1
|
Banerjee DS, Falk MJ, Gardel ML, Walczak AM, Mora T, Vaikuntanathan S. Learning via mechanosensitivity and activity in cytoskeletal networks. ARXIV 2025:arXiv:2504.15107v1. [PMID: 40313666 PMCID: PMC12045384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In this work we show how a network inspired by a coarse-grained description of actomyosin cytoskeleton can learn - in a contrastive learning framework - from environmental perturbations if it is endowed with mechanosensitive proteins and motors. Our work is a proof of principle for how force-sensitive proteins and molecular motors can form the basis of a general strategy to learn in biological systems. Our work identifies a minimal biologically plausible learning mechanism and also explores its implications for commonly occuring phenomenolgy such as adaptation and homeostatis.
Collapse
Affiliation(s)
- Deb S. Banerjee
- James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Martin J. Falk
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
| | - Margaret L. Gardel
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Aleksandra M. Walczak
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris, 75005, France
| | - Thierry Mora
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Physics, University of Chicago, Chicago, IL 60637
- Laboratoire de physique de l’École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris, 75005, France
| | - Suriyanarayanan Vaikuntanathan
- James Franck Institute, University of Chicago, Chicago, IL 60637
- Department of Chemistry, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Aslemarz A, Fagotto-Kaufmann M, Ruppel A, Fagotto-Kaufmann C, Balland M, Lasko P, Fagotto F. An EpCAM/Trop2 mechanostat differentially regulates collective behaviour of human carcinoma cells. EMBO J 2025; 44:75-106. [PMID: 39572744 PMCID: PMC11696905 DOI: 10.1038/s44318-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025] Open
Abstract
EpCAM and its close relative Trop2 are well-known cell surface markers of carcinoma, but their potential role in cancer metastasis remains unclear. They are known, however, to downregulate myosin-dependent contractility, a key parameter involved in adhesion and migration. We investigate here the morphogenetic impact of the high EpCAM and Trop2 levels typically found in epithelial breast cancer cells, using spheroids of MCF7 cells as an in vitro model. Intriguingly, EpCAM depletion stimