1
|
Liu M, Ji YL, Hu YJ, Su YX, Yang J, Wang XY, Chu HY, Zhang X, Dong SJ, Yang H, Liu YH, Zhou SM, Guo LP, Ran Y, Li YN, Zhao JW, Zhang ZG, Piao MY, Zhou L. Lactococcus garvieae aggravates cholestatic liver disease by increasing intestinal permeability and enhancing bile acid reabsorption. World J Gastroenterol 2025; 31:101014. [PMID: 40093673 PMCID: PMC11886528 DOI: 10.3748/wjg.v31.i10.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Although an association between gut microbiota and cholestatic liver disease (CLD) has been reported, the precise functional roles of these microbes in CLD pathogenesis remain largely unknown. AIM To explore the function of gut microbes in CLD pathogenesis and the effects of gut microbiota on intestinal barrier and bile acid (BA) metabolism in CLD. METHODS Male C57BL/6J mice were fed a 0.05% 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet for 2 weeks to induce CLD. The sterile liver tissues of mice were then meticulously harvested, and bacteria in homogenates were identified through culture methods. Furthermore, 16S ribosomal DNA sequencing was employed to analyze sterile liver samples collected from eight patients with primary biliary cholangitis (PBC) and three control individuals with hepatic cysts. The functional roles of the identified bacteria in CLD pathogenesis were assessed through microbiota transfer experiments, involving the evaluation of changes in intestinal permeability and BA dynamics. RESULTS Ligilactobacillus murinus (L. murinus) and Lactococcus garvieae (L. garvieae) were isolated from the bacterial culture of livers from CLD mice. L. murinus was prevalently detected in PBC patients and controls, whereas L. garvieae was detected only in patients with PBC but not in controls. Mice inoculated with L. garvieae exhibited increased susceptibility to experimental CLD, with both in vitro and in vivo indicating that L. garvieae disrupted the intestinal barrier function by down-regulating the expression of occludin and zonula occludens-1. Moreover, L. garvieae administration significantly upregulated the expression of the apical sodium-dependent BA transporter in the terminal ileum and increased serum BA levels. CONCLUSION L. garvieae contributes to excessive BA-induced hepatobiliary injury and liver fibrosis by increasing intestinal permeability and enhancing BA reabsorption.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ying-Lan Ji
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu-Jie Hu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ying-Xi Su
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin 300308, China
| | - Xiao-Yi Wang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Hong-Yu Chu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xue Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shi-Jing Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Hang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Si-Min Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Li-Ping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan-Ni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Wen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi-Guang Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Mei-Yu Piao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
2
|
Pasanen A, Sliz E, Huilaja L, Reimann E, Mägi R, Laisk T, Tasanen K, Kettunen J. Identifying Atopic Dermatitis Risk Loci in 1,094,060 Individuals with Subanalysis of Disease Severity and Onset. J Invest Dermatol 2024; 144:2417-2425. [PMID: 38663478 DOI: 10.1016/j.jid.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 06/07/2024]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease highly attributable to genetic factors. In this study, we report results from a genome-wide meta-analysis of AD in 37,541 cases and 1,056,519 controls with data from the FinnGen project, the Estonian Biobank, the UK Biobank, the EAGLE Consortium, and the BioBank Japan. We detected 77 independent AD-associated loci, of which 10 were, to our knowledge, previously unreported. The associated loci showed enrichment in various immune regulatory processes. We further performed subgroup analyses of mild and severe AD and of early- and late-onset AD, with data from the FinnGen project. Fifty-five of the 79 tested variants in the associated loci showed larger effect estimates for severe than for mild AD as determined through administered treatment. The age of onset, as determined by the first hospital visit with AD diagnosis, was lower in patients with particular AD-risk alleles. Our findings add to the knowledge of the genetic background of AD and may underlie the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Anu Pasanen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; Department of Dermatology, Oulu University Hospital, Oulu, Finland
| | - Eeva Sliz
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Laura Huilaja
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Dermatology, Oulu University Hospital, Oulu, Finland
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kaisa Tasanen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Dermatology, Oulu University Hospital, Oulu, Finland.
| | - Johannes Kettunen
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Li X, Takahashi N, Narita A, Nakamura Y, Sakurai‐Yageta M, Murakami K, Ishikuro M, Obara T, Kikuya M, Ueno F, Metoki H, Ohseto H, Takahashi I, Nakamura T, Warita N, Shoji T, Yu Z, Ono C, Kobayashi N, Kikuchi S, Matsuki T, Nagami F, Ogishima S, Sugawara J, Hoshiai T, Saito M, Fuse N, Kinoshita K, Yamamoto M, Yaegashi N, Ozaki N, Tamiya G, Kuriyama S, Tomita H. Identification of risk loci for postpartum depression in a genome-wide association study. Psychiatry Clin Neurosci 2024; 78:712-720. [PMID: 39287932 PMCID: PMC11804921 DOI: 10.1111/pcn.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
AIM Genome-wide association studies (GWAS) of postpartum depression (PPD) based on accumulated cohorts with multiple ethnic backgrounds have failed to identify significantly associated loci. Herein, we conducted a GWAS of Japanese perinatal women along with detailed confounding information to uncover PPD-associated loci. METHODS The first and second cohorts (n = 9260 and n = 8582 perinatal women enrolled in the Tohoku Medical Megabank Project) and the third cohort (n = 997), recruited at Nagoya University, underwent genotyping. Of them, 1421, 1264, and 225 were classified as PPD based on the Edinburgh Postnatal Depression Scale 1 month after delivery. The most influential confounding factors of genetic liability to PPD were selected, and logistic regression analyses were performed to evaluate genetic associations with PPD after adjusting for confounders. RESULTS A meta-analysis of GWAS results from the three cohorts identified significant associations between PPD and the following loci (P < 5 × 10-8) by integrating the number of deliveries and the number of family members living together as the most influential confounders: rs377546683 at DAB1, rs11940752 near UGT8, rs141172317, rs117928019, rs76631412, rs118131805 at DOCK2, rs188907279 near ZNF572, rs504378, rs690150, rs491868, rs689917, rs474978, rs690118, rs690253 near DIRAS2, rs1435984417 at ZNF618, rs57705782 near PTPRM, and rs185293917 near PDGFB. Pathway analyses indicated that SNPs suggestively associated with PPD were mostly over-represented in categories including long-term depression, GnRH signaling, glutamatergic synapse, oxytocin signaling, and Rap1 signaling. CONCLUSION The current GWAS study identified eight loci significantly associated with PPD, which may clarify the genetic structure underlying its pathogenesis.
Collapse
|
4
|
Zheng Z, Chen D, Lv J, Du J, Liu K. Causal effects of plasma metabolites on autoimmune hepatitis (AIH): a bidirectional two-sample mendelian randomization study. Sci Rep 2024; 14:22944. [PMID: 39362997 PMCID: PMC11449928 DOI: 10.1038/s41598-024-74387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune hepatitis(AIH) is a chronic progressive inflammatory liver disease induced by loss of immune tolerance. The role of circulating metabolites in disease pathogenesis is unclear. This study aimed to investigate potential causal links between plasma metabolites and AIH risk by employing a two-sample Mendelian randomization approach. A comprehensive bidirectional two-sample Mendelian randomization analysis was conducted using genome-wide significant variant-metabolite and variant-AIH associations in European ancestry individuals. Various methods assessed causal relationships among 1400 metabolites and AIH, incorporating sensitivity analyses to evaluate pleiotropy and heterogeneity. Fifty-eight metabolites displayed possible associations, including increased AIH risk with genetically predicted higher kynurenine (p = 2.79 × 10- 5, OR: 1.64, 95% CI 1.30-2.07) and a protective effect for the dopamine sulfate ratio (p = 1.06 × 10- 5,OR: 0.62, 95% CI 0.49-0.79). Reciprocal analysis revealed a causal effect of AIH on kynurenine( p = 2.79 × 10- 5, OR: 1.64, 95% CI 1.30-2.07), but not on the dopamine sulfate ratio(p = 0.691, OR: 1.05, 95% CI 0.67-1.64). Our genetics-based approach provides evidence supporting a causal role for specific metabolite levels in AIH risk. The results deliver evidence supporting a causal effect of a specific metabolite ratio(dopamine 4-sulfate/dopamine 3-O-sulfate) on AIH risk. Experimental validation and mechanistic examinations are warranted to confirm findings.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Dahua Chen
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiaming Lv
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Juan Du
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaitai Liu
- Department of Chemoradiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
5
|
Hitomi Y, Ueno K, Aiba Y, Nishida N, Kono M, Sugihara M, Kawai Y, Kawashima M, Khor SS, Sugi K, Kouno H, Kohno H, Naganuma A, Iwamoto S, Katsushima S, Furuta K, Nikami T, Mannami T, Yamashita T, Ario K, Komatsu T, Makita F, Shimada M, Hirashima N, Yokohama S, Nishimura H, Sugimoto R, Komura T, Ota H, Kojima M, Nakamuta M, Fujimori N, Yoshizawa K, Mano Y, Takahashi H, Hirooka K, Tsuruta S, Sato T, Yamasaki K, Kugiyama Y, Motoyoshi Y, Suehiro T, Saeki A, Matsumoto K, Nagaoka S, Abiru S, Yatsuhashi H, Ito M, Kawata K, Takaki A, Arai K, Arinaga-Hino T, Abe M, Harada M, Taniai M, Zeniya M, Ohira H, Shimoda S, Komori A, Tanaka A, Ishigaki K, Nagasaki M, Tokunaga K, Nakamura M. A genome-wide association study identified PTPN2 as a population-specific susceptibility gene locus for primary biliary cholangitis. Hepatology 2024; 80:776-790. [PMID: 38652555 DOI: 10.1097/hep.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Previous genome-wide association studies (GWAS) have indicated the involvement of shared (population-nonspecific) and nonshared (population-specific) susceptibility genes in the pathogenesis of primary biliary cholangitis (PBC) among European and East-Asian populations. Although a meta-analysis of these distinct populations has recently identified more than 20 novel PBC susceptibility loci, analyses of population-specific genetic architecture are still needed for a more comprehensive search for genetic factors in PBC. APPROACH AND RESULTS Protein tyrosine phosphatase nonreceptor type 2 ( PTPN2) was identified as a novel PBC susceptibility gene locus through GWAS and subsequent genome-wide meta-analysis involving 2181 cases and 2699 controls from the Japanese population (GWAS-lead variant: rs8098858, p = 2.6 × 10 -8 ). In silico and in vitro functional analyses indicated that the risk allele of rs2292758, which is a primary functional variant, decreases PTPN2 expression by disrupting Sp1 binding to the PTPN2 promoter in T follicular helper cells and plasmacytoid dendritic cells. Infiltration of PTPN2-positive T-cells and plasmacytoid dendritic cells was confirmed in the portal area of the PBC liver by immunohistochemistry. Furthermore, transcriptomic analysis of PBC-liver samples indicated the presence of a compromised negative feedback loop in vivo between PTPN2 and IFNG in patients carrying the risk allele of rs2292758. CONCLUSIONS PTPN2 , a novel susceptibility gene for PBC in the Japanese population, may be involved in the pathogenesis of PBC through an insufficient negative feedback loop caused by the risk allele of rs2292758 in IFN-γ signaling. This suggests that PTPN2 could be a potential molecular target for PBC treatment.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshihiro Aiba
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Nao Nishida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michihiro Kono
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitsuki Sugihara
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Seik-Soon Khor
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kazuhiro Sugi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hirotaka Kouno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hiroshi Kohno
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Atsushi Naganuma
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Iwamoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinji Katsushima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kiyoshi Furuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Toshiki Nikami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tomohiko Mannami
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tsutomu Yamashita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Keisuke Ario
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Tatsuji Komatsu
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Fujio Makita
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Masaaki Shimada
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Noboru Hirashima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shiro Yokohama
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hideo Nishimura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Rie Sugimoto
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takuya Komura
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hajime Ota
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Motoyuki Kojima
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Nakamuta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Naoyuki Fujimori
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kaname Yoshizawa
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yutaka Mano
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Hironao Takahashi
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kana Hirooka
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Satoru Tsuruta
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Takeaki Sato
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazumi Yamasaki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Yuki Kugiyama
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Tomoyuki Suehiro
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Akira Saeki
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kosuke Matsumoto
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Shinya Nagaoka
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Seigo Abiru
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | | | - Masahiro Ito
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Masaru Harada
- The Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makiko Taniai
- Department of Medicine and Gastroenterology, Tokyo Women's Medical University, Tokyo, Japan
| | - Mikio Zeniya
- Department of Gastroenterology and Hepatology, Tokyo Jikei University School of Medicine, Tokyo, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Shinji Shimoda
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Atsumasa Komori
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masao Nagasaki
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Division of Biomedical Information Analysis, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan
| |
Collapse
|
6
|
Tanaka A, Ma X, Takahashi A, Vierling JM. Primary biliary cholangitis. Lancet 2024; 404:1053-1066. [PMID: 39216494 DOI: 10.1016/s0140-6736(24)01303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
Primary biliary cholangitis is a chronic, autoimmune, cholestatic disease that mainly affects women aged 40-70 years. Recent epidemiological studies have shown an increasing incidence worldwide despite geographical heterogeneity and a decrease in the female-to-male ratio of those the disease affects. Similar to other autoimmune diseases, primary biliary cholangitis occurs in genetically predisposed individuals upon exposure to environmental triggers, specifically xenobiotics, smoking, and the gut microbiome. Notably, the diversity of the intestinal microbiome is diminished in individuals with primary biliary cholangitis. The intricate interplay among immune cells, cytokines, chemokines, and biliary epithelial cells is postulated as the underlying pathogenic mechanism involved in the development and progression of primary biliary cholangitis, and extensive research has been dedicated to comprehending these complex interactions. Following the official approval of obeticholic acid as second-line treatment for patients with an incomplete response or intolerance to ursodeoxycholic acid, clinical trials have indicated that peroxisome proliferator activator receptor agonists are promising additional second-line drugs. Future dual or triple drug regimens might reach a new treatment goal of normalisation of alkaline phosphatase levels, rather than a decrease to less than 1·67 times the upper limit of normal levels, and potentially improve long-term outcomes. Improvement of health-related quality of life with better recognition and care of subjective symptoms, such as pruritus and fatigue, is also an important treatment goal. Promising clinical investigations are underway to alleviate these symptoms. Efforts to facilitate better access to medical care and dissemination of current knowledge should enable diagnosis at an earlier stage of primary biliary cholangitis and ensure access to treatments based on risk stratification for all patients.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - John M Vierling
- Department of Medicine and Surgery, Section of Gastroenterology, Baylor College of Medicine, Houston, TX, USA; Hepatology, and Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Gerussi A, Cappadona C, Bernasconi DP, Cristoferi L, Valsecchi MG, Carbone M, Invernizzi P, Asselta R. Improving predictive accuracy in primary biliary cholangitis: A new genetic risk score. Liver Int 2024; 44:1952-1960. [PMID: 38619000 DOI: 10.1111/liv.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND AND AIMS Genetic variants influence primary biliary cholangitis (PBC) risk. We established and tested an accurate polygenic risk score (PRS) using these variants. METHODS Data from two Italian cohorts (OldIT 444 cases, 901 controls; NewIT 255 cases, 579 controls) were analysed. The latest international genome-wide meta-analysis provided effect size estimates. The PRS, together with human leukocyte antigen (HLA) status and sex, was included in an integrated risk model. RESULTS Starting from 46 non-HLA genes, 22 variants were selected. PBC patients in the OldIT cohort showed a higher risk score than controls: -.014 (interquartile range, IQR, -.023, .005) versus -.022 (IQR -.030, -.013) (p < 2.2 × 10-16). For genetic-based prediction, the area under the curve (AUC) was .72; adding sex increased the AUC to .82. Validation in the NewIT cohort confirmed the model's accuracy (.71 without sex, .81 with sex). Individuals in the top group, representing the highest 25%, had a PBC risk approximately 14 times higher than that of the reference group (lowest 25%; p < 10-6). CONCLUSION The combination of sex and a novel PRS accurately discriminated between PBC cases and controls. The model identified a subset of individuals at increased risk of PBC who might benefit from tailored monitoring.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Davide Paolo Bernasconi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
Luo Y, Khan A, Liu L, Lee CH, Perreault GJ, Pomenti SF, Gourh P, Kiryluk K, Bernstein EJ. Cross-Phenotype GWAS Supports Shared Genetic Susceptibility to Systemic Sclerosis and Primary Biliary Cholangitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.01.24309721. [PMID: 39006426 PMCID: PMC11245064 DOI: 10.1101/2024.07.01.24309721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Objective An increased risk of primary biliary cholangitis (PBC) has been reported in patients with systemic sclerosis (SSc). Our study aims to investigate the shared genetic susceptibility between the two disorders and to define candidate causal genes using cross-phenotype GWAS meta-analysis. Methods We performed cross-phenotype GWAS meta-analysis and colocalization analysis for SSc and PBC. We performed both genome-wide and locus-based analysis, including tissue and pathway enrichment analyses, fine-mapping, colocalization analyses with expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) datasets, and phenome-wide association studies (PheWAS). Finally, we used an integrative approach to prioritize candidate causal genes from the novel loci. Results We detected a strong genetic correlation between SSc and PBC (rg = 0.84, p = 1.7 × 10-6). In the cross-phenotype GWAS meta-analysis, we identified 44 non-HLA loci that reached genome-wide significance (p < 5 × 10-8). Evidence of shared causal variants between SSc and PBC was found for nine loci, five of which were novel. Integrating multiple sources of evidence, we prioritized CD40, ERAP1, PLD4, SPPL3, and CCDC113 as novel candidate causal genes. The CD40 risk locus colocalized with trans-pQTLs of multiple plasma proteins involved in B cell function. Conclusion Our study supports a strong shared genetic susceptibility between SSc and PBC. Through cross-phenotype analyses, we have prioritized several novel candidate causal genes and pathways for these disorders.
Collapse
Affiliation(s)
- Yiming Luo
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Lili Liu
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Cue Hyunkyu Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| | - Gabriel J Perreault
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Sydney F Pomenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Pravitt Gourh
- Scleroderma Genomics and Health Disparities Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Elana J Bernstein
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
9
|
Zhang M, Qin Z, Huang Y, Tian W, Li Y, Wang C, Zhao W, Dai Y, Shi X, Gershwin ME, Ma X, Wang M, Liu X, Chen W, Qiu F. Association of CCR6 functional polymorphisms with Primary Biliary Cholangitis. J Transl Autoimmun 2024; 8:100234. [PMID: 38405661 PMCID: PMC10891324 DOI: 10.1016/j.jtauto.2024.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
The biliary epithelial cells release CC chemokine receptor 6 (CCR6) ligand 20 (CCL20), leading to recruitment of CCR6+ T cells and subsequent infiltration into the biliary epithelium in primary biliary cholangitis patients. Previous genome-wide multi-national meta-analysis, including our Han Chinese cohort, showed significant association of CCR6 and CCL20 single nucleotide polymorphisms (SNP) with PBC. We report here that significantly associated SNPs, identified in the CCR6 locus based on our Han Chinese genome-wide association study, can be separated into "protective" and "risk" groups, but only "risk" SNPs were confirmed using a separate Han Chinese PBC cohort. Only weak association of CCL20 SNPs was observed in Han Chinese PBC cohorts. Fine-mapping and logistical analysis identified a previously defined functional variant that, leads to increased CCR6 expression, which contributed to increased genetic susceptibility to PBC in Han Chinese cohort.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhuye Qin
- Department of Laboratory Medicine, Southeast University Hospital, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yexi Huang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Wenyan Tian
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - You Li
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200001, China
| | - Chan Wang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu, 225009, China
| | - Weifeng Zhao
- Department of Hepatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu, 214000, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200001, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University School of Public Health, Nanjing, Jiangsu, 210029, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Fang Qiu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210031, China
| |
Collapse
|
10
|
Kruk B, Liebe R, Weber SN, Milkiewicz P, Krawczyk M. ARID3A variant and the risk of primary biliary cholangitis in a Central European cohort. J Hepatol 2024; 80:e256-e257. [PMID: 38036008 DOI: 10.1016/j.jhep.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Roman Liebe
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland; Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland; Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| |
Collapse
|
11
|
Tang R, Li Y, Chen R, Ma X. Reply to: "ARID3A variant and the risk of primary biliary cholangitis in a Central European cohort". J Hepatol 2024; 80:e258-e259. [PMID: 38301828 DOI: 10.1016/j.jhep.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Affiliation(s)
- Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
12
|
Wang C, Qin Z, Zhang M, Dai Y, Zhang L, Tian W, Gong Y, Chen S, Yang C, Xu P, Shi X, Zhao W, Timilsina S, Gershwin ME, Chen W, Qiu F, Liu X. Autoantibodes to GP210 are a metric for UDCA responses in primary biliary cholangitis. J Transl Autoimmun 2024; 8:100239. [PMID: 38550612 PMCID: PMC10973586 DOI: 10.1016/j.jtauto.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVES Antibodies to gp210 and sp100 are specific and unique anti-nuclear autoantibodies (ANAs) associated with primary biliary cholangitis (PBC). Importantly the presence of anti-gp210 and anti-sp100 responses is indicative of poor clinical outcomes. However, the utility of measuring titers of these antibodies remains unclear. MATERIALS AND METHODS Using the in-house purified gp210 (HSA108-C18) and sp100 (amino acid position 296-386), we quantitatively measured serum autoantibodies to gp210 and sp100 using chemiluminescence immunoassay (CLIA) in a very large cohort of 390 patients with PBC, including 259 cases with no prior ursodesoxycholic acid (UDCA) treatment and 131 cases with UDCA treatment. We also analyzed serial changes in anti-gp210 and anti-sp100 levels in 245 sequential samples from 88 patients. RESULTS In our cross-sectional analysis, we detected anti-gp210 immunoglobulin G (IgG) and anti-sp100 IgG autoantibodies in 129 out of 390 (33.1%) and 80 out of 390 (20.5%) PBC patients, respectively. Multivariate analysis revealed that serum IgG (st.β = 0.35, P = 0.003) and gamma-glutamyltransferase (GGT) (st.β = 0.23, P = 0.042) levels at baseline were independently associated with anti-gp210 concentrations. In serial testing, we observed significant fluctuations in anti-gp210 antibody levels. These fluctuations reflected responsiveness to UDCA therapy, particularly in anti-gp210-positive patients with initially lower concentrations in the stages of disease. CONCLUSIONS Our study reflects that quantitative changes of anti-gp210 antibody are indicative of UDCA responses. There is a great need for newer metrics in PBC and we suggest that a more detailed and longer study of these unique ANAs is warranted.
