1
|
Huang J, Liang Q, Ye Y, Lan Z, Chen A, Yan J, Lu L. GDF11 Alleviates Vascular Calcification in VitD 3-Overloaded Mice Through Inhibition of Inflammatory NF-κB Signal. FASEB J 2025; 39:e70677. [PMID: 40432427 DOI: 10.1096/fj.202500029r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Vascular calcification, an age-associated disorder, is a highly regulated biological process similar to bone formation. Growth differentiation factor 11 (GDF11), a secreted member of the transforming growth factor beta (TGF-β) superfamily, has been shown to act as an anti-aging factor in the brain, heart, skin, and skeletal muscle. Nevertheless, whether GDF11 affects vascular calcification and the underlying mechanisms remain unclear. In the present study, beta-glycerophosphate and calcium chloride-induced calcification of vascular smooth muscle cells (VSMCs) and a VitD3-overloaded mouse model were used to investigate the role of GDF11 in vascular calcification. Our results revealed that the knockdown of GDF11 by siRNA promoted the calcification of rat VSMCs, whereas GDF11 treatment significantly reduced the calcification of human and rat VSMCs in vitro, as detected by alizarin red staining and calcium content assay. Similarly, GDF11 treatment reduced the expression of bone-related molecules including Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein-2 (BMP2). Furthermore, ex vivo and in vivo studies confirmed the inhibitory effect of GDF11 on vascular calcification. Mechanistically, GDF11 treatment reduced the levels of NF-κB signaling molecules including NLRP3, phosphorylated p65, IL-6, and IL-1β in VSMCs. Additionally, GDF11 siRNA-induced VSMC calcification was repressed by NF-κB inhibitor PDTC treatment. Taken together, these findings suggest that GDF11 alleviates vascular calcification through inhibiting the NF-κB signal. Modulation of GDF11 may represent a therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Jiali Huang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, People's Republic of China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Commissati S, Cagigas ML, Masedunskas A, Petrucci G, Tosti V, De Ciutiis I, Rajakumar G, Kirmess KM, Meyer MR, Goldhamer A, Kennedy BK, Hatem D, Rocca B, Fiorito G, Fontana L. Prolonged fasting promotes systemic inflammation and platelet activation in humans: A medically supervised, water-only fasting and refeeding study. Mol Metab 2025; 96:102152. [PMID: 40268190 PMCID: PMC12088818 DOI: 10.1016/j.molmet.2025.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE Prolonged fasting (PF), defined as abstaining from energy intake for ≥4 consecutive days, has gained interest as a potential health intervention. However, the biological effects of PF on the plasma proteome are not well understood. METHODS In this study, we investigated the effects of a medically supervised water-only fast (mean duration: 9.8 ± 3.1 days), followed by 5.3 ± 2.4 days of guided refeeding, in 20 middle-aged volunteers (mean age: 52.2 ± 11.8 years; BMI: 28.8 ± 6.4 kg/m2). RESULTS Fasting resulted in a 7.7% mean weight loss and significant increases in serum beta-hydroxybutyrate (BHB), confirming adherence. Untargeted high-dimensional plasma proteomics (SOMAScan, 1,317 proteins) revealed multiple adaptations to PF, including preservation of skeletal muscle and bone, enhanced lysosomal biogenesis, increased lipid metabolism via PPARα signaling, and reduced amyloid fiber formation. Notably, PF significantly reduced circulating amyloid beta proteins Aβ40 and Aβ42, key components of brain amyloid plaques. In addition, PF induced an acute inflammatory response, characterized by elevated plasma C-reactive protein (CRP), hepcidin, midkine, and interleukin 8 (IL-8), among others. A retrospective cohort analysis of 1,422 individuals undergoing modified fasting confirmed increased CRP levels (from 2.8 ± 0.1 to 4.3 ± 0.2 mg/L). The acute phase response, associated with transforming growth factor (TGF)-β signaling, was accompanied by increased platelet degranulation and upregulation of the complement and coagulation cascade, validated by ELISAs in blood and urine. CONCLUSIONS While the acute inflammatory response during PF may serve as a transient adaptive mechanism, it raises concerns regarding potential cardiometabolic effects that could persist after refeeding. Further investigation is warranted to elucidate the long-term molecular and clinical implications of PF across diverse populations.
Collapse
Affiliation(s)
| | - Maria Lastra Cagigas
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Andrius Masedunskas
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Giovanna Petrucci
- Section of Pharmacology, Department of Safety and Bioethics, Catholic University School of Medicine, Rome, Italy
| | - Valeria Tosti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Isabella De Ciutiis
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Gayathiri Rajakumar
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Duaa Hatem
- Section of Pharmacology, Department of Safety and Bioethics, Catholic University School of Medicine, Rome, Italy
| | - Bianca Rocca
- Section of Pharmacology, Department of Safety and Bioethics, Catholic University School of Medicine, Rome, Italy; NeuroFarBa Department, University of Florence, Florence, Italy
| | - Giovanni Fiorito
- Clinical Bioinformatics unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy; MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
3
|
Liu J, Yang Y, Wu H, Dang F, Yu X, Wang F, Wang Y, Zhao Y, Shi X, Qin W, Zhang Y, Li Y, Wang C, Shao X, Wang Y. Hypoxia-Induced O-GlcNAcylation of GATA3 Leads to Excessive Testosterone Production in Preeclamptic Placentas. MedComm (Beijing) 2025; 6:e70115. [PMID: 39991625 PMCID: PMC11847629 DOI: 10.1002/mco2.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
The maintenance of endocrine homeostasis in the placenta is crucial for ensuring successful pregnancy. An abnormally elevated production of placental testosterone (T0) has been documented in patients with early-onset preeclamptic (E-PE). However, the underlying mechanisms remain unclear. In this study, we found that E-PE placentas exhibited significantly increased expressions of 3β-HSD1 (3β-Hydroxysteroid Dehydrogenase 1) and 17β-HSD3 (17β-Hydroxysteroid Dehydrogenase 3), the rate-limiting enzymes for T0 synthesis. This was strongly correlated with an elevated level of O-linked N-acetylglucosaminylation (O-GlcNAcylation) of GATA3 (GATA binding protein 3). In human trophoblast cells, O-linked-N-acetylglucosamine (O-GlcNAc) modification of GATA3 on Thr322 stabilized the protein and enhanced the transcriptional regulation of 3β-HSD1 and 17β-HSD3, thereby increasing T0 production. Hypoxia, a well-established pathological factor in PE, significantly enhanced the O-GlcNAcylation of GATA3 in human trophoblast cells. Our findings suggest that hypoxia-induced overactive O-GlcNAcylation of GATA3 contributes to the exacerbated T0 production in E-PE placentas. These findings provide a new perspective on the pathogenesis of E-PE from the standpoint of posttranslational regulation and may illuminate novel therapeutic strategies for adverse pregnancy outcomes such as E-PE.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Center for Disease Prevention and ControlBeijing Key Laboratory of Diagnostic and Traceability Technologies for Food PoisoningBeijingChina
| | - Yun Yang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Feihong Dang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Feiyang Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yongqing Wang
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Yangyu Zhao
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Xiaoming Shi
- Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
| | - Wei Qin
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yanling Zhang
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yu‐Xia Li
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Chu Wang
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute of Stem Cell and Regenerative MedicineBeijingChina
| | - Yan‐Ling Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyKey Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute of Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
4
|
Wang Y, Jin S, Guo Y, Zhu L, Lu Y, Li J, Heng BC, Liu Y, Deng X. Cordycepin-Loaded Dental Pulp Stem Cell-Derived Exosomes Promote Aged Bone Repair by Rejuvenating Senescent Mesenchymal Stem Cells and Endothelial Cells. Adv Healthc Mater 2025; 14:e2402909. [PMID: 39551987 DOI: 10.1002/adhm.202402909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Indexed: 11/19/2024]
Abstract
Aging impairs bone marrow mesenchymal stem cell (BMSC) functions as well as associated angiogenesis which is critical for bone regeneration and repair. Hence, repairing bone defects in elderly patients poses a formidable challenge in regenerative medicine. Here, the engineered dental pulp stem cell-derived exosomes loaded with the natural derivative of adenosine Cordycepin (CY@D-exos) are fabricated by means of the intermittent ultrasonic shock, which dually rejuvenates both senescent BMSCs and endothelial cells and significantly improve bone regeneration and repair in aged animals. CY@D-exos can efficiently overcome the senescence of aged BMSCs and enhance their osteogenic differentiation by activating NRF2 signaling and maintaining heterochromatin stability. Importantly, CY@D-exos also potently overcomes the senescence of vascular endothelial cells and promotes angiogenesis. In vivo injectable gelatin methacryloyl (GelMA) hydrogels with sustained release of CY@D-exos can accelerate bone injury repair and promote new blood vessel formation in aged animals. Taken together, these results thus demonstrate that cordycepin-loaded dental pulp stem cell-derived exosomes display considerable potential to be developed as a next-generation therapeutic agent for promoting aged bone regeneration and repair.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Shanshan Jin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology &National Center for Stomatology &National Clinical Research Center for Oral Diseases &National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Lisha Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yilong Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology &National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
5
|
Liu T, Li J, Duan M, Wang Y, Jiang Z, Gan C, Xiang Z, Sheng J, Wang X, Xu H. Stephanine Protects Against Osteoporosis by Suppressing Osteoclastogenesis via Inhibition of the RANKL-RANK Interaction. J Cell Mol Med 2024; 28:e70256. [PMID: 39636143 PMCID: PMC11619157 DOI: 10.1111/jcmm.70256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
The interaction between the receptor activator of nuclear factor-κB ligand (RANKL) and its receptor RANK is known to regulate osteoclastogenesis in bone remodelling and has become an important therapeutic target for the treatment of osteoporosis. Stephanine (SA), an isoquinoline aporphine-type alkaloid isolated from Stephania plants, possesses excellent anti-inflammatory effects and can be used for rheumatoid arthritis treatment. However, its specific role in osteoclastogenesis and osteoporosis remains unknown. In this study, we investigated the influence of SA on osteoclastogenesis in RANKL-stimulated RAW 264.7 cells and osteoporosis in an ovariectomised (OVX) mouse model and elucidated the underlying molecular mechanism. In vitro, SA can bind to RANK and RANKL with the KD values of 3.7 and 76.47 μM, respectively, and disrupt the RANKL-RANK interaction, which inhibits RANKL-stimulated RANK-tumour necrosis factor receptor associated factor 6 (TRAF6) binding and RANK signalling pathways activation, downregulates the expression of key osteoclastogenesis-related regulatory factors in osteoclast precursors, ultimately suppresses osteoclast differentiation and activation. In vivo, SA significantly ameliorated bone loss through inhibiting osteoclastogenesis in OVX mice because of the decreased number of osteoclasts and the increased trabecular bone area. SA markedly inhibited the serum levels of tartrate-resistant acid phosphatase 5b (TRACP-5b), c-telopeptide of type I collagen (CTX-I), and RANKL, whereas it increased that of osteoprotegerin (OPG) in OVX mice. Additionally, SA strikingly downregulated the OVX-induced expression of osteoclast-specific genes and proteins. Taken together, this study elucidated that SA can effectively protect against osteoporosis by suppressing osteoclastogenesis via inhibition of the RANKL-RANK interaction, which supports the potential application of SA as a natural therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Titi Liu
- College of ScienceYunnan Agricultural UniversityKunmingChina
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
| | - Jin Li
- College of ScienceYunnan Agricultural UniversityKunmingChina
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
| | - Meiyan Duan
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Ya Wang
- College of ScienceYunnan Agricultural UniversityKunmingChina
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
| | - Zhe Jiang
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Chunxia Gan
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
| | - Zemin Xiang
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
- College of Food Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Jun Sheng
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
| | - Xuanjun Wang
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
| | - Huanhuan Xu
- College of ScienceYunnan Agricultural UniversityKunmingChina
- Key Laboratory of Pu‐Er Tea Science, Ministry of EducationYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
6
|
Mangiavacchi A, Morelli G, Reppe S, Saera-Vila A, Liu P, Eggerschwiler B, Zhang H, Bensaddek D, Casanova EA, Medina Gomez C, Prijatelj V, Della Valle F, Atinbayeva N, Izpisua Belmonte JC, Rivadeneira F, Cinelli P, Gautvik KM, Orlando V. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J 2024; 43:3587-3603. [PMID: 38951609 PMCID: PMC11377738 DOI: 10.1038/s44318-024-00143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| | - Gabriele Morelli
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
- Oslo University Hospital, Department of Plastic and Reconstructive Surgery, Oslo, Norway
| | | | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Benjamin Eggerschwiler
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Elisa A Casanova
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Vid Prijatelj
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
- Altos Labs, San Diego, CA, USA
| | - Nazerke Atinbayeva
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
7
|
Chen P, Huang X, Li W, Wen W, Cao Y, Li J, Huang Y, Hu Y. Myeloid-derived growth factor in diseases: structure, function and mechanisms. Mol Med 2024; 30:103. [PMID: 39030488 PMCID: PMC11264862 DOI: 10.1186/s10020-024-00874-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Myeloid-derived growth factor (MYDGF) is a novel secreted protein with potent antiapoptotic and tissue-repairing properties that is present in nearly 140 human tissues and cell lines, with the highest abundance in the oral epithelium and skin. Initially, MYDGF was found in bone marrow-derived monocytes and macrophages for cardioprotection and repair after myocardial infarction. Subsequent studies have shown that MYDGF plays an important role in other cardiovascular diseases (e.g., atherosclerosis and heart failure), metabolic disorders, renal disease, autoimmune/inflammatory disorders, and cancers. Although the underlying mechanisms have not been fully explored, the role of MYDGF in health and disease may involve cell apoptosis and proliferation, tissue repair and regeneration, anti-inflammation, and glycolipid metabolism regulation. In this review, we summarize the current progress in understanding the role of MYDGF in health and disease, focusing on its structure, function and mechanisms. The graphical abstract shows the current role of MYDGF in different organs and diseases (Fig. 1).
Collapse
Affiliation(s)
- Peng Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Weixing Wen
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Jiahuan Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW2006, Australia.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation Research, Guangzhou, 510000, China.
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
- Medical Research Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong, 528308, China.
| |
Collapse
|
8
|
Xiong L, Lan M, Liu C, Li L, Yu Y, Wang T, Liu F, Wang K, Liu J, Meng Q. Immunoglobulin superfamily containing leucine-rich repeat (ISLR) negatively regulates osteogenic differentiation through the BMP-Smad signaling pathway. Genes Dis 2024; 11:101091. [PMID: 38515940 PMCID: PMC10955205 DOI: 10.1016/j.gendis.2023.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 03/23/2024] Open
Affiliation(s)
- Lei Xiong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Miaomiao Lan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Chang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Lei Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - YingYing Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Tongtong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Fan Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Kun Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Jin Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Qingyong Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| |
Collapse
|
9
|
Wei F, Hughes M, Omer M, Ngo C, Pugazhendhi AS, Kolanthai E, Aceto M, Ghattas Y, Razavi M, Kean TJ, Seal S, Coathup M. A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308698. [PMID: 38477537 PMCID: PMC11151083 DOI: 10.1002/advs.202308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 03/14/2024]
Abstract
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.
Collapse
Affiliation(s)
- Fei Wei
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Megan Hughes
- School of BiosciencesCardiff UniversityWalesCF10 3ATUK
| | - Mahmoud Omer
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Christopher Ngo
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | | | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Matthew Aceto
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Yasmine Ghattas
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Mehdi Razavi
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Thomas J Kean
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Sudipta Seal
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Melanie Coathup
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| |
Collapse
|
10
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
11
|
Hosseini L, Shahabi P, Fakhari A, Zangbar HS, Seyedaghamiri F, Sadeghzadeh J, Abolhasanpour N. Aging and age-related diseases with a focus on therapeutic potentials of young blood/plasma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1-13. [PMID: 37552316 DOI: 10.1007/s00210-023-02657-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Aging is accompanied by alterations in the body with time-related to decline of physiological integrity and functionality process, responsible for increasing diseases and vulnerability to death. Several ages associated with biomarkers were observed in red blood cells, and consequently plasma proteins have a critical rejuvenating role in the aging process and age-related disorders. Advanced age is a risk factor for a broad spectrum of diseases and disorders such as cardiovascular diseases, musculoskeletal disorders and liver, chronic kidney disease, neurodegenerative diseases, and cancer because of loss of regenerative capacity, correlated to reduced systemic factors and raise of pro-inflammatory cytokines. Most studies have shown that systemic factors in young blood/plasma can strongly protect against age-related diseases in various tissues by restoring autophagy, increasing neurogenesis, and reducing oxidative stress, inflammation, and apoptosis. Here, we focus on the current advances in using young plasma or blood to combat aging and age-related diseases and summarize the experimental and clinical evidence supporting this approach. Based on reports, young plasma or blood is new a therapeutic approach to aging and age-associated diseases.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Sadeghzadeh
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Shao Y, Liu T, Wen X, Zhang R, Liu X, Xing D. The regulatory effect of growth differentiation factor 11 on different cells. Front Immunol 2023; 14:1323670. [PMID: 38143761 PMCID: PMC10739301 DOI: 10.3389/fimmu.2023.1323670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Growth differentiation factor 11 (GDF11) is one of the important factors in the pathophysiological process of animals. It is widely expressed in many tissues and organs of animals, showing its wide biological activity and potential application value. Previous research has demonstrated that GDF11 has a therapeutic effect on various diseases, such as anti-myocardial aging and anti-tumor. This has not only sparked intense interest and enthusiasm among academics but also spurred some for-profit businesses to attempt to develop GDF11 as a medication for regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11 antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are in the preclinical research stage. Therefore, we believe that figuring out which cells GDF11 acts on and its current problems should be an important issue in the scientific and commercial communities. Only through extensive, comprehensive research and discussion can we better understand the role and potential of GDF11, while avoiding unnecessary risks and misinformation. In this review, we aimed to summarize the role of GDF11 in different cells and its current controversies and challenges, providing an important reference for us to deeply understand the function of GDF11 and formulate more effective treatment strategies in the future.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Ting Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Qiao S, Zhang X, Chen Z, Zhao Y, Tzeng CM. Alloferon-1 ameliorates estrogen deficiency-induced osteoporosis through dampening the NLRP3/caspase-1/IL-1β/IL-18 signaling pathway. Int Immunopharmacol 2023; 124:110954. [PMID: 37742365 DOI: 10.1016/j.intimp.2023.110954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Alloferon-1 is an insect polypeptide that has anti-inflammatory, antitumor and antiviral activity. This study aimed to determine the effects of alloferon-1 on estrogen deficiency-induced osteoporosis and explore the associated mechanism using a murine model of ovariectomy (OVX)-induced osteoporosis. Results showed that alloferon-1 prevented ovariectomy‑induced body weight gain, bone loss and bone mineral content reduction, affected biochemical markers of bone turnover, and restored the microstructure of bone trabeculae. Moreover, alloferon-1 suppressed the expression of the ovariectomy‑mediated inflammatory cytokines in the vertebrae bone tissues, including nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3), cysteinyl aspartate specific proteinase-1 (Caspase-1), interleukin 1β (IL-1β) and interleukin 18 (IL-18) which were determined by immunofluorescence staining and western blot. Overall, the present study provides evidence for the effectiveness of alloferon-1 against estrogen deficiency-induced osteoporosis, suggesting an alternative drug or an auxiliary modulator for the treatment of postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Shuai Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiangrui Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, Fujian, China; Translational Medicine Research Center-Key Laboratory for Cancer T-Cell Theragnostic and Clinical Translation, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, Fujian, China; Xiamen Chang Gung Hospital Medical Research Center, Xiamen 361005, Fujian, China.
| |
Collapse
|
14
|
Chen X, Chen X, Chao R, Wang Y, Mao Y, Fan B, Zhang Y, Xu W, Qin A, Zhang S. Dlk2 interacts with Syap1 to activate Akt signaling pathway during osteoclast formation. Cell Death Dis 2023; 14:589. [PMID: 37669921 PMCID: PMC10480461 DOI: 10.1038/s41419-023-06107-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
Excessive osteoclast formation and bone resorption are related to osteolytic diseases. Delta drosophila homolog-like 2 (Dlk2), a member of the epidermal growth factor (EGF)-like superfamily, reportedly regulates adipocyte differentiation, but its roles in bone homeostasis are unclear. In this study, we demonstrated that Dlk2 deletion in osteoclasts significantly inhibited osteoclast formation in vitro and contributed to a high-bone-mass phenotype in vivo. Importantly, Dlk2 was shown to interact with synapse-associated protein 1 (Syap1), which regulates Akt phosphorylation at Ser473. Dlk2 deletion inhibited Syap1-mediated activation of the AktSer473, ERK1/2 and p38 signaling cascades. Additionally, Dlk2 deficiency exhibits increased bone mass in ovariectomized mice. Our results reveal the important roles of the Dlk2-Syap1 signaling pathway in osteoclast differentiation and osteoclast-related bone disorders.
Collapse
Affiliation(s)
- Xinwei Chen
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Xuzhuo Chen
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Rui Chao
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Yexin Wang
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Yi Mao
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Baoting Fan
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China
| | - Yaosheng Zhang
- Department of Stomatology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weifeng Xu
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| | - An Qin
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai, People's Republic of China.
| | - Shanyong Zhang
- Department of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Yang C, Song B, Han L, Gao Z. Study on the mechanism of NLRP3 effect on the skeleton of de-ovalized mice. Biochem Biophys Rep 2023; 35:101496. [PMID: 37332667 PMCID: PMC10276222 DOI: 10.1016/j.bbrep.2023.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
Postmenopausal osteoporosis caused by estrogen deficiency affects millions of women worldwide. By influencing both osteoblast and osteoclast development, NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) is a key player in the etiology of osteoporosis (OP). The purpose of this research was to look into the mechanism of action of NLRP3 in osteoporosis caused by a lack of estrogen, highlighting that NLRP3 induces osteoblast pyroptosis and thus inflammatory responses in de-ovulated mice, thereby inhibiting osteogenic differentiation and participating in the development of osteoporosis. In de-ovulated mice, we found an enhanced inflammatory response and suppression of osteogenic activity. In vitro experiments, we found a significant increase in markers of cell pyroptosis and inflammatory responses and a significant decrease in markers of osteogenic differentiation in osteoblasts from de-ovulated mice. However, knockdown of the NLRP3 gene inhibited this cell pyroptosis and improved osteogenic differentiation of osteoblasts. Our findings indicate a potential therapeutic potential for the treatment of estrogen deficiency-induced osteoporosis by demonstrating the critical role that NLRP3 inflammatory vesicles and their downstream-mediated cellular pyroptosis play in bone differentiation.
Collapse
|
16
|
Wang Z, Wu J, Li L, Wang K, Wu X, Chen H, Shi J, Zhou C, Zhang W, Hang K, Xue D, Pan Z. Eicosapentaenoic acid supplementation modulates the osteoblast/osteoclast balance in inflammatory environments and protects against estrogen deficiency-induced bone loss in mice. Clin Nutr 2023; 42:1715-1727. [PMID: 37542949 DOI: 10.1016/j.clnu.2023.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND An imbalance of osteoblasts (OBs) and osteoclasts (OCs) in a chronic inflammatory microenvironment is an important pathological factor leading to osteoporosis. Eicosapentaenoic acid (EPA) has been shown to suppress inflammation in macrophages and adipocytes. However, the effect of EPA on OBs and OCs has yet to be fully elucidated. AIMS We explored the roles of EPA in the differentiation of OBs and OCs, as well as the coupling between OBs and OCs in an inflammatory microenvironment. The effects of EPA on estrogen deficiency-induced osteoporosis were also evaluated. METHODS Mouse bone marrow mesenchymal stem cells (mBMSCs) and mouse bone marrow-derived macrophages (mBMMs) were used for in vitro OBs and OCs differentiation. TNF-α was used to create an inflammatory microenvironment. We examined the effects of EPA on osteoblastogenesis in the absence or presence of TNF-α and collect OBs' culture medium as the conditioned medium (CM). Then we examined the effects of EPA and CM on RANKL-induced osteoclastogenesis. The in vivo effects of EPA were determined using an ovariectomized (OVX) mouse model treated with EPA or vehicle. RESULTS High-dose EPA was shown to promote osteoblastogenesis in an inflammatory environment in vitro, as well as upregulate expression of OBs-specific proteins and genes. ARS and ALP staining also showed that high-dose EPA-treated groups restored mBMSCs' impaired osteogenic capacity caused by TNFa. Mechanistically, EPA suppressed the NF-κB pathway activated by TNF-α in mBMSCs and rescued TNF-α-mediated inhibition of osteoblastogenesis. EPA was also shown to inhibit expression of RANKL and decrease the RANKL/OPG ratio in OBs in an inflammatory environment. CM from TNF-α-stimulated OBs promoted osteoclastogenesis of mBMMs; EPA-treated CM prevented this. In the OVX mouse model, EPA supplementation prevented bone loss in an estrogen deficiency-induced inflammatory environment. CONCLUSIONS EPA was demonstrated for the first time to restore mBMSCs' impaired osteogenic capacity caused by TNFa-induced inflammation and rescue the OBs/OCs balance via regulation of RANKL and OPG expression in OBs. EPA showed a remarkable ability to prevent bone loss in OVX mice, suggesting a potential application of EPA in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhongxiang Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Jiaqi Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China
| | - Lijun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Kanbin Wang
- Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Department of Orthopedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, 322000 Yiwu, Zhejiang Province, PR China
| | - Xiaoyong Wu
- Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Hongyu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China
| | - Jiujun Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China
| | - Chengwei Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Weijun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China
| | - Kai Hang
- Department of Orthopedic Surgery, The Children's Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China.
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
17
|
Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer 2023; 1878:188944. [PMID: 37356738 DOI: 10.1016/j.bbcan.2023.188944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles whereas the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the colon or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
18
|
Yang C, Xu H, Yang D, Xie Y, Xiong M, Fan Y, Liu X, Zhang Y, Xiao Y, Chen Y, Zhou Y, Song L, Wang C, Peng A, Petersen RB, Chen H, Huang K, Zheng L. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury. Nat Commun 2023; 14:4261. [PMID: 37460623 PMCID: PMC10352345 DOI: 10.1038/s41467-023-40036-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Acute kidney injury (AKI) exhibits high morbidity and mortality. Kidney injury molecule-1 (KIM1) is dramatically upregulated in renal tubules upon injury, and acts as a biomarker for various renal diseases. However, the exact role and underlying mechanism of KIM1 in the progression of AKI remain elusive. Herein, we report that renal tubular specific knockout of Kim1 attenuates cisplatin- or ischemia/reperfusion-induced AKI in male mice. Mechanistically, transcription factor Yin Yang 1 (YY1), which is downregulated upon AKI, binds to the promoter of KIM1 and represses its expression. Injury-induced KIM1 binds to the ECD domain of death receptor 5 (DR5), which activates DR5 and the following caspase cascade by promoting its multimerization, thus induces renal cell apoptosis and exacerbates AKI. Blocking the KIM1-DR5 interaction with rationally designed peptides exhibit reno-protective effects against AKI. Here, we reveal a YY1-KIM1-DR5 axis in the progression of AKI, which warrants future exploration as therapeutic targets.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huidie Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunhao Xie
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - XiKai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yushuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yihao Zhou
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liangliang Song
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Wang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, 430070, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, 48859, USA
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
19
|
Cai A, Schneider P, Zheng ZM, Beier JP, Himmler M, Schubert DW, Weisbach V, Horch RE, Arkudas A. Myogenic differentiation of human myoblasts and Mesenchymal stromal cells under GDF11 on NPoly-ɛ-caprolactone-collagen I-Polyethylene-nanofibers. BMC Mol Cell Biol 2023; 24:18. [PMID: 37189080 PMCID: PMC10184409 DOI: 10.1186/s12860-023-00478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND For the purpose of skeletal muscle engineering, primary myoblasts (Mb) and adipogenic mesenchymal stem cells (ADSC) can be co-cultured and myogenically differentiated. Electrospun composite nanofiber scaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability Although growth differentiation factor 11 (GDF11) has been proposed as a rejuvenating circulating factor, restoring skeletal muscle function in aging mice, some studies have also described a harming effect of GDF11. Therefore, the aim of the study was to analyze the effect of GDF11 on co-cultures of Mb and ADSC on poly-ε-caprolactone (PCL)-collagen I-polyethylene oxide (PEO)-nanofibers. RESULTS Human Mb were co-cultured with ADSC two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-PEO-nanofibers. Differentiation media were either serum-free with or without GDF11, or serum containing as in a conventional differentiation medium. Cell viability was higher after conventional myogenic differentiation compared to serum-free and serum-free + GDF11 differentiation as was creatine kinase activity. Immunofluorescence staining showed myosine heavy chain expression in all groups after 28 days of differentiation without any clear evidence of more or less pronounced expression in either group. Gene expression of myosine heavy chain (MYH2) increased after serum-free + GDF11 stimulation compared to serum-free stimulation alone. CONCLUSIONS This is the first study analyzing the effect of GDF11 on myogenic differentiation of Mb and ADSC co-cultures under serum-free conditions. The results of this study show that PCL-collagen I-PEO-nanofibers represent a suitable matrix for 3D myogenic differentiation of Mb and ADSC. In this context, GDF11 seems to promote myogenic differentiation of Mb and ADSC co-cultures compared to serum-free differentiation without any evidence of a harming effect.
