1
|
Yu T, Li M, Li M, Wang S, Feng Z, Zhang H, Liu J, Mao H, Li D, Hu C, Xu X. Zebrafish (Danio rerio) TDP43 negatively regulates PKZ-IRF3-mediated IFN I response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:726-746. [PMID: 40073109 DOI: 10.1093/jimmun/vkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025]
Abstract
Transactive response DNA binding protein 43 kD (TDP43), encoded by the tardbp gene, is a member of heterogenous nuclear ribonucleoproteins family. In this study, a gradual upregulation of TDP43 messenger RNA was observed in either Ctenopharyngodon idella kidney cells or zebrafish following stimulation with B-DNA, grass carp reovirus, or spring viremia of carp virus. Moreover, grass carp reovirus stimulation enhances the dimerization, phosphorylation, and cytoplasm-to-nucleus translocation of TDP43 in zebrafish (DrTDP43). Type I interferon (IFN I) expression is inhibited in a dose-dependent manner in the cells transfected with DrTDP43 under GCRV stimulation. These results indicated that DrTDP43 is involved in innate immune response and serves as a negative regulator of IFN I expression. To determine DrTDP43-dependent downstream pathway in innate immunity, the substrate of DrTDP43 was studied. It is known that IFN I expression can be activated by PKZ via IRF3 dependent pathway. Our results found that DrTDP43 can be interacted with PKZ, suggesting that the downregulation of IFN I by DrTDP43 may attribute to the inhibition of PKZ activity. Multiple DrTDP43 mutants were constructed to further reveal the mechanism of TDP43-PKZ-mediated IFN I response. Apart from the N-terminal domain, RNA recognition motif 1, RNA recognition motif 2, and low-complexity domain domains of DrTDP43 were all found to be involved in inhibiting phosphorylation of PKZ. In vivo, knockdown of TDP43 in zebrafish embryos improved embryo survival rate upon viral infection and upregulated expression of IFN I. In summary, our findings demonstrate that DrTDP43 is a negative regulator of IFN I expression through the inhibition of the PKZ-IRF3-dependent pathway.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Science, Nanchang University, Nanchang, China
| | - Miaomiao Li
- School of Life Science, Nanchang University, Nanchang, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhiqing Feng
- School of Life Science, Nanchang University, Nanchang, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang, China
| | - Jiwei Liu
- School of Life Science, Nanchang University, Nanchang, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Takashima T, Zeng C, Murakami E, Fujiwara N, Kohara M, Nagata H, Feng Z, Sugai A, Harada Y, Ichijo R, Okuzaki D, Nojima S, Matsui T, Shintani Y, Kawai G, Hamada M, Hirose T, Nakatani K, Morii E. Involvement of lncRNA MIR205HG in idiopathic pulmonary fibrosis and IL-33 regulation via Alu elements. JCI Insight 2025; 10:e187172. [PMID: 40059822 PMCID: PMC11949018 DOI: 10.1172/jci.insight.187172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/22/2025] [Indexed: 03/29/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) causes remodeling of the distal lung. Pulmonary remodeling is histologically characterized by fibrosis, as well as appearance of basal cells; however, the involvement of basal cells in IPF remains unclear. Here, we focus on the long noncoding RNA MIR205HG, which is highly expressed in basal cells, using RNA sequencing. Through RNA sequencing of genetic manipulations using primary cells and organoids, we discovered that MIR205HG regulates IL-33 expression. Mechanistically, the AluJb element of MIR205HG plays a key role in IL-33 expression. Additionally, we identified a small molecule that targets the AluJb element, leading to decreased IL-33 expression. IL-33 is known to induce type 2 innate lymphoid cells (ILC2s), and we observed that MIR205HG expression was positively correlated with the number of ILC2s in patients with IPF. Collectively, these findings provide insights into the mechanisms by which basal cells contribute to IPF and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Tsuyoshi Takashima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Eitaro Murakami
- Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Scientific and Industrial Research), Osaka, Japan
| | - Naoko Fujiwara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Nagata
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhaozu Feng
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayako Sugai
- Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Scientific and Industrial Research), Osaka, Japan
| | - Yasue Harada
- Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Scientific and Industrial Research), Osaka, Japan
| | - Rika Ichijo
- Department of Life Science, Graduate School of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, and
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gota Kawai
- Department of Life Science, Graduate School of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Scientific and Industrial Research), Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Muñoz-Velasco I, Herrera-Escamilla AK, Vázquez-Salazar A. Nucleolar origins: challenging perspectives on evolution and function. Open Biol 2025; 15:240330. [PMID: 40068812 PMCID: PMC11896706 DOI: 10.1098/rsob.240330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
The nucleolus, once considered a mere 'ribosome factory', is now recognized as a dynamic hub influencing nearly every aspect of cellular life, from genome organization to stress response and ageing. Despite being a hallmark of eukaryotic cells, recent discoveries reveal that even prokaryotes exhibit nucleolus-like structures, hinting at ancient origins for nucleolar functions. This review explores the evolutionary journey of the nucleolus, tracing its roots back to early life and examining its structural and functional diversity across domains. We highlight key nucleolar proteins that play vital roles not only in ribosome production but also in regulating cell cycle, DNA repair and cellular stress, linking nucleolar activity directly to health and disease. Dysfunctions in nucleolar processes are implicated in cancer, ribosomopathies and neurodegenerative disorders, positioning the nucleolus as a critical target for innovative therapeutic strategies. As advanced imaging and molecular techniques unlock deeper insights into both canonical and mysterious non-canonical roles, the nucleolus stands as a model for how cellular microenvironments can evolve to meet complex biological demands. By addressing open questions surrounding the evolution of the nucleolus, its organization and diverse functions, the ideas presented here aim to contribute to the ongoing discussion, challenging traditional paradigms and suggesting new avenues for uncovering the fundamental principles that drive cellular life.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Tian Y, Heinsinger N, Hu Y, Lim UM, Wang Y, Fernandis AZ, Parmentier-Batteur S, Klein B, Uslaner JM, Smith SM. Deciphering the interactome of Ataxin-2 and TDP-43 in iPSC-derived neurons for potential ALS targets. PLoS One 2024; 19:e0308428. [PMID: 39739690 DOI: 10.1371/journal.pone.0308428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43. Co-immunoprecipitation demonstrated that Ataxin-2 and TDP-43 interact, that their interaction is mediated through the RNA recognition motif (RRM) of TDP-43, and knocking down Ataxin-2 or mutating the RRM domains rescued TDP-43 toxicity in an iPSC-derived neuronal model with TDP-43 overexpression. To decipher the Ataxin-2 and TDP-43 interactome, we used co-immunoprecipitation followed by mass spectrometry to identify proteins that interacted with Ataxin-2 and TDP-43 under conditions of endogenous or overexpressed TDP-43 in iPSC-derived neurons. Multiple interactome proteins were differentially regulated by TDP-43 overexpression and toxicity, including those involved in RNA regulation, cell survival, cytoskeleton reorganization, protein modification, and diseases. Interestingly, the RNA-binding protein (RBP), TAF15 which has been implicated in ALS was identified as a strong binder of Ataxin-2 in the condition of TDP-43 overexpression. Together, this study provides a comprehensive annotation of the Ataxin-2 and TDP-43 interactome and identifies potential therapeutic pathways and targets that could be modulated to alleviate Ataxin-2 and TDP-43 interaction-induced toxicity in ALS.
Collapse
Affiliation(s)
- Yuan Tian
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Nicolette Heinsinger
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Yinghui Hu
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - U-Ming Lim
- Quantatitive Biosciences, Merck Sharp & Dohme, Singapore, Singapore
| | - Yi Wang
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | | | - Sophie Parmentier-Batteur
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Becky Klein
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Jason M Uslaner
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| | - Sean M Smith
- Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America
| |
Collapse
|
5
|
Tang D, Wang H, Jiang Y, Chen M, Zhang G, Wu S, Wang Y. ATRA-induced NEAT1 upregulation promotes autophagy during APL cell granulocytic differentiation. PLoS One 2024; 19:e0316109. [PMID: 39715205 DOI: 10.1371/journal.pone.0316109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
AIMS Acute promyelocytic leukemia (APL) progresses quickly and often leads to early hemorrhagic death. Treatment with all-trans retinoic acid (ATRA) promotes differentiation of APL cells and clinical remission, making APL a potentially curable malignancy. Understanding how ATRA works may lead to new treatments for other types of leukemia. Long non-coding RNA NEAT1 has been implicated in the differentiation of APL cells. This study aims to elucidate the specific role of NEAT1 in the granulocytic differentiation of APL. METHODS The influence of NEAT1 on autophagy and PML/RARα degradation was assessed using western blot assays. The impact of NEAT1 on the expression of autophagy-related genes was evaluated through quantitative real-time RT-PCR. Mechanistic insights into the role of NEAT1 in modulating autophagy were supported by RNA immunoprecipitation and RNA pulldown assays. KEY FINDINGS Knockdown of NEAT1 suppressed autophagy and attenuated ATRA-induced PML/RARα degradation and granulocytic differentiation of APL cells. Subsequent screening of autophagy-related genes demonstrated that silencing NEAT1 impaired the ATRA-induced upregulation of ATG10 and ATG12. Mechanistic investigations revealed that the RNA-binding protein TAF15 interacted with NEAT1, synergistically stabilizing the mRNA of ATG10 and ATG12. Furthermore, knockdown of NEAT1 impaired the interactions between TAF15 and the mRNAs of ATG10 and ATG12, thereby compromising their mRNA stability. SIGNIFICANCE Our study elucidates the critical role of NEAT1-mediated autophagy in the differentiation of APL cells and delineates the molecular mechanism by which upregulation of NEAT1 enhances autophagy. Specifically, NEAT1 binds to the RNA-binding protein TAF15, which in turn stabilizes the mRNA of both ATG10 and ATG12.