Collapse
Affiliation(s)
- Chan Wang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Sciences and Technology, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, 210096, China
- Institute of Translational Medicine, Medical College, Yangzhou University, 136 Yangjiang Middle Road, Yangzhou, Jiangsu, 225001, China
| | - Zhuye Qin
- Department of Laboratory Medicine, Southeast University Hospital, 82 Chengxian Street, Nanjing, Jiangsu, 210018, China
| | - Mingming Zhang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Sciences and Technology, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, 210096, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, 1215 Guangrui Road, Wuxi, Jiangsu, 214000, China
| | - Luyao Zhang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Sciences and Technology, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, 210096, China
| | - Wenyan Tian
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, China
| | - Yuhua Gong
- Department of Laboratory Medicine, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, Jiangsu, 212021, China
| | - Sufang Chen
- Department of Laboratory Medicine, The Fifth People's Hospital of Suzhou, Soochow University, 10 Guangqian Road, Suzhou, Jiangsu, 215131, China
| | - Can Yang
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu Road, Nanjing, Jiangsu, 210031, China
| | - Ping Xu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, 1215 Guangrui Road, Wuxi, Jiangsu, 214000, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Sciences and Technology, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, 210096, China
| | - Weifeng Zhao
- Department of Hepatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Suraj Timilsina
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Genome and Biomedical Sciences Facility Building, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Genome and Biomedical Sciences Facility Building, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - Weichang Chen
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, China
| | - Fang Qiu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu Road, Nanjing, Jiangsu, 210031, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Sciences and Technology, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
13
|
Konkwo C, Chowdhury S, Vilarinho S. Genetics of liver disease in adults. Hepatol Commun 2024; 8:e0408. [PMID: 38551385 PMCID: PMC10984672 DOI: 10.1097/hc9.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic liver disease stands as a significant global health problem with an estimated 2 million annual deaths across the globe. Combining the use of next-generation sequencing technologies with evolving knowledge in the interpretation of genetic variation across the human genome is propelling our understanding, diagnosis, and management of both rare and common liver diseases. Here, we review the contribution of risk and protective alleles to common forms of liver disease, the rising number of monogenic diseases affecting the liver, and the role of somatic genetic variants in the onset and progression of oncological and non-oncological liver diseases. The incorporation of genomic information in the diagnosis and management of patients with liver disease is driving the beginning of a new era of genomics-informed clinical hepatology practice, facilitating personalized medicine, and improving patient care.
Collapse
Affiliation(s)
- Chigoziri Konkwo
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shanin Chowdhury
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Wu Z, Li H, Xu H, Feng F, Zhang F, Zhang S, Wang L, Li Y. ChIP-seq analysis found IL21R, a target gene of GTF2I-the susceptibility gene for primary biliary cholangitis in Chinese Han. Hepatol Int 2024; 18:509-516. [PMID: 37713154 DOI: 10.1007/s12072-023-10586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
AIMS Aimed to identify a new susceptibility gene associated with primary biliary cholangitis (PBC) in Chinese Han and investigate the possible mechanism of that gene in PBC. METHODS A total of 466 PBC and 694 healthy controls (HC) were included in our study, and genotyping GTF2I gene variants by Sequenom. CD19 + B cells were isolated for Chromatin immunoprecipitation sequencing (ChIP-seq). Additionally, MEME-ChIP was utilized to perform searches for known motifs and de novo motif discovery. The GTF2I ChIP-seq of hematopoietic cell line (K562) results were obtained from ENCODE (GSE176987, GSE177691). The Genomic HyperBrowser was used to determine overlap and hierarchal clustering between ours and ENCODE datasets. RESULTS The frequency of the rs117026326 variant T allele was significantly higher in PBC patients than that in HC (20.26% compared with 13.89%, Pc = 1.09E-04). Furthermore, we observed an elevated proportion of GTF2I binding site located in the upstream and 5' UTR of genes in PBC in comparison with HC. Additionally, an in-depth analysis of IL21R region revealed that GTF2I might bind to the IL21R promoter to regulate the expression of the IL21R, with four peaks of GTF2I binding sites, including three increased binding sites in upstream, one increased binding site in 5' UTR. Motif analysis by MEME-ChIP uncovered five significant motifs. A significant overlap between our ChIP and GSE176987, GSE17769 were found by the Genomic HyperBroswer. CONCLUSIONS Our study confirmed that GTF2I was associated with PBC in Chinese Han. Furthermore, our gene function analysis indicated that IL21R may be the target gene regulated by GTF2I.
Collapse
Affiliation(s)
- Ziyan Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, 100730, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, 100730, China
| | - Honglin Xu
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shulan Zhang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
15
|
Zhang Y, Zhang X, Chen R, Jiao Z, Shen B, Shuai Z. HSCs-derived exosomes regulate the levels of inflammatory cytokines in HIBECs through miR-122-5p mediated p38 MAPK signaling pathway. Genomics 2024; 116:110795. [PMID: 38228248 DOI: 10.1016/j.ygeno.2024.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
PBC is an autoimmune-mediated liver disease, and intrahepatic biliary epithelial cells (IBECs) are the target cells of early damage. Previous studies found that miRNAs and inflammation is closely related to PBC. In this study, we extracted exosomes from serum and human IBECs supernatant, and RNA-sequence analyzed the expression profiles of miRNAs. Elisa measured the levels of inflammatory cytokines. RT- qPCR and western blot detected the levels of miR-122-5p, p38 and p-p38. The results showed that 263 differentially expressed (DE) miRNAs were identified in serum exosomes of PBC patients. The levels of IL-1β, IL-6, IL-12, IL-17 A, IFN-γ, TNF-α and TGF-β1 in peripheral blood of PBC patients were higher than those of normal controls. According to the validation results and previous literature, exosomal miR-122-5p was finally selected as the study object, and correlated with inflammatory factors. In vitro experiments further found that exosomal miR-122-5p may derive from hepatic stellate cells (HSCs), and can be HIBECs intake, and influence HIBECs inflammatory factor levels though p38 MAPK signaling pathways. This may provide a new strategy for the treatment of PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangzhi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruofei Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China.
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Chan CW, Chen HW, Wang YW, Lin CI, Chuang YH. IL-21, not IL-17A, exacerbates murine primary biliary cholangitis. Clin Exp Immunol 2024; 215:137-147. [PMID: 37708215 PMCID: PMC10847827 DOI: 10.1093/cei/uxad107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease caused by intrahepatic bile duct injuries, resulting in fibrosis, cirrhosis, and eventually liver failure. T helper (Th) 17 cells are proposed to involve in the pathogenesis of PBC. However, how and which Th17 cell-derived cytokines affect PBC remains unclear. In this study, we investigated the effects of Th17 effector cytokines, including interleukin (IL)-17A, IL-17F, and IL-21 in PBC using a xenobiotic-induced mouse model of autoimmune cholangitis (inducible chemical xenobiotic models of PBC) treated with cytokine-expressing adeno-associated virus. Our results showed that administration of IL-17A, the well-known main cytokine produced by Th17 cells, did not augment liver inflammation or fibrosis. In contrast, we noted IL-17A-treated mice had lower hepatic Th1 cell numbers and higher hepatic CD11b+Ly6G+ polymorphonuclear myeloid-derived suppressor cell numbers. IL-17F did not alter liver inflammation or fibrosis. However, the administration of IL-21 exacerbated liver inflammatory responses and portal cell infiltration. IL-21 markedly increased the numbers of activated CD8+ T cells and liver tissue-resident memory CD8+ T cells. Moreover, IL-21 aggravates liver fibrosis in mice with autoimmune cholangitis. These results emphasized that not IL-17A but IL-21 in Th17 cell-derived cytokines affected the pathogenesis of PBC. IL-21 enhanced liver inflammation and progression to fibrosis by enhancing the numbers and effector activities of CD8+ T cells. Delineation of the effects of different Th17 effector cytokines in PBC offers clues for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Chun-Wen Chan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Faisal MS, Gonzalez HC, Gordon SC. Primary Biliary Cholangitis: Epidemiology, Diagnosis, and Presentation. Clin Liver Dis 2024; 28:63-77. [PMID: 37945163 DOI: 10.1016/j.cld.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Using ursodeoxycholic acid as a standard treatment and for its ability to test for antimitochondrial antibody to accelerate diagnosis, survival of primary biliary cholangitis patients has approached that of the general population, leading to a change in nomenclature from primary biliary cirrhosis to primary biliary cholangitis to more accurately describe the disease.
Collapse
Affiliation(s)
- Muhammad Salman Faisal
- Department of Gastroenterology and Hepatology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | - Humberto C Gonzalez
- Department of Gastroenterology and Hepatology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA
| | - Stuart C Gordon
- Department of Gastroenterology and Hepatology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| |
Collapse
|
18
|
Hou Y, Si K, Yang J, Liu T, Abdelazeem B, Theerasuwipakorn N, Zhao J, Shen Z. Association between regulatory T cells and ischemic heart disease: a Mendelian randomization study. J Thorac Dis 2024; 16:564-572. [PMID: 38410592 PMCID: PMC10894418 DOI: 10.21037/jtd-23-1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND An imbalance of innate and acquired immune responses is significantly involved in the pathophysiology of coronary atherosclerosis and the occurrence of ischemic heart disease (IHD). Regulatory T cells (Tregs) play an essential regulatory role in atherosclerotic plaque formation and maintenance; therefore, dysfunction of Tregs triggers the formation of atherosclerotic plaques and accelerates their progression. However, due to the inherent limitations of observational research, clinical evidence is limited concerning the relationship between the variation in peripheral Tregs and the risk of IHD, and the cause-and-effect relationship between these factors is unclear. Mendelian randomization (MR) uses genetic variation as a proxy for exposure and can be used to inferentially determine the causal effect of exposure on outcomes. We thus used MR analysis to investigate whether there is a causal relationship between the biomarkers of Tregs and IHD. METHODS Selected genetic variants (P<5.00E-08) from the summary data of a genome-wide association study (GWAS) were used to conduct a two-sample bidirectional MR analysis. The analysis included 51 extensive Treg subtypes involving 3,757 individuals from the general population. Summary statistics of IHD were obtained from the IEU open GWAS project, which contains 30,952 cases and 187,845 controls. The populations in both GWAS studies were of European ancestry. RESULTS We identified a set of 197 single-nucleotide polymorphisms (SNPs) that served as instrumental variables (IVs) for evaluating 51 Treg subtypes. Thirteen significant variables were found to be potentially associated with IHD. After false-discovery rate (FDR) adjustment, we identified four Treg subtypes to be causally protective for IHD risk: CD28 on activated & secreting CD4 Tregs [odds ratio (OR) =0.89; 95% confidence interval (CI): 0.82-0.96; P=3.10E-03; adjusted P=0.04], CD28 on activated CD4 Tregs (OR =0.87; 95% CI: 0.80-0.95; P=3.10E-03; adjusted P=0.04), CD28 on CD4 Tregs (OR =0.87; 95% CI: 0.80-0.96; P=3.41E-03; adjusted P=0.04), and CD28 on resting CD4 Treg cell (OR =0.91; 95% CI: 0.85-0.97; P=3.48E-03; adjusted P=0.04). Reverse MR analysis found eight potential causal variables, but these associations were nonsignificant after FDR correction (all adjusted P values >0.05). CONCLUSIONS This study identified the significance of elevated CD28 expression on CD4 Tregs as a novel molecular modifier that may influence IHD occurrence, suggesting that targeting CD28 expression on CD4 Tregs could offer a promising therapeutic approach for IHD.
Collapse
Affiliation(s)
- Yucheng Hou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingyue Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tan Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Nonthikorn Theerasuwipakorn
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jingwei Zhao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine & Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Chen R, Huang B, Lian M, Wei Y, Miao Q, Liang J, Ou Y, Liang X, Zhang H, Li Y, Xiao X, Wang Q, You Z, Chai J, Gershwin ME, Tang R, Ma X. A+T rich interaction domain protein 3a (Arid3a) impairs Mertk-mediated efferocytosis in cholestasis. J Hepatol 2023; 79:1478-1490. [PMID: 37659731 DOI: 10.1016/j.jhep.2023.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND & AIMS Macrophages are key elements in the pathogenesis of cholestatic liver diseases. Arid3a plays a prominent role in the biologic properties of hematopoietic stem cells, B lymphocytes and tumor cells, but its ability to modulate macrophage function during cholestasis remains unknown. METHODS Gene and protein expression and cellular localization were assessed by q-PCR, immunohistochemistry, immunofluorescence staining and flow cytometry. We generated myeloid-specific Arid3a knockout mice and established three cholestatic murine models. The transcriptome was analyzed by RNA-seq. A specific inhibitor of the Mertk receptor was used in vitro and in vivo. Promoter activity was determined by chromatin immunoprecipitation-seq against Arid3a and a luciferase reporter assay. RESULTS In cholestatic murine models, myeloid-specific deletion of Arid3a alleviated cholestatic liver injury (accompanied by decreased accumulation of macrophages). Arid3a-deficient macrophages manifested a more reparative phenotype, which was eliminated by in vitro treatment with UNC2025, a specific inhibitor of the efferocytosis receptor Mertk. Efferocytosis of apoptotic cholangiocytes was enhanced in Arid3a-deficient macrophages via upregulation of Mertk. Arid3a negatively regulated Mertk transcription by directly binding to its promoter. Targeting Mertk in vivo effectively reversed the protective phenotype of Arid3a deficiency in macrophages. Arid3a was upregulated in hepatic macrophages and circulating monocytes in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Mertk was correspondingly upregulated and negatively correlated with Arid3a expression in PBC and PSC. Mertk+ cells were located in close proximity to cholangiocytes, while Arid3a+ cells were scattered among immune cells with greater spatial distances to hyperplastic cholangiocytes in PBC and PSC. CONCLUSIONS Arid3a promotes cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes by macrophages during cholestasis. The Arid3a-Mertk axis is a promising novel therapeutic target for cholestatic liver diseases. IMPACT AND IMPLICATIONS Macrophages play an important role in the pathogenesis of cholestatic liver diseases. This study reveals that macrophages with Arid3a upregulation manifest a pro-inflammatory phenotype and promote cholestatic liver injury by impairing Mertk-mediated efferocytosis of apoptotic cholangiocytes during cholestasis. Although we now offer a new paradigm to explain how efferocytosis is regulated in a myeloid cell autonomous manner, the regulatory effects of Arid3a on chronic liver diseases remain to be further elucidated.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Yiran Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University; 180 Fenglin Road, Shanghai 200032, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Jubo Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Yiyan Ou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Xueying Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Huayang Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 145 Middle Shandong Road, Shanghai 200001, China; Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
21
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
22
|
Hou C, Ren C, Luan L, Li S. A case report of primary biliary cholangitis combined with ankylosing spondylitis. Medicine (Baltimore) 2023; 102:e35655. [PMID: 37832080 PMCID: PMC10578735 DOI: 10.1097/md.0000000000035655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
RATIONALE A chronic autoimmune liver disease known as primary biliary cholangitis (PBC) that selectively destructs small intrahepatic biliary epithelial cells and may result in biliary cirrhosis and eventually liver transplantation or death. PBC is associated with various other extrahepatic autoimmune diseases; however, the combination of PBC with ankylosing spondylitis has been rarely reported in the literature. Here, we reported a case of PBC with ankylosing spondylitis to improve our understanding of such coexistence and provide new ideas for the treatment of such patients. PATIENT CONCERNS A 54-year-old man was presented to the Department of Rheumatology because of an abnormal liver function test for 7 years, chest and back pain for 1 year, and low back pain for 2 months. DIAGNOSES Primary biliary cholangitis, ankylosing spondylitis, and old pulmonary tuberculosis. INTERVENTIONS The patient refused to use nonsteroidal anti-inflammatory drugs, conventional synthetic disease-modifying antirheumatic drugs, and biologic disease-modifying antirheumatic drugs; thus, he was treated with methylenediphosphonate (99Tc-MDP) and ursodeoxycholic acid (UDCA). OUTCOMES The patient achieved remission with UDCA and 99Tc-MDP therapy. LESSONS In the treatment of PBC combined with other disorders, the characteristics of different diseases should be considered. The patient reported herein was treated with 99Tc-MDP and UDCA, and his condition improved; thus, we consider 99Tc-MDP to be an effective treatment. Furthermore, in line with the current understanding of the pathogenesis of PBC and ankylosing spondylitis, we hypothesize that interleukin-17 inhibitor is an effective treatment for such patients.
Collapse
Affiliation(s)
- Chunfeng Hou
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| | - Chunfeng Ren
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| | - Luan Luan
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| | - Shujie Li
- Department of Rheumatology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
23
|
Jiang P, Wang C, Zhang M, Tian Y, Zhao W, Xin J, Huang Y, Zhao Z, Sun W, Long J, Tang R, Qiu F, Shi X, Zhao Y, Zhu L, Dai N, Liu L, Wu X, Nie J, Jiang B, Shao Y, Gao Y, Yu J, Hu Z, Zang Z, Gong Y, Dai Y, Wang L, Ding N, Xu P, Chen S, Wang L, Xu J, Zhang L, Hong J, Qian R, Li H, Jiang X, Chen C, Tian W, Wu J, Jiang Y, Han C, Zhang K, Qiu H, Li L, Fan H, Chen L, Zhang J, Sun Z, Han X, Dai Z, Li E, Gershwin ME, Lian Z, Ma X, Seldin MF, Chen W, Wang M, Liu X. Differential regulation of JAK1 expression by ETS1 associated with predisposition to primary biliary cholangitis. J Genet Genomics 2023; 50:807-812. [PMID: 37348755 DOI: 10.1016/j.jgg.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Peng Jiang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chan Wang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, Jiangsu 225009, China
| | - Mingming Zhang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ye Tian
- Department of Radiology & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Weifeng Zhao
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Junyi Xin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yexi Huang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhibin Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Wenjuan Sun
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jie Long
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ruqi Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200001, China
| | - Fang Qiu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yi Zhao
- Department of Gastrointestinal Endoscopy, Eastern Hepatobiliary Surgery Hospital, Shanghai 201800, China
| | - Li Zhu
- The Fifth People's Hospital, Soochow University, Suzhou, Jiangsu 215007, China
| | - Na Dai
- Department of Gastroenterology, Jiangsu University Affiliated Kunshan Hospital, Kunshan, Jiangsu 215300, China
| | - Lei Liu
- Department of Gastroenterology, Yixing People's Hospital, Yixin, Jiangsu 214200, China
| | - Xudong Wu
- Department of Gastroenterology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, China
| | - Jinshan Nie
- Department of Gastroenterology, Taicang First People's Hospital, Soochow University, Taicang, Jiangsu 215400, China
| | - Bo Jiang
- Department of Hepatology, Jingjiang Second People's Hospital, Jingjiang, Jiangsu 214500, China
| | - Youlin Shao
- Department of Hepatology, The Third People's Hospital of Changzhou, Changzhou, Jiangsu 213001, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianjiang Yu
- Department of Laboratory Medicine, Jiangyin People's Hospital, Southeast University, Jiangyin, Jiangsu 214400, China
| | - Zhigang Hu
- Department of Laboratory Medicine, Wuxi Children's Hospital, Wuxi, Jiangsu 214023, China
| | - Zhidong Zang
- Department of Hepatology, The Second Hospital of Nanjing, Southeast University, Nanjing, Jiangsu 210003, China
| | - Yuhua Gong
- Department of Laboratory Medicine, The Third People's Hospital of Zhenjiang, Zhenjiang, Jiangsu 212021, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Wuxi, Jiangsu 214000, China
| | - Lan Wang
- Department of Laboratory Medicine, The 81st Hospital of PLA, Nanjing, Jiangsu 210002, China
| | - Ningling Ding
- The Fifth People's Hospital, Soochow University, Suzhou, Jiangsu 215007, China
| | - Ping Xu
- The Fifth People's Hospital, Soochow University, Suzhou, Jiangsu 215007, China
| | - Sufang Chen
- The Fifth People's Hospital, Soochow University, Suzhou, Jiangsu 215007, China
| | - Lu Wang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jing Xu
- Department of Clinical Laboratory, Southeast University ZhongDa Hospital, Nanjing, Jiangsu 210009, China
| | - Luyao Zhang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junyan Hong
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ruonan Qian
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hu Li
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuan Jiang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Congwei Chen
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Tian
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jian Wu
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuzhang Jiang
- Department of Laboratory Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Chongxu Han
- Department of Laboratory Medicine, Subei People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Kui Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Hong Qiu
- Department of Laboratory Medicine, The 81st Hospital of PLA, Nanjing, Jiangsu 210002, China
| | - Li Li
- Department of Clinical Laboratory, Southeast University ZhongDa Hospital, Nanjing, Jiangsu 210009, China
| | - Hong Fan
- Southeast University Medical College, Nanjing, Jiangsu 210009, China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, Nanjing Normal University College of Life Sciences, Nanjing, Jiangsu 210023, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China; Southeast University Medical College, Nanjing, Jiangsu 210009, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, And Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Erguang Li
- Jiangsu Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Zhexiong Lian
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200001, China
| | - Michael F Seldin
- Department of Biochemistry and Molecular Medicine, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Weichang Chen
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affilated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
24
|
Ye Z, Liu M, He P, Wu Q, Yang S, Zhang Y, Zhou C, Zhang Y, Gan X, Sun J, Qin X. Various ambient air pollutants, residential green spaces, fibrosis 4 scores, genetic susceptibility, and risk of severe liver disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115246. [PMID: 37453269 DOI: 10.1016/j.ecoenv.2023.115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The relationship of air pollutants and residential exposure to greenspace with severe liver disease remains inconclusive. OBJECTIVE Our objective was to assess the relationship of joint exposure to air pollutants, residential exposure to greenspaces with new-onset severe liver disease. METHODS We included 427,697 participants without prior liver diseases from UK Biobank. A weighted air pollution score was calculated based on PM2.5, PM10, PM2.5-10, NO2, and NOX. The percentage of land coverage by residential greenspaces was estimated using land use data. The primary outcome was new-onset severe liver disease, defined as a composite outcome including hospitalization or death due to compensated or decompensated liver cirrhosis, liver failure, and hepatocellular carcinoma. RESULTS During a median follow-up of 12.0 years, 4572 participants developed severe liver disease. A higher air pollution score was significantly associated with an increased risk of new-onset severe liver disease (per SD increment; adjusted hazard ratio [HR],1.07; 95% confidence interval [CI],1.04-1.10). Moreover, residential greenspace coverage was inversely associated with new-onset severe liver disease (per SD increment; adjusted HR, 0.95; 95% CI,0.92-0.98). Genetic risks of liver cirrhosis did not significantly modify the associations (both P-interactions >0.05). However, we observed a stronger positive association between air pollution scores and new-onset severe liver disease in individuals with higher fibrosis-4 (FIB-4) scores, lower residential greenspaces, hypertension, and smokers (all P-interactions <0.05). Similarly, a more pronounced inverse association between residential exposure to greenspaces and new-onset severe liver disease was found in smokers and individuals with higher FIB-4 scores (both P-interactions<0.05). CONCLUSIONS Our findings suggest a positive association between air pollution scores and the risk of new-onset severe liver disease, while residential greenspaces show an inverse association. These results underscore the importance of maintaining high exposure to green space and reducing air pollution to prevent serious liver disease.
Collapse
Affiliation(s)
- Ziliang Ye
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Qimeng Wu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; National Clinical Research Center for Kidney Disease, China; State Key Laboratory of Organ Failure Research, China; Guangdong Provincial Institute of Nephrology, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
25
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
26
|
Medford A, Childs J, Little A, Chakraborty S, Baiocchi L, Alpini G, Glaser S. Emerging Therapeutic Strategies in The Fight Against Primary Biliary Cholangitis. J Clin Transl Hepatol 2023; 11:949-957. [PMID: 37408803 PMCID: PMC10318288 DOI: 10.14218/jcth.2022.00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 01/04/2023] [Indexed: 07/03/2023] Open
Abstract
The liver has a vital role in many metabolic and regulatory processes in the body. Primary biliary cholangitis (PBC), previously known as primary biliary cirrhosis, is a chronic cholestatic autoimmune disease of the intrahepatic bile ducts associated with loss of tolerance to mitochondrial antigens. At this time there is no definitive cure for PBC; however, ursodeoxycholic acid (UDCA) has been shown to reduce injury when administered as the first line of treatment. Additional therapeutics can be given concurrently or as an alternative to UDCA to manage the symptoms and further curb disease progression. Currently, a liver transplant is the only potentially curative option when the patient has developed end-stage liver disease or intractable pruritus. This review aims to delineate the pathogenesis of primary biliary cholangitis and shed light on current therapeutic strategies in the treatment of PBC.
Collapse
Affiliation(s)
- Abigail Medford
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Jonathan Childs
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashleigh Little
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| | | | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, USA
| |
Collapse
|
27
|
Yang Y, He X, Rojas M, Leung PSC, Gao L. Mechanism-based target therapy in primary biliary cholangitis: opportunities before liver cirrhosis? Front Immunol 2023; 14:1184252. [PMID: 37325634 PMCID: PMC10266968 DOI: 10.3389/fimmu.2023.1184252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Primary biliary cholangitis (PBC) is an immune-mediated liver disease characterized by cholestasis, biliary injuries, liver fibrosis, and chronic non-suppurative cholangitis. The pathogenesis of PBC is multifactorial and involves immune dysregulation, abnormal bile metabolism, and progressive fibrosis, ultimately leading to cirrhosis and liver failure. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) are currently used as first- and second-line treatments, respectively. However, many patients do not respond adequately to UDCA, and the long-term effects of these drugs are limited. Recent research has advanced our understanding the mechanisms of pathogenesis in PBC and greatly facilitated development of novel drugs to target mechanistic checkpoints. Animal studies and clinical trials of pipeline drugs have yielded promising results in slowing disease progression. Targeting immune mediated pathogenesis and anti-inflammatory therapies are focused on the early stage, while anti-cholestatic and anti-fibrotic therapies are emphasized in the late stage of disease, which is characterized by fibrosis and cirrhosis development. Nonetheless, it is worth noting that currently, there exists a dearth of therapeutic options that can effectively impede the progression of the disease to its terminal stages. Hence, there is an urgent need for further research aimed at investigating the underlying pathophysiology mechanisms with potential therapeutic effects. This review highlights our current knowledge of the underlying immunological and cellular mechanisms of pathogenesis in PBC. Further, we also address current mechanism-based target therapies for PBC and potential therapeutic strategies to improve the efficacy of existing treatments.
Collapse
Affiliation(s)
- Yushu Yang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - XiaoSong He
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Manuel Rojas
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S. C. Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
28
|
Li Y, Li Z, Chen R, Lian M, Wang H, Wei Y, You Z, Zhang J, Li B, Li Y, Huang B, Chen Y, Liu Q, Lyu Z, Liang X, Miao Q, Xiao X, Wang Q, Fang J, Shi Y, Liu X, Seldin MF, Gershwin ME, Tang R, Ma X. A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression. Nat Commun 2023; 14:1732. [PMID: 36977669 PMCID: PMC10049997 DOI: 10.1038/s41467-023-37213-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Genome-wide association studies have identified 19p13.3 locus associated with primary biliary cholangitis (PBC). Here we aim to identify causative variant(s) and initiate efforts to define the mechanism by which the 19p13.3 locus variant(s) contributes to the pathogenesis of PBC. A genome-wide meta-analysis of 1931 PBC subjects and 7852 controls in two Han Chinese cohorts confirms the strong association between 19p13.3 locus and PBC. By integrating functional annotations, luciferase reporter assay and allele-specific chromatin immunoprecipitation, we prioritize rs2238574, an AT-Rich Interaction Domain 3A (ARID3A) intronic variant, as a potential causal variant at 19p13.3 locus. The risk allele of rs2238574 shows higher binding affinity of transcription factors, leading to an increased enhancer activity in myeloid cells. Genome-editing demonstrates the regulatory effect of rs2238574 on ARID3A expression through allele-specific enhancer activity. Furthermore, knock-down of ARID3A inhibits myeloid differentiation and activation pathway, and overexpression of the gene has the opposite effect. Finally, we find ARID3A expression and rs2238574 genotypes linked to disease severity in PBC. Our work provides several lines of evidence that a non-coding variant regulates ARID3A expression, presenting a mechanistic basis for association of 19p13.3 locus with the susceptibility to PBC.
Collapse
Affiliation(s)
- You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Hanxiao Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yiran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Yong Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Zhuwan Lyu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xueying Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - YongYong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu, China
| | - Michael F Seldin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
- Institute of Aging & Tissue Regeneration, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
29
|
Bernasconi A, Canakoglu A, Comolli F. Processing genome-wide association studies within a repository of heterogeneous genomic datasets. BMC Genom Data 2023; 24:13. [PMID: 36869294 PMCID: PMC9985298 DOI: 10.1186/s12863-023-01111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Genome Wide Association Studies (GWAS) are based on the observation of genome-wide sets of genetic variants - typically single-nucleotide polymorphisms (SNPs) - in different individuals that are associated with phenotypic traits. Research efforts have so far been directed to improving GWAS techniques rather than on making the results of GWAS interoperable with other genomic signals; this is currently hindered by the use of heterogeneous formats and uncoordinated experiment descriptions. RESULTS To practically facilitate integrative use, we propose to include GWAS datasets within the META-BASE repository, exploiting an integration pipeline previously studied for other genomic datasets that includes several heterogeneous data types in the same format, queryable from the same systems. We represent GWAS SNPs and metadata by means of the Genomic Data Model and include metadata within a relational representation by extending the Genomic Conceptual Model with a dedicated view. To further reduce the gap with the descriptions of other signals in the repository of genomic datasets, we perform a semantic annotation of phenotypic traits. Our pipeline is demonstrated using two important data sources, initially organized according to different data models: the NHGRI-EBI GWAS Catalog and FinnGen (University of Helsinki). The integration effort finally allows us to use these datasets within multi-sample processing queries that respond to important biological questions. These are then made usable for multi-omic studies together with, e.g., somatic and reference mutation data, genomic annotations, epigenetic signals. CONCLUSIONS As a result of the our work on GWAS datasets, we enable 1) their interoperable use with several other homogenized and processed genomic datasets in the context of the META-BASE repository; 2) their big data processing by means of the GenoMetric Query Language and associated system. Future large-scale tertiary data analysis may extensively benefit from the addition of GWAS results to inform several different downstream analysis workflows.
Collapse
Affiliation(s)
- Anna Bernasconi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Arif Canakoglu
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Federico Comolli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| |
Collapse
|
30
|
Chen H, Wu Z, Li L, Li Y, Liu C, Yan S. Several genetic variants associated with systemic sclerosis in a Chinese Han population. Clin Rheumatol 2023; 42:773-781. [PMID: 36301368 DOI: 10.1007/s10067-022-06409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease with ethnic differences. Single-nucleotide polymorphisms (SNPs) in the ARID3A, CXCR5, and TNFSF8 genes have been reported to be associated with various autoimmune diseases. The aim of this study was to investigate the association between these SNPs and susceptibility to SSc in a Chinese Han population. METHODS A case-control study was conducted in 342 patients with SSc and 694 ethnically matched healthy controls. SNPs in ARID3A, CXCR5, and TNFSF8 were genotyped using a Sequenom MassArray iPLEX system, and allele association analyses were performed using the PLINK v1.90 software. RESULTS Our study demonstrated that the ARID3A rs10415976 G and CXCR5 rs77871618 T alleles were suggestively associated with patients with SSc (P = 0.049 and P = 0.024, respectively) and TNFSF8 rs1555457 T allele was strongly associated with SSc (P = 0.003). Patients carrying the ARID3A rs350146 TT and TNFSF8 rs1555457 TT genotypes had a significant increased risk of SSc (P = 0.03 and P = 0.004, respectively). Moreover, rs10415976, rs77871618, and rs1555457 were associated with SSc in an additive genetic model (P < 0.05). rs62132345 and rs1555457 were associated with SSc in the dominant genetic model (P < 0.05). rs350146 was associated with SSc in the recessive genetic model (P = 0.029). CONCLUSIONS ARID3A rs10415976, ARID3A rs350146, and CXCR5 rs77871618 were suggestively associated with SSc and TNFSF8 rs1555457 was strongly associated with SSc in the Chinese Han population in this study. Key Points • This case-control study determined that ARID3A rs10415976, ARID3A rs350146 and CXCR5 rs77871618 were suggestively associated with SSc and TNFSF8 rs1555457 was strongly associated with SSc in the Chinese Han population. • The differences in these results compared with previous studies may be a result of ethnic and racial differences.
