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Paras P Patni
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Samruddhi A Wagh
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
41
|
Yokoi N, Fukata Y, Okatsu K, Yamagata A, Liu Y, Sanbo M, Miyazaki Y, Goto T, Abe M, Kassai H, Sakimura K, Meijer D, Hirabayashi M, Fukai S, Fukata M. 14-3-3 proteins stabilize LGI1-ADAM22 levels to regulate seizure thresholds in mice. Cell Rep 2021; 37:110107. [PMID: 34910912 DOI: 10.1016/j.celrep.2021.110107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
What percentage of the protein function is required to prevent disease symptoms is a fundamental question in genetic disorders. Decreased transsynaptic LGI1-ADAM22 protein complexes, because of their mutations or autoantibodies, cause epilepsy and amnesia. However, it remains unclear how LGI1-ADAM22 levels are regulated and how much LGI1-ADAM22 function is required. Here, by genetic and structural analysis, we demonstrate that quantitative dual phosphorylation of ADAM22 by protein kinase A (PKA) mediates high-affinity binding of ADAM22 to dimerized 14-3-3. This interaction protects LGI1-ADAM22 from endocytosis-dependent degradation. Accordingly, forskolin-induced PKA activation increases ADAM22 levels. Leveraging a series of ADAM22 and LGI1 hypomorphic mice, we find that ∼50% of LGI1 and ∼10% of ADAM22 levels are sufficient to prevent lethal epilepsy. Furthermore, ADAM22 function is required in excitatory and inhibitory neurons. These results suggest strategies to increase LGI1-ADAM22 complexes over the required levels by targeting PKA or 14-3-3 for epilepsy treatment.
Collapse
Affiliation(s)
- Norihiko Yokoi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Liu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuri Miyazaki
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hidetoshi Kassai
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Masumi Hirabayashi
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
42
|
Lautz JD, Tsegay KB, Zhu Z, Gniffke EP, Welsh JP, Smith SEP. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states. Cell Rep 2021; 37:110076. [PMID: 34852231 PMCID: PMC8722361 DOI: 10.1016/j.celrep.2021.110076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022] Open
Abstract
A core network of widely expressed proteins within the glutamatergic post-synapse mediates activity-dependent synaptic plasticity throughout the brain, but the specific proteomic composition of synapses differs between brain regions. Here, we address the question, how does proteomic composition affect activity-dependent protein-protein interaction networks (PINs) downstream of synaptic activity? Using quantitative multiplex co-immunoprecipitation, we compare the PIN response of in vivo or ex vivo neurons derived from different brain regions to activation by different agonists or different forms of eyeblink conditioning. We report that PINs discriminate between incoming stimuli using differential kinetics of overlapping and non-overlapping PIN parameters. Further, these "molecular logic rules" differ by brain region. We conclude that although the PIN of the glutamatergic post-synapse is expressed widely throughout the brain, its activity-dependent dynamics show remarkable stimulus-specific and brain-region-specific diversity. This diversity may help explain the challenges in developing molecule-specific drug therapies for neurological disorders.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kaleb B Tsegay
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Zhiyi Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
43
|
Marquardt K, Josey M, Kenton JA, Cavanagh JF, Holmes A, Brigman JL. Impaired cognitive flexibility following NMDAR-GluN2B deletion is associated with altered orbitofrontal-striatal function. Neuroscience 2021; 475:230-245. [PMID: 34656223 PMCID: PMC8592269 DOI: 10.1016/j.neuroscience.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A common feature across neuropsychiatric disorders is inability to discontinue an action or thought once it has become detrimental. Reversal learning, a hallmark of executive control, requires plasticity within cortical, striatal and limbic circuits and is highly sensitive to disruption of N-methyl-d-aspartate receptor (NMDAR) function. In particular, selective deletion or antagonism of GluN2B containing NMDARs in cortical regions including the orbitofrontal cortex (OFC), promotes maladaptive perseveration. It remains unknown whether GluN2B functions to maintain local cortical activity necessary for reversal learning, or if it exerts a broader influence on the integration of neural activity across cortical and subcortical systems. To address this question, we utilized in vivo electrophysiology to record neuronal activity and local field potentials (LFP) in the orbitofrontal cortex and dorsal striatum (dS) of mice with deletion of GluN2B in neocortical and hippocampal principal cells while they performed touchscreen reversal learning. Reversal impairment produced by corticohippocampal GluN2B deletion was paralleled by an aberrant increase in functional connectivity between the OFC and dS. These alterations in coordination were associated with alterations in local OFC and dS firing activity. These data demonstrate highly dynamic patterns of cortical and striatal activity concomitant with reversal learning, and reveal GluN2B as a molecular mechanism underpinning the timing of these processes.
Collapse
Affiliation(s)
- Kristin Marquardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Megan Josey
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA; New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
44
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
45
|
Curran OE, Qiu Z, Smith C, Grant SGN. A single-synapse resolution survey of PSD95-positive synapses in twenty human brain regions. Eur J Neurosci 2021; 54:6864-6881. [PMID: 32492218 PMCID: PMC7615673 DOI: 10.1111/ejn.14846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Mapping the molecular composition of individual excitatory synapses across the mouse brain reveals high synapse diversity with each brain region showing a distinct composition of synapse types. As a first step towards systematic mapping of synapse diversity across the human brain, we have labelled and imaged synapses expressing the excitatory synapse protein PSD95 in twenty human brain regions, including 13 neocortical, two subcortical, one hippocampal, one cerebellar and three brainstem regions, in four phenotypically normal individuals. We quantified the number, size and intensity of individual synaptic puncta and compared their regional distributions. We found that each region showed a distinct signature of synaptic puncta parameters. Comparison of brain regions showed that cortical and hippocampal structures are similar, and distinct from those of cerebellum and brainstem. Comparison of synapse parameters from human and mouse brain revealed conservation of parameters, hierarchical organization of brain regions and network architecture. This work illustrates the feasibility of generating a systematic single-synapse resolution atlas of the human brain, a potentially significant resource in studies of brain health and disease.