Collapse
Affiliation(s)
- Aijia Cai
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| | - Paul Schneider
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Zeng-Ming Zheng
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery - Burn Center, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Marcus Himmler
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| |
Collapse
|
20
|
Zhang Y, Zhou L, Fu Q, Liu Z. ANKRD1 activates the Wnt signaling pathway by modulating CAV3 expression and thus promotes BMSC osteogenic differentiation and bone formation in ovariectomized mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166693. [PMID: 36958710 DOI: 10.1016/j.bbadis.2023.166693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are considered promising materials for treating bone diseases such as osteoporosis (OP). This research explored the functions and molecular mechanism of ankyrin repeat domain 1 (ANKRD1) in BMSC osteogenesis. An OP model in mice was established by bilateral ovariectomy. Manipulation of ANKRD1 expression in BMSCs or femurs was achieved by lentivirus infection. Increased ANKRD1 expression was observed in BMSCs during osteogenic induction. Silencing of ANKRD1 impaired the osteogenesis of BMSCs, as shown by the decreased alkaline phosphatase (ALP) activity, osteogenic gene (Runx2, Col1a1, Bglap, and Spp1) expression, and mineralized formation. ANKRD1-mediated promotion of osteogenesis was also reproduced in mouse MC3T3-E1 preosteoblastic cells. Activation of Wnt/β-catenin signaling, a well-known osteogenic stimulus, was also impaired in ANKRD1-silenced BMSCs. Overexpression of ANKRD1 resulted in the opposite effects on osteogenesis and Wnt/β-catenin signaling. Mechanistic studies revealed that ANKRD1 modulated caveolin-3 (CAV3) expression by reducing CAV3 ubiquitination, and the knockdown of CAV3 impaired the functions of ANKRD1. Additionally, a very low level of ANKRD1 was observed in the BMSCs from OP mice. Rescue of ANKRD1 significantly restored osteogenic differentiation and Wnt signaling activation in BMSCs from ovariectomized mice. The results of micro-CT, H&E staining, and IHC staining showed that ANKRD1 also promoted bone formation and Wnt activation and ameliorated pathological alterations in the femurs of OP mice. Collectively, this study demonstrated that ANKRD1 plays an important role in regulating the osteogenic differentiation of BMSCs and is a promising target for the treatment of OP and other bone diseases.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
21
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
22
|
Zhao B, Zhang Y, Xu J, Li Y, Yuan Q, Zhou C. Periplaneta Americana extract inhibits osteoclastic differentiation in vitro. Cell Prolif 2023; 56:e13341. [PMID: 36210640 PMCID: PMC9890529 DOI: 10.1111/cpr.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Periplaneta americana extract (PAE) is proven to be promising in treating fever, wound healing, liver fibrosis, and cardiovascular disease. However, the role of PAE in skeletal disorders remains unclear. This study investigated whether PAE regulates osteoclastic differentiation in vitro via the culture using RAW264.7 cells and bone marrow derived macrophages (BMDMs). MATERIALS AND METHODS RAW264.7 cells and BMDMs were cultured and induced for osteoclastic differentiation supplementing with different concentrations of PAE (0, 0.1, 1, and 10 mg/mL). Cell counting kit-8 (CCK-8) assay was used to detect the cytotoxicity and cell proliferation. TRAP staining, actin ring staining, real-time quantitative PCR (RT-qPCR), and bone resorption activity test were performed to detect osteoclastic differentiation. RT-qPCR and enzyme-linked immunosorbent assay (ELISA) were conducted to assay the expression and secretion of inflammatory factors. RNA sequencing (RNA-seq) and western blot analysis were carried out to uncover the underlying mechanism. RESULTS CCK-8 results showed that 10 mg/mL and a lower concentration of PAE did not affect cell proliferation. RT-qPCR analysis verified that PAE down-regulated the osteoclastic genes Nfatc1, Ctsk, and Acp5 in macrophages. Moreover, PAE restrained the differentiation, formation, and function of osteoclasts. Besides, RT-qPCR and ELISA assays showed that PAE decreased inflammatory genes expression and reduced the secretion of inflammatory factors, including IL1β, IL6, and TNFα. Subsequent RNA-seq analysis identified possible genes and signaling pathways of PAE-mediated osteoclastogenesis suppression. CONCLUSIONS Our study indicates that PAE has inhibitive effects on osteoclastogenesis and may be a potential therapeutic alternative for bone diseases.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jie Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral Implantology, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric Dentistry, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
23
|
Zhang P, Chen H, Xie B, Zhao W, Shang Q, He J, Shen G, Yu X, Zhang Z, Zhu G, Chen G, Yu F, Liang D, Tang J, Cui J, Liu Z, Ren H, Jiang X. Bioinformatics identification and experimental validation of m6A-related diagnostic biomarkers in the subtype classification of blood monocytes from postmenopausal osteoporosis patients. Front Endocrinol (Lausanne) 2023; 14:990078. [PMID: 36967763 PMCID: PMC10031099 DOI: 10.3389/fendo.2023.990078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a common bone disorder. Existing study has confirmed the role of exosome in regulating RNA N6-methyladenosine (m6A) methylation as therapies in osteoporosis. However, it still stays unclear on the roles of m6A modulators derived from serum exosome in PMOP. A comprehensive evaluation on the roles of m6A modulators in the diagnostic biomarkers and subtype identification of PMOP on the basis of GSE56815 and GSE2208 datasets was carried out to investigate the molecular mechanisms of m6A modulators in PMOP. METHODS We carried out a series of bioinformatics analyses including difference analysis to identify significant m6A modulators, m6A model construction of random forest, support vector machine and nomogram, m6A subtype consensus clustering, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between different m6A patterns, principal component analysis, and single sample gene set enrichment analysis (ssGSEA) for evaluation of immune cell infiltration, experimental validation of significant m6A modulators by real-time quantitative polymerase chain reaction (RT-qPCR), etc. RESULTS In the current study, we authenticated 7 significant m6A modulators via difference analysis between normal and PMOP patients from GSE56815 and GSE2208 datasets. In order to predict the risk of PMOP, we adopted random forest model to identify 7 diagnostic m6A modulators, including FTO, FMR1, YTHDC2, HNRNPC, RBM15, RBM15B and WTAP. Then we selected the 7 diagnostic m6A modulators to construct a nomogram model, which could provide benefit with patients according to our subsequent decision curve analysis. We classified PMOP patients into 2 m6A subtypes (clusterA and clusterB) on the basis of the significant m6A modulators via a consensus clustering approach. In addition, principal component analysis was utilized to evaluate the m6A score of each sample for quantification of the m6A subgroups. The m6A scores of patients in clusterB were higher than those of patients in clusterA. Moreover, we observed that the patients in clusterA had close correlation with immature B cell and gamma delta T cell immunity while clusterB was linked to monocyte, neutrophil, CD56dim natural killer cell, and regulatory T cell immunity, which has close connection with osteoclast differentiation. Notably, m6A modulators detected by RT-qPCR showed generally consistent expression levels with the bioinformatics results. CONCLUSION In general, m6A modulators exert integral function in the pathological process of PMOP. Our study of m6A patterns may provide diagnostic biomarkers and immunotherapeutic strategies for future PMOP treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Xie
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui He
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangye Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhixiang Liu
- Affiliated Huadu Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| |
Collapse
|
24
|
Wang Z, Jiang P, Liu F, Du X, Ma L, Ye S, Cao H, Sun P, Su N, Lin F, Zhang R, Li C. GDF11 Regulates PC12 Neural Stem Cells via ALK5-Dependent PI3K-Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012279. [PMID: 36293138 PMCID: PMC9602726 DOI: 10.3390/ijms232012279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Growth differentiation factor 11 (GDF11), belonging to the transforming factor-β superfamily, regulates anterior-posterior patterning and inhibits neurogenesis during embryonic development. However, recent studies recognized GDF11 as a rejuvenating (or anti-ageing) factor to reverse age-related cardiac hypertrophy, repair injured skeletal muscle, promote cognitive function, etc. The effects of GDF11 are contradictory and the mechanism of action is still not well clarified. The objective of the present study was to investigate effects of GDF11 on PC12 neural stem cells in vitro and to reveal the underlying mechanism. We systematically assessed the effects of GDF11 on the life activities of PC12 cells. GDF11 significantly suppressed cell proliferation and migration, promoted differentiation and apoptosis, and arrested cell cycle at G2/M phase. Both TMT-based proteomic analysis and phospho-antibody microarray revealed PI3K-Akt pathway was enriched when treated with GDF11. Inhibition of ALK5 or PI3K obviously attenuated the effects of GDF11 on PC12 neural stem cells, which exerted that GDF11 regulated neural stem cells through ALK5-dependent PI3K-Akt signaling pathway. In summary, these results demonstrated GDF11 could be a negative regulator for neurogenesis via ALK5 activating PI3K-Akt pathway when it directly acted on neural stem cells.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China
- Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
- Correspondence: (R.Z.); (C.L.); Tel.: +86-028-61648527 (R.Z. & C.L.)
| |
Collapse
|
25
|
Xiong Y, Zhang Y, Zhou F, Liu Y, Yi Z, Gong P, Wu Y. FOXO1 differentially regulates bone formation in young and aged mice. Cell Signal 2022; 99:110438. [PMID: 35981656 DOI: 10.1016/j.cellsig.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
Abstract
It is a great challenge to develop a safe and effective treatment strategy for age-related osteoporosis and fracture healing. As one of the four FOXO transcription factors, FOXO1 is essential for cell proliferation, survival, senescence, energy metabolism, and oxidative stress in various cells. Our previous study demonstrated that specific Foxo1 gene deletion in osteoblasts in young mice results in bone loss while that in aged mice shows the opposite effect. However, the mechanism underlying the differential regulation of bone metabolism by FOXO1 remains to be elucidated. In this study, we generated osteoblast-specific Foxo1 knockout mice by using Foxo1fl/fl and Bglap-Cre mice. In young mice, Foxo1 gene deletion inhibits osteoblast differentiation, leading to a decreased osteoblast number and decreased bone formation rate because of the weakened ability to resist oxidative stress, eventually resulting in bone loss and delayed healing of bone defects. In aged mice, high levels of reactive oxygen species (ROS) promote the diversion of CTNNB1 (β-catenin) from T cell factor 4 (TCF4)- to FOXO1-mediated transcription, thereby inhibiting Wnt/β-catenin signaling and leading to decreased osteogenic activity. Conversely, FOXO1 deficiency indirectly promotes the binding of β-catenin and TCF4 and activates Wnt/β-catenin signaling, thereby alleviating age-related bone loss and improving bone defect healing. Our study proves that FOXO1 has differential effects on bone metabolism in young and aged mice and elucidates its underlying mechanism. Further, this study provides a new perspective on the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yeyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zumu Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Dong X, Feng J, Li B, Bai D, Xu H. Inhibition of osteoclastogenesis by interleukin-33 administration in the periodontal ligament under mechanical loading. J Periodontal Res 2022; 57:1003-1013. [PMID: 35930702 DOI: 10.1111/jre.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/12/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The molecular mechanisms mediating external root resorption are poorly understood. Interleukin-33 (IL-33) expression increased remarkably in the periodontal ligament (PDL) under orthodontic loading. The IL-33-driven responses are delicately cell type- and tissue context-dependent. It is unknown how IL-33 act on osteoclastogenesis in the context of root surface. This study aimed to investigate the effect of IL-33 on osteoclastogenesis in the PDL under mechanical loading. MATERIALS AND METHODS C57BL/6J mice were treated with injections of phosphate buffer saline (PBS) or recombinant mouse IL-33 (rmIL-33, 6 μl, 30 μg/ml), and subjected to models of orthodontic tooth movement. Tartrated resistant acid phosphates (TRAP)-positive cells and IL-33 expressions were examined in the PDL. IL-33 release from human PDL cells (hPDLCs) was detected by ELISA. Cementoblast-like (OCCM-30) cells were cultured in the presence of rmIL-33 to examine the release of osteoclast-regulatory proteins. The effects of rmIL-33 on osteoclastogenesis were examined in vitro in cultures of bone marrow macrophages (BMMs) and in BMMs-OCCM-30 cocultures. Expressions of osteoclast-specific or -related genes and proteins were investigated in BMMs-OCCM-30 cocultures treated with or without rmIL-33, in the presence or absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) neutralizing antibody. RESULTS Interleukin-33 expressions were upregulated in the PDL under orthodontic loading. Static compressive force enhanced expression and release of IL-33 from hPDLCs. Administration of rmIL-33 resulted in reduced number of TRAP-positive cells in the PDL, and inhibited osteoclast differentiation from BMMs in vitro. OCCM-30 cells had varied osteoprotegerin (OPG) / receptor activator for nuclear factor-κB ligand (RANKL) secretion and increased release of GM-CSF under rmIL-33 stimulation. Treatment with rmIL-33 in BMMs-OCCM-30 cocultures resulted in inhibited differentiation and decreased activity of osteoclasts, and these effects were partially reversed by GM-CSF neutralizing antibody. CONCLUSIONS Interleukin-33 inhibits osteoclastogenesis in the PDL under orthodontic loading. The anti-osteoclastogenic effects were mediated partly by directly affecting osteoclast precursors and partly by cementoblast-mediated release of GM-CSF.
Collapse
Affiliation(s)
- Xiaomeng Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Hu L, Xie X, Xue H, Wang T, Panayi AC, Lin Z, Xiong Y, Cao F, Yan C, Chen L, Cheng P, Zha K, Sun Y, Liu G, Yu C, Hu Y, Tao R, Zhou W, Mi B, Liu G. MiR-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the Rap1 signaling target ADCY2. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:961-972. [PMID: 35831436 PMCID: PMC9355958 DOI: 10.1038/s12276-022-00799-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion. A microRNA called miR-1224-5p plays a key role in regulating the balance between bone formation and resorption, and may help in developing therapies for osteoporosis and hard-to-heal fractures. MicroRNAs are small, non-coding RNAs that regulate gene expression. Levels of miR-1224-5p were known to be low in patients with osteoporosis, caused by imbalanced bone resorption and formation, and high in patients with fractures. Guohui Liu and Bobin Mi at Union Hospital, Tongji Medical College, Huazhong University of Science and Technology in Wuhan, China, and coworkers hypothesized that miR-1224-5p might affect the bone resorption/formation balance. They found that miR-1224-5p levels correlated with fracture healing progress. Boosting levels in mice made bones stronger and improved fracture healing, whereas suppressing levels impaired fracture healing and accelerated osteoporosis. These results show that miR-1224-5p represents a potential target for treatment for osteoporosis and for bone-healing deficits. A proposed model illustrating (Supplementary materials e) miRNA-1224-5p-mediated bone cell differentiation. Schematic representation of the mechanism through which miRNA-1224-5p mediates bone cell differentiation in fracture healing and osteoporosis.
Collapse
Affiliation(s)
- Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Tiantian Wang
- Department of emergency medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Chengcheng Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Peng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yun Sun
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.,Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guodong Liu
- Medical Center of Trauma and War Injuries, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.
| |
Collapse
|
28
|
Cai P, Yan S, Lu Y, Zhou X, Wang X, Wang M, Yin Z. Carnosol inhibits osteoclastogenesis in vivo and in vitro by blocking the RANKL‑induced NF‑κB signaling pathway. Mol Med Rep 2022; 26:225. [PMID: 35593299 PMCID: PMC9178676 DOI: 10.3892/mmr.2022.12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast‑mediated bone formation. Disruption of bone homeostasis due to excessive osteoclastogenesis or reduced osteogenesis results in various disorders, such as postmenopausal osteoporosis. Receptor activator of NF‑κB ligand (RANKL) stimulation of the NF‑κB signaling pathway is essential in osteoclastogenesis. The aim of the present study was to investigate the novel effects of carnosol, an active compound found in Rosmarinus officinalis, on RANKL‑induced osteoclastogenesis both in vitro and in vivo. TRAP staining showed that carnosol significantly inhibited osteoclasts differentiation of bone marrow monocytes and RAW264.7 cells. Western blot results showed that the protein expression levels of osteoclastogenesis‑associated genes, including cathepsin K, tartrate‑resistant acid phosphatase and MMP‑9, were markedly inhibited by carnosol, which may have suppressed osteoclast function. Furthermore, western blot and immunofluorescent staining results revealed that carnosol markedly suppressed the phosphorylation of p65 induced by RANKL and blocked its nuclear translocation, indicating the suppression of NF‑κB signaling pathway. H&E staining and micro‑CT results showed that in vivo treatment with carnosol significantly attenuated ovariectomy‑induced bone loss in mice. In conclusion, the present study indicated that carnosol may suppress osteoclastogenesis both in vivo and in vitro by inhibiting the activation of the NF‑κB signaling pathway. Carnosol may therefore be a potential novel therapeutic candidate for the clinical treatment of osteoclast‑related disorders.
Collapse
Affiliation(s)
- Pan Cai
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Shichang Yan
- Department of Orthopedics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu 210019, P.R. China
| | - Yan Lu
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiaoxiao Zhou
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Minghui Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, P.R. China
| |
Collapse
|
29
|
Lee SJ, Lehar A, Rydzik R, Youngstrom DW, Bhasin S, Liu Y, Germain-Lee EL. Functional replacement of myostatin with GDF-11 in the germline of mice. Skelet Muscle 2022; 12:7. [PMID: 35287700 PMCID: PMC8922734 DOI: 10.1186/s13395-022-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Adam Lehar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Renata Rydzik
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.,Division of Endocrinology & Diabetes and Center for Rare Bone Disorders, Connecticut Children's, Farmington, CT, USA
| |
Collapse
|
30
|
Xu X, Li Y, Shi L, He K, Sun Y, Ding Y, Meng B, Zhang J, Xiang L, Dong J, Liu M, Zhang J, Xiang L, Xiang G. Myeloid-derived growth factor (MYDGF) protects bone mass through inhibiting osteoclastogenesis and promoting osteoblast differentiation. EMBO Rep 2022; 23:e53509. [PMID: 35068044 PMCID: PMC8892248 DOI: 10.15252/embr.202153509] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Whether bone marrow regulates bone metabolism through endocrine and paracrine mechanism remains largely unknown. Here, we found that (i) myeloid cell-specific myeloid-derived growth factor (MYDGF) deficiency decreased bone mass and bone strength in young and aged mice; (ii) myeloid cell-specific MYDGF restoration prevented decreases in bone mass and bone strength in MYDGF knockout mice; moreover, myeloid cell-derived MYDGF improved the progress of bone defects healing, prevented ovariectomy (OVX)-induced bone loss and age-related osteoporosis; (iii) MYDGF inhibited osteoclastogenesis and promoted osteoblast differentiation in vivo and in vitro; and (iv) PKCβ-NF-κB and MAPK1/3-STAT3 pathways were involved in the regulation of MYDGF on bone metabolism. Thus, we concluded that myeloid cell-derived MYDGF is a positive regulator of bone homeostasis by inhibiting bone resorption and promoting bone formation. MYDGF may become a potential novel therapeutic drug for osteoporosis, and bone marrow may become a potential therapeutic target for bone metabolic disorders.
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Yixiang Li
- Department of Hematology and Medical OncologySchool of MedicineEmory UniversityAtlantaGAUSA
| | - Lingfeng Shi
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Kaiyue He
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Ying Sun
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Yan Ding
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Biying Meng
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jiajia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Lin Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Jing Dong
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Min Liu
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina
| | - Junxia Zhang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Lingwei Xiang
- Centers for Surgery and Public HealthBrigham and Women's HospitalBostonMAUSA
| | - Guangda Xiang
- Department of EndocrinologyGeneral Hospital of Central Theater CommandWuhanChina,The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
31
|
Yang Z, Tan Q, Zhao Z, Niu G, Li S, Li W, Song C, Leng H. Distinct pathological changes of osteochondral units in early OVX-OA involving TGF-β signaling. Front Endocrinol (Lausanne) 2022; 13:1074176. [PMID: 36589821 PMCID: PMC9797695 DOI: 10.3389/fendo.2022.1074176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Different opinions exist about the role of subchondral bone in osteoarthritis (OA), probably because subchondral bone has different effects on cartilage degeneration in OA induced by different pathologies. Animal studies to illustrate the role of subchondral bone in cartilage degeneration were mostly based on post-traumatic OA (PT-OA). Postmenopausal women experience a much higher occurrence of OA than similar-aged men. The physiological changes and pathogenesis of the osteochondral unit in ovariectomy-induced OA (OVX-OA) might be distinct from other types of OA. METHODS The osteochondral alterations of post-traumatic OA (PT-OA) and OVX-OA at week 9 after surgery were compared. Then the alterations of osteochondral units in OVX-OA rats were tracked over time for the designed groups: Sham, OVX and OVX rats treated with estrogen (OVX+E). DXA, micro-CT, and histochemical staining were performed to observe alterations in osteochondral units. RESULTS Rapid cartilage degeneration and increased bone formation were observed in PT-OA, while only mild cartilage erosion and significant bone loss were observed in OVX-OA at week 9 after surgery. Subchondral bone degradation preceded cartilage degeneration by 6 weeks in OVX-OA. TGF-β expression was downregulated in the osteochondral unit of OVX rats. Estrogen supplementation inhibited subchondral bone loss, cartilage degradation and TGF-β expression decrease. DISCUSSION This research demonstrated the distinct behaviors of the osteochondral unit and the critical role of subchondral bone in early OVX-OA compared with PT-OA. Inhibiting subchondral bone catabolism at the early stage of OVX-OA could be an effective treatment for post-menopausal OA. Based on the results, estrogen supplementation and TGF-β modulation at the early stage are both potential therapies for post-menopausal OA.
Collapse
Affiliation(s)
- Zihuan Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Qizhao Tan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhenda Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Guodong Niu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Siwei Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Department of Orthopedics, Ansteel Group Hospital, Anshan, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing Municipal Science & Technology Commission, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- *Correspondence: Huijie Leng,
| |
Collapse
|
32
|
Weidner H, Wobus M, Hofbauer LC, Rauner M, Platzbecker U. Luspatercept mitigates bone loss driven by myelodysplastic neoplasms and estrogen-deficiency in mice. Leukemia 2022; 36:2715-2718. [PMID: 36175549 PMCID: PMC9613459 DOI: 10.1038/s41375-022-01702-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Heike Weidner
- grid.4488.00000 0001 2111 7257 Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Manja Wobus
- grid.4488.00000 0001 2111 7257Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C. Hofbauer
- grid.4488.00000 0001 2111 7257 Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Rauner
- grid.4488.00000 0001 2111 7257 Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
33
|
Sun J, Li Y, Yang X, Dong W, Yang J, Hu Q, Zhang C, Fang H, Liu A. Growth differentiation factor 11 accelerates liver senescence through the inhibition of autophagy. Aging Cell 2022; 21:e13532. [PMID: 34905649 PMCID: PMC8761011 DOI: 10.1111/acel.13532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
The “rejuvenating” effect of growth differentiation factor 11 (GDF11) is called into question recently, and its role, as well as plausible signaling mechanisms in liver senescence, is unclear. To overexpress or knockdown GDF11, aged male mice are injected with a single dose of adeno‐associated viruses‐GDF11 or adenovirus‐small hairpin RNA‐GDF11, respectively. GDF11 overexpression significantly accelerates liver senescence in aged mice, whereas GDF11 knockdown has opposite effects. Concomitantly, autophagic flux is impaired in livers from GDF11 overexpression mice. Conversely, GDF11 knockdown increases autophagic flux. Moreover, rapamycin successfully restores the impaired autophagic flux and alleviates liver senescence in GDF11 overexpression mice, while the GDF11 knockdown‐mediated benefits are abolished by the autophagy inhibitor bafilomycin A1. GDF11 leads to a drop in lysosomal biogenesis resulting in defective autophagic flux at autophagosome clearance step. Mechanistically, GDF11 significantly activates mammalian target of rapamycin complex 1 (mTORC1) and subsequently represses transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy. Inhibition of mTORC1 or TFEB overexpression rescues the GDF11‐impaired autophagic flux and cellular senescence. Hepatocyte‐specific deletion of GDF11 does not alter serum GDF11 levels and liver senescence. Collectively, suppression of autophagic activity via mTORC1/TFEB signaling may be a critical molecular mechanism by which GDF11 exacerbates liver senescence. Rather than a “rejuvenating” agent, GDF11 may have a detrimental effect on liver senescence.
Collapse
Affiliation(s)
- Jian Sun
- Department of Biliopancreatic Surgery Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Sun Yat‐sen Memorial Hospital,Sun Yat‐sen University Guangzhou, Guangdong China
| | - Ying Li
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Xiao Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Wei Dong
- Hepatic Surgery Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary Diseases Hubei Clinical Medicine Research Center of Hepatic Surgery Wuhan, Hubei China
- Key Laboratory of Organ Transplantation,Ministry of Education;NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation Chinese Academy of Medical Sciences Wuhan, Hubei China
| | - Jiankun Yang
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Qi Hu
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Cuntai Zhang
- Department of Geriatrics Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| | - Haoshu Fang
- Department of Pathophysiology Anhui Medical University Hefei, Anhui China
| | - Anding Liu
- Experimental Medicine Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, Hubei China
| |
Collapse
|
34
|
Su XD, Yang SY, Shrestha SK, Soh Y. Aster saponin A 2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway. J Vet Sci 2022; 23:e47. [PMID: 35698806 PMCID: PMC9346523 DOI: 10.4142/jvs.21246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Background In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget’s disease, and osteogenesis imperfecta.
Collapse
Affiliation(s)
- Xiang-Dong Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Seo Y Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Korea
| | - Saroj K Shrestha
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Yunjo Soh
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea
- Department of Pharmacology, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
35
|
Sui L, Sanders A, Jiang WG, Ye L. Deregulated molecules and pathways in the predisposition and dissemination of breast cancer cells to bone. Comput Struct Biotechnol J 2022; 20:2745-2758. [PMID: 35685372 PMCID: PMC9168524 DOI: 10.1016/j.csbj.2022.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/28/2022] Open
|
36
|
Chen M, Lin W, Ye R, Yi J, Zhao Z. PPARβ/δ Agonist Alleviates Diabetic Osteoporosis via Regulating M1/M2 Macrophage Polarization. Front Cell Dev Biol 2021; 9:753194. [PMID: 34901001 PMCID: PMC8661472 DOI: 10.3389/fcell.2021.753194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023] Open
Abstract
Diabetic osteoporosis is a common complication in diabetic patients, leading to increased fracture risk and impaired bone healing. As a member of the peroxisome proliferator-activated receptor (PPAR) family, PPARβ/δ agonist is suggested as a therapeutic target for the treatment of metabolic syndrome, and has been reported to positively regulate bone turnover by improving osteogenesis. However, its regulatory role in diabetic osteoporosis has not been reported yet. Here, we explored the therapeutic effects and potential mechanisms of PPARβ/δ agonist to the osteoporotic phenotypes of diabetic mice. Our results indicated that the osteoporotic phenotypes could be significantly ameliorated in diabetic mice by the administration of PPARβ/δ agonists. In vitro experiments suggested that PPARβ/δ agonist treatment could alleviate the abnormal increase of osteoclast activity in diabetic mice by rectifying high glucose-mediated macrophage dysfunction instead of directly inhibiting osteoclast differentiation. Mechanistically, Angptl4 may act as a downstream target of PPARβ/δ to regulate macrophage polarization. In conclusion, our study demonstrates the potential of PPARβ/δ agonist as a therapeutic target for the treatment of osteoporosis and immune homeostasis disorder in diabetic patients.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Hu Y, Mu P, Ma X, Shi J, Zhong Z, Huang L. Rhizoma drynariae total flavonoids combined with calcium carbonate ameliorates bone loss in experimentally induced Osteoporosis in rats via the regulation of Wnt3a/β-catenin pathway. J Orthop Surg Res 2021; 16:702. [PMID: 34863225 PMCID: PMC8642843 DOI: 10.1186/s13018-021-02842-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Rhizoma drynariae, a traditional Chinese herb, is commonly used in treatment of bone healing in osteoporotic fractures. However, whether the Rhizoma drynariae total flavonoids (RDTF) can promote the absorption of calcium and enhance the bone formation is unclear. The aim of the present study was to investigate the preventive effects of RDTF combined with calcium carbonate (CaCO3) on estrogen deficiency-induced bone loss. Methods Three-month-old Sprague–Dawley rats were ovariectomized (OVX) and then treated with CaCO3, RDTF, and their admixtures for ten weeks, respectively. The bone trabecular microstructure, bone histopathological examination, and serum biomarkers of bone formation and resorption were determined in the rat femur tissue. The contents of osteoprotegerin (OPG), receptor activator of the NF-κB (RANK), and its ligand (RANKL) in marrow were analyzed by ELISA, and the protein expressions of Wnt3a, β-catenin, and phosphorylated β-catenin (p-β-catenin) were analyzed by Western blot. Statistical analysis was conducted by using one-way analysis of variance (ANOVA) followed by LSD post hoc analysis or independent samples t test using the scientific statistic software SPSS version 20.0 Results RDTF combined with CaCO3 could promote osteosis and ameliorate bone loss to improve the repair of cracked bone trabeculae of OVX rats. Furthermore, RDTF combined with CaCO3 also could prevent OVX-induced decrease in collagen fibers in the femoral tissue of ovariectomized rats and promote the regeneration of new bone or cartilage tissue, while CaCO3 supplementation promoted the increase in bone mineral content. Nevertheless, there was no difference in the expression of Wnt3a, β-catenin and p-β-catenin between osteopenic rats and RDTF treated rats, but RDTF combined with CaCO3 could activate the Wnt3a/β-catenin pathway. Conclusions RDTF combined with CaCO3 could ameliorate estrogen deficiency-induced bone loss via the regulation of Wnt3a/β-catenin pathway.
Collapse
Affiliation(s)
- Yimei Hu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| | - Panyun Mu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xu Ma
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Jingru Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Zhendong Zhong
- Institute for Laboratory Animal Research, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | | |
Collapse
|
38
|
Zhou Y, Deng Y, Liu Z, Yin M, Hou M, Zhao Z, Zhou X, Yin L. Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. SCIENCE ADVANCES 2021; 7:eabl6432. [PMID: 34818042 PMCID: PMC8612675 DOI: 10.1126/sciadv.abl6432] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Imbalance between osteoblasts and osteoclasts accounts for the incidence and deterioration of postmenopausal osteoporosis. Abnormally elevated RANKL and TNF-α levels after menopause promote osteoclast formation and inhibit osteoblast differentiation, respectively. Here, nanodecoys capable of scavenging RANKL and TNF-α were developed from preosteoclast (RAW 264.7 cell) membrane–coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles, which inhibited osteoporosis and maintained bone integrity. The nanodecoys effectively escaped from macrophage capture and enabled prolonged blood circulation after systemic administration. The abundant RANK and TNF-α receptor (TNF-αR) on the cell membranes effectively neutralized RANKL and TNF-α to prevent osteoclastogenesis and promote osteoblastogenesis, respectively, thus reversing the progression of osteoporosis in the ovariectomized (OVX) mouse model. These biomimetic nanodecoys provide an effective strategy for reconstructing the osteoclast/osteoblast balance and hold great potentials for the clinical management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yekun Deng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhongmin Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Mengyuan Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Mengying Hou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Corresponding author.
| |
Collapse
|
39
|
Chen M, Jing D, Ye R, Yi J, Zhao Z. PPARβ/δ accelerates bone regeneration in diabetic mellitus by enhancing AMPK/mTOR pathway-mediated autophagy. Stem Cell Res Ther 2021; 12:566. [PMID: 34736532 PMCID: PMC8567548 DOI: 10.1186/s13287-021-02628-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetic patients are more vulnerable to skeletal complications. Peroxisome proliferators-activated receptor (PPAR) β/δ has a positive regulatory effect on bone turnover under physiologic glucose concentration; however, the regulatory effect in diabetes mellitus has not been investigated yet. Herein, we explored the effects of PPARβ/δ agonist on the regeneration of diabetic bone defects and the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) under a pathological high-glucose condition. METHODS We detected the effect of PPARβ/δ agonist on osteogenic differentiation of rBMSCs in vitro and investigated the bone healing process in diabetic rats after PPARβ/δ agonist treatment in vivo. RNA sequencing was performed to detect the differentially expressed genes and enriched pathways. Western blot was performed to detect the autophagy-related protein level. Laser confocal microscope (LSCM) and transmission electron microscope (TEM) were used to observe the formation of autophagosomes. RESULTS Our results demonstrated that the activation of PPARβ/δ can improve the osteogenic differentiation of rBMSCs in high-glucose condition and promote the bone regeneration of calvarial defects in diabetic rats, while the inhibition of PPARβ/δ alleviated the osteogenic differentiation of rBMSCs. Mechanistically, the activation of PPARβ/δ up-regulates AMPK phosphorylation, yielding mTOR suppression and resulting in enhanced autophagy activity, which further promotes the osteogenic differentiation of rBMSCs in high-glucose condition. The addition of AMPK inhibitor Compound C or autophagy inhibitor 3-MA inhibited the osteogenesis of rBMSCs in high-glucose condition, suggesting that PPARβ/δ agonist promotes osteogenic differentiation of rBMSCs through AMPK/mTOR-regulated autophagy. CONCLUSION In conclusion, our study demonstrates the potential role of PPARβ/δ as a molecular target for the treatment of impaired bone quality and delayed bone healing in diabetic patients for the first time.
Collapse
Affiliation(s)
- Miao Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
40
|
Mei W, Zhu B, Shu Y, Liang Y, Lin M, He M, Luo H, Ye J. GDF11 protects against glucotoxicity-induced mice retinal microvascular endothelial cell dysfunction and diabetic retinopathy disease. Mol Cell Endocrinol 2021; 537:111422. [PMID: 34391845 DOI: 10.1016/j.mce.2021.111422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Growth differentiation factor 11 (GDF11) has been implicated in the regulation of embryonic development and age-related dysfunction, including the regulation of retinal progenitor cells. However, little is known about the functions of GDF11 in diabetic retinopathy. In this study, we demonstrated that GDF11 treatment improved diabetes-induced retinal cell death, capillary degeneration, pericyte loss, inflammation, and blood-retinal barrier breakdown in mice. Treatment of isolated mouse retinal microvascular endothelial cells with recombinant GDF11 in vitro attenuated glucotoxicity-induced retinal endothelial apoptosis and the inflammatory response. The protective mechanisms exerted are associated with TGF-β/Smad2, PI3k-Akt-FoxO1 activation,and NF-κB pathway inhibition. This study indicated that GDF11 is a novel therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Wen Mei
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China; Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Biao Zhu
- Department of Stomatology, Fuxing Hospital, Capital Medical University, Fuxingmen Wai Street A 20, Beijing, 100038, China
| | - Yi Shu
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Yanhua Liang
- Department of Ophthalmology, People's Hospital of Jiangmen, Penglai Road 19, Jiangmen, 529000, Guangdong Province, China
| | - Mei Lin
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China.
| | - Mingjuan He
- Department of Endocrinology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hanzheng Road 473, Wuhan, 430070, Hubei Province, China
| | - Haizhao Luo
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| | - Jingwen Ye
- Department of Endocrinology, Nanhai District People's Hospital of Foshan, Foping Road 40, Foshan, 528200, Guangdong Province, China
| |
Collapse
|
41
|
Cha S, Lee SM, Wang J, Zhao Q, Bai D. Enhanced Circadian Clock in MSCs-Based Cytotherapy Ameliorates Age-Related Temporomandibular Joint Condyle Degeneration. Int J Mol Sci 2021; 22:10632. [PMID: 34638972 PMCID: PMC8508754 DOI: 10.3390/ijms221910632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Aging has been proven to be one of the major causes of temporomandibular joint (TMJ) disability and pain in older people. Peripheral circadian rhythms play a crucial role in endochondral ossification and chondrogenesis. However, the age-related alterations of circadian clock in TMJ structures are seldom reported. In the current study, TMJ condyles were extracted from young (4-month-old), middle-aged (10-month-old), and old-aged (20-month-old) adults to detect the morphology and circadian oscillation changes in TMJ condyles with aging. The transcriptome profile of Bmal1-deleted bone-marrow mesenchymal stem cells (BMSCs) and controls were explored to reveal the circadian-related differences at the molecular level. Furthermore, the reparative effects of Bmal1-overexpressed BMSCs-based cytotherapy in aged TMJ condyles were investigated in vitro and in vivo. Aged TMJ condyles displayed damaged tissue structure and an abolished circadian rhythm, accompanied by a progressively decreasing chondrogenesis capability and bone turnover activities. The deletion of Bmal1 significantly down-regulated chondrogenesis-related genes Prg4, Sox9, and Col7a1. Bmal1-overexpressed BMSCs presented improved migration capability ex vivo and attenuated age-related TMJ condylar degeneration in vivo. These data demonstrate the crucial role of circadian timing in the maintenance of osteochondral homeostasis, and indicate the potential clinical prospects of circadian-modified MSCs therapy in tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (S.C.); (S.-M.L.); (J.W.)
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; (S.C.); (S.-M.L.); (J.W.)
| |
Collapse
|
42
|
Zheng HL, Xu WN, Zhou WS, Yang RZ, Chen PB, Liu T, Jiang LS, Jiang SD. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis 2021; 12:497. [PMID: 33993186 PMCID: PMC8124066 DOI: 10.1038/s41419-021-03784-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Bone health requires adequate bone mass, which is maintained by a critical balance between bone resorption and formation. In our study, we identified beraprost as a pivotal regulator of bone formation and resorption. The administration of beraprost promoted differentiation of mouse bone mesenchymal stem cells (M-BMSCs) through the PI3K–AKT pathway. In co-culture, osteoblasts stimulated with beraprost inhibited osteoclastogenesis in a rankl-dependent manner. Bone mass of p53 knockout mice remained stable, regardless of the administration of beraprost, indicating that p53 plays a vital role in the bone mass regulation by beraprost. Mechanistic in vitro studies showed that p53 binds to the promoter region of neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) to promote its transcription. As a ubiquitinating enzyme, Nedd4 binds to runt-related transcription factor 2 (Runx2), which results in its ubiquitination and subsequent degradation. These data indicate that the p53–Nedd4–Runx2 axis is an effective regulator of bone formation and highlight the potential of beraprost as a therapeutic drug for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Wen-Ning Xu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Run-Ze Yang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Peng-Bo Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Tao Liu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China.
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China.
| |
Collapse
|
43
|
Lodberg A. Principles of the activin receptor signaling pathway and its inhibition. Cytokine Growth Factor Rev 2021; 60:1-17. [PMID: 33933900 DOI: 10.1016/j.cytogfr.2021.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
This review captures the anabolic and stimulatory effects observed with inhibition of the transforming growth factor β superfamily in muscle, blood, and bone. New medicinal substances that rectify activin, myostatin, and growth differentiation factor 11 signaling give hope to the many whose lives are affected by deterioration of these tissues. The review first covers the origin, structure, and common pathway of activins, myostatin, and growth differentiation factor 11 along with the pharmacodynamics of the new class of molecules designed to oppose the activin receptor signaling pathway. Current terminology surrounding this new class of molecules is inconsistent and does not infer functionality. Adopting inhibitors of the activin receptor signaling pathway (IASPs) as a generic term is proposed because it encapsulates the molecular mechanisms along the pathway trajectory. To conclude, a pragmatic classification of IASPs is presented that integrates functionality and side effects based on the data available from animals and humans. This provides researchers and clinicians with a tool to tailor IASPs therapy according to the need of projects or patients and with respect to side effects.
Collapse
Affiliation(s)
- Andreas Lodberg
- Department of Biomedicine, Aarhus University, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Wilhelm Meyers Allé, DK-8000, Aarhus, Denmark.
| |
Collapse
|
44
|
Lin Z, Li T, Yu Q, Chen H, Zhou D, Li N, Yan C. Structural characterization and in vitro osteogenic activity of ABPB-4, a heteropolysaccharide from the rhizome of Achyranthes bidentata. Carbohydr Polym 2021; 259:117553. [PMID: 33674023 DOI: 10.1016/j.carbpol.2020.117553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023]
Abstract
Achyranthes bidentata is a species of flowering plant that is mainly distributed in China. The A. bidentata rhizome is a famous traditional Chinese medicine that has been widely used to treat lumbago, arthritis, and bone hyperplasia. In this work, A. bidentata rhizome was isolated and purified to obtain a pectic polysaccharide (ABPB-4). Chemical and spectral analyses showed that ABPB-4 had a main chain of →4)-α-d-GalpA-(1→ and →2,4)-α-l-Rhap-(1→, and the branch chains included →4)-β-d-Galp-(1→, →6)-β-d-Galp-(1→, →3,6)-β-d-Galp-(1→, →5)-α-l-Araf-(1→ and →3,5)-α-l-Araf-(1→, and it was terminated with α-l-Araf-(1→ and β-d-Galp-(1→. At concentrations of 0.01, 0.02, and 0.04 μmol/L, ABPB-4 significantly promotes the proliferation, differentiation, and mineralization of MC3T3-E1 cells in vitro, and it appreciably enhances the mRNA expression levels of osteogenic-related genes in these cells. Overall, the results reported herein indicate that ABPB-4 has outstanding osteogenic activity, and that it may be used as an anti-osteoporosis agent in the future.
Collapse
Affiliation(s)
- Zezhou Lin
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, China
| | - Tianyu Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunyan Yan
- Clinical Pharmacy of The First Affiliated Hospital of Guangdong Pharmaceutical University, China; School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Iske J, Matsunaga T, Zhou H, Tullius SG. Donor and Recipient Age-Mismatches: The Potential of Transferring Senescence. Front Immunol 2021; 12:671479. [PMID: 33995411 PMCID: PMC8113632 DOI: 10.3389/fimmu.2021.671479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
In transplantation, donor and recipients frequently differ in age. Senescent cells accumulate in donor organs with aging and have the potential to promote senescence in adjacent cells when transferred into recipient animals. Characteristically, senescent cells secrete a myriad of pro-inflammatory, soluble molecules as part of their distinct secretory phenotype that have been shown to drive senescence and age-related co-morbidities. Preliminary own data show that the transplantation of old organs limits the physical reserve of recipient animals. Here, we review how organ age may affect transplant recipients and discuss the potential of accelerated aging.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| | - Tomohisa Matsunaga
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women´s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Liu X, Du Z, Yi X, Sheng T, Yuan J, Jia J. Circular RNA circANAPC2 mediates the impairment of endochondral ossification by miR-874-3p/SMAD3 signalling pathway in idiopathic short stature. J Cell Mol Med 2021; 25:3408-3426. [PMID: 33713570 PMCID: PMC8034469 DOI: 10.1111/jcmm.16419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic short stature (ISS) is a main reason for low height among children. Its exact aetiology remains unclear. Recent findings have suggested that the aberrant expression of circRNAs in peripheral blood samples is associated with many diseases. However, to date, the role of aberrant circRNA expression in mediating ISS pathogenesis remains largely unknown. The up-regulated circANAPC2 was identified by circRNA microarray analysis and RT-qPCR. Overexpression of circANAPC2 inhibited the proliferation of human chondrocytes, and cell cycle was arrested in G1 phase. The expressions of collagen type X, RUNX2, OCN and OPN were significantly down-regulated following circANAPC2 overexpression. Moreover, Von Kossa staining intensity and alkaline phosphatase activity were also decreased. Luciferase reporter assay results showed that circANAPC2 could be targeted by miR-874-3p. CircANAPC2 overexpression in human chondrocytes inhibits the expression of miR-874-3p. The co-localization of circANAPC2 and miR-874-3p was confirmed in both human chondrocytes and murine femoral growth plates via in situ hybridization. The rescue experiment demonstrated that the high expression of miR-874-3p overexpression antagonized the suppression of endochondral ossification, hypertrophy and chondrocyte growth caused by circANAPC2 overexpression. A high-throughput screening of mRNA expression and RT-qPCR verified SMAD3 demonstrated the highest different expressions following overcircANAPC2. Luciferase reporter assay results indicated that miR-874-3p could be targeted by Smad3, thus down-regulating the expression of Smad3. Subsequent rescue experiments of SMAD3 further confirmed that circANAPC2 suppresses endochondral ossification, hypertrophy and chondrocyte growth through miR-874-3p/Smad3 axis. The present study provides evidence that circANAPC2 can serve as a promising target for ISS treatment.
Collapse
Affiliation(s)
- Xijuan Liu
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Zhi Du
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Xuan Yi
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Tianle Sheng
- Department of Molecular laboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Jinghong Yuan
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| | - Jingyu Jia
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang CityChina
| |
Collapse
|
47
|
Lin W, Li Q, Zhang D, Zhang X, Qi X, Wang Q, Chen Y, Liu C, Li H, Zhang S, Wang Y, Shao B, Zhang L, Yuan Q. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Res 2021; 9:17. [PMID: 33723232 PMCID: PMC7960742 DOI: 10.1038/s41413-021-00141-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar bone is the thickened ridge of jaw bone that supports teeth. It is subject to constant occlusal force and pathogens invasion, and is therefore under active bone remodeling and immunomodulation. Alveolar bone holds a distinct niche from long bone considering their different developmental origin and postnatal remodeling pattern. However, a systematic explanation of alveolar bone at single-cell level is still lacking. Here, we construct a single-cell atlas of mouse mandibular alveolar bone through single-cell RNA sequencing (scRNA-seq). A more active immune microenvironment is identified in alveolar bone, with a higher proportion of mature immune cells than in long bone. Among all immune cell populations, the monocyte/macrophage subpopulation most actively interacts with mesenchymal stem cells (MSCs) subpopulation. Alveolar bone monocytes/macrophages express a higher level of Oncostatin M (Osm) compared to long bone, which promotes osteogenic differentiation and inhibits adipogenic differentiation of MSCs. In summary, our study reveals a unique immune microenvironment of alveolar bone, which may provide a more precise immune-modulatory target for therapeutic treatment of oral diseases.
Collapse
Affiliation(s)
- Weimin Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caojie Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Huang L, Yin X, Chen J, Liu R, Xiao X, Hu Z, He Y, Zou S. Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy. Bioact Mater 2021; 6:3074-3084. [PMID: 33778189 PMCID: PMC7960682 DOI: 10.1016/j.bioactmat.2021.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is a widely distributed disease that may cause complications such as accelerated tooth movement, bone resorption, and tooth loss during orthodontic treatment. Promoting bone formation and reducing bone resorption are strategies for controlling these complications. For several decades, the autophagy inducer lithium chloride (LiCl) has been explored for bipolar . In this study, we investigated the autophagy-promoting effect of LiCl on bone remodeling under osteoporotic conditions during tooth movement. Ovariectomy was used to induce osteoporosis status in vivo. The results showed that LiCl rejuvenated autophagy, decreased apoptosis, and promoted bone formation, thus protecting tooth movement in osteoporotic mice. Furthermore, in vitro experiments showed that LiCl reversed the effects of ovariectomy on bone marrow-derived mesenchymal stem cells (BMSCs) extracted from ovariectomized mice, promoting osteogenesis and suppressing apoptosis by positively regulating autophagy. These findings suggest that LiCl can significantly decrease adverse effects of osteoporosis on bone remodeling, and that it has great potential significance in the field of bone formation during tooth movement in osteoporosis patients.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jun Chen
- The Medical & Nursing School, Chengdu University, Chengdu, 610106, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiai Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
49
|
Zhang W, Zhang W, Huo L, Chai Y, Liu Z, Ren Z, Yu C. Rosavin suppresses osteoclastogenesis in vivo and in vitro by blocking the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:383. [PMID: 33842604 PMCID: PMC8033352 DOI: 10.21037/atm-20-4255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Bone homeostasis is mediated by osteoblast-related bone formation and osteoclast-related resorption. The imbalance of bone homeostasis due to excessive osteoclastogenesis or reduced osteogenesis can result in various disorders, such as postmenopausal osteoporosis (PMOP). The receptor activator of nuclear factor-κB ligand (RANKL)-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways are essential in osteoclastogenesis. In this study, we aimed to investigate the effects of rosavin, an alkylbenzene diglycoside compound from the traditional Chinese medicine Rhodiola Rosea L, on RANKL-induced osteoclastogenesis in vitro and in vivo. Methods The effects of rosavin on osteoclastogenesis were assessed by TRAP staining of bone marrow monocyte cells (BMMCs) and RAW 264.7 cells. The effects of rosavin on osteogenesis were determined using alkaline phosphatase (ALP) and alizarin red staining, as well as real-time quantitative reverse transcription polymerase chain reaction. Actin ring formation and bone formation experiments were performed to evaluate osteoclast function. Western blotting was carried out to determine the expression of osteoclastogenesis-related genes, and the activation of the NF-κB and MAPK pathways was evaluated by performing western blotting and immunofluorescence staining. Ovariectomized mice were used to explore the effect of rosavin on bone loss. Results Rosavin could inhibit osteoclastogenesis, suppress the function of osteoclasts, and decrease the expression of osteoclast differentiation-related genes, including tartrate-resistant acid phosphatase (TRAP), cathepsin K, matrix metalloproteinase-9 (MMP-9), calcitonin receptor (CTR), TNF receptor-associated factor 6 (TRAF-6), receptor activator of nuclear factor-κB (RANK), and colony-stimulating factor-1 receptor (c-fms). Rosavin inhibited RANKL-induced phosphorylation of p65 and inhibitory subunit of NF-κB alpha (IκBα), and suppressed p65 nuclear translocation. Rosavin was also found to inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Furthermore, rosavin promoted osteogenesis in bone marrow mesenchymal stem cells (BMSCs). In vivo experiments showed that treatment with rosavin could alleviate ovariectomy-induced osteoporosis in mice. Conclusions Our results indicated that rosavin suppressed RANKL-induced osteoclastogenesis in vivo and in vitro by blocking the NF-κB and MAPK pathways. Rosavin treatment is a potential therapy for the clinical treatment of osteoclastogenesis-related disorders.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Oral and Craniofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijie Zhang
- Department of Oral and Craniofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Huo
- Department of Oral and Craniofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chai
- Department of Oral and Craniofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyang Liu
- Department of Oral and Craniofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuangqi Yu
- Department of Oral and Craniofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Pham HG, Mukherjee S, Choi MJ, Yun JW. BMP11 regulates thermogenesis in white and brown adipocytes. Cell Biochem Funct 2021; 39:496-510. [PMID: 33527439 DOI: 10.1002/cbf.3615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein-11 (BMP11), also known as growth differentiation factor-11 (GDF11), is implicated in skeletal development and joint morphogenesis in mammals. However, its functions in adipogenesis and energy homeostasis are mostly unknown. The present study investigates crucial roles of BMP11 in cultured 3T3-L1 white and HIB1B brown adipocytes, using Bmp11 gene depletion and pharmacological inhibition of BMP11. The silencing of Bmp11 markedly decreases the expression levels of brown-fat signature proteins and beige-specific genes in white adipocytes and significantly down-regulates the expression levels of brown fat-specific genes in brown adipocytes. The deficiency of Bmp11 reduces the expressions of lipolytic protein markers in white and brown adipocytes. Moreover, BMP11 induces browning of 3T3-L1 adipocytes via coordination of multiple signalling pathways, including mTORC1-COX2 and p38MAPK-PGC-1α as non-canonical pathways, as well as Smad1/5/8 as a canonical pathway. We believe this study is the first to provide evidence of the potential roles of BMP11 for improvement of lipid catabolism in both cultured white and brown adipocytes, as well as the effect on browning of white adipocytes. Taken together, these results demonstrate the therapeutic potential for the treatment of obesity.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Min Ji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| |
Collapse
|