1
|
Taurin S, Alzahrani R, Aloraibi S, Ashi L, Alharmi R, Hassani N. Patient-derived tumor organoids: A preclinical platform for personalized cancer therapy. Transl Oncol 2025; 51:102226. [PMID: 39622151 DOI: 10.1016/j.tranon.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/11/2024] Open
Abstract
Patient-derived tumor organoids (PDTOs) represent a significant advancement in cancer research and personalized medicine. These organoids, derived from various cancer types, have shown the ability to retain the genetic and molecular characteristics of the original tumors, allowing for the detailed study of tumor biology and drug responses on an individual basis. The success rates of establishing PDTOs vary widely and are influenced by factors such as cancer type, tissue quality, and media composition. Furthermore, the dynamic nature of organoid cultures may also lead to unique molecular characteristics that deviate from the original tumors, affecting their interpretation in clinical settings without the implementation of rigorous validation and establishment of standardized protocols. Recent studies have supported the correlation between PDTOs and the corresponding patient response. Although these studies involved a small number of patients, they promoted the integration of PDTOs in observational and interventional clinical trials to advance translational cancer therapies.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain.
| | - Reem Alzahrani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Sahar Aloraibi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Layal Ashi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Rawan Alharmi
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Noora Hassani
- Department of Molecular Medicine, College of Medicine and Health Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
2
|
Bell ATF, Mitchell JT, Kiemen AL, Lyman M, Fujikura K, Lee JW, Coyne E, Shin SM, Nagaraj S, Deshpande A, Wu PH, Sidiropoulos DN, Erbe R, Stern J, Chan R, Williams S, Chell JM, Ciotti L, Zimmerman JW, Wirtz D, Ho WJ, Zaidi N, Thompson E, Jaffee EM, Wood LD, Fertig EJ, Kagohara LT. PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration. Cell Syst 2024; 15:753-769.e5. [PMID: 39116880 PMCID: PMC11409191 DOI: 10.1016/j.cels.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/06/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.
Collapse
Affiliation(s)
- Alexander T F Bell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob T Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley L Kiemen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Melissa Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kohei Fujikura
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jae W Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Erin Coyne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah M Shin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sushma Nagaraj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rossin Erbe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Lauren Ciotti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elizabeth Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA.
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA.
| |
Collapse
|
3
|
Cutrona MB, Wu J, Yang K, Peng J, Chen T. Pancreatic cancer organoid-screening captures personalized sensitivity and chemoresistance suppression upon cytochrome P450 3A5-targeted inhibition. iScience 2024; 27:110289. [PMID: 39055940 PMCID: PMC11269815 DOI: 10.1016/j.isci.2024.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 3A5 (CYP3A5) has been proposed as a predictor of therapy response in subtypes of pancreatic ductal adenocarcinoma cancer (PDAC). To validate CYP3A5 as a therapeutic target, we developed a high-content image organoid-based screen to quantify the phenotypic responses to the selective inhibition of CYP3A5 enzymatic activity by clobetasol propionate (CBZ), using a cohort of PDAC-derived organoids (PDACOs). The chemoresistance of PDACOs to a panel of standard-of-care drugs, alone or in combination with CBZ, was investigated. PDACO pharmaco-profiling revealed CBZ to have anti-cancer activity that was dependent on the CYP3A5 level. In addition, CBZ restored chemo-vulnerability to cisplatin in a subset of PDACOs. A correlative proteomic analysis established that CBZ caused the suppression of multiple cancer pathways sustained by or associated with a mutant form of p53. Limiting the active pool of CYP3A5 enables targeted and personalized therapy to suppress pro-oncogenic mechanisms that fuel chemoresistance in some PDAC tumors.
Collapse
Affiliation(s)
- Meritxell B. Cutrona
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Ka Yang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
4
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Zheng R, Wang S, Wang J, Zhou M, Shi Q, Liu B. Neuromedin U regulates the anti-tumor activity of CD8 + T cells and glycolysis of tumor cells in the tumor microenvironment of pancreatic ductal adenocarcinoma in an NMUR1-dependent manner. Cancer Sci 2024; 115:334-346. [PMID: 38071753 PMCID: PMC10859610 DOI: 10.1111/cas.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis, which is lethal in approximately 90% of cases despite advanced standard therapies. A typical feature of PDAC is the immunosuppressive tumor microenvironment with multiple immunosuppressive factors including neurotransmitters. Recently, neuromedin U (NMU), a highly conserved neuropeptide with many physiological functions, has attracted attention for its roles in tumorigenesis and metastasis in several types of cancers. However, whether NMU affects PDAC progression remains unclear. In this study, using an orthotopic mouse model of PDAC in combination with bioinformatics analysis, we found that NMU was upregulated in tumor tissues from the patients with PDAC and positively correlated with a poor prognosis of the disease. Interestingly, knockout of the Nmu gene in mice enhanced the anti-tumor functions of tumor-infiltrating CD8+ T cells in an NMU receptor 1-dependent manner. Additionally, NMU promoted the glycolytic metabolism of mouse PDAC tumors. The activities of pyruvate kinase (PK) and lactate dehydrogenase (LDH), pivotal enzymes involved in the regulation of lactate production, were markedly reduced in tumor tissues from NMU-knockout mice. In vitro the presence of LDHA inhibitor can reduce the production of lactic acid stimulated by NMU, which can increase the anti-tumor activity of CD8+ T cells. Moreover, treatment of the pancreatic cancer cells with a phosphoinositide 3-kinase (PI3K) inhibitor diminished NMU-induced lactate production and the activities of PK and LDH, suggesting that NMU might regulate glycolysis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
- Department of Physiology, School of Basic Medical ScienceShenyang Medical CollegeShenyangChina
| | - Si Wang
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Jia Wang
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Mengnan Zhou
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Qi Shi
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Beixing Liu
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| |
Collapse
|
6
|
Xu Y, Nipper MH, Dominguez AA, Ye Z, Akanuma N, Lopez K, Deng JJ, Arenas D, Sanchez A, Sharkey FE, Court CM, Singhi AD, Wang H, Fernandez-Zapico ME, Sun LZ, Zheng S, Chen Y, Liu J, Wang P. Reconstitution of human PDAC using primary cells reveals oncogenic transcriptomic features at tumor onset. Nat Commun 2024; 15:818. [PMID: 38280869 PMCID: PMC10821902 DOI: 10.1038/s41467-024-45097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Animal studies have demonstrated the ability of pancreatic acinar cells to transform into pancreatic ductal adenocarcinoma (PDAC). However, the tumorigenic potential of human pancreatic acinar cells remains under debate. To address this gap in knowledge, we expand sorted human acinar cells as 3D organoids and genetically modify them through introduction of common PDAC mutations. The acinar organoids undergo dramatic transcriptional alterations but maintain a recognizable DNA methylation signature. The transcriptomes of acinar organoids are similar to those of disease-specific cell populations. Oncogenic KRAS alone do not transform acinar organoids. However, acinar organoids can form PDAC in vivo after acquiring the four most common driver mutations of this disease. Similarly, sorted ductal cells carrying these genetic mutations can also form PDAC, thus experimentally proving that PDACs can originate from both human acinar and ductal cells. RNA-seq analysis reveal the transcriptional shift from normal acinar cells towards PDACs with enhanced proliferation, metabolic rewiring, down-regulation of MHC molecules, and alterations in the coagulation and complement cascade. By comparing PDAC-like cells with normal pancreas and PDAC samples, we identify a group of genes with elevated expression during early transformation which represent potential early diagnostic biomarkers.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Michael H Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Angel A Dominguez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Zhenqing Ye
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Naoki Akanuma
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kevin Lopez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Janice J Deng
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Destiny Arenas
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ava Sanchez
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Francis E Sharkey
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Colin M Court
- Division of Surgical Oncology and Endocrine Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jun Liu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Kfoury S, Michl P, Roth L. Modeling Obesity-Driven Pancreatic Carcinogenesis-A Review of Current In Vivo and In Vitro Models of Obesity and Pancreatic Carcinogenesis. Cells 2022; 11:3170. [PMID: 36231132 PMCID: PMC9563584 DOI: 10.3390/cells11193170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy with a 5-year survival rate below 10%, thereby exhibiting the worst prognosis of all solid tumors. Increasing incidence together with a continued lack of targeted treatment options will cause PDAC to be the second leading cause of cancer-related deaths in the western world by 2030. Obesity belongs to the predominant risk factors for pancreatic cancer. To improve our understanding of the impact of obesity on pancreatic cancer development and progression, novel laboratory techniques have been developed. In this review, we summarize current in vitro and in vivo models of PDAC and obesity as well as an overview of a variety of models to investigate obesity-driven pancreatic carcinogenesis. We start by giving an overview on different methods to cultivate adipocytes in vitro as well as various in vivo mouse models of obesity. Moreover, established murine and human PDAC cell lines as well as organoids are summarized and the genetically engineered models of PCAC compared to xenograft models are introduced. Finally, we review published in vitro and in vivo models studying the impact of obesity on PDAC, enabling us to decipher the molecular basis of obesity-driven pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sally Kfoury
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Medicine, Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Laura Roth
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Zhao H, Collet C, Peng D, Sinha UK, Lin DC. Investigation of early neoplastic transformation and premalignant biology using genetically engineered organoid models. Comput Struct Biotechnol J 2022; 20:5309-5315. [PMID: 36212534 PMCID: PMC9513696 DOI: 10.1016/j.csbj.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Organoid modeling is a powerful, robust and efficient technology faithfully preserving physiological and pathological characteristics of tissues of origin. Recently, substantial advances have been made in applying genetically engineered organoid models to study early tumorigenesis and premalignant biology. These efforts promise to identify novel avenues for early cancer detection, intervention and prevention. Here, we highlight significant advancements in the functional characterization of early genomic and epigenomic events during neoplastic evolution using organoid modeling, discuss the application of the lineage-tracing methodology in organoids to study cancer cells-of-origin, and review future opportunities for further development and improvement of organoid modeling of cancer precursors.
Collapse
Affiliation(s)
- Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Casey Collet
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Dongzi Peng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Casamitjana J, Espinet E, Rovira M. Pancreatic Organoids for Regenerative Medicine and Cancer Research. Front Cell Dev Biol 2022; 10:886153. [PMID: 35592251 PMCID: PMC9110799 DOI: 10.3389/fcell.2022.886153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the development of ex vivo organoid cultures has gained substantial attention as a model to study regenerative medicine and diseases in several tissues. Diabetes and pancreatic ductal adenocarcinoma (PDAC) are the two major devastating diseases affecting the pancreas. Suitable models for regenerative medicine in diabetes and to accurately study PDAC biology and treatment response are essential in the pancreatic field. Pancreatic organoids can be generated from healthy pancreas or pancreatic tumors and constitute an important translational bridge between in vitro and in vivo models. Here, we review the rapidly emerging field of pancreatic organoids and summarize the current applications of the technology to tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
11
|
Delom F, Le Morvan V, Robert J, Fessart D. [Normal organoids and their applications in cancer research]. Bull Cancer 2021; 109:58-64. [PMID: 34903368 DOI: 10.1016/j.bulcan.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022]
Abstract
Three-dimensional (3D) culture of organoids from primary cells (wild type) or tumoroids from tumor cells, is used to study the physiological mechanisms in vivo, in order to model normal or tumor tissues more accurately than conventional two-dimensional (2D) culture. The features of this 3D culture, such as the three-dimensional structure, the self-renewal capacity and differentiation are preserved and appropriate to cancer study since their cellular characteristics are very similar to in vivo models. Here, we summarize the recent advances in the rapidly evolving field of organoids and their applications to cancer biology, clinical research and personalized medicine.
Collapse
Affiliation(s)
- Frederic Delom
- ARTiSt group, Univ Bordeaux, Inserm, Institut Bergonié, ACTION, U1218, 33000 Bordeaux, France
| | - Valérie Le Morvan
- ARTiSt group, Univ Bordeaux, Inserm, Institut Bergonié, ACTION, U1218, 33000 Bordeaux, France
| | - Jacques Robert
- ARTiSt group, Univ Bordeaux, Inserm, Institut Bergonié, ACTION, U1218, 33000 Bordeaux, France
| | - Delphine Fessart
- ARTiSt group, Univ Bordeaux, Inserm, Institut Bergonié, ACTION, U1218, 33000 Bordeaux, France; Inserm U1242, "chemistry, oncogenesis stress signaling", université Rennes 1, 35000 Rennes, France; Centre de lutte contre le cancer Eugène Marquis, 35000 Rennes, France.
| |
Collapse
|
12
|
Neuhöfer P, Roake CM, Kim SJ, Lu RJ, West RB, Charville GW, Artandi SE. Acinar cell clonal expansion in pancreas homeostasis and carcinogenesis. Nature 2021; 597:715-719. [PMID: 34526722 DOI: 10.1038/s41586-021-03916-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths worldwide1. Studies in human tissues and in mouse models have suggested that for many cancers, stem cells sustain early mutations driving tumour development2,3. For the pancreas, however, mechanisms underlying cellular renewal and initiation of PDAC remain unresolved. Here, using lineage tracing from the endogenous telomerase reverse transcriptase (Tert) locus, we identify a rare TERT-positive subpopulation of pancreatic acinar cells dispersed throughout the exocrine compartment. During homeostasis, these TERThigh acinar cells renew the pancreas by forming expanding clones of acinar cells, whereas randomly marked acinar cells do not form these clones. Specific expression of mutant Kras in TERThigh acinar cells accelerates acinar clone formation and causes transdifferentiation to ductal pre-invasive pancreatic intraepithelial neoplasms by upregulating Ras-MAPK signalling and activating the downstream kinase ERK (phospho-ERK). In resected human pancreatic neoplasms, we find that foci of phospho-ERK-positive acinar cells are common and frequently contain activating KRAS mutations, suggesting that these acinar regions represent an early cancer precursor lesion. These data support a model in which rare TERThigh acinar cells may sustain KRAS mutations, driving acinar cell expansion and creating a field of aberrant cells initiating pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Patrick Neuhöfer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Stewart J Kim
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Lu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory W Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA, Mah AT, Tercan B, Sockell A, Xu H, Seoane JA, Chen J, Shmulevich I, Weissman JS, Curtis C, Califano A, Fu H, Crabtree GR, Kuo CJ. A CRISPR/Cas9-Engineered ARID1A-Deficient Human Gastric Cancer Organoid Model Reveals Essential and Nonessential Modes of Oncogenic Transformation. Cancer Discov 2021; 11:1562-1581. [PMID: 33451982 PMCID: PMC8346515 DOI: 10.1158/2159-8290.cd-20-1109] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/02/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Mutations in ARID1A rank among the most common molecular aberrations in human cancer. However, oncogenic consequences of ARID1A mutation in human cells remain poorly defined due to lack of forward genetic models. Here, CRISPR/Cas9-mediated ARID1A knockout (KO) in primary TP53-/- human gastric organoids induced morphologic dysplasia, tumorigenicity, and mucinous differentiation. Genetic WNT/β-catenin activation rescued mucinous differentiation, but not hyperproliferation, suggesting alternative pathways of ARID1A KO-mediated transformation. ARID1A mutation induced transcriptional regulatory modules characteristic of microsatellite instability and Epstein-Barr virus-associated subtype human gastric cancer, including FOXM1-associated mitotic genes and BIRC5/survivin. Convergently, high-throughput compound screening indicated selective vulnerability of ARID1A-deficient organoids to inhibition of BIRC5/survivin, functionally implicating this pathway as an essential mediator of ARID1A KO-dependent early-stage gastric tumorigenesis. Overall, we define distinct pathways downstream of oncogenic ARID1A mutation, with nonessential WNT-inhibited mucinous differentiation in parallel with essential transcriptional FOXM1/BIRC5-stimulated proliferation, illustrating the general utility of organoid-based forward genetic cancer analysis in human cells. SIGNIFICANCE: We establish the first human forward genetic modeling of a commonly mutated tumor suppressor gene, ARID1A. Our study integrates diverse modalities including CRISPR/Cas9 genome editing, organoid culture, systems biology, and small-molecule screening to derive novel insights into early transformation mechanisms of ARID1A-deficient gastric cancers.See related commentary by Zafra and Dow, p. 1327.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Kevin S Kolahi
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Chiung-Ying Chang
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Andrey Krokhotin
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
| | - Ajay Nair
- Department of Systems Biology, Columbia University, New York, New York
| | - Walter D Sobba
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Kasper Karlsson
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Sunny J Jones
- Department of Systems Biology, Columbia University, New York, New York
| | - Teri A Longacre
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Bahar Tercan
- Institute for Systems Biology, Seattle, Washington
| | - Alexandra Sockell
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Hang Xu
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Jose A Seoane
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Jin Chen
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
- Department of Pharmacology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Jonathan S Weissman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Christina Curtis
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, California
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
14
|
Hendley AM, Rao AA, Leonhardt L, Ashe S, Smith JA, Giacometti S, Peng XL, Jiang H, Berrios DI, Pawlak M, Li LY, Lee J, Collisson EA, Anderson MS, Fragiadakis GK, Yeh JJ, Ye CJ, Kim GE, Weaver VM, Hebrok M. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. eLife 2021; 10:e67776. [PMID: 34009124 PMCID: PMC8184217 DOI: 10.7554/elife.67776] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.
Collapse
Affiliation(s)
- Audrey M Hendley
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Arjun A Rao
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Leonhardt
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Sudipta Ashe
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jennifer A Smith
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Simone Giacometti
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Xianlu L Peng
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - David I Berrios
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's HospitalBostonUnited States
| | - Lucia Y Li
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Jonghyun Lee
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Mark S Anderson
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gabriela K Fragiadakis
- CoLabs, University of California, San FranciscoSan FranciscoUnited States
- Bakar ImmunoX Initiative, University of California, San FranciscoSan FranciscoUnited States
- Department of Medicine, Division of Rheumatology, University of California, San FranciscoSan FranciscoUnited States
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Surgery, University of North Carolina at Chapel HillChapel HillUnited States
| | - Chun Jimmie Ye
- Parker Institute for Cancer ImmunotherapySan FranciscoUnited States
| | - Grace E Kim
- Department of Pathology, University of California, San FranciscoSan FranciscoUnited States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San FranciscoSan FranciscoUnited States
| | - Matthias Hebrok
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
15
|
Hendriks D, Clevers H, Artegiani B. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell 2021; 27:705-731. [PMID: 33157047 DOI: 10.1016/j.stem.2020.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas technology has revolutionized biological research and holds great therapeutic potential. Here, we review CRISPR-Cas systems and their latest developments with an emphasis on application to human cells. We also discuss how different CRISPR-based strategies can be used to accomplish a particular genome engineering goal. We then review how different CRISPR tools have been used in genome engineering of human stem cells in vitro, covering both the pluripotent (iPSC/ESC) and somatic adult stem cell fields and, in particular, 3D organoid cultures. Finally, we discuss the progress and challenges associated with CRISPR-based genome editing of human stem cells for therapeutic use.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Huang L, Desai R, Conrad DN, Leite NC, Akshinthala D, Lim CM, Gonzalez R, Muthuswamy LB, Gartner Z, Muthuswamy SK. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell 2021; 28:1090-1104.e6. [PMID: 33915081 PMCID: PMC8202734 DOI: 10.1016/j.stem.2021.03.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The exocrine pancreas, consisting of ducts and acini, is the site of origin of pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Our understanding of the genesis and progression of human pancreatic diseases, including PDAC, is limited because of challenges in maintaining human acinar and ductal cells in culture. Here we report induction of human pluripotent stem cells toward pancreatic ductal and acinar organoids that recapitulate properties of the neonatal exocrine pancreas. Expression of the PDAC-associated oncogene GNASR201C induces cystic growth more effectively in ductal than acinar organoids, whereas KRASG12D is more effective in modeling cancer in vivo when expressed in acinar compared with ductal organoids. KRASG12D, but not GNASR201C, induces acinar-to-ductal metaplasia-like changes in culture and in vivo. We develop a renewable source of ductal and acinar organoids for modeling exocrine development and diseases and demonstrate lineage tropism and plasticity for oncogene action in the human pancreas.
Collapse
Affiliation(s)
- Ling Huang
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ridhdhi Desai
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel N Conrad
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nayara C Leite
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dipikaa Akshinthala
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christine Maria Lim
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Raul Gonzalez
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lakshmi B Muthuswamy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA; NSF Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
17
|
Lim J, Ching H, Yoon JK, Jeon NL, Kim Y. Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. NANO CONVERGENCE 2021; 8:12. [PMID: 33846849 PMCID: PMC8042002 DOI: 10.1186/s40580-021-00261-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Recent developments of organoids engineering and organ-on-a-chip microfluidic technologies have enabled the recapitulation of the major functions and architectures of microscale human tissue, including tumor pathophysiology. Nevertheless, there remain challenges in recapitulating the complexity and heterogeneity of tumor microenvironment. The integration of these engineering technologies suggests a potential strategy to overcome the limitations in reconstituting the perfusable microvascular system of large-scale tumors conserving their key functional features. Here, we review the recent progress of in vitro tumor-on-a-chip microfluidic technologies, focusing on the reconstruction of microvascularized organoid models to suggest a better platform for personalized cancer medicine.
Collapse
Affiliation(s)
- Jungeun Lim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- George W, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
| | - Hanna Ching
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Kee Yoon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Noo Li Jeon
- George W, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - YongTae Kim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
18
|
Flowers BM, Xu H, Mulligan AS, Hanson KJ, Seoane JA, Vogel H, Curtis C, Wood LD, Attardi LD. Cell of Origin Influences Pancreatic Cancer Subtype. Cancer Discov 2021; 11:660-677. [PMID: 34009137 PMCID: PMC8134763 DOI: 10.1158/2159-8290.cd-20-0633] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of approximately 9%. An improved understanding of PDAC initiation and progression is paramount for discovering strategies to better detect and combat this disease. Although transcriptomic analyses have uncovered distinct molecular subtypes of human PDAC, the factors that influence subtype development remain unclear. Here, we interrogate the impact of cell of origin and different Trp53 alleles on tumor evolution, using a panel of tractable genetically engineered mouse models. Oncogenic KRAS expression, coupled with Trp53 deletion or point mutation, drives PDAC from both acinar and ductal cells. Gene-expression analysis reveals further that ductal cell-derived and acinar cell-derived tumor signatures are enriched in basal-like and classical subtypes of human PDAC, respectively. These findings highlight cell of origin as one factor that influences PDAC molecular subtypes and provide insight into the fundamental impact that the very earliest events in carcinogenesis can have on cancer evolution. SIGNIFICANCE: Although human PDAC has been classified into different molecular subtypes, the etiology of these distinct subtypes remains unclear. Using mouse genetics, we reveal that cell of origin is an important determinant of PDAC molecular subtype. Deciphering the biology underlying pancreatic cancer subtypes may reveal meaningful distinctions that could improve clinical intervention.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Brittany M Flowers
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California
| | - Hang Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Abigail S Mulligan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California
| | - Kathryn J Hanson
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jose A Seoane
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Christina Curtis
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, California.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
19
|
Beato F, Reverón D, Dezsi KB, Ortiz A, Johnson JO, Chen DT, Ali K, Yoder SJ, Jeong D, Malafa M, Hodul P, Jiang K, Centeno BA, Abdalah MA, Balasi JA, Tassielli AF, Sarcar B, Teer JK, DeNicola GM, Permuth JB, Fleming JB. Establishing a living biobank of patient-derived organoids of intraductal papillary mucinous neoplasms of the pancreas. J Transl Med 2021; 101:204-217. [PMID: 33037322 PMCID: PMC7855435 DOI: 10.1038/s41374-020-00494-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) is the third leading cause of cancer-related deaths in the United States. There is an unmet need to develop strategies to detect PaCa at an early, operable stage and prevent its progression. Intraductal papillary mucinous neoplasms (IPMNs) are cystic PaCa precursors that comprise nearly 50% of pancreatic cysts detected incidentally via cross-sectional imaging. Since IPMNs can progress from low- and moderate-grade dysplasia to high-grade dysplasia and invasion, the study of these lesions offers a prime opportunity to develop early detection and prevention strategies. Organoids are an ideal preclinical platform to study IPMNs, and the objective of the current investigation was to establish a living biobank of patient-derived organoids (PDO) from IPMNs. IPMN tumors and adjacent normal pancreatic tissues were successfully harvested from 15 patients with IPMNs undergoing pancreatic surgical resection at Moffitt Cancer Center & Research Institute (Tampa, FL) between May of 2017 and March of 2019. Organoid cultures were also generated from cryopreserved tissues. Organoid count and size were determined over time by both Image-Pro Premier 3D Version 9.1 digital platform and Matlab application of a Circular Hough Transform algorithm, and histologic and genomic characterization of a subset of the organoids was performed using immunohistochemistry and targeted sequencing, respectively. The success rates for organoid generation from IPMN tumor and adjacent normal pancreatic tissues were 81% and 87%, respectively. IPMN organoids derived from different epithelial subtypes showed different morphologies in vitro, and organoids recapitulated histologic and genomic characteristics of the parental IPMN tumor. In summary, this preclinical model has the potential to provide new opportunities to unveil mechanisms of IPMN progression to invasion and to shed insight into novel biomarkers for early detection and targets for chemoprevention.
Collapse
Affiliation(s)
- Francisca Beato
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Kaleena B Dezsi
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antonio Ortiz
- Analytical Microscopy Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joseph O Johnson
- Analytical Microscopy Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Karla Ali
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean J Yoder
- Molecular Genomics Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Daniel Jeong
- Department of Diagnostic Imaging, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Pamela Hodul
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kun Jiang
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Barbara A Centeno
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mahmoud A Abdalah
- Imaging Response Assessment Team Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jodi A Balasi
- Tissue Core Histology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexandra F Tassielli
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bhaswati Sarcar
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
20
|
Zhang JJ, Hong J, Ma YS, Shi Y, Zhang DD, Yang XL, Jia CY, Yin YZ, Jiang GX, Fu D, Yu F. Identified GNGT1 and NMU as Combined Diagnosis Biomarker of Non-Small-Cell Lung Cancer Utilizing Bioinformatics and Logistic Regression. DISEASE MARKERS 2021; 2021:6696198. [PMID: 33505535 PMCID: PMC7806402 DOI: 10.1155/2021/6696198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most devastating diseases worldwide. The study is aimed at identifying reliable prognostic biomarkers and to improve understanding of cancer initiation and progression mechanisms. RNA-Seq data were downloaded from The Cancer Genome Atlas (TCGA) database. Subsequently, comprehensive bioinformatics analysis incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the protein-protein interaction (PPI) network was conducted to identify differentially expressed genes (DEGs) closely associated with NSCLC. Eight hub genes were screened out using Molecular Complex Detection (MCODE) and cytoHubba. The prognostic and diagnostic values of the hub genes were further confirmed by survival analysis and receiver operating characteristic (ROC) curve analysis. Hub genes were validated by other datasets, such as the Oncomine, Human Protein Atlas, and cBioPortal databases. Ultimately, logistic regression analysis was conducted to evaluate the diagnostic potential of the two identified biomarkers. Screening removed 1,411 DEGs, including 1,362 upregulated and 49 downregulated genes. Pathway enrichment analysis of the DEGs examined the Ras signaling pathway, alcoholism, and other factors. Ultimately, eight prioritized genes (GNGT1, GNG4, NMU, GCG, TAC1, GAST, GCGR1, and NPSR1) were identified as hub genes. High hub gene expression was significantly associated with worse overall survival in patients with NSCLC. The ROC curves showed that these hub genes had diagnostic value. The mRNA expressions of GNGT1 and NMU were low in the Oncomine database. Their protein expressions and genetic alterations were also revealed. Finally, logistic regression analysis indicated that combining the two biomarkers substantially improved the ability to discriminate NSCLC. GNGT1 and NMU identified in the current study may empower further discovery of the molecular mechanisms underlying NSCLC's initiation and progression.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiang Hong
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Yu-Shui Ma
- Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Zhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
21
|
Li Y, Tang P, Cai S, Peng J, Hua G. Organoid based personalized medicine: from bench to bedside. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:21. [PMID: 33135109 PMCID: PMC7603915 DOI: 10.1186/s13619-020-00059-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Three-dimensional cultured organoids have become a powerful in vitro research tool that preserves genetic, phenotypic and behavioral trait of in vivo organs, which can be established from both pluripotent stem cells and adult stem cells. Organoids derived from adult stem cells can be established directly from diseased epithelium and matched normal tissues, and organoids can also be genetically manipulated by CRISPR-Cas9 technology. Applications of organoids in basic research involve the modeling of human development and diseases, including genetic, infectious and malignant diseases. Importantly, accumulating evidence suggests that biobanks of patient-derived organoids for many cancers and cystic fibrosis have great value for drug development and personalized medicine. In addition, organoids hold promise for regenerative medicine. In the present review, we discuss the applications of organoids in the basic and translational research.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peiyuan Tang
- Institute of Radiation Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guoqiang Hua
- Institute of Radiation Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Cancer institute, Fudan University Shanghai Cancer Center, Shanghai, 230032, China.
| |
Collapse
|
22
|
Doctor A, Seifert V, Ullrich M, Hauser S, Pietzsch J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers (Basel) 2020; 12:cancers12102765. [PMID: 32993034 PMCID: PMC7600608 DOI: 10.3390/cancers12102765] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
23
|
Frappart PO, Hofmann TG. Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine. Cancers (Basel) 2020; 12:E2750. [PMID: 32987786 PMCID: PMC7598647 DOI: 10.3390/cancers12102750] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of pancreatic malignancies. In contrast to many other tumor entities, the prognosis of PDAC has not significantly improved during the past thirty years. Patients are often diagnosed too late, leading to an overall five-year survival rate below 10%. More dramatically, PDAC cases are on the rise and it is expected to become the second leading cause of death by cancer in western countries by 2030. Currently, the use of gemcitabine/nab-paclitaxel or FOLFIRINOX remains the standard chemotherapy treatment but still with limited efficiency. There is an urgent need for the development of early diagnostic and therapeutic tools. To this point, in the past 5 years, organoid technology has emerged as a revolution in the field of PDAC personalized medicine. Here, we are reviewing and discussing the current technical and scientific knowledge on PDAC organoids, their future perspectives, and how they can represent a game change in the fight against PDAC by improving both diagnosis and treatment options.
Collapse
Affiliation(s)
- Pierre-Olivier Frappart
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | | |
Collapse
|
24
|
Lo YH, Karlsson K, Kuo CJ. Applications of Organoids for Cancer Biology and Precision Medicine. NATURE CANCER 2020; 1:761-773. [PMID: 34142093 PMCID: PMC8208643 DOI: 10.1038/s43018-020-0102-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Organoid technologies enable the creation of in vitro physiologic systems that model tissues of origin more accurately than classical culture approaches. Seminal characteristics, including three-dimensional structure and recapitulation of self-renewal, differentiation, and disease pathology, render organoids eminently suited as hybrids that combine the experimental tractability of traditional 2D cell lines with cellular attributes of in vivo model systems. Here, we describe recent advances in this rapidly evolving field and their applications in cancer biology, clinical translation and precision medicine.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kasper Karlsson
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
25
|
Hepburn AC, Curry EL, Moad M, Steele RE, Franco OE, Wilson L, Singh P, Buskin A, Crawford SE, Gaughan L, Mills IG, Hayward SW, Robson CN, Heer R. Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Transl Med 2020; 9:734-745. [PMID: 32170918 PMCID: PMC7308643 DOI: 10.1002/sctm.19-0286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Primary culture of human prostate organoids and patient-derived xenografts is inefficient and has limited access to clinical tissues. This hampers their use for translational study to identify new treatments. To overcome this, we established a complementary approach where rapidly proliferating and easily handled induced pluripotent stem cells enabled the generation of human prostate tissue in vivo and in vitro. By using a coculture technique with inductive urogenital sinus mesenchyme, we comprehensively recapitulated in situ 3D prostate histology, and overcame limitations in the primary culture of human prostate stem, luminal and neuroendocrine cells, as well as the stromal microenvironment. This model now unlocks new opportunities to undertake translational studies of benign and malignant prostate disease.
Collapse
Affiliation(s)
- Anastasia C. Hepburn
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Curry
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Mohammad Moad
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Acute Internal MedicineUniversity Hospital of North TeesStockton on TeesUK
| | - Rebecca E. Steele
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Omar E. Franco
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Laura Wilson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Parmveer Singh
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Adriana Buskin
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Susan E. Crawford
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Luke Gaughan
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Ian G. Mills
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Simon W. Hayward
- Department of SurgeryNorthShore University HealthSystemEvanstonIllinoisUSA
| | - Craig N. Robson
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
| | - Rakesh Heer
- Translational and Clinical Research Institute, Newcastle University Centre for CancerNewcastle UniversityNewcastle upon TyneUK
- Department of Urology, Freeman HospitalThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
26
|
Nelson SR, Walsh N. Genetic Alterations Featuring Biological Models to Tailor Clinical Management of Pancreatic Cancer Patients. Cancers (Basel) 2020; 12:E1233. [PMID: 32423157 PMCID: PMC7281628 DOI: 10.3390/cancers12051233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide. This high mortality rate is due to the disease's lack of symptoms, resulting in a late diagnosis. Biomarkers and treatment options for pancreatic cancer are also limited. In order to overcome this, new research models and novel approaches to discovering PDAC biomarkers are required. In this review, we outline the hereditary and somatic causes of PDAC and provide an overview of the recent genome wide association studies (GWAS) and pathway analysis studies. We also provide a summary of some of the systems used to study PDAC, including established and primary cell lines, patient-derived xenografts (PDX), and newer models such as organoids and organ-on-chip. These ex vitro laboratory systems allow for critical research into the development and progression of PDAC.
Collapse
Affiliation(s)
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin 9, Ireland;
| |
Collapse
|
27
|
Lau HCH, Kranenburg O, Xiao H, Yu J. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol 2020; 17:203-222. [PMID: 32099092 DOI: 10.1038/s41575-019-0255-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a major public health problem worldwide. Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality. Historically, the mechanisms of tumour initiation and progression in the gastrointestinal tract have been studied using cancer cell lines in vitro and animal models. Traditional cell culture methods are associated with a strong selection of aberrant genomic variants that no longer reflect the original tumours in terms of their (metastatic) behaviour or response to therapy. Organoid technology has emerged as a powerful alternative method for culturing gastrointestinal tumours and the corresponding normal tissues in a manner that preserves their genetic, phenotypic and behavioural traits. Importantly, accumulating evidence suggests that organoid cultures have great value in predicting the outcome of therapy in individual patients. Herein, we review the current literature on organoid models of the most common gastrointestinal cancers, including colorectal cancer, gastric cancer, oesophageal cancer, liver cancer and pancreatic cancer, and their value in modelling tumour initiation, metastatic progression and therapy response. We also explore the limitations of current organoid models and discuss how they could be improved to maximally benefit basic and translational research in the future, especially in the fields of drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Onno Kranenburg
- UMC Utrecht Cancer Center, Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, Netherlands
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
28
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a rapidly evolving and most frequently fatal disease. Despite the enormous progress in understanding the mechanisms related to PDAC pathogenesis, the impact on patient management has not yet been possible. Pancreatic organoids can be generated from small amounts of tissue. One of the most promising applications of organoids is that they can serve as a platform for selecting the right drugs for each patient. This approach has the potential to identify individual therapeutic vulnerabilities by allowing the personalization of treatments. However, these analyzes require several weeks before obtaining enough organoids from the same individual, to carry out the tests with several drugs, and to analyze the results, which limits its use in current clinical practice for the patients with a PDAC, whose it must be remembered that half die within 6 months of diagnosis. To overcome this obstacle, we assessed the ability of transcriptomic molecular signatures to identify patients with a particular sensitivity profile to a given treatment. The approaches based on transcriptomic profiling have the enormous advantage of using very little biological material and thus significantly reducing the time to arrive at the selection of more effective drugs to each patient.
Collapse
Affiliation(s)
- Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| |
Collapse
|
29
|
Song J, Chen W, Cui X, Huang Z, Wen D, Yang Y, Yu W, Cui L, Liu CY. CCBE1 promotes tumor lymphangiogenesis and is negatively regulated by TGFβ signaling in colorectal cancer. Am J Cancer Res 2020; 10:2327-2341. [PMID: 32089745 PMCID: PMC7019157 DOI: 10.7150/thno.39740] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Collagen and calcium-binding EGF domain-1 (CCBE1) is essential for lymphatic vascular development as it promotes vascular endothelial growth factor C (VEGFC) proteolysis. A recent study reported that CCBE1 was overexpressed in epithelial colorectal cancer (CRC) cells; however, the role of CCBE1 in tumor lymphangiogenesis and the mechanism underlying dysregulated CCBE1 expression in CRC remain undefined. Methods: The role of CCBE1 in tumor lymphangiogenesis and lymphatic metastasis was investigated using human lymphatic endothelial cells (HLECs) model in vitro, and a hindfoot lymphatic metastasis model in vivo. Immunochemistry analysis was performed to assess CCBE1 expression, prognostic value and correlation with clinicopathological characteristics in CRC. The biochemical function and transcriptional regulatory mechanism of CCBE1 were explored by western blot, qPCR, and chromatin immunoprecipitation. Results: Cancer cell-derived CCBE1 enhances VEGFC proteolysis in vitro, facilitates tube formation and migration of HLECs in vitro, and promotes tumor lymphangiogenesis and lymphatic metastasis in vivo. In addition to CRC cells, tumor stroma within CRC tissue shows high CCBE1 expression, which is associated with high lymphatic vessel density, increased lymph node metastasis and poor prognosis. Cancer-associated fibroblasts (CAFs) express and secret CCBE1, thereby contributing to VEGFC maturation and tumor lymphangiogenesis in CRC. Transforming growth factor beta (TGF-β) downregulates the transcription and lymphangiogenic function of CCBE1 in CAFs and CRC cells through direct binding of SMADs to CCBE1 gene locus. Inactivation of the TGF-β pathway correlates with increased CCBE1 expression in CRC. Conclusion: Our results demonstrate the protumorigenic role of CCBE1 in promoting lymphangiogenesis and lymphatic metastasis in CRC, revealing a new mechanism by which loss of TGF-β signaling promotes CRC metastasis.
Collapse
|
30
|
Ligeiro D, Rao M, Maia A, Castillo M, Beltran A, Maeurer M. B Cells in the Gastrointestinal Tumor Microenvironment with a Focus on Pancreatic Cancer: Opportunities for Precision Medicine? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:175-195. [PMID: 33119882 DOI: 10.1007/978-3-030-49270-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We review state-of-the-art in translational and clinical studies focusing on the tumor microenvironment (TME) with a focus on tumor-infiltrating B cells (TIBs). The TME is a dynamic matrix of mutations, immune-regulatory networks, and distinct cell-to-cell interactions which collectively impact on disease progress. We discuss relevant findings concerning B cells in pancreatic cancer, the concepts of "bystander" B cells, the role of antigen-specific B cells contributing to augmenting anticancer-directed immune responses, the role of B cells as prognostic markers for response to checkpoint inhibitors (ICBs), and the potential use in adoptive cell tumor-infiltrating lymphocyte (TIL) products.
Collapse
Affiliation(s)
- Dário Ligeiro
- Immunogenetics Unit, Lisbon Centre for Blood and Transplantation (Instituto Português do Sangue e Transplantação, IPST), Lisbon, Portugal
| | - Martin Rao
- Immunosurgery Unit, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Andreia Maia
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Mireia Castillo
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Center for the Unknown, Lisbon, Portugal.
- I Med Clinical University of Mainz, Mainz, Germany.
| |
Collapse
|
31
|
Takikawa T, Kikuta K, Kume K, Hamada S, Miura S, Yoshida N, Hongo S, Tanaka Y, Matsumoto R, Sano T, Ikeda M, Iseki M, Unno M, Masamune A. New-Onset or Exacerbation of Diabetes Mellitus Is a Clue to the Early Diagnosis of Pancreatic Cancer. TOHOKU J EXP MED 2020; 252:353-364. [PMID: 33342915 DOI: 10.1620/tjem.252.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which accounts for majority of pancreatic cancers, is one of the most lethal human malignancies. Most patients are diagnosed at an advanced stage after symptom development. Early diagnosis of PDAC in asymptomatic subjects is important to improve prognosis. Diabetes mellitus (DM) is a risk factor for PDAC, and DM, especially new-onset DM, has attracted attentions as a diagnostic clue to PDAC. However, the impact of DM as a diagnostic opportunity on the prognosis of PDAC is unclear. We here retrospectively reviewed 489 PDAC patients and compared the clinical characteristics and prognosis according to the opportunities for PDAC diagnosis. PDAC was diagnosed upon presentation of symptoms, such as pain and jaundice, in 318 cases including 151 DM patients, upon new-onset or exacerbation of long-standing DM in 53 asymptomatic patients, and upon incidental detection by medical check-up or follow-up/work-up of other diseases in 118 asymptomatic patients. Asymptomatic patients including those with DM had smaller tumors, earlier disease stage, and higher resectability rates than symptomatic patients. Asymptomatic patients diagnosed in association with DM had better prognosis (median survival time, 771 days) than those diagnosed due to symptoms (343 days, P < 0.001), and similar to those diagnosed by incidental detection (869 days). The survival advantage was not evident in symptomatic patients with DM-associated signs. In conclusion, patients diagnosed in association with DM at asymptomatic stages had better prognosis than those diagnosed with symptoms. DM-associated signs might provide a clue to the early diagnosis of PDAC among asymptomatic subjects.
Collapse
Affiliation(s)
- Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Shin Miura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Seiji Hongo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Yu Tanaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Takanori Sano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Mio Ikeda
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Masahiro Iseki
- Department of Surgery, Tohoku University Graduate School of Medicine
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| |
Collapse
|
32
|
Ren X, Dong F, Zhuang Y, Wang Y, Ma W. Effect of neuromedin U on allergic airway inflammation in an asthma model. Exp Ther Med 2019; 19:809-816. [PMID: 32010240 PMCID: PMC6966147 DOI: 10.3892/etm.2019.8283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Asthma is a major inflammatory airway disease with high incidence and mortality rates. The Global Initiative for Asthma released a report called ‘The Global Burden of Asthma’ in 2004. However, the specific pathogenesis of asthma remains unclear. An increasing number of studies have demonstrated that neuromedin U (NMU) plays a pleiotropic role in the pathogenesis of asthma. NMU is a highly structurally conserved neuropeptide that was first purified from porcine spinal cord and named for its contractile effect on the rat uterus. NMU amplifies type 2 innate lymphoid cell (ILC2)-driven allergic lung inflammation. The NMU receptors (NMURs), designated as NMUR1 and NMUR2, belong to the G protein-coupled receptor family. NMUR1 has also been found in immune cells, including ILC2s, mast cells and eosinophils. In view of the important roles of NMU in the pathogenesis of asthma, the present review evaluates the potential mechanisms underlying the impact of NMU on asthma and its association with asthma therapy.
Collapse
Affiliation(s)
- Xiaojie Ren
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fang Dong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yuerong Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yong Wang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wuhua Ma
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Department of Anaesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
33
|
Bakhti M, Scheibner K, Tritschler S, Bastidas-Ponce A, Tarquis-Medina M, Theis FJ, Lickert H. Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol Metab 2019; 30:16-29. [PMID: 31767167 PMCID: PMC6812400 DOI: 10.1016/j.molmet.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Translation of basic research from bench-to-bedside relies on a better understanding of similarities and differences between mouse and human cell biology, tissue formation, and organogenesis. Thus, establishing ex vivo modeling systems of mouse and human pancreas development will help not only to understand evolutionary conserved mechanisms of differentiation and morphogenesis but also to understand pathomechanisms of disease and design strategies for tissue engineering. METHODS Here, we established a simple and reproducible Matrigel-based three-dimensional (3D) cyst culture model system of mouse and human pancreatic progenitors (PPs) to study pancreatic epithelialization and endocrinogenesis ex vivo. In addition, we reanalyzed previously reported single-cell RNA sequencing (scRNA-seq) of mouse and human pancreatic lineages to obtain a comprehensive picture of differential expression of key transcription factors (TFs), cell-cell adhesion molecules and cell polarity components in PPs during endocrinogenesis. RESULTS We generated mouse and human polarized pancreatic epithelial cysts derived from PPs. This system allowed to monitor establishment of pancreatic epithelial polarity and lumen formation in cellular and sub-cellular resolution in a dynamic time-resolved fashion. Furthermore, both mouse and human pancreatic cysts were able to differentiate towards the endocrine fate. This differentiation system together with scRNA-seq analysis revealed how apical-basal polarity and tight and adherens junctions change during endocrine differentiation. CONCLUSIONS We have established a simple 3D pancreatic cyst culture system that allows to tempo-spatial resolve cellular and subcellular processes on the mechanistical level, which is otherwise not possible in vivo.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, Munich, Germany.
| |
Collapse
|
34
|
Paternoster S, Falasca M. The intricate relationship between diabetes, obesity and pancreatic cancer. Biochim Biophys Acta Rev Cancer 2019; 1873:188326. [PMID: 31707038 DOI: 10.1016/j.bbcan.2019.188326] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is one of the leading determinants of global cancer mortality, and its incidence is predicted to increase, to become in 2030 the second most common cause of cancer-related death. Obesity and diabetes are recognized risk factors for the development of pancreatic cancer. In the last few decades an epidemic of diabetes and obesity has been spreading worldwide, forewarning an increase in incidence of pancreatic cancer. This review considers the most recent literature, covering the multiple molecular axis linking these three pathologies, aiming to draw a more comprehensive view of pancreatic cancer for a better theragnostic stratification of the population.
Collapse
Affiliation(s)
- Silvano Paternoster
- Metabolic Signalling Group, School Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia.
| |
Collapse
|
35
|
Yoo W, Lee J, Jun E, Noh KH, Lee S, Jung D, Jung KH, Kim JS, Park YY, Kim SC, Kim S. The YAP1-NMU Axis Is Associated with Pancreatic Cancer Progression and Poor Outcome: Identification of a Novel Diagnostic Biomarker and Therapeutic Target. Cancers (Basel) 2019; 11:1477. [PMID: 31575084 PMCID: PMC6826421 DOI: 10.3390/cancers11101477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
Yes-associated protein (YAP)-1 is highly upregulated in pancreatic cancer and associated with tumor progression. However, little is known about the role of YAP1 and related genes in pancreatic cancer. Here, we identified target genes regulated by YAP1 and explored their role in pancreatic cancer progression and the related clinical implications. Analysis of different pancreatic cancer databases showed that Neuromedin U (NMU) expression was positively correlated with YAP1 expression in the tumor group. The Cancer Genome Atlas data indicated that high YAP1 and NMU expression levels were associated with poor mean and overall survival. YAP1 overexpression induced NMU expression and transcription and promoted cell motility in vitro and tumor metastasis in vivo via upregulation of epithelial-mesenchymal transition (EMT), whereas specific inhibition of NMU in cells stably expressing YAP1 had the opposite effect in vitro and in vivo. To define this functional association, we identified a transcriptional enhanced associate domain (TEAD) binding site in the NMU promoter and demonstrated that YAP1-TEAD binding upstream of the NMU gene regulated its transcription. These results indicate that the identified positive correlation between YAP1 and NMU is a potential novel drug target and biomarker in metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Wonbeak Yoo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Jaemin Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Eunsung Jun
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Kyung Hee Noh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Sangmin Lee
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Dana Jung
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea.
| | - Kwang Hwa Jung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ji-Su Kim
- National Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Korea.
| | - Yun-Yong Park
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Songpa-gu, Seoul 05505, Korea.
| | - Seokho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
36
|
Yamaguchi T, Ikehara S, Akimoto Y, Nakanishi H, Kume M, Yamamoto K, Ohara O, Ikehara Y. TGF-β signaling promotes tube-structure-forming growth in pancreatic duct adenocarcinoma. Sci Rep 2019; 9:11247. [PMID: 31375695 PMCID: PMC6677751 DOI: 10.1038/s41598-019-47101-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tube-forming growth is an essential histological feature of pancreatic duct adenocarcinoma (PDAC) and of the pancreatic duct epithelium; nevertheless, the nature of the signals that start to form the tubular structures remains unknown. Here, we showed the clonal growth of PDAC cell lines in a three-dimensional (3D) culture experiment that modeled the clonal growth of PDAC. At the beginning of this study, we isolated the sphere- and tube-forming clones from established mouse pancreatic cancer cell lines via limiting dilution culture using collagen gel. Compared with cells in spherical structures, the cells in the formed tubes exhibited a lower CK19 expression in 3D culture and in the tumor that grew in the abdominal cavity of nude mice. Conversely, the expression of the transforming growth factor β (TGF-β)-signaling target mRNAs was higher in the formed tube vs the spherical structures, suggesting that TGF-β signaling is more active in the tube-forming process than the sphere-forming process. Treatment of sphere-forming clones with TGF-β1 induced tube-forming growth, upregulated the TGF-β-signaling target mRNAs, and yielded electron microscopic findings of a fading epithelial phenotype. In contrast, the elimination of TGF-β-signaling activation by treatment with inhibitors diminished the tube-forming growth and suppressed the expression of the TGF-β-signaling target mRNAs. Moreover, upregulation of the Fn1, Mmp2, and Snai1 mRNAs, which are hallmarks of tube-forming growth in PDAC, was demonstrated in a mouse model of carcinogenesis showing rapid progression because of the aggressive invasion of tube-forming cancer. Our study suggests that the tube-forming growth of PDAC relies on the activation of TGF-β signaling and highlights the importance of the formation of tube structures.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Sanae Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, 181-8611, Japan
| | - Hayao Nakanishi
- Laboratory of Pathology and Clinical Research, Aichi Cancer Center Aichi Hospital, Okazaki, 444-0011, Japan
| | - Masahiko Kume
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Yuzuru Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan. .,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan.
| |
Collapse
|
37
|
Xu Y, Liu J, Nipper M, Wang P. Ductal vs. acinar? Recent insights into identifying cell lineage of pancreatic ductal adenocarcinoma. ACTA ACUST UNITED AC 2019; 2. [PMID: 31528855 DOI: 10.21037/apc.2019.06.03] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of less than 8%. To date, there are no early detection methods or effective treatments available. Many questions remain to be answered in regards to the pathogenesis of PDAC, among which, the controversy over the cell lineage of PDAC demands more attention. Ductal cells were originally thought to be the cell of origin for PDAC due to the ductal morphology of most cases of PDAC. However, recent studies have demonstrated that acinar cells are more sensitive to KRAS mutation and tend to develop to PanIN and PDAC effectively, very likely by undergoing acinar to ductal metaplasia into a transient state that contributes to PDAC initiation. There is also evidence that both ductal and acinar cells can potentially develop to PDAC when exposed to certain genetic settings and stimuli, suggesting that more scrutiny is required for the identification of the true cell lineage of individual cases of PDAC. In this work, we summarize recent findings in the identification of the cellular origin of PDAC, with the goal of advancing our knowledge on the initiation and progression of the disease. We also discuss various models and techniques for investigating early events of PDAC. Better understanding of these cellular events is crucial to identify new methods for the early diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Jun Liu
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Michael Nipper
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| | - Pei Wang
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX 78229, USA
| |
Collapse
|
38
|
Fujii M, Clevers H, Sato T. Modeling Human Digestive Diseases With CRISPR-Cas9-Modified Organoids. Gastroenterology 2019; 156:562-576. [PMID: 30476497 DOI: 10.1053/j.gastro.2018.11.048] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Insights into the stem cell niche have allowed researchers to cultivate adult tissue stem cells as organoids that display structural and phenotypic features of healthy and diseased epithelial tissues. Organoids derived from patients' tissues are used as models of disease and to test drugs. CRISPR-Cas9 technology can be used to genetically engineer organoids for studies of monogenic diseases and cancer. We review the derivation of organoids from human gastrointestinal tissues and how CRISPR-Cas9 technology can be used to study these organoids. We discuss burgeoning technologies that are broadening our understanding of diseases of the digestive system.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Hans Clevers
- Hubrecht Institute, University Medical Center Utrecht and Princess Maxima Center, Utrecht, The Netherlands
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
39
|
Lee JJ, Kim SK. Spheroid Culture of Human Pancreatic Ductal Cells to Reconstitute Development of Pancreatic Intraepithelial Neoplasia. Methods Mol Biol 2019; 1882:63-71. [PMID: 30378044 DOI: 10.1007/978-1-4939-8879-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) presents poor 5-year survival rate, mainly attributable to late diagnosis due to its asymptomatic nature. Therefore, building human cell-based systems that reconstitute hallmark features of the PDA precursors, pancreatic intraepithelial neoplasia (PanINs), will accelerate development of new strategies for early diagnostics and intervention. We previously demonstrated that systematic introduction of genetic modification (KRAS, CDKN2A, SMAD4, and TP53) leads to immortalization of primary human pancreatic cells and, upon orthotopic transplantation, their development to human PanIN-like lesions. Here, we describe detailed methods for fluorescence-activated cell sorting, lentiviral transduction, and three-dimensional spheroid culture of primary adult human pancreatic ductal cells, as well as a method for clonal selection of human pancreatic ductal spheres.
Collapse
MESH Headings
- AC133 Antigen/metabolism
- Adult
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Separation/instrumentation
- Cell Separation/methods
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Flow Cytometry/instrumentation
- Flow Cytometry/methods
- Healthy Volunteers
- Humans
- Lentivirus/genetics
- Mutation
- Pancreatic Ducts/cytology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Primary Cell Culture/instrumentation
- Primary Cell Culture/methods
- Smad4 Protein/genetics
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transduction, Genetic/instrumentation
- Transduction, Genetic/methods
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- James J Lee
- Calico Life Sciences, LLC, South San Francisco, CA, USA.
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Abbruzzese JL, Andersen DK, Borrebaeck CA, Chari ST, Costello E, Cruz-Monserrate Z, Eibl G, Engleman EG, Fisher WE, Habtezion A, Kim SK, Korc M, Logsdon C, Lyssiotis CA, Pandol SJ, Rustgi A, Wolfe BM, Zheng L, Powers AC. The Interface of Pancreatic Cancer With Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47:516-525. [PMID: 29702529 PMCID: PMC6361376 DOI: 10.1097/mpa.0000000000001037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A workshop on "The Interface of Pancreatic Cancer with Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities" was held by the National Institute of Diabetes and Digestive and Kidney Diseases on October 12, 2017. The purpose of the workshop was to explore the relationship and possible mechanisms of the increased risk of pancreatic ductal adenocarcinoma (PDAC) related to diabetes, the role of altered intracellular energy metabolism in PDAC, the mechanisms and biomarkers of diabetes caused by PDAC, the mechanisms of the increased risk of PDAC associated with obesity, and the role of inflammatory events and mediators as contributing causes of the development of PDAC. Workshop faculty reviewed the state of the current knowledge in these areas and made recommendations for future research efforts. Further knowledge is needed to elucidate the basic mechanisms contributing to the role of hyperinsulinemia, hyperglycemia, adipokines, and acute and chronic inflammatory events on the development of PDAC.
Collapse
Affiliation(s)
- James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | | - Suresh T. Chari
- Division of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Ohio State University, Columbus, OH
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles
| | - Edgar G. Engleman
- Departments of Pathology and Medicine, Stanford University, Palo Alto, CA
| | | | - Aida Habtezion
- Division of Gastroenterology, Department of Medicine, Stanford University, Palo Alto, CA
| | - Seung K. Kim
- Departments of Developmental Biology and Internal Medicine, Stanford University, Palo Alto, CA
| | - Murray Korc
- Department of Medicine, Indiana University Simon Cancer Center, Indianapolis, IN
| | - Craig Logsdon
- Departments of Cancer Biology and Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - Costas A. Lyssiotis
- Division of Gastroenterology, Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Stephen J. Pandol
- Department of Medicine and Biomedical Sciences, Cedars Sinai Medical Center
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Anil Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bruce M. Wolfe
- Department of Surgery, Oregon Health and Science University, Portland, OR
| | - Lei Zheng
- Departments of Oncology and Surgery, Johns Hopkins University, Baltimore, MD
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center
- Department of Molecular Physiology & Biophysics, Vanderbilt University, VA Tennessee Valley Healthcare, Nashville, TN
| |
Collapse
|
41
|
Felsenstein M, Hruban RH, Wood LD. New Developments in the Molecular Mechanisms of Pancreatic Tumorigenesis. Adv Anat Pathol 2018; 25:131-142. [PMID: 28914620 DOI: 10.1097/pap.0000000000000172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is an aggressive disease with a dismal prognosis in dire need of novel diagnostic and therapeutic approaches. The past decade has witnessed an explosion of data on the genetic alterations that occur in pancreatic cancer, as comprehensive next-generation sequencing analyses have been performed on samples from large cohorts of patients. These studies have defined the genomic landscape of this disease and identified novel candidates whose mutations contribute to pancreatic tumorigenesis. They have also clarified the genetic alterations that underlie multistep tumorigenesis in precursor lesions and provided insights into clonal evolution in pancreatic neoplasia. In addition to these important insights into pancreatic cancer biology, these large scale genomic studies have also provided a foundation for the development of novel early detection strategies and targeted therapies. In this review, we discuss the results of these comprehensive sequencing studies of pancreatic neoplasms, with a particular focus on how their results will impact the clinical care of patients with pancreatic cancer.
Collapse
|
42
|
Li H, Wang P, Gong W, Wang Q, Zhou J, Zhu WH, Cheng Y. Dendron-Grafted Polylysine-Based Dual-Modal Nanoprobe for Ultra-Early Diagnosis of Pancreatic Precancerosis via Targeting a Urokinase-Type Plasminogen Activator Receptor. Adv Healthc Mater 2018; 7. [PMID: 29195018 DOI: 10.1002/adhm.201700912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/17/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death. Early detection of precancerous pancreatic intraepithelial neoplasia (PanIN) tissues is an urgent challenge to improve the PDAC prognosis. Here, a urokinase-type plasminogen activator receptor (uPAR)-targeted magnetic resonance (MR)/near-infrared fluorescence (NIRF) dual-modal nanoprobe dendron-grafted polylysine (DGL)-U11 for ultra-early detection of pancreatic precancerosis is reported. Because of its good biocompatibility and biodegradability, globular architecture, and well-defined reactive groups, the DGL is chosen as the platform to load with a pancreatic tumor-targeting peptide U11, a magnetic resonance contrast agent Gd3+ -diethylene triamine pentaacetic acid, and a near-infrared fluorescent cyanine dye Cy5.5. The nanoprobe DGL-U11 has several preferable characteristics, such as active peptide targeting to activator receptor, good biocompatibility, dual-modal imaging diagnosis, and well controlled diameter in a range of 15-25 nm. Upon incorporation of the active U11 peptide target to the overexpressed activator receptor uPAR, the targeted nanoprobe DGL-U11 can increase to the earlier PanIN-II stage through in vivo NIRF imaging. Labeled with both MR and NIRF bioimaging reporters, the uPAR-targeted dual-modal nanoprobe is very effective in the targeted imaging of precancerous PanINs and PDAC lesions with high sensitivity and spatial resolution, providing a promising platform to the ultra-early detection of PDAC.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Wenyu Gong
- Department of CT, the First People's Hospital of Yancheng City, Jiangsu, 224005, China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jia Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, P. R. China
| |
Collapse
|
43
|
Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, Ohta Y, Matano M, Nanki K, Kawasaki K, Takahashi S, Sugimoto S, Iwasaki E, Takagi J, Itoi T, Kitago M, Kitagawa Y, Kanai T, Sato T. Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression. Cell Stem Cell 2018; 22:454-467.e6. [PMID: 29337182 DOI: 10.1016/j.stem.2017.12.009] [Citation(s) in RCA: 429] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/30/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Despite recent efforts to dissect the inter-tumor heterogeneity of pancreatic ductal adenocarcinoma (PDAC) by determining prognosis-predictive gene expression signatures for specific subtypes, their functional differences remain elusive. Here, we established a pancreatic tumor organoid library encompassing 39 patient-derived PDACs and identified 3 functional subtypes based on their stem cell niche factor dependencies on Wnt and R-spondin. A Wnt-non-producing subtype required Wnt from cancer-associated fibroblasts, whereas a Wnt-producing subtype autonomously secreted Wnt ligands and an R-spondin-independent subtype grew in the absence of Wnt and R-spondin. Transcriptome analysis of PDAC organoids revealed gene-expression signatures that associated Wnt niche subtypes with GATA6-dependent gene expression subtypes, which were functionally supported by genetic perturbation of GATA6. Furthermore, CRISPR-Cas9-based genome editing of PDAC driver genes (KRAS, CDKN2A, SMAD4, and TP53) demonstrated non-genetic acquisition of Wnt niche independence during pancreas tumorigenesis. Collectively, our results reveal functional heterogeneity of Wnt niche independency in PDAC that is non-genetically formed through tumor progression.
Collapse
Affiliation(s)
- Takashi Seino
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shintaro Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mariko Shimokawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Tamagawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohta Toshimitsu
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mami Matano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kosaku Nanki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenta Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Sirirat Takahashi
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinya Sugimoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eisuke Iwasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Takao Itoi
- Department of Gastroenterology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
44
|
Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Biomedicines 2017; 5:biomedicines5040065. [PMID: 29156578 PMCID: PMC5744089 DOI: 10.3390/biomedicines5040065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments.
Collapse
|