Collapse
Affiliation(s)
- Olimpia E Curran
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Zhen Qiu
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Academic Neuropathology, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| |
Collapse
|
46
|
Differential expression of glutamatergic receptor subunits in the hippocampus in carioca high- and low-conditioned freezing rats. Mol Cell Neurosci 2021; 116:103666. [PMID: 34464708 DOI: 10.1016/j.mcn.2021.103666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Anxiety is an emotional state that affects the quality of human life. Several neurotransmitters are involved in the regulation of anxiety, including glutamate. The major actions of glutamate are mediated by N-methyl-d-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The present study performed a behavioral and neurochemical analysis of Carioca High-conditioned Freezing (CHF) and Carioca Low-conditioned Freezing (CLF) rats compared with control rats. We evaluated thermal nociception, anxiety-like behavior, depressive-like behavior, spatial memory, habituation memory, and the content and localization of different glutamatergic receptor subunits and postsynaptic density-95 (PSD-95), a postsynaptic protein. The CHF group exhibited an anxious-like phenotype, impairments in habituation and spatial memory, and a depressive-like phenotype compared with the control group. In the ventral hippocampus, an increase in the PSD-95, GluN1 and GluA1 subunits and a decrease in the GluN2A subunit of glutamatergic receptors. The CLF group exhibited a less anxious-like phenotype, hyperlocomotion and habituation impairments. Also, CLF animals, presented, in the ventral hippocampus, an increase in the PSD-95, GluN1 and GluA2 subunits and a decrease in the GluN2B subunit. These results suggest that the differential composition of NMDAR and AMPAR subunits may be related to the modulation of different phenotypes in CHF and CLF rats, which may help identify new targets for therapeutic interventions for anxiety disorders and other comorbidities.
Collapse
|
47
|
Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer's Disease: Insights from a Synaptic Machinery Perspective. J Mol Neurosci 2021; 72:273-286. [PMID: 34414562 DOI: 10.1007/s12031-021-01893-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a serious neurodegenerative disease that has no cure yet, but whose symptoms can be alleviated with available medications. Therefore, early and accurate diagnosis of the disease and elucidation of the molecular mechanisms involved in the progression of pathogenesis are critically important. This study aimed to identify dysregulated miRNAs and their target mRNAs through the integrated analysis of miRNA and mRNA expression profiling in AD patients versus unaffected controls. Expression profiles in postmortem brain samples from AD patients and healthy individuals were extracted from the Gene Expression Omnibus database and were analyzed using bioinformatics approaches to identify gene ontologies, pathways, and networks. Finally, the module analysis of the PPI network and hub gene selection was carried out. A total of five differentially expressed miRNAs were extracted from the miRNA dataset, and 4312 differentially expressed mRNAs were obtained from the mRNA dataset. By comparing the DEGs and the putative targets of the altered miRNAs, 116 (3 upregulated and 113 downregulated) coordinated genes were determined. Also, six hub genes (SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A) were identified by constructing a PPI network. The results of the present study provide insight into mechanisms such as synaptic machinery and neuronal communication underlying AD pathogenesis, specifically concerning miRNAs.
Collapse
|
48
|
Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein Kinase C-Mediated Phosphorylation and α2δ-1 Interdependently Regulate NMDA Receptor Trafficking and Activity. J Neurosci 2021; 41:6415-6429. [PMID: 34252035 PMCID: PMC8318084 DOI: 10.1523/jneurosci.0757-21.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with Gӧ6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jixiang Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
49
|
Regulation of the NMDA receptor by its cytoplasmic domains: (How) is the tail wagging the dog? Neuropharmacology 2021; 195:108634. [PMID: 34097949 DOI: 10.1016/j.neuropharm.2021.108634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Excitatory neurotransmission mediated by N-methyl-d-aspartate receptors (NMDARs) is critical for synapse development, function, and plasticity in the brain. NMDARs are tetra-heteromeric cation-channels that mediate synaptic transmission and plasticity. Extensive human studies show the existence of genetic variants in NMDAR subunits genes (GRIN genes) that are associated with neurodevelopmental and neuropsychiatric disorders, including autism spectrum disorders (ASD), epilepsy (EP), intellectual disability (ID), attention deficit hyperactivity disorder (ADHD), and schizophrenia (SCZ). NMDAR subunits have a unique modular architecture with four semiautonomous domains. Here we focus on the carboxyl terminal domain (CTD), also known as the intracellular C-tail, which varies in length among the glutamate receptor subunits and is the most diverse domain in terms of amino acid sequence. The CTD shows no sequence homology to any known proteins but encodes short docking motifs for intracellular binding proteins and covalent modifications. Our review will discuss the many important functions of the CTD in regulating NMDA membrane and synaptic targeting, stabilization, degradation targeting, allosteric modulation and metabotropic signaling of the receptor. This article is part of the special issue on 'Glutamate Receptors - NMDA Receptors'.
Collapse
|
50
|
Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021; 195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|