Collapse
Affiliation(s)
- Haizhen Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Jilin, China
| | - Ziyan Wu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Liubing Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Chenxi Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China.,Department of Clinical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Songxin Yan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| |
Collapse
|
31
|
Han Y, Byun J, Zhu C, Sun R, Roh JY, Cordell HJ, Lee HS, Shaw VR, Kang SW, Razjouyan J, Cooley MA, Hassan MM, Siminovitch KA, Folseraas T, Ellinghaus D, Bergquist A, Rushbrook SM, Franke A, Karlsen TH, Lazaridis KN, McGlynn KA, Roberts LR, Amos CI. Multitrait genome-wide analyses identify new susceptibility loci and candidate drugs to primary sclerosing cholangitis. Nat Commun 2023; 14:1069. [PMID: 36828809 PMCID: PMC9958016 DOI: 10.1038/s41467-023-36678-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare autoimmune bile duct disease that is strongly associated with immune-mediated disorders. In this study, we implemented multitrait joint analyses to genome-wide association summary statistics of PSC and numerous clinical and epidemiological traits to estimate the genetic contribution of each trait and genetic correlations between traits and to identify new lead PSC risk-associated loci. We identified seven new loci that have not been previously reported and one new independent lead variant in the previously reported locus. Functional annotation and fine-mapping nominated several potential susceptibility genes such as MANBA and IRF5. Network-based in silico drug efficacy screening provided candidate agents for further study of pharmacological effect in PSC.
Collapse
Affiliation(s)
- Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Julia Y Roh
- Department of Pharmacy, Ochsner Health, New Orleans, LA, USA
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hyun-Sung Lee
- David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Vikram R Shaw
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Sung Wook Kang
- David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Javad Razjouyan
- VA HSR&D, Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, USA
- Big Data Scientist Training Enhancement Program (BD-STEP), VA Office of Research and Development, Washington, DC, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- VA Quality Scholars Coordinating Center, IQuESt, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Matthew A Cooley
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Siminovitch
- Departments of Medicine, Immunology and Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute and Toronto General Research Institute, Toronto, Ontario, Canada
| | - Trine Folseraas
- Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Annika Bergquist
- Department of Medicine Huddinge, Unit of Gastroenterology and Rheumatology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Simon M Rushbrook
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norfolk, United Kingdom
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Tom H Karlsen
- Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lewis R Roberts
- Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Hitomi Y, Nakamura M. The Genetics of Primary Biliary Cholangitis: A GWAS and Post-GWAS Update. Genes (Basel) 2023; 14:405. [PMID: 36833332 PMCID: PMC9957238 DOI: 10.3390/genes14020405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, progressive cholestatic liver disease in which the small intrahepatic bile ducts are destroyed by autoimmune reactions. Among autoimmune diseases, which are polygenic complex traits caused by the combined contribution of genetic and environmental factors, PBC exhibits the strongest involvement of genetic heritability in disease development. As at December 2022, genome-wide association studies (GWASs) and associated meta-analyses identified approximately 70 PBC susceptibility gene loci in various populations, including those of European and East Asian descent. However, the molecular mechanisms through which these susceptibility loci affect the pathogenesis of PBC are not fully understood. This study provides an overview of current data regarding the genetic factors of PBC as well as post-GWAS approaches to identifying primary functional variants and effector genes in disease-susceptibility loci. Possible mechanisms of these genetic factors in the development of PBC are also discussed, focusing on four major disease pathways identified by in silico gene set analyses, namely, (1) antigen presentation by human leukocyte antigens, (2) interleukin-12-related pathways, (3) cellular responses to tumor necrosis factor, and (4) B cell activation, maturation, and differentiation pathways.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
- Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 2-1001-1 Kubara, Omura 856-8562, Japan
- Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan
| |
Collapse
|
33
|
Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Szczerbinska A, Cichoz-Lach H. Selected Aspects of the Intricate Background of Immune-Related Cholangiopathies-A Critical Overview. Nutrients 2023; 15:760. [PMID: 36771465 PMCID: PMC9921714 DOI: 10.3390/nu15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are rare immune-related cholangiopathies with still poorly explained pathogenesis. Although triggers of chronic inflammation with subsequent fibrosis that affect cholangiocytes leading to obliteration of bile ducts and conversion to liver cirrhosis are unclear, both disorders are regarded to be multifactorial. Different factors can contribute to the development of hepatocellular injury in the course of progressive cholestasis, including (1) body accumulation of bile acids and their toxicity, (2) decreased food intake and nutrient absorption, (3) gut microbiota transformation, and (4) reorganized host metabolism. Growing evidence suggests that intestinal microbiome composition not only can be altered by liver dysfunction, but in turn, it actively impacts hepatic conditions. In this review, we highlight the role of key factors such as the gut-liver axis, intestinal barrier integrity, bile acid synthesis and circulation, and microbiome composition, which seem to be strongly related to PBC and PSC outcome. Emerging treatments and future therapeutic strategies are also presented.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | | | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
34
|
Waters E, Williams C, Kennedy A, Sansom DM. In Vitro Analysis of CTLA-4-Mediated Transendocytosis by Regulatory T Cells. Methods Mol Biol 2023; 2559:171-187. [PMID: 36180633 DOI: 10.1007/978-1-0716-2647-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Regulatory T Cells (Tregs) constitutively express the inhibitory receptor CTLA-4, which is fundamental to their role in immune suppression. Mechanistically, CTLA-4 on Tregs can attenuate T cell activation by physically removing and internalizing costimulatory ligands CD80 and CD86 from the surface of antigen-presenting cells by transendocytosis. Therefore, the process of transendocytosis can be harnessed as a tool to study the molecular basis of CTLA-4 biology and a key aspect of Treg suppressive function. In this chapter, we describe a method of human Treg isolation and expansion resulting in high CTLA-4 expression. We then detail a transendocytosis assay using artificial antigen-presenting cells (DG-75 B Cell lines) expressing fluorescently tagged ligands mixed with the expanded Tregs. This methodology can be applied to testing of patients carrying CTLA-4 mutations, providing a robust model to assess the degree of functional disruption.
Collapse
Affiliation(s)
- Erin Waters
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Pears Building, Royal Free Campus, London, UK.
| |
Collapse
|
35
|
Caspase-10 affects the pathogenesis of primary biliary cholangitis by regulating inflammatory cell death. J Autoimmun 2022; 133:102940. [PMID: 36323068 DOI: 10.1016/j.jaut.2022.102940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disease that involves chronic inflammation and injury to biliary epithelial cells. To identify critical genetic factor(s) in PBC patients, we performed whole-exome sequencing of five female siblings, including one unaffected and four affected sisters, in a multi-PBC family, and identified 61 rare heterozygote variants that segregated only within the affected sisters. Among them, we were particularly interested in caspase-10, for although several caspases are involved in cell death, inflammation and autoimmunity, caspase-10 is little known from this perspective. We generated caspase-10 knockout macrophages, and then investigated the obtained phenotypes in comparison to those of its structurally similar protein, caspase-8. Unlike caspase-8, caspase-10 does not play a role during differentiation into macrophages, but after differentiation, it regulates the process of inflammatory cell deaths such as necroptosis and pyroptosis more strongly. Interestingly, caspase-10 displays better protease activity than caspase-8 in the process of RIPK1 cleavage, and an enhanced ability to form a complex with RIPK1 and FADD in human macrophages. Higher inflammatory cell death affected the fibrotic response of hepatic stellate cells; this effect could be recovered by treatment with UDCA and OCA, which are currently approved for PBC patients. Our findings strongly indicate that the defective roles of caspase-10 in macrophages contribute to the pathogenesis of PBC, thereby suggesting a new therapeutic strategy for PBC treatment.
Collapse
|
36
|
Mohsen RT, Al-Azzawi RH, Ad’hiah AH. A single-nucleotide polymorphism of IL12A gene (rs582537 A/C/G) and susceptibility to chronic hepatitis B virus infection among Iraqi patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA case–control study (80 patients with chronic hepatitis B virus [HBV] infection and 96 controls) was performed to evaluate the association of an IL12A gene variant (rs582537 A/C/G) with HBV infection. Allele G showed a significantly lower frequency in patients compared to controls (31.2 vs. 46.9%; probability [p] = 0.009; corrected p [pc] = 0.027) and was associated with a lower risk of HBV infection (odds ratio [OR] = 0.49; 95% confidence interval [CI] = 0.29–0.83). A similar lower risk was associated with genotypes CG (17.5 vs. 29.2; OR = 0.25; 95% CI = 0.08–0.81; p = 0.02) and GG (10.0 vs. 16.7; OR = 0.25; 95% CI = 0.07–0.91; p = 0.036), but the pc value was not significant (0.12 and 0.126, respectively). Serum IL-35 levels showed significant differences between individuals of different genotypes (p = 0.007). The highest median was associated with CA genotype (286.5 pg/mL), followed by genotypes CG (227.0 pg/mL), GG (206.5 pg/mL), CC (169.0 pg/mL), AA (137.5 pg/mL) and finally AG (125.0 pg/mL). In conclusion, rs582537 appears to be an important genetic variant that may influence not only susceptibility to HBV infection but IL-35 levels.
Collapse
|
37
|
Abstract
Primary biliary cholangitis (PBC) is a rare disease of the liver characterized by an autoimmune attack on the small bile ducts. PBC is a complex trait, meaning that a large list of genetic factors interacts with environmental agents to determine its onset. Genome-wide association studies have had a huge impact in fostering research in PBC, but many steps need still to be done compared with other autoimmune diseases of similar prevalence. This review presents the state-of-the-art regarding the genetic architecture of PBC and provides some thoughtful reflections about possible future lines of research, which can be helpful to fill the missing heritability gap in PBC.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele 20072, Italy; Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano 20089, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy.
| |
Collapse
|
38
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
39
|
Li Y, Sun Y, Liu Y, Wang B, Li J, Wang H, Zhang H, Wang X, Han X, Lin Q, Zhou Y, Hu L, Song Y, Bao J, Gong L, Sun M, Yuan X, Zhang X, Lian M, Xiao X, Miao Q, Wang Q, Li KK, Du S, Ma A, Li Y, Xu J, Tang S, Shi J, Xu Y, Yang L, Zhang J, Huang Z, Zhou L, Cui Y, Seldin MF, Gershwin ME, Yan H, Zou Z, Zuo X, Tang R, Ma X. Genome-wide meta-analysis identifies susceptibility loci for autoimmune hepatitis type 1. Hepatology 2022; 76:564-575. [PMID: 35184318 DOI: 10.1002/hep.32417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Autoimmune hepatitis (AIH) is a rare and chronic autoimmune liver disease. While genetic factors are believed to play a crucial role in the etiopathogenesis of AIH, our understanding of these genetic risk factors is still limited. In this study, we aimed to identify susceptibility loci to further understand the pathogenesis of this disease. APPROACH AND RESULTS We conducted a case-control association study of 1,622 Chinese patients with AIH type 1 and 10,466 population controls from two independent cohorts. A meta-analysis was performed to ascertain variants associated with AIH type 1. A single-nucleotide polymorphism within the human leukocyte antigen (HLA) region showed the strongest association with AIH (rs6932730: OR = 2.32; p = 9.21 × 10-73 ). The meta-analysis also identified two non-HLA loci significantly associated with AIH: CD28/CTLA4/ICOS on 2q33.3 (rs72929257: OR = 1.31; p = 2.92 × 10-9 ) and SYNPR on 3p14.2 (rs6809477: OR = 1.25; p = 5.48 × 10-9 ). In silico annotation, reporter gene assays, and CRISPR activation experiments identified a distal enhancer at 2q33.3 that regulated expression of CTLA4. In addition, variants near STAT1/STAT4 (rs11889341: OR = 1.24; p = 1.34 × 10-7 ), LINC00392 (rs9564997: OR = 0.81; p = 2.53 × 10-7 ), IRF8 (rs11117432: OR = 0.72; p = 6.10 × 10-6 ), and LILRA4/LILRA5 (rs11084330: OR = 0.65; p = 5.19 × 10-6 ) had suggestive association signals with AIH. CONCLUSIONS Our study identifies two novel loci (CD28/CTLA4/ICOS and SYNPR) exceeding genome-wide significance and suggests four loci as potential risk factors. These findings highlight the importance of costimulatory signaling and neuro-immune interaction in the pathogenesis of AIH.
Collapse
Affiliation(s)
- You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ying Sun
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanmin Liu
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Li
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Hanxiao Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Haiping Zhang
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyi Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Han
- Tianjin Second People's Hospital, Tianjin Institute of Hepatology, Tianjin, China
| | - Qiuxiang Lin
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Zhou
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Gong
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Mengying Sun
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaoling Yuan
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhe Zhang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, ShenYang, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ke-Ke Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Anlin Ma
- Department of infection disease, China-Japan Friendship Hospital, Beijing, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, ShenYang, China
| | - Jie Xu
- Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanhong Tang
- Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital and Key Laboratory of Medical Molecular Virology (MOH & MOE), Shanghai Medical College, Fudan University, Shanghai, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Michael F Seldin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Huiping Yan
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhengsheng Zou
- Department of Liver Disease, Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xianbo Zuo
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Institute of Dermatology and Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
40
|
Mulinacci G, Palermo A, Gerussi A, Asselta R, Gershwin ME, Invernizzi P. New insights on the role of human leukocyte antigen complex in primary biliary cholangitis. Front Immunol 2022; 13:975115. [PMID: 36119102 PMCID: PMC9471323 DOI: 10.3389/fimmu.2022.975115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Primary Biliary Cholangitis (PBC) is a rare autoimmune cholangiopathy. Genetic studies have shown that the strongest statistical association with PBC has been mapped in the human leukocyte antigen (HLA) locus, a highly polymorphic area that mostly contribute to the genetic variance of the disease. Furthermore, PBC presents high variability throughout different population groups, which may explain the different geoepidemiology of the disease. A major role in defining HLA genetic contribution has been given by genome-wide association studies (GWAS) studies; more recently, new technologies have been developed to allow a deeper understanding. The study of the altered peptides transcribed by genetic alterations also allowed the development of novel therapeutic strategies in the context of immunotolerance. This review summarizes what is known about the immunogenetics of PBC with a focus on the HLA locus, the different distribution of HLA alleles worldwide, and how HLA modifications are associated with the pathogenesis of PBC. Novel therapeutic strategies are also outlined.
Collapse
Affiliation(s)
- Giacomo Mulinacci
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Andrea Palermo
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
41
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. HLA, gut microbiome and hepatic autoimmunity. Front Immunol 2022; 13:980768. [PMID: 36059527 PMCID: PMC9433828 DOI: 10.3389/fimmu.2022.980768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Genetic susceptibility to autoimmune liver diseases is conferred mainly by polymorphisms of genes encoding for the human leukocyte antigens (HLA). The strongest predisposition to autoimmune hepatitis type 1 (AIH-1) is linked to the allele DRB1*03:01, possession of which is associated with earlier disease onset and more severe course. In populations where this allele is very rare, such as in Asia, and in DRB1*03-negative patients, risk of AIH-1 is conferred by DRB1*04, which is associated with later disease onset and milder phenotype. AIH type 2 (AIH-2) is associated with DRB1*07. The pediatric condition referred to as autoimmune sclerosing cholangitis (ASC), is associated with the DRB1*13 in populations of Northern European ancestry. DRB1*1501 is protective from AIH-1, AIH-2 and ASC in Northern European populations. Possession of the DRB1*08 allele is associated with an increased risk of primary biliary cholangitis (PBC) across different populations. DRB1*03:01 and B*08:01 confer susceptibility to primary sclerosing cholangitis (PSC), as well as DRB1*13 and DRB1*15 in Europe. The hepatic blood supply is largely derived from the splanchnic circulation, suggesting a pathophysiological role of the gut microbiome. AIH appears to be associated with dysbiosis, increased gut permeability, and translocation of intestinal microbial products into the circulation; molecular mimicry between microbial and host antigens may trigger an autoaggressive response in genetically-predisposed individuals. In PBC an altered enteric microbiome may affect intestinal motility, immunological function and bile secretion. Patients with PSC have a gut microbial profile different from health as well as from patients with inflammatory bowel disease without PSC.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Faculty of Biomedical Sciences, Epatocentro Ticino and Università della Svizzera Italiana, Lugano, Switzerland
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
- *Correspondence: Benedetta Terziroli Beretta-Piccoli,
| | - Giorgina Mieli-Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| | - Diego Vergani
- MowatLabs, Faculty of Life Sciences and Medicine, King’s College London, King’s College Hospital, London, United Kingdom
| |
Collapse
|
42
|
Abstract
The human liver is a complex organ made up of multiple specialized cell types that carry out key physiological functions. An incomplete understanding of liver biology limits our ability to develop therapeutics to prevent chronic liver diseases, liver cancers, and death as a result of organ failure. Recently, single-cell modalities have expanded our understanding of the cellular phenotypic heterogeneity and intercellular cross-talk in liver health and disease. This review summarizes these findings and looks forward to highlighting new avenues for the application of single-cell genomics to unravel unknown pathogenic pathways and disease mechanisms for the development of new therapeutics targeting liver pathology. As these technologies mature, their integration into clinical data analysis will aid in patient stratification and in developing treatment plans for patients suffering from liver disease.
Collapse
Affiliation(s)
- Jawairia Atif
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Cornelia Thoeni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ian D. McGilvray
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Sonya A. MacParland
- Ajmera Transplant Centre, Schwartz Reisman Liver Research Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Shahini E, Pasculli G, Mastropietro A, Stolfi P, Tieri P, Vergni D, Cozzolongo R, Pesce F, Giannelli G. Network Proximity-Based Drug Repurposing Strategy for Early and Late Stages of Primary Biliary Cholangitis. Biomedicines 2022; 10:1694. [PMID: 35884999 PMCID: PMC9312896 DOI: 10.3390/biomedicines10071694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, cholestatic, immune-mediated, and progressive liver disorder. Treatment to preventing the disease from advancing into later and irreversible stages is still an unmet clinical need. Accordingly, we set up a drug repurposing framework to find potential therapeutic agents targeting relevant pathways derived from an expanded pool of genes involved in different stages of PBC. Starting with updated human protein-protein interaction data and genes specifically involved in the early and late stages of PBC, a network medicine approach was used to provide a PBC "proximity" or "involvement" gene ranking using network diffusion algorithms and machine learning models. The top genes in the proximity ranking, when combined with the original PBC-related genes, resulted in a final dataset of the genes most involved in PBC disease. Finally, a drug repurposing strategy was implemented by mining and utilizing dedicated drug-gene interaction and druggable genome information knowledge bases (e.g., the DrugBank repository). We identified several potential drug candidates interacting with PBC pathways after performing an over-representation analysis on our initial 1121-seed gene list and the resulting disease-associated (algorithm-obtained) genes. The mechanism and potential therapeutic applications of such drugs were then thoroughly discussed, with a particular emphasis on different stages of PBC disease. We found that interleukin/EGFR/TNF-alpha inhibitors, branched-chain amino acids, geldanamycin, tauroursodeoxycholic acid, genistein, antioestrogens, curcumin, antineovascularisation agents, enzyme/protease inhibitors, and antirheumatic agents are promising drugs targeting distinct stages of PBC. We developed robust and transparent selection mechanisms for prioritizing already approved medicinal products or investigational products for repurposing based on recognized unmet medical needs in PBC, as well as solid preliminary data to achieve this goal.
Collapse
Affiliation(s)
- Endrit Shahini
- National Institute of Research IRCCS “Saverio De Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.C.); (G.G.)
| | - Giuseppe Pasculli
- Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (A.M.)
| | - Andrea Mastropietro
- Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), Sapienza University of Rome, 00185 Rome, Italy; (G.P.); (A.M.)
| | - Paola Stolfi
- National Research Council (CNR), Institute for Applied Computing (IAC), 00185 Rome, Italy; (P.S.); (P.T.); (D.V.)
| | - Paolo Tieri
- National Research Council (CNR), Institute for Applied Computing (IAC), 00185 Rome, Italy; (P.S.); (P.T.); (D.V.)
| | - Davide Vergni
- National Research Council (CNR), Institute for Applied Computing (IAC), 00185 Rome, Italy; (P.S.); (P.T.); (D.V.)
| | - Raffaele Cozzolongo
- National Institute of Research IRCCS “Saverio De Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.C.); (G.G.)
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari “A. Moro”, 70121 Bari, Italy;
| | - Gianluigi Giannelli
- National Institute of Research IRCCS “Saverio De Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.C.); (G.G.)
| |
Collapse
|
44
|
The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol 2022; 44:485-507. [PMID: 35536431 PMCID: PMC9088151 DOI: 10.1007/s00281-022-00936-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
Autoimmune liver diseases are a group of immune-mediated liver diseases with three distinct entities, including autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. The interplay of genetic and environmental factors leads to the breakdown of self-tolerance, resulting in hyper-responsiveness, and auto-aggressive immune activation. Emerging evidence links autoimmune liver diseases with alterations of the commensal microbiome configuration and aberrant immune system activation by microbial signals, mainly via the gut-liver axis. Thus, the microbiome is a new frontier to deepen the pathogenetic understanding, uncover biomarkers, and inspire innovative treatments. Herein, we review the current evidence on the role of the microbiome in autoimmune liver diseases from both clinical and basic research. We highlight recent achievements and also bottlenecks and limitations. Moreover, we give an outlook on future developments and potential for clinical applications.
Collapse
|
45
|
The latest research trends in primary biliary cholangitis: a bibliometric analysis. Clin Exp Med 2022; 23:347-355. [PMID: 35389157 DOI: 10.1007/s10238-022-00825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/19/2022] [Indexed: 01/03/2023]
Abstract
The bibliometric analysis uses the citation count of an article to measure its impact in the scientific community, but no study has been undertaken to determine the most influential papers in the field of primary biliary cholangitis (PBC). This study aimed to investigate the global research interest regarding PBC in dentistry using a bibliometric approach. We searched the Web of Science Core Collection database to find the top 100 most cited (T100) articles focusing on PBC. The information about each article including citations, authors, journals, countries, institutions, and keywords was recorded for bibliometric analysis. The T100 articles related to PBC were published from 1983 to 2019 and were originated from 26 countries. A total of 805 different authors were from 342 different institutions, and articles written by them were published in 35 journals. The five most frequently occurring keywords were "biochemical response," "ursodeoxycholic acid," "primary biliary cirrhosis," "antimitochondrial antibody," and "autoimmunity." The T100 articles were classified into different research focuses: pathogenesis (41%), treatment (20%), prognosis (12%), epidemiology (9%), diagnosis (8%), and others (10%). These 100 articles included 32 observational studies, 29 basic research articles, 15 reviews, eight meta-analyses, 12 clinical trials, and four clinical guidelines. The 100 top-cited articles are marked with the leading countries, institutions, journals, hotspots, and development trends in the PBC field that could provide the foundation for further investigations.
Collapse
|
46
|
The Proinflammatory Cytokines IL-18, IL-21, and IFN-γ Differentially Regulate Liver Inflammation and Anti-Mitochondrial Antibody Level in a Murine Model of Primary Biliary Cholangitis. J Immunol Res 2022; 2022:7111445. [PMID: 35300072 PMCID: PMC8922149 DOI: 10.1155/2022/7111445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease primarily featured by autoimmune-mediated damage of intrahepatic small- and medium-sized bile ducts. Elevated serum proinflammatory cytokines, serum anti-mitochondrial antibodies (AMAs), liver inflammation, and fibrosis are also hallmarks of PBC disease. However, whether the elevated proinflammatory cytokines play a role in autoimmune cholangitis remains unknown. Herein, we utilized the p40-/-IL-2Rα-/- PBC mouse model to investigate the roles of proinflammatory cytokines IL-18, IL-21, and IFN-γ in the onset and progression of PBC. IL-18-/-, IFN-γ-/-, and IL-21-/- mice were crossed with p40-/-IL-2Ra+/- mice, respectively, to produce corresponding cytokine-deficient PBC models. Autoantibody level, liver inflammation, and bile duct injury were analyzed. We found that livers from p40-/-IL-2Rα-/- mice exhibit similar transcriptomic characters of PBC patients. In p40-/-IL-2Rα-/- mice, deletion of IL-18 has no remarkable effect on disease progression, while deletion of IL-21 indicates that it is necessary for AMA production but independent of liver inflammation and cholangitis. IFN-γ is responsible for both AMA production and liver inflammation in our model. Our results demonstrate that different proinflammatory cytokines can regulate different effector functions in PBC pathogenesis and need to be considered in PBC treatment.
Collapse
|
47
|
Wang L, Li J, Wang C, Tang R, Liang J, Gong Y, Dai Y, Ding N, Wu J, Dai N, Liu L, Zhao Y, Shao Y, Zhao W, Jiang P, Shi X, Chen W, Tian Y, Liu X, Ma X, Sun Z. Mapping of de novo mutations in primary biliary cholangitis to a disease-specific co-expression network underlying homeostasis and metabolism. J Genet Genomics 2022; 49:145-154. [PMID: 34433101 DOI: 10.1016/j.jgg.2021.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disease involving dysregulation of a broad array of homeostatic and metabolic processes. Although considerable single-nucleotide polymorphisms have been unveiled, a large fraction of risk factors remains enigmatic. Candidate genes with rare mutations that tend to confer more deleterious effects need to be identified. To help pinpoint cellular and developmental mechanisms beyond common noncoding variants, we integrate whole exome sequencing with integrative network analysis to investigate genes harboring de novo mutations. Prominent convergence has been revealed on a network of disease-specific co-expression comprised of 55 genes associated with homeostasis and metabolism. The transcription factor gene MEF2D and the DNA repair gene PARP2 are highlighted as hub genes and identified to be up- and down-regulated, respectively, in peripheral blood data set. Enrichment analysis demonstrates that altered expression of MEF2D and PARP2 may trigger a series of molecular and cellular processes with pivotal roles in PBC pathophysiology. Our study identifies genes with de novo mutations in PBC and suggests that a subset of genes in homeostasis and metabolism tend to act in synergy through converging on co-expression network, providing novel insights into the etiology of PBC and expanding the pool of molecular candidates for discovering clinically actionable biomarkers.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Jinchen Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chan Wang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Ruqi Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, 145 Shandong Middle Road, Shanghai 200001, China
| | - Jialong Liang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yuhua Gong
- Department of Laboratory Medicine, The Third People's Hospital of Zhenjiang, 300 Daijiamen, Zhenjiang, Jiangsu 212021, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, 1215 Guangrui Road, Wuxi, Jiangsu 214000, China
| | - Ningling Ding
- Department of Hepatology, The Fifth People's Hospital of Suzhou, Soochow University, 10 Guangqian Road, Suzhou, Jiangsu 215131, China
| | - Jian Wu
- Department of Rheumatology, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| | - Na Dai
- Department of Gastroenterology, Jiangsu University Affiliated Kunshan Hospital, 91 Qianjin West Road, Kunshan, Jiangsu 215300, China
| | - Lei Liu
- Department of Gastroenterology, Yixing People's Hospital, 75 Tongzhenguan Road, Yixin, Jiangsu 214200, China
| | - Yi Zhao
- Department of Gastrointestinal Endoscopy, Eastern Hepatobiliary Surgery Hospital, 700 Moyu North Road, Shanghai 201800, China
| | - Youlin Shao
- Department of Hepatology, The Third People's Hospital of Changzhou, 300 Lanling North Road, Changzhou, Jiangsu 213001, China
| | - Weifeng Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| | - Peng Jiang
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Xingjuan Shi
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China
| | - Weichang Chen
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China
| | - Ye Tian
- Department of Radiology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China
| | - Xiangdong Liu
- Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, 2 Sipailou Road, Nanjing, Jiangsu 210096, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, 145 Shandong Middle Road, Shanghai 200001, China.
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical University, University Town, Chashan, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
48
|
You H, Ma X, Efe C, Wang G, Jeong SH, Abe K, Duan W, Chen S, Kong Y, Zhang D, Wei L, Wang FS, Lin HC, Yang JM, Tanwandee T, Gani RA, Payawal DA, Sharma BC, Hou J, Yokosuka O, Dokmeci AK, Crawford D, Kao JH, Piratvisuth T, Suh DJ, Lesmana LA, Sollano J, Lau G, Sarin SK, Omata M, Tanaka A, Jia J. APASL clinical practice guidance: the diagnosis and management of patients with primary biliary cholangitis. Hepatol Int 2022; 16:1-23. [PMID: 35119627 PMCID: PMC8843914 DOI: 10.1007/s12072-021-10276-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, Mainland, China
| | - Cumali Efe
- Department of Gastroenterology, Gazi Yaşargil Education and Research Hospital, Diyarbakir, Turkey
| | - Guiqiang Wang
- Department of Infectious Diseases and Center for Liver Diseases, Peking University First Hospital, Beijing, Mainland, China
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Weijia Duan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Sha Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, Mainland, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Clinical Research Institute, Beijing, Mainland, China
| | - Lai Wei
- Hepatobiliary Pancreatic Center, Tsinghua Changgung Hospital, Tsinghua University, Beijing, Mainland, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospial, Beijing, Mainland, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jin Mo Yang
- Division of Hepatology, Department of Internal Medicine, College of Medicine, St. Vincent’s Hospital, The Catholic University of Korea, Suwon, South Korea
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino A. Gani
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Diana A. Payawal
- Department of Medicine, Fatima University Medical Center, Manila, Philippines
| | | | - Jinlin Hou
- Department of Infectious Disease and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Mainland, China
| | - Osamu Yokosuka
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A. Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Darrell Crawford
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Jia-Horng Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Faculty of Medicine, Prince of Songkla University, Hatyai, Thailand
| | - Dong Jin Suh
- Department of Gastroenterology, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Jose Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - George Lau
- Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Hong Kong SAR, China
| | - Shiv K. Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Beijing, Mainland, China
| |
Collapse
|
49
|
Matsumoto K, Ohfuji S, Abe M, Komori A, Takahashi A, Fujii H, Kawata K, Noritake H, Tadokoro T, Honda A, Asami M, Namisaki T, Ueno M, Sato K, Kakisaka K, Arakawa M, Ito T, Tanaka K, Matsui T, Setsu T, Takamura M, Yasuda S, Katsumi T, Itakura J, Sano T, Tamura Y, Miura R, Arizumi T, Asaoka Y, Uno K, Nishitani A, Ueno Y, Terai S, Takikawa Y, Morimoto Y, Yoshiji H, Mochida S, Ikegami T, Masaki T, Kawada N, Ohira H, Tanaka A. Environmental factors, medical and family history, and comorbidities associated with primary biliary cholangitis in Japan: a multicenter case-control study. J Gastroenterol 2022; 57:19-29. [PMID: 34796398 DOI: 10.1007/s00535-021-01836-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is considered to be caused by the interaction between genetic background and environmental triggers. Previous case-control studies have indicated the associations of environmental factors (tobacco smoking, a history of urinary tract infection, and hair dye) use with PBC. Therefore, we conducted a multicenter case-control study to identify the environmental factors associated with the development of PBC in Japan. METHODS From 21 participating centers in Japan, we prospectively enrolled 548 patients with PBC (male/female = 78/470, median age 66), and 548 age- and sex-matched controls. These participants completed a questionnaire comprising 121 items with respect to demographic, anthropometric, socioeconomic features, lifestyle, medical/familial history, and reproductive history in female individuals. The association was determined using conditional multivariate logistic regression analysis. RESULTS The identified factors were vault toilet at home in childhood [odds ratio (OR), 1.63; 95% confidence interval (CI), 1.01-2.62], unpaved roads around the house in childhood (OR, 1.43; 95% CI, 1.07-1.92), ever smoking (OR, 1.70; 95% CI, 1.28-2.25), and hair dye use (OR, 1.57; 95% CI, 1.15-2.14) in the model for lifestyle factors, and a history of any type of autoimmune disease (OR, 8.74; 95% CI, 3.99-19.13), a history of Cesarean section (OR, 0.20; 95% CI, 0.077-0.53), and presence of PBC in first-degree relatives (OR, 21.1; 95% CI, 6.52-68.0) in the model for medical and familial factors. CONCLUSIONS These results suggest that poor environmental hygiene in childhood (vault toilets and unpaved roads) and chronic exposure to chemicals (smoking and hair dye use) are likely to be risk factors for the development of PBC in Japan.
Collapse
Affiliation(s)
- Kosuke Matsumoto
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan.
| | - Satoko Ohfuji
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Nagasaki, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Maiko Asami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Masayuki Ueno
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Okayama, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Mie Arakawa
- Department of Gastroenterology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kazunari Tanaka
- Center for Gastroenterology, Teine-Keijinkai Hospital, Hokkaido, Japan
| | - Takeshi Matsui
- Center for Gastroenterology, Teine-Keijinkai Hospital, Hokkaido, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Gifu, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jun Itakura
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Tomoya Sano
- Division of Gastroenterology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Yamato Tamura
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Ryo Miura
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Toshihiko Arizumi
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Yoshinari Asaoka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| | - Kiyoko Uno
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Ai Nishitani
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Youichi Morimoto
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Okayama, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
50
|
Christensen KA, Rondeau EB, Sakhrani D, Biagi CA, Johnson H, Joshi J, Flores AM, Leelakumari S, Moore R, Pandoh PK, Withler RE, Beacham TD, Leggatt RA, Tarpey CM, Seeb LW, Seeb JE, Jones SJM, Devlin RH, Koop BF. The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle. PLoS One 2021; 16:e0255752. [PMID: 34919547 PMCID: PMC8682878 DOI: 10.1371/journal.pone.0255752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of a centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.
Collapse
Affiliation(s)
- Kris A. Christensen
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (KAC); (BFK)
| | - Eric B. Rondeau
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Dionne Sakhrani
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Carlo A. Biagi
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Hollie Johnson
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Jay Joshi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Anne-Marie Flores
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Sreeja Leelakumari
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard Moore
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Pawan K. Pandoh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Ruth E. Withler
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Terry D. Beacham
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | | | - Carolyn M. Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - James E. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Robert H. Devlin
- West Vancouver, Fisheries and Oceans Canada, British Columbia, Canada
| | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (KAC); (BFK)
| |
Collapse
|