Collapse
MESH Headings
- Humans
- Autophagy/drug effects
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Cell Differentiation/drug effects
- Tretinoin/pharmacology
- Up-Regulation/drug effects
- Cell Line, Tumor
- Granulocytes/metabolism
- Granulocytes/drug effects
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
Collapse
Affiliation(s)
- Doudou Tang
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Centre for Evidence-based Medicine, Central South University, Changsha, Hunan, China
| | - Huihui Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yafeng Jiang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjie Chen
- Shanghai NewCore Biotechnology Co., Ltd., Minhang District, Shanghai, China
| | - Guangsen Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Shangjie Wu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Centre for Evidence-based Medicine, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Liu D, Ding B, Liu G, Yang Z. FUS and METTL3 collaborate to regulate RNA maturation, preventing unfolded protein response and promoting gastric cancer progression. Clin Exp Med 2024; 25:15. [PMID: 39708203 DOI: 10.1007/s10238-024-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
FUS-mediated alternative splicing and METTL3-regulated RNA methylation play crucial roles in RNA processing. The purpose of this study was to investigate the interactive roles of FUS and METTL3 in gastric cancer (GC) progression. RNA sequencing data were obtained from the TCGA-STAD dataset. Differentially expressed genes (DEGs) were analyzed across groups stratified by the medians of FUS, METTL3, and NEAT1, respectively. Endoplasmic reticulum (ER) stress markers PERK, IRE1, pIRE1, Bip, and CHOP, as well as related apoptosis stress markers PARP, cleaved-PARP, (Cleaved) Caspase 7, and (Cleaved) Caspase 3, were assessed through western blotting. Alternative splicing and N6-methyladenosine (m(6)A) methylation of specific genes were detected with MeRIP-PCR. Finally, in vivo experiments were conducted using nude mice bearing sh-FUS-transfected HGC27 xenograft tumors. FUS and METTL3 expression levels were elevated in GC tissues. A significant overlap of DEGs was observed between the FUS- and METTL3-stratified groups. These overlapping DEGs were predominantly enriched in mRNA processing and protein processing in the ER. ER stress and apoptosis were induced by sh-FUS or sh-METTL3, which was further enhanced by ER stress inducer tunicamycin in both MKN45 and HGC27 cells. Similarly, DEGs for NEAT1 high- and low-expressed groups were enriched in protein processing in the ER and spliceosome. To a lesser extent, ER stress was also induced by sh-NEAT1 and enhanced by tunicamycin in HGC27 cells. Furthermore, sh-FUS or sh-METTL3 influenced alternative splicing and methylation of specific mRNAs, including FUS, NEAT1, PCNA, MCM2, and BIRC5. Tumor progression was inhibited by sh-FUS in mice, and ER stress and apoptosis were induced, which were further enhanced by tunicamycin. FUS and METTL3 collaborate to facilitate RNA maturation. Inhibiting FUS or METTL3 promoted ER stress and apoptosis and inhibited progression in GC.
Collapse
Affiliation(s)
- Dongtao Liu
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bo Ding
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Gang Liu
- Department of Gastrointestinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhijuan Yang
- Department of Gynecology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
7
|
Lobato-Fernandez C, Gimeno M, San Martín A, Anorbe A, Rubio A, Ferrer-Bonsoms JA. A Systematic Identification of RNA-Binding Proteins (RBPs) Driving Aberrant Splicing in Cancer. Biomedicines 2024; 12:2592. [PMID: 39595158 PMCID: PMC11591948 DOI: 10.3390/biomedicines12112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alternative Splicing (AS) is a post-transcriptional process that allows a single RNA to produce different mRNA variants and, in some cases, multiple proteins. Various processes, many yet to be discovered, regulate AS. This study focuses on regulation by RNA-binding proteins (RBPs), which are not only crucial for splicing regulation but also linked to cancer prognosis and are emerging as therapeutic targets for cancer treatment. CLIP-seq experiments help identify where RBPs bind on nascent transcripts, potentially revealing changes in splicing status that suggest causal relationships. Selecting specific RBPs for CLIP-seq experiments is often driven by a priori hypotheses. RESULTS We developed an algorithm to detect RBPs likely related to splicing changes between conditions by integrating several CLIP-seq databases and a differential splicing detection algorithm. This work refines a previous study by improving splicing event prediction, testing different enrichment statistics, and performing additional validation experiments. The new method provides more accurate predictions and is included in the Bioconductor package EventPointer 3.14. We tested the algorithm in four experiments involving knockdowns of seven different RBPs. The algorithm accurately assessed the statistical significance of these RBPs using only splicing alterations. Additionally, we applied the algorithm to study sixteen cancer types from The Cancer Genome Atlas (TCGA) and three from TARGET. We identified relationships between RBPs and various cancer types, including alterations in CREBBP and MBNL2 in adenocarcinomas of the lung, liver, prostate, rectum, stomach, and colon. Some of these findings are validated in the literature, while others are novel. CONCLUSIONS The developed algorithm enhances the ability to predict and understand RBP-related splicing changes, offering more accurate predictions and novel insights into cancer-related splicing alterations. This work highlights the potential of RBPs as therapeutic targets and contributes to the broader understanding of their roles in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | - Angel Rubio
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| | - Juan A. Ferrer-Bonsoms
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| |
Collapse
|
8
|
Zufiría M, Pikatza-Menoio O, Garciandia-Arcelus M, Bengoetxea X, Jiménez A, Elicegui A, Levchuk M, Arnold-García O, Ondaro J, Iruzubieta P, Rodríguez-Gómez L, Fernández-Pelayo U, Muñoz-Oreja M, Aiastui A, García-Verdugo JM, Herranz-Pérez V, Zulaica M, Poza JJ, Ruiz-Onandi R, Fernández-Torrón R, Espinal JB, Bonilla M, Lersundi A, Fernández-Eulate G, Riancho J, Vallejo-Illarramendi A, Holt IJ, Sáenz A, Malfatti E, Duguez S, Blázquez L, López de Munain A, Gerenu G, Gil-Bea F, Alonso-Martín S. Dysregulated FOXO1 activity drives skeletal muscle intrinsic dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 2024; 148:43. [PMID: 39283487 PMCID: PMC11405449 DOI: 10.1007/s00401-024-02794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a multisystemic neurodegenerative disorder, with accumulating evidence indicating metabolic disruptions in the skeletal muscle preceding disease symptoms, rather than them manifesting as a secondary consequence of motor neuron (MN) degeneration. Hence, energy homeostasis is deeply implicated in the complex physiopathology of ALS and skeletal muscle has emerged as a key therapeutic target. Here, we describe intrinsic abnormalities in ALS skeletal muscle, both in patient-derived muscle cells and in muscle cell lines with genetic knockdown of genes related to familial ALS, such as TARDBP (TDP-43) and FUS. We found a functional impairment of myogenesis that parallels defects of glucose oxidation in ALS muscle cells. We identified FOXO1 transcription factor as a key mediator of these metabolic and functional features in ALS muscle, via gene expression profiling and biochemical surveys in TDP-43 and FUS-silenced muscle progenitors. Strikingly, inhibition of FOXO1 mitigated the impaired myogenesis in both the genetically modified and the primary ALS myoblasts. In addition, specific in vivo conditional knockdown of TDP-43 or FUS orthologs (TBPH or caz) in Drosophila muscle precursor cells resulted in decreased innervation and profound dysfunction of motor nerve terminals and neuromuscular synapses, accompanied by motor abnormalities and reduced lifespan. Remarkably, these phenotypes were partially corrected by foxo inhibition, bolstering the potential pharmacological management of muscle intrinsic abnormalities associated with ALS. The findings demonstrate an intrinsic muscle dysfunction in ALS, which can be modulated by targeting FOXO factors, paving the way for novel therapeutic approaches that focus on the skeletal muscle as complementary target tissue.
Collapse
Grants
- CB06/05/1126 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas
- PI2020/08-1 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas
- P18/01066 Instituto de Salud Carlos III
- PI19/00175 Instituto de Salud Carlos III
- PI21/00153 Instituto de Salud Carlos III
- PI22/00433 Instituto de Salud Carlos III
- IJC2019-039965-I Instituto de Salud Carlos III
- 2020-CIEN-000057-01 Diputación Foral de Gipuzkoa
- 2021-CIEN-000020-01 Diputación Foral de Gipuzkoa
- 2019-FELL-000010-01 Diputación Foral de Gipuzkoa
- 2020-FELL-000016-02-01 Diputación Foral de Gipuzkoa
- 2021-FELL-000013-02-01 Diputación Foral de Gipuzkoa
- BIO17/ND/023/BD EiTB Maratoia
- 2015111122 Osasun Saila, Eusko Jaurlaritzako
- 2017222027 Osasun Saila, Eusko Jaurlaritzako
- 2018111042 Osasun Saila, Eusko Jaurlaritzako
- 2019222020 Osasun Saila, Eusko Jaurlaritzako
- 2020111032 Osasun Saila, Eusko Jaurlaritzako
- 2020333043 Osasun Saila, Eusko Jaurlaritzako
- 2021333050 Osasun Saila, Eusko Jaurlaritzako
- PRE_2015_1_0023 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2019_1_0339 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2020_1_0122 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2020_1_0191 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2020_1_0119 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2018_1_0095 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2021_1_0125 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PRE_2018_1_0253 Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- NEURODEGENPROT Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza
- PIF18/317 Euskal Herriko Unibertsitatea
- RYC2018-024397-I Spanish National Plan for Scientific and Technical Research and Innovation
- RF/2019/001 Ikerbasque, Basque Foundation for Science
- RF/2023/010 Ikerbasque, Basque Foundation for Science
- PP/2022/003 Ikerbasque, Basque Foundation for Science
- BIO19/ROCHE/017/BD Roche España
Collapse
Affiliation(s)
- Mónica Zufiría
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Oihane Pikatza-Menoio
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | | | - Xabier Bengoetxea
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Andrés Jiménez
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Amaia Elicegui
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - María Levchuk
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Olatz Arnold-García
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Jon Ondaro
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Pablo Iruzubieta
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Laura Rodríguez-Gómez
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Uxoa Fernández-Pelayo
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Mikel Muñoz-Oreja
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastian, Spain
| | - Ana Aiastui
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Cell Culture Platform, Biodonostia Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - José Manuel García-Verdugo
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Vicente Herranz-Pérez
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980, Paterna, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100, Burjassot, Spain
| | - Miren Zulaica
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Juan José Poza
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Rebeca Ruiz-Onandi
- Department of Pathological Anatomy, Galdakao-Usansolo University Hospital, Osakidetza Basque Health Service, 48960, Galdakao, Spain
- Department of Medical-Surgical Specialties, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Roberto Fernández-Torrón
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Juan Bautista Espinal
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Mario Bonilla
- Department of Traumatology and Orthopedic Surgery, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
| | - Ana Lersundi
- Department of Traumatology and Orthopedic Surgery, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
- Department of Surgery, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastián, Spain
| | - Gorka Fernández-Eulate
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institut de Myologie, Pitié-Salpêtrière Hospital, 75012, Paris, France
- Institut Necker-Enfants Malades, INSERM U1151, BioSPC (ED562), Université Paris Cité, 75015, Paris, France
| | - Javier Riancho
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Hospital de Sierrallana-IDIVAL, 39300, Torrelavega, Cantabria, Spain
- Department of Psychiatry and Medicine, Faculty of Medicine, University of Cantabria, 39011, Santander, Spain
| | - Ainara Vallejo-Illarramendi
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastian, Spain
| | - Ian James Holt
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK
| | - Amets Sáenz
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
| | - Edoardo Malfatti
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France
- Hôpital Henri-Mondor, 94010, Créteil, France
- Paris Reference Center for Neuromuscular Disorders, APHP Henri Mondor University Hospital, 94010, Créteil, France
| | - Stéphanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry, BT47 6SB, UK
- Northern Ireland Center for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Lorea Blázquez
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
| | - Adolfo López de Munain
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014, Donostia/San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 20014, Donostia/San Sebastian, Spain
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao, Spain
- Biodonostia Health Research Institute, 20014, Donostia/San Sebastian, Spain
| | - Gorka Gerenu
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Francisco Gil-Bea
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain
- IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Health Sciences, Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Sonia Alonso-Martín
- Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain.
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain.
- Stem Cells and Aging Group, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain.
| |
Collapse
|
9
|
Khoroshkin M, Buyan A, Dodel M, Navickas A, Yu J, Trejo F, Doty A, Baratam R, Zhou S, Lee SB, Joshi T, Garcia K, Choi B, Miglani S, Subramanyam V, Modi H, Carpenter C, Markett D, Corces MR, Mardakheh FK, Kulakovskiy IV, Goodarzi H. Systematic identification of post-transcriptional regulatory modules. Nat Commun 2024; 15:7872. [PMID: 39251607 PMCID: PMC11385195 DOI: 10.1038/s41467-024-52215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
In our cells, a limited number of RNA binding proteins (RBPs) are responsible for all aspects of RNA metabolism across the entire transcriptome. To accomplish this, RBPs form regulatory units that act on specific target regulons. However, the landscape of RBP combinatorial interactions remains poorly explored. Here, we perform a systematic annotation of RBP combinatorial interactions via multimodal data integration. We build a large-scale map of RBP protein neighborhoods by generating in vivo proximity-dependent biotinylation datasets of 50 human RBPs. In parallel, we use CRISPR interference with single-cell readout to capture transcriptomic changes upon RBP knockdowns. By combining these physical and functional interaction readouts, along with the atlas of RBP mRNA targets from eCLIP assays, we generate an integrated map of functional RBP interactions. We then use this map to match RBPs to their context-specific functions and validate the predicted functions biochemically for four RBPs. This study provides a detailed map of RBP interactions and deconvolves them into distinct regulatory modules with annotated functions and target regulons. This multimodal and integrative framework provides a principled approach for studying post-transcriptional regulatory processes and enriches our understanding of their underlying mechanisms.
Collapse
Affiliation(s)
- Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Andrey Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Institut Curie, UMR3348 CNRS, Inserm, Orsay, France
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fathima Trejo
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Anthony Doty
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, USA
| | - Rithvik Baratam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sean B Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tanvi Joshi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Christopher Carpenter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Wong JPH, Blazev R, Ng YK, Goodman CA, Montgomery MK, Watt KI, Carl CS, Watt MJ, Voldstedlund CT, Richter EA, Crouch PJ, Steyn FJ, Ngo ST, Parker BL. Characterization of the skeletal muscle arginine methylome in health and disease reveals remodeling in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23647. [PMID: 38787599 DOI: 10.1096/fj.202400045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Collapse
Affiliation(s)
- Julian P H Wong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin I Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Peter J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Feichtner A, Enzler F, Kugler V, Hoppe K, Mair S, Kremser L, Lindner H, Huber RG, Stelzl U, Stefan E, Torres-Quesada O. Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions. Cell Mol Life Sci 2024; 81:162. [PMID: 38568213 PMCID: PMC10991009 DOI: 10.1007/s00018-024-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.
Collapse
Affiliation(s)
- Andreas Feichtner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Katharina Hoppe
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
- Vascage, Center of Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, 138671, Singapore
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Hou Y, Li Y, Xiang JF, Tilahun K, Jiang J, Corces VG, Yao B. TDP-43 chronic deficiency leads to dysregulation of transposable elements and gene expression by affecting R-loop and 5hmC crosstalk. Cell Rep 2024; 43:113662. [PMID: 38184854 PMCID: PMC10857847 DOI: 10.1016/j.celrep.2023.113662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
TDP-43 is an RNA/DNA-binding protein that forms aggregates in various brain disorders. TDP-43 engages in many aspects of RNA metabolism, but its molecular roles in regulating genes and transposable elements (TEs) have not been extensively explored. Chronic TDP-43 knockdown impairs cell proliferation and cellular responses to DNA damage. At the molecular level, TDP-43 chronic deficiency affects gene expression either locally or distally by concomitantly altering the crosstalk between R-loops and 5-hydroxymethylcytosine (5hmC) in gene bodies and long-range enhancer/promoter interactions. Furthermore, TDP-43 knockdown induces substantial disease-relevant TE activation by influencing their R-loop and 5hmC homeostasis in a locus-specific manner. Together, our findings highlight the genomic roles of TDP-43 in modulating R-loop-5hmC coordination in coding genes, distal regulatory elements, and TEs, presenting a general and broad molecular mechanism underlying the contributions of proteinopathies to the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yingzi Hou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian-Feng Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kedamawit Tilahun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Zhu Y, Burg T, Neyrinck K, Vervliet T, Nami F, Vervoort E, Ahuja K, Sassano ML, Chai YC, Tharkeshwar AK, De Smedt J, Hu H, Bultynck G, Agostinis P, Swinnen JV, Van Den Bosch L, da Costa RFM, Verfaillie C. Disruption of MAM integrity in mutant FUS oligodendroglial progenitors from hiPSCs. Acta Neuropathol 2024; 147:6. [PMID: 38170217 PMCID: PMC10764485 DOI: 10.1007/s00401-023-02666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder, characterized by selective loss of motor neurons (MNs). A number of causative genetic mutations underlie the disease, including mutations in the fused in sarcoma (FUS) gene, which can lead to both juvenile and late-onset ALS. Although ALS results from MN death, there is evidence that dysfunctional glial cells, including oligodendroglia, contribute to neurodegeneration. Here, we used human induced pluripotent stem cells (hiPSCs) with a R521H or a P525L mutation in FUS and their isogenic controls to generate oligodendrocyte progenitor cells (OPCs) by inducing SOX10 expression from a TET-On SOX10 cassette. Mutant and control iPSCs differentiated efficiently into OPCs. RNA sequencing identified a myelin sheath-related phenotype in mutant OPCs. Lipidomic studies demonstrated defects in myelin-related lipids, with a reduction of glycerophospholipids in mutant OPCs. Interestingly, FUSR521H OPCs displayed a decrease in the phosphatidylcholine/phosphatidylethanolamine ratio, known to be associated with maintaining membrane integrity. A proximity ligation assay further indicated that mitochondria-associated endoplasmic reticulum membranes (MAM) were diminished in both mutant FUS OPCs. Moreover, both mutant FUS OPCs displayed increased susceptibility to ER stress when exposed to thapsigargin, and exhibited impaired mitochondrial respiration and reduced Ca2+ signaling from ER Ca2+ stores. Taken together, these results demonstrate a pathological role of mutant FUS in OPCs, causing defects in lipid metabolism associated with MAM disruption manifested by impaired mitochondrial metabolism with increased susceptibility to ER stress and with suppressed physiological Ca2+ signaling. As such, further exploration of the role of oligodendrocyte dysfunction in the demise of MNs is crucial and will provide new insights into the complex cellular mechanisms underlying ALS.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Thibaut Burg
- Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000, Leuven, Belgium
| | - Katrien Neyrinck
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Fatemeharefeh Nami
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium
| | - Ellen Vervoort
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Karan Ahuja
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium
- Animal Physiology and Neurobiology Section, Department of Biology, Neural Circuit Development and Regeneration Research Group, 3000, Leuven, Belgium
| | - Maria Livia Sassano
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Yoke Chin Chai
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000, Leuven, Belgium
| | - Jonathan De Smedt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium
| | - Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
- Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, KU Leuven, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000, Leuven, Belgium
| | | | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Wu J, Lu X, Yu J, Li P, Yu X. LINC02253 promote the malignant phenotype of Colon adenocarcinoma cells by up-regulating WWP1-mediated SMAD3 ubiquitination. Mol Cell Probes 2023; 72:101928. [PMID: 37597669 DOI: 10.1016/j.mcp.2023.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVES Colon adenocarcinoma (COAD) represents a type of common malignant tumor originating in the digestive tract. Long non-coding RNAs (lncRNAs) have been identified to engage in regulating the initiation and development of COAD. LncRNA LINC02253 has been reported abnormal expressed in COAD, but the underlying mechanism has not been discussed so far. This study aimed to determine the role and the molecular biology mechanism of LINC02253 in COAD progression and unearthed its specific molecular mechanism. MATERIALS AND RESULTS RT-qPCR and Western blot assays were conducted to detect gene expression. Function assays were performed to evaluate the effect of gene expression on COAD cell phenotype. Mechanism analyses were done to verify the association among genes after bioinformatics analysis. The obtained data revealed that LINC02253 demonstrated a high expression in COAD tissues and cells. This gene served as an oncogene, permitting to stimulate proliferation and suppress apoptosis of COAD cells. Mechanically, it was found that LINC02253 recruited FUS to stabilize WWP1 mRNA and WWP1 could mediate SMAD3 ubiquitination, thereby promoting the malignant phenotype formation of COAD cells. CONCLUSIONS LINC02253 was uncovered to exert an oncogenic role, enhancing the proliferation of COAD cells and repressing the cell apoptosis by recruiting FUS and encouraging WWP1-mediated SMAD3 ubiquitination.
Collapse
Affiliation(s)
- Jinfeng Wu
- Department of Gastroenterology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, China
| | - Xianhong Lu
- Department of Gastroenterology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, China
| | - Jinzhong Yu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, 200120, China
| | - Pan Li
- Institute of Ultrasound Imaging Engineering, Chongqing Medical University, Chongqing, 400000, China
| | - Xiqiu Yu
- Department of Gastroenterology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
15
|
Balasubramanian S, Maharana S, Srivastava A. "Boundary residues" between the folded RNA recognition motif and disordered RGG domains are critical for FUS-RNA binding. J Biol Chem 2023; 299:105392. [PMID: 37890778 PMCID: PMC10687056 DOI: 10.1016/j.jbc.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.
Collapse
Affiliation(s)
| | - Shovamayee Maharana
- Department of Molecular and Cell Biology, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
16
|
Pelaez MC, Desmeules A, Gelon PA, Glasson B, Marcadet L, Rodgers A, Phaneuf D, Pozzi S, Dutchak PA, Julien JP, Sephton CF. Neuronal dysfunction caused by FUSR521G promotes ALS-associated phenotypes that are attenuated by NF-κB inhibition. Acta Neuropathol Commun 2023; 11:182. [PMID: 37974279 PMCID: PMC10652582 DOI: 10.1186/s40478-023-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative diseases that belong to a common disease spectrum based on overlapping clinical, pathological and genetic evidence. Early pathological changes to the morphology and synapses of affected neuron populations in ALS/FTD suggest a common underlying mechanism of disease that requires further investigation. Fused in sarcoma (FUS) is a DNA/RNA-binding protein with known genetic and pathological links to ALS/FTD. Expression of ALS-linked FUS mutants in mice causes cognitive and motor defects, which correlate with loss of motor neuron dendritic branching and synapses, in addition to other pathological features of ALS/FTD. The role of ALS-linked FUS mutants in causing ALS/FTD-associated disease phenotypes is well established, but there are significant gaps in our understanding of the cell-autonomous role of FUS in promoting structural changes to motor neurons, and how these changes relate to disease progression. Here we generated a neuron-specific FUS-transgenic mouse model expressing the ALS-linked human FUSR521G variant, hFUSR521G/Syn1, to investigate the cell-autonomous role of FUSR521G in causing loss of dendritic branching and synapses of motor neurons, and to understand how these changes relate to ALS-associated phenotypes. Longitudinal analysis of mice revealed that cognitive impairments in juvenile hFUSR521G/Syn1 mice coincide with reduced dendritic branching of cortical motor neurons in the absence of motor impairments or changes in the neuromorphology of spinal motor neurons. Motor impairments and dendritic attrition of spinal motor neurons developed later in aged hFUSR521G/Syn1 mice, along with FUS cytoplasmic mislocalisation, mitochondrial abnormalities and glial activation. Neuroinflammation promotes neuronal dysfunction and drives disease progression in ALS/FTD. The therapeutic effects of inhibiting the pro-inflammatory nuclear factor kappa B (NF-κB) pathway with an analog of Withaferin A, IMS-088, were assessed in symptomatic hFUSR521G/Syn1 mice and were found to improve cognitive and motor function, increase dendritic branches and synapses of motor neurons, and attenuate other ALS/FTD-associated pathological features. Treatment of primary cortical neurons expressing FUSR521G with IMS-088 promoted the restoration of dendritic mitochondrial numbers and mitochondrial activity to wild-type levels, suggesting that inhibition of NF-κB permits the restoration of mitochondrial stasis in our models. Collectively, this work demonstrates that FUSR521G has a cell-autonomous role in causing early pathological changes to dendritic and synaptic structures of motor neurons, and that these changes precede motor defects and other well-known pathological features of ALS/FTD. Finally, these findings provide further support that modulation of the NF-κB pathway in ALS/FTD is an important therapeutic approach to attenuate disease.
Collapse
Affiliation(s)
- Mari Carmen Pelaez
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Antoine Desmeules
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Pauline A Gelon
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Bastien Glasson
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Laetitia Marcadet
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Alicia Rodgers
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Daniel Phaneuf
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Paul A Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
17
|
Mamontova EM, Clément MJ, Sukhanova MV, Joshi V, Bouhss A, Rengifo-Gonzalez JC, Desforges B, Hamon L, Lavrik OI, Pastré D. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Cell Rep 2023; 42:113199. [PMID: 37804508 DOI: 10.1016/j.celrep.2023.113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Evgeniya M Mamontova
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
| | - Marie-Jeanne Clément
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | - Bénédicte Desforges
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia.
| | - David Pastré
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.
| |
Collapse
|
18
|
Zhu Q, Hu Y, Jiang W, Ou ZL, Yao YB, Zai HY. Circ-CCT2 Activates Wnt/β-catenin Signaling to Facilitate Hepatoblastoma Development by Stabilizing PTBP1 mRNA. Cell Mol Gastroenterol Hepatol 2023; 17:175-197. [PMID: 37866478 PMCID: PMC10758885 DOI: 10.1016/j.jcmgh.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND & AIMS Circ-CCT2 (hsa_circ_0000418) is a novel circular RNA that stems from the CCT2 gene. However, the expression of circ-CCT2 and its roles in hepatoblastoma are unknown. Our study aims to study the circ-CCT2 roles in hepatoblastoma development. METHODS Hepatoblastoma specimens were collected for examining the expression of circ-CCT2, TAF15, and PTBP1. CCK-8 and colony formation assays were applied for cell proliferation analysis. Migratory and invasive capacities were evaluated through wound healing and Transwell assays. The interaction between circ-CCT2, TAF15, and PTBP1 was validated by fluorescence in situ hybridization, RNA pull-down, and RNA immunoprecipitation. SKL2001 was used as an agonist of the Wnt/β-catenin pathway. A subcutaneous mouse model of hepatoblastoma was established for examining the function of circ-CCT2 in hepatoblastoma in vivo. RESULTS Circ-CCT2 was significantly up-regulated in hepatoblastoma. Overexpression of circ-CCT2 activated Wnt/β-catenin signaling and promoted hepatoblastoma progression, whereas knockdown of circ-CCT2 exerted opposite effects. Moreover, both TAF15 and PTBP1 were up-regulated in hepatoblastoma tissues and cells. TAF15 was positively correlated with the expression of circ-CCT2 and PTBP1 in hepatoblastoma. Furthermore, circ-CCT2 recruited and up-regulated TAF15 protein to stabilize PTBP1 mRNA and trigger Wnt/β-catenin signaling in hepatoblastoma. Overexpression of TAF15 or PTBP1 reversed knockdown of circ-CCT2-mediated suppression of hepatoblastoma progression. SKL2001-mediated activation of Wnt/β-catenin signaling reversed the anti-tumor effects of silencing of circ-CCT2, TAF15, or PTBP1. CONCLUSIONS Circ-CCT2 stabilizes PTBP1 mRNA and activates Wnt/β-catenin signaling through recruiting and up-regulating TAF15 protein, thus promoting hepatoblastoma progression. Our findings deepen the understanding of hepatoblastoma pathogenesis and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Wei Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Zheng-Lin Ou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yuan-Bing Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Hong-Yan Zai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
19
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. Nucleic Acids Res 2023; 51:9610-9628. [PMID: 37587694 PMCID: PMC10570059 DOI: 10.1093/nar/gkad665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Gene expression is a multistep process and crosstalk among regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant gene expression coordination, we performed a systematic reverse-genetic interaction screen in C. elegans, combining RNA binding protein (RBP) and transcription factor (TF) mutants to generate over 100 RBP;TF double mutants. We identified many unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1, and the homeodomain TF ceh-14. Losing any one of these genes alone has no effect on the health of the organism. However, fust-1;ceh-14 and tdp-1;ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-Seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. A skipped exon in the polyglutamine-repeat protein pqn-41 is aberrantly included in tdp-1 mutants, and genetically forcing this exon to be skipped in tdp-1;ceh-14 double mutants rescues their fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility and a shared molecular role in exon inhibition.
Collapse
Affiliation(s)
- Morgan Taylor
- Southern Methodist University, Dallas, TX 75205, USA
| | - Olivia Marx
- Southern Methodist University, Dallas, TX 75205, USA
| | - Adam Norris
- Southern Methodist University, Dallas, TX 75205, USA
| |
Collapse
|
20
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
21
|
Rezvykh A, Ustyugov A, Chaprov K, Teterina E, Nebogatikov V, Spasskaya D, Evgen’ev M, Morozov A, Funikov S. Cytoplasmic aggregation of mutant FUS causes multistep RNA splicing perturbations in the course of motor neuron pathology. Nucleic Acids Res 2023; 51:5810-5830. [PMID: 37115004 PMCID: PMC10287951 DOI: 10.1093/nar/gkad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Dysfunction of the RNA-binding protein (RBP) FUS implicated in RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Mutations affecting FUS nuclear localization can drive RNA splicing defects and stimulate the formation of non-amyloid inclusions in affected neurons. However, the mechanism by which FUS mutations contribute to the development of ALS remains uncertain. Here we describe a pattern of RNA splicing changes in the dynamics of the continuous proteinopathy induced by mislocalized FUS. We show that the decrease in intron retention of FUS-associated transcripts represents the hallmark of the pathogenesis of ALS and is the earliest molecular event in the course of progression of the disease. As FUS aggregation increases, the pattern of RNA splicing changes, becoming more complex, including a decrease in the inclusion of neuron-specific microexons and induction of cryptic exon splicing due to the sequestration of additional RBPs into FUS aggregates. Crucially, the identified features of the pathological splicing pattern are also observed in ALS patients in both sporadic and familial cases. Our data provide evidence that both a loss of nuclear FUS function due to mislocalization and the subsequent cytoplasmic aggregation of mutant protein lead to the disruption of RNA splicing in a multistep fashion during FUS aggregation.
Collapse
Affiliation(s)
- Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Kirill D Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Ekaterina V Teterina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Vladimir O Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Daria S Spasskaya
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Michael B Evgen’ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russian Federation
| |
Collapse
|
22
|
Jung KH, Sun J, Hsiung CH, Lance Lian X, Liu Y, Zhang X. Nuclear bodies protect phase separated proteins from degradation in stressed proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537522. [PMID: 37131610 PMCID: PMC10153235 DOI: 10.1101/2023.04.19.537522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA-binding proteins (RBPs) containing intrinsically disordered domains undergo liquid-liquid phase separation to form nuclear bodies under stress conditions. This process is also connected to the misfolding and aggregation of RBPs, which are associated with a series of neurodegenerative diseases. However, it remains elusive how folding states of RBPs changes upon the formation and maturation of nuclear bodies. Here, we describe SNAP-tag based imaging methods to visualize the folding states of RBPs in live cells via time-resolved quantitative microscopic analyses of their micropolarity and microviscosity. Using these imaging methods in conjunction with immunofluorescence imaging, we demonstrate that RBPs, represented by TDP-43, initially enters the PML nuclear bodies in its native state upon transient proteostasis stress, albeit it begins to misfolded during prolonged stress. Furthermore, we show that heat shock protein 70 co-enters the PML nuclear bodies to prevent the degradation of TDP-43 from the proteotoxic stress, thus revealing a previously unappreciated protective role of the PML nuclear bodies in the prevention of stress-induced degradation of TDP-43. In summary, our imaging methods described in the manuscript, for the first time, reveal the folding states of RBPs, which were previously challenging to study with conventional methods in nuclear bodies of live cells. This study uncovers the mechanistic correlations between the folding states of a protein and functions of nuclear bodies, in particular PML bodies. We envision that the imaging methods can be generally applied to elucidating the structural aspects of other proteins that exhibit granular structures under biological stimulus.
Collapse
Affiliation(s)
- Kwan Ho Jung
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Jiarui Sun
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Chia-Heng Hsiung
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Present address: Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xin Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Present address: Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| |
Collapse
|
23
|
Ziff OJ, Neeves J, Mitchell J, Tyzack G, Martinez-Ruiz C, Luisier R, Chakrabarti AM, McGranahan N, Litchfield K, Boulton SJ, Al-Chalabi A, Kelly G, Humphrey J, Patani R. Integrated transcriptome landscape of ALS identifies genome instability linked to TDP-43 pathology. Nat Commun 2023; 14:2176. [PMID: 37080969 PMCID: PMC10119258 DOI: 10.1038/s41467-023-37630-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) causes motor neuron degeneration, with 97% of cases exhibiting TDP-43 proteinopathy. Elucidating pathomechanisms has been hampered by disease heterogeneity and difficulties accessing motor neurons. Human induced pluripotent stem cell-derived motor neurons (iPSMNs) offer a solution; however, studies have typically been limited to underpowered cohorts. Here, we present a comprehensive compendium of 429 iPSMNs from 15 datasets, and 271 post-mortem spinal cord samples. Using reproducible bioinformatic workflows, we identify robust upregulation of p53 signalling in ALS in both iPSMNs and post-mortem spinal cord. p53 activation is greatest with C9orf72 repeat expansions but is weakest with SOD1 and FUS mutations. TDP-43 depletion potentiates p53 activation in both post-mortem neuronal nuclei and cell culture, thereby functionally linking p53 activation with TDP-43 depletion. ALS iPSMNs and post-mortem tissue display enrichment of splicing alterations, somatic mutations, and gene fusions, possibly contributing to the DNA damage response.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jamie Mitchell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giulia Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Carlos Martinez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Raphaelle Luisier
- Genomics and Health Informatics Group, Idiap Research Institute, Martigny, Switzerland
| | | | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| |
Collapse
|
24
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537345. [PMID: 37131843 PMCID: PMC10153140 DOI: 10.1101/2023.04.18.537345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gene expression is a multistep, carefully controlled process, and crosstalk between regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant coordination between transcriptional and post-transcriptional gene regulation, we performed a systematic reverse-genetic interaction screen in C. elegans . We combined RNA binding protein (RBP) and transcription factor (TF) mutants, creating over 100 RBP; TF double mutants. This screen identified a variety of unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1 , and the homeodomain TF ceh-14 . Losing any one of these genes alone has no significant effect on the health of the organism. However, fust-1; ceh-14 and tdp-1; ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. We identify a cassette exon in the polyglutamine-repeat protein pqn-41 which tdp-1 inhibits. Loss of tdp-1 causes the pqn-41 exon to be aberrantly included, and forced skipping of this exon in tdp-1; ceh-14 double mutants rescues fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility in a ceh-14 mutant background and reveal a shared molecular function of fust-1 and tdp-1 in exon inhibition.
Collapse
|
25
|
Piol D, Robberechts T, Da Cruz S. Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron 2023; 111:1355-1380. [PMID: 36963381 DOI: 10.1016/j.neuron.2023.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/26/2023]
Abstract
Key early features of amyotrophic lateral sclerosis (ALS) are denervation of neuromuscular junctions and axonal degeneration. Motor neuron homeostasis relies on local translation through controlled regulation of axonal mRNA localization, transport, and stability. Yet the composition of the local transcriptome, translatome (mRNAs locally translated), and proteome during health and disease remains largely unexplored. This review covers recent discoveries on axonal translation as a critical mechanism for neuronal maintenance/survival. We focus on two RNA binding proteins, transactive response DNA binding protein-43 (TDP-43) and fused in sarcoma (FUS), whose mutations cause ALS and frontotemporal dementia (FTD). Emerging evidence points to their essential role in the maintenance of axons and synapses, including mRNA localization, transport, and local translation, and whose dysfunction may contribute to ALS. Finally, we describe recent advances in omics-based approaches mapping compartment-specific local RNA and protein compositions, which will be invaluable to elucidate fundamental local processes and identify key targets for therapy development.
Collapse
Affiliation(s)
- Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Tessa Robberechts
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
26
|
Leighton DJ, Ansari M, Newton J, Parry D, Cleary E, Colville S, Stephenson L, Larraz J, Johnson M, Beswick E, Wong M, Gregory J, Carod Artal J, Davenport R, Duncan C, Morrison I, Smith C, Swingler R, Deary IJ, Porteous M, Aitman TJ, Chandran S, Gorrie GH, Pal S. Genotype-phenotype characterisation of long survivors with motor neuron disease in Scotland. J Neurol 2023; 270:1702-1712. [PMID: 36515702 PMCID: PMC9971124 DOI: 10.1007/s00415-022-11505-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND We investigated the phenotypes and genotypes of a cohort of 'long-surviving' individuals with motor neuron disease (MND) to identify potential targets for prognostication. METHODS Patients were recruited via the Clinical Audit Research and Evaluation for MND (CARE-MND) platform, which hosts the Scottish MND Register. Long survival was defined as > 8 years from diagnosis. 11 phenotypic variables were analysed. Whole genome sequencing (WGS) was performed and variants within 49 MND-associated genes examined. Each individual was screened for C9orf72 repeat expansions. Data from ancestry-matched Scottish populations (the Lothian Birth Cohorts) were used as controls. RESULTS 58 long survivors were identified. Median survival from diagnosis was 15.5 years. Long survivors were significantly younger at onset and diagnosis than incident patients and had a significantly longer diagnostic delay. 42% had the MND subtype of primary lateral sclerosis (PLS). WGS was performed in 46 individuals: 14 (30.4%) had a potentially pathogenic variant. 4 carried the known SOD1 p.(Ile114Thr) variant. Significant variants in FIG4, hnRNPA2B1, SETX, SQSTM1, TAF15, and VAPB were detected. 2 individuals had a variant in the SPAST gene suggesting phenotypic overlap with hereditary spastic paraplegia (HSP). No long survivors had pathogenic C9orf72 repeat expansions. CONCLUSIONS Long survivors are characterised by younger age at onset, increased prevalence of PLS and longer diagnostic delay. Genetic analysis in this cohort has improved our understanding of the phenotypes associated with the SOD1 variant p.(Ile114Thr). Our findings confirm that pathogenic expansion of C9orf72 is likely a poor prognostic marker. Genetic screening using targeted MND and/or HSP panels should be considered in those with long survival, or early-onset slowly progressive disease, to improve diagnostic accuracy and aid prognostication.
Collapse
Affiliation(s)
- Danielle J Leighton
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK.
| | - Morad Ansari
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Judith Newton
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Parry
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elaine Cleary
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Shuna Colville
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Laura Stephenson
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Juan Larraz
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Micheala Johnson
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Emily Beswick
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Michael Wong
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Jenna Gregory
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Richard Davenport
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
| | - Callum Duncan
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, UK
| | - Colin Smith
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert Swingler
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts Group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Mary Porteous
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - George H Gorrie
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Suvankar Pal
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, Royal Infirmary, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
27
|
Yokoi S, Ito T, Sahashi K, Nakatochi M, Nakamura R, Tohnai G, Fujioka Y, Ishigaki S, Udagawa T, Izumi Y, Morita M, Kano O, Oda M, Sone T, Okano H, Atsuta N, Katsuno M, Okada Y, Sobue G. The SYNGAP1 3'UTR Variant in ALS Patients Causes Aberrant SYNGAP1 Splicing and Dendritic Spine Loss by Recruiting HNRNPK. J Neurosci 2022; 42:8881-8896. [PMID: 36261283 PMCID: PMC9698725 DOI: 10.1523/jneurosci.0455-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/28/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022] Open
Abstract
Fused in sarcoma (FUS) is a pathogenic RNA-binding protein in amyotrophic lateral sclerosis (ALS). We previously reported that FUS stabilizes Synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains spine maturation. To elucidate the pathologic roles of this mechanism in ALS patients, we identified the SYNGAP1 3'UTR variant rs149438267 in seven (four males and three females) out of 807 ALS patients at the FUS binding site from a multicenter cohort in Japan. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, increased isoform α1 levels, and decreased isoform γ levels, which caused dendritic spine loss. Moreover, the SYNGAP1 variant excessively recruited FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK), and antisense oligonucleotides (ASOs) blocking HNRNPK altered aberrant splicing and ameliorated dendritic spine loss. These data suggest that excessive recruitment of RNA-binding proteins, especially HNRNPK, as well as changes in SYNGAP1 isoforms, are crucial for spine formation in motor neurons.SIGNIFICANCE STATEMENT It is not yet known which RNAs cause the pathogenesis of amyotrophic lateral sclerosis (ALS). We previously reported that Fused in sarcoma (FUS), a pathogenic RNA-binding protein in ALS, stabilizes synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains dendritic spine maturation. To elucidate whether this mechanism is crucial for ALS, we identified the SYNGAP1 3'UTR variant rs149438267 at the FUS binding site. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, which caused dendritic spine loss along with excessive recruitment of FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK). Our findings that dendritic spine loss is because of excess recruitment of RNA-binding proteins provide a basis for the future exploration of ALS-related RNA-binding proteins.
Collapse
Affiliation(s)
- Satoshi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takuji Ito
- Department of Neurology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, Aichi 480-1195, Japan
| | - Kentaro Sahashi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Neurology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan
| | - Genki Tohnai
- Division of ALS Research, Aichi Medical University, Aichi 480-1195, Japan
| | - Yusuke Fujioka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tsuyoshi Udagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuishin Izumi
- Department of Neurology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, Tokyo 143-8540, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi 728-0001, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Neurology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yohei Okada
- Department of Neurology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, Aichi 480-1195, Japan
| | - Gen Sobue
- Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
28
|
Taylor R, Hamid F, Fielding T, Gordon PM, Maloney M, Makeyev EV, Houart C. Prematurely terminated intron-retaining mRNAs invade axons in SFPQ null-driven neurodegeneration and are a hallmark of ALS. Nat Commun 2022; 13:6994. [PMID: 36414621 PMCID: PMC9681851 DOI: 10.1038/s41467-022-34331-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Loss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites. Some of these local IR mRNAs are prematurely terminated within the retained intron (PreT-IR). PreT-IR mRNAs undergo intronic polyadenylation, nuclear export, and localise to neurites in vitro and in vivo. We find these IR and PreT-IR mRNAs enriched in RNAseq datasets of tissue from patients with familial and sporadic ALS. This shared signature, between SFPQ-depleted neurons and ALS, functionally implicates SFPQ with the disease and suggests that neurite-centred perturbation of alternatively spliced isoforms drives the neurodegenerative process.
Collapse
Affiliation(s)
- Richard Taylor
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| | - Fursham Hamid
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Triona Fielding
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Patricia M Gordon
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Megan Maloney
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Corinne Houart
- Centre for Developmental Neurobiology and Medical Research Council Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
29
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
30
|
Hu G, Ou X, Li J. Mechanistic Insight on General Protein-Binding Ability of ATP and the Impacts of Arginine Residues. J Phys Chem B 2022; 126:4647-4658. [PMID: 35713479 DOI: 10.1021/acs.jpcb.2c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent experiments suggested that adenosine triphosphate (ATP) can regulate liquid-liquid phase separation (LLPS) of various proteins and inhibit protein aggregations at its physiological concentration, which is highly correlated with the nonspecific interactions of ATP to a wide variety of proteins. However, the mechanism underlying the general binding capability of ATP largely remains unclear. In this work, we used molecular dynamics simulation to study the binding of ATPs to three proteins with distinct net charges: TDP-43 NTD (-7 e), TAF15-RRM (0 e), HWEL (+8 e). Negatively charged ATP exhibits a strong trend to accumulate around all of these proteins. While only a fraction of the accumulated ATPs directly binds to the limited regions of the protein surface, additional ATPs indirectly bind to proteins by aggregating into ATP clusters. Hence, the proportion of the directly bound ATPs in the clusters as well as their binding regions can be adjusted in response to different proteins, which makes ATP well adapted to a variety of proteins. Moreover, our results suggest that ATP tightly binds to Arg with high affinity, and Arg dominates the direct binding of ATP. Meanwhile, Arg also affects the self-association of accumulated ATPs. The size of the ATP cluster is effectively regulated by the distribution of Arg. Considering the ubiquity of Arg in proteins, our findings are helpful to understand the general binding capability of ATP.
Collapse
Affiliation(s)
- Guorong Hu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xinwen Ou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| |
Collapse
|
31
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
32
|
Park HS, Lee J, Lee HS, Ahn SH, Ryu HY. Nuclear mRNA Export and Aging. Int J Mol Sci 2022; 23:5451. [PMID: 35628261 PMCID: PMC9142925 DOI: 10.3390/ijms23105451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
The relationship between transcription and aging is one that has been studied intensively and experimentally with diverse attempts. However, the impact of the nuclear mRNA export on the aging process following its transcription is still poorly understood, although the nuclear events after transcription are coupled closely with the transcription pathway because the essential factors required for mRNA transport, namely TREX, TREX-2, and nuclear pore complex (NPC), physically and functionally interact with various transcription factors, including the activator/repressor and pre-mRNA processing factors. Dysregulation of the mediating factors for mRNA export from the nucleus generally leads to the aberrant accumulation of nuclear mRNA and further impairment in the vegetative growth and normal lifespan and the pathogenesis of neurodegenerative diseases. The optimal stoichiometry and density of NPC are destroyed during the process of cellular aging, and their damage triggers a defect of function in the nuclear permeability barrier. This review describes recent findings regarding the role of the nuclear mRNA export in cellular aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, 2639, Sejong-ro, Jochiwon-eup, Sejong-si 30016, Korea;
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, ERICA Campus, Hanyang University, Ansan 15588, Korea
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
33
|
Chen J, Yuan X, Wei P, Wang D, Chen C, Guo Q, Luo SZ, Chen L. The SGYS Motif of TAF15 Prion-like Domain Is Critical to Amyloid Fibril Formation. Biophys J 2022; 121:2613-2623. [DOI: 10.1016/j.bpj.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
|
34
|
LncRNA HOTTIP facilitates osteogenic differentiation in bone marrow mesenchymal stem cells and induces angiogenesis via interacting with TAF15 to stabilize DLX2. Exp Cell Res 2022; 417:113226. [DOI: 10.1016/j.yexcr.2022.113226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022]
|
35
|
Transcriptomics Integrated with Metabolomics Reveals 2-Methoxy-1, 4-Naphthoquinone-Based Carbon Dots Induced Molecular Shifts in Penicillium italicum. J Fungi (Basel) 2022; 8:jof8050420. [PMID: 35628676 PMCID: PMC9145997 DOI: 10.3390/jof8050420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Penicillium italicum (P. italicum), a citrus blue mold, is a pathogenic fungus that greatly affects the postharvest quality of citrus fruits with significant economic loss. Our previous research showed that 2-methoxy-1, 4-naphthoquinone (MNQ) inhibited the growth of Penicillium italicum. However, the water dispersibility of MNQ will limit its further application. Herein, we synthesized MNQ-based carbon dots (2−CDs) with better water dispersibility, which showed a potential inhibitory effect on P. italicum (MIC = 2.8 μg/mL) better than that of MNQ (MIC = 5.0 μg/mL). Transcriptomics integrated with metabolomics reveals a total of 601 differentially enriched genes and 270 differentially accumulated metabolites that are co-mapped as disruptive activity on the cell cytoskeleton, glycolysis, and histone methylation. Furthermore, transmission electron microscopy analysis showed normal appearances and intracellular septum of P. italicum after treatment. These findings contribute tofurther understanding of the possible molecular action of 2−CDs.
Collapse
|
36
|
Harb K, Richter M, Neelagandan N, Magrinelli E, Harfoush H, Kuechler K, Henis M, Hermanns-Borgmeyer I, Calderon de Anda F, Duncan K. Pum2 and TDP-43 refine area-specific cytoarchitecture post-mitotically and modulate translation of Sox5, Bcl11b, and Rorb mRNAs in developing mouse neocortex. eLife 2022; 11:55199. [PMID: 35262486 PMCID: PMC8906809 DOI: 10.7554/elife.55199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing human TDP-43 show apparent ‘motorization’ of layers IV and V of primary somatosensory cortex (S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker Rorβ. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorβ levels. Mechanistically, we find that Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/Ctip2, and Rorβ. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regulatory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to elaboration of area-specific neuronal identity and connectivity in the neocortex.
Collapse
Affiliation(s)
- Kawssar Harb
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melanie Richter
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagammal Neelagandan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Elia Magrinelli
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Hend Harfoush
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Katrin Kuechler
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Melad Henis
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Irm Hermanns-Borgmeyer
- Transgenic Service Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Froylan Calderon de Anda
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kent Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
37
|
Abstract
Biomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS–DNA polymer that collapses and finally forms a dynamic, reversible FUS–DNA co-condensate. We speculate that protein monolayer-based protein–nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles. Biomolecular condensates provide distinct compartments that can localize and organize biochemistry inside cells. Recent evidence suggests that condensate formation is prevalent in the cell nucleus. To understand how different components of the nucleus interact during condensate formation is an important challenge. In particular, the physics of co-condensation of proteins together with nucleic acids remains elusive. Here we use optical tweezers to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) forms liquid-like assemblies in vitro, by co-condensing together with individual DNA molecules. Through progressive force-induced peeling of dsDNA, buffer exchange, and force measurements, we show that FUS adsorbing in a single layer on DNA effectively generates a sticky FUS–DNA polymer that can collapse to form a liquid-like FUS–DNA co-condensate. Condensation occurs at constant DNA tension for double-stranded DNA, which is a signature of phase separation. We suggest that co-condensation mediated by protein monolayer adsorption on nucleic acids is an important mechanism for intracellular compartmentalization.
Collapse
|
38
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Biomarkers in Human Peripheral Blood Mononuclear Cells: The State of the Art in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23052580. [PMID: 35269723 PMCID: PMC8910056 DOI: 10.3390/ijms23052580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients’ stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.
Collapse
|
40
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
41
|
Kumar R, Haider S. Protein network analysis to prioritize key genes in amyotrophic lateral sclerosis. IBRO Neurosci Rep 2021; 12:25-44. [PMID: 34918006 PMCID: PMC8669318 DOI: 10.1016/j.ibneur.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal disease, progressive nature characterizes by loss of both upper and lower motor neuron functions. One of the major challenge is to understand the mechanism of ALS multifactorial nature. We aimed to explore some key genes related to ALS through bioinformatics methods for its therapeutic intervention. Here, we applied a systems biology approach involving experimentally validated 148 ALS-associated proteins and construct ALS protein-protein interaction network (ALS-PPIN). The network was further statistically analysed and identified bottleneck-hubs. The network is also subjected to identify modules which could have similar functions. The interaction between the modules and bottleneck-hubs provides the functional regulatory role of the ALS mechanism. The ALS-PPIN demonstrated a hierarchical scale-free nature. We identified 17 bottleneck-hubs, in which CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in ALS-PPIN. CDC5L was found to control highly cluster modules and play a vital role in the stability of the overall network followed by SNW1, TP53, SOD1, and VCP. HSPA5 and HSPA8 acting as a common connector for CDC5L and TP53 bottleneck-hubs. The functional and disease association analysis showed ALS has a strong correlation with mRNA processing, protein deubiquitination, and neoplasms, nervous system, immune system disease classes. In the future, biochemical investigation of the observed bottleneck-hubs and their interacting partners could provide a further understanding of their role in the pathophysiology of ALS. Amyotrophic Lateral Sclerosis protein-protein interaction network (ALS-PPIN) followed a hierarchical scale-free nature. We identified 17 bottleneck-hubs in the ALS-PPIN. Among bottleneck-hubs we found CDC5L, SNW1, TP53, SOD1, and VCP were the high degree nodes (hubs) in the ALS-PPIN. CDC5L is the effective communicator with all five modules in the ALS-PPIN and followed by SNW1 and TP53. Modules are highly associated with various disease classes like neoplasms, nervous systems and others.
Collapse
Key Words
- ALS
- ALS, Amyotrophic Lateral Sclerosis
- ALS-PPIN
- ALS-PPIN, Amyotrophic Lateral Sclerosis Protein-Protein Interaction Network
- ALSoD, Amyotrophic Lateral Sclerosis online database
- BC, Betweenness centrality
- Bn-H, Bottleneck-hub
- Bottleneck-hubs
- CDC5L
- CDC5L, Cell division cycle5-likeprotein
- FUS, Fused in sarcoma
- MCODE, Molecular Complex Detection
- MND, Motor neuron disease
- SMA, Spinal muscular atrophy
- SMN, Survival of motor neuron
- SNW1
- SNW1, SNW domain-containing protein 1
- SOD1
- SOD1, Superoxide dismutase
- TP53
- TP53, Tumor protein p53
- VCP
- VCP, Valosin containing protein
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sec-62, Uttar Pradesh, India
| |
Collapse
|
42
|
Diaz-Garcia S, Ko VI, Vazquez-Sanchez S, Chia R, Arogundade OA, Rodriguez MJ, Traynor BJ, Cleveland D, Ravits J. Nuclear depletion of RNA-binding protein ELAVL3 (HuC) in sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathol 2021; 142:985-1001. [PMID: 34618203 PMCID: PMC8568872 DOI: 10.1007/s00401-021-02374-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive fatal neurodegenerative disease caused by loss of motor neurons and characterized neuropathologically in almost all cases by nuclear depletion and cytoplasmic aggregation of TDP-43, a nuclear RNA-binding protein (RBP). We identified ELAVL3 as one of the most downregulated genes in our transcriptome profiles of laser captured microdissection of motor neurons from sporadic ALS nervous systems and the most dysregulated of all RBPs. Neuropathological characterizations showed ELAVL3 nuclear depletion in a great percentage of remnant motor neurons, sometimes accompanied by cytoplasmic accumulations. These abnormalities were common in sporadic cases with and without intermediate expansions in ATXN2 and familial cases carrying mutations in C9orf72 and SOD1. Depletion of ELAVL3 occurred at both the RNA and protein levels and a short protein isoform was identified, but it is not related to a TDP-43-dependent cryptic exon in intron 3. Strikingly, ELAVL3 abnormalities were more frequent than TDP-43 abnormalities and occurred in motor neurons still with normal nuclear TDP-43 present, but all neurons with abnormal TDP-43 also had abnormal ELAVL3. In a neuron-like cell culture model using SH-SY5Y cells, ELAVL3 mislocalization occurred weeks before TDP-43 abnormalities were seen. We interrogated genetic databases, but did not identify association of ELAVL3 genetic structure with ALS. Taken together, these findings suggest that ELAVL3 is an important RBP in ALS pathogenesis acquired early and the neuropathological data suggest that it is involved by loss of function rather than cytoplasmic toxicity.
Collapse
Affiliation(s)
- Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| | - Vivian I. Ko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| | - Sonia Vazquez-Sanchez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0670 USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA USA
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707 USA
| | | | - Maria J. Rodriguez
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| | - Bryan J. Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707 USA
| | - Don Cleveland
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0670 USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA USA
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-0670 USA
| |
Collapse
|
43
|
Murthy AC, Tang WS, Jovic N, Janke AM, Seo DH, Perdikari TM, Mittal J, Fawzi NL. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat Struct Mol Biol 2021; 28:923-935. [PMID: 34759379 PMCID: PMC8654040 DOI: 10.1038/s41594-021-00677-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/28/2021] [Indexed: 01/23/2023]
Abstract
The RNA-binding protein FUS (Fused in Sarcoma) mediates phase separation in biomolecular condensates and functions in transcription by clustering with RNA polymerase II. Specific contact residues and interaction modes formed by FUS and the C-terminal heptad repeats of RNA polymerase II (CTD) have been suggested but not probed directly. Here we show how RGG domains contribute to phase separation with the FUS N-terminal low-complexity domain (SYGQ LC) and RNA polymerase II CTD. Using NMR spectroscopy and molecular simulations, we demonstrate that many residue types, not solely arginine-tyrosine pairs, form condensed-phase contacts via several interaction modes including, but not only sp2-π and cation-π interactions. In phases also containing RNA polymerase II CTD, many residue types form contacts, including both cation-π and hydrogen-bonding interactions formed by the conserved human CTD lysines. Hence, our data suggest a surprisingly broad array of residue types and modes explain co-phase separation of FUS and RNA polymerase II.
Collapse
Affiliation(s)
- Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Wai Shing Tang
- Graduate Program in Physics, Brown University, Providence, RI, USA
| | - Nina Jovic
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Abigail M Janke
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Da Hee Seo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | | | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
44
|
Li X, Pan X, Zhou H, Wang P, Gao Y, Shang S, Guo S, Sun J, Xiong Z, Ning S, Zhi H, Li X. Comprehensive characterization genetic regulation and chromatin landscape of enhancer-associated long non-coding RNAs and their implication in human cancer. Brief Bioinform 2021; 23:6375264. [PMID: 34581409 DOI: 10.1093/bib/bbab401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) that emanate from enhancer regions (defined as enhancer-associated lncRNAs, or elncRNAs) are emerging as critical regulators in disease progression. However, their biological characteristics and clinical relevance have not been fully portrayed. Here, based on the traditional expression quantitative loci (eQTL) and our optimized residual eQTL method, we comprehensively described the genetic effect on elncRNA expression in more than 300 lymphoblastoid cell lines. Meanwhile, a chromatin atlas of elncRNAs relative to the genetic regulation state was depicted. By applying the maximum likelihood estimate method, we successfully identified causal elncRNAs for protein-coding gene expression reprogramming and showed their associated single nucleotide polymorphisms (SNPs) favor binding of transcription factors. Further epigenome analysis revealed two immune-associated elncRNAs AL662844.4 and LINC01215 possess high levels of H3K27ac and H3K4me1 in human cancer. Besides, pan-cancer analysis of 3D genome, transcriptome, and regulatome data showed they potentially regulate tumor-immune cell interaction through affecting MHC class I genes and CD47, respectively. Moreover, our study showed there exist associations between elncRNA and patient survival. Finally, we made a user-friendly web interface available for exploring the regulatory relationship of SNP-elncRNA-protein-coding gene triplets (http://bio-bigdata.hrbmu.edu.cn/elncVarReg). Our study provides critical mechanistic insights for elncRNA function and illustrates their implications in human cancer.
Collapse
Affiliation(s)
- Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Zhiying Xiong
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| |
Collapse
|
45
|
Valori CF, Neumann M. Contribution of RNA/DNA Binding Protein Dysfunction in Oligodendrocytes in the Pathogenesis of the Amyotrophic Lateral Sclerosis/Frontotemporal Lobar Degeneration Spectrum Diseases. Front Neurosci 2021; 15:724891. [PMID: 34539339 PMCID: PMC8440855 DOI: 10.3389/fnins.2021.724891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two incurable neurodegenerative disorders, often considered as the extreme manifestations of a disease spectrum, as they share similar pathomechanisms. In support of this, pathological aggregation of the RNA/DNA binding proteins trans-activation response element DNA-binding protein 43 (TDP-43) or fused in sarcoma (FUS) is the pathological hallmark found in neurons and glial cells of subsets of patients affected by either condition (i.e., ALS/FTLD—TDP-43 or ALS/FTLD—FUS, respectively). Among glia, oligodendrocytes are the most abundant population, designated to ensheath the axons with myelin and to provide them with metabolic and trophic support. In this minireview, we recapitulate the neuropathological evidence for oligodendroglia impairment in ALS/FTLD. We then debate how TDP-43 and FUS target oligodendrocyte transcripts, thereby controlling their homeostatic abilities toward the axons. Finally, we discuss cellular and animal models aimed at investigating the functional consequences of manipulating TDP-43 and FUS in oligodendrocytes in vivo. Taken together, current data provide increasing evidence for an important role of TDP-43 and FUS-mediated oligodendroglia dysfunction in the pathogenesis of ALS/FTLD. Thus, targeting disrupted oligodendroglial functions may represent a new treatment approach for these conditions.
Collapse
Affiliation(s)
- Chiara F Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
46
|
DeJong CS, Dichmann DS, Exner CRT, Xu Y, Harland RM. The atypical RNA-binding protein Taf15 regulates dorsoanterior neural development through diverse mechanisms in Xenopus tropicalis. Development 2021; 148:271175. [PMID: 34345915 DOI: 10.1242/dev.191619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The FET family of atypical RNA-binding proteins includes Fused in sarcoma (FUS), Ewing's sarcoma (EWS) and the TATA-binding protein-associate factor 15 (TAF15). FET proteins are highly conserved, suggesting specialized requirements for each protein. Fus regulates splicing of transcripts required for mesoderm differentiation and cell adhesion in Xenopus, but the roles of Ews and Taf15 remain unknown. Here, we analyze the roles of maternally deposited and zygotically transcribed Taf15, which is essential for the correct development of dorsoanterior neural tissues. By measuring changes in exon usage and transcript abundance from Taf15-depleted embryos, we found that Taf15 may regulate dorsoanterior neural development through fgfr4 and ventx2.1. Taf15 uses distinct mechanisms to downregulate Fgfr4 expression, namely retention of a single intron within fgfr4 when maternal and zygotic Taf15 is depleted, and reduction in the total fgfr4 transcript when zygotic Taf15 alone is depleted. The two mechanisms of gene regulation (post-transcriptional versus transcriptional) suggest that Taf15-mediated gene regulation is target and co-factor dependent, contingent on the milieu of factors that are present at different stages of development.
Collapse
Affiliation(s)
- Caitlin S DeJong
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Darwin S Dichmann
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry, Weill Institute for Neurosciences, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
47
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
48
|
Abstract
Induced pluripotent stem cell (iPSC) technology holds promise for modeling neurodegenerative diseases. Traditional approaches for disease modeling using animal and cellular models require knowledge of disease mutations. However, many patients with neurodegenerative diseases do not have a known genetic cause. iPSCs offer a way to generate patient-specific models and study pathways of dysfunction in an in vitro setting in order to understand the causes and subtypes of neurodegeneration. Furthermore, iPSC-based models can be used to search for candidate therapeutics using high-throughput screening. Here we review how iPSC-based models are currently being used to further our understanding of neurodegenerative diseases, as well as discuss their challenges and future directions.
Collapse
Affiliation(s)
- Jonathan Li
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Ernest Fraenkel
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
49
|
Liu Q, Guo L, Qi H, Lou M, Wang R, Hai B, Xu K, Zhu L, Ding Y, Li C, Xie L, Shen J, Xiang X, Shao J. A MYBL2 complex for RRM2 transactivation and the synthetic effect of MYBL2 knockdown with WEE1 inhibition against colorectal cancer. Cell Death Dis 2021; 12:683. [PMID: 34234118 PMCID: PMC8263627 DOI: 10.1038/s41419-021-03969-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boning Hai
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Xu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingdan Xie
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shen
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
50
|
Dasmeh P, Wagner A. Natural Selection on the Phase-Separation Properties of FUS during 160 My of Mammalian Evolution. Mol Biol Evol 2021; 38:940-951. [PMID: 33022038 PMCID: PMC7947763 DOI: 10.1093/molbev/msaa258] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein phase separation can help explain the formation of many nonmembranous organelles. However, we know little about its ability to change in evolution. Here we studied the evolution of the mammalian RNA-binding protein Fused in Sarcoma (FUS), a protein whose prion-like domain (PLD) contributes to the formation of stress granules through liquid–liquid phase separation. Although the PLD evolves three times as rapidly as the remainder of FUS, it harbors absolutely conserved tyrosine residues that are crucial for phase separation. Ancestral reconstruction shows that the phosphorylation sites within the PLD are subject to stabilizing selection. They toggle among a small number of amino acid states. One exception to this pattern is primates, where the number of such phosphosites has increased through positive selection. In addition, we find frequent glutamine to proline changes that help maintain the unstructured state of FUS that is necessary for phase separation. Our work provides evidence that natural selection has stabilized the liquid forming potential of FUS and minimized the propensity of cytotoxic liquid-to-solid phase transitions during 160 My of mammalian evolution.
Collapse
Affiliation(s)
- Pouria Dasmeh
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andreas Wagner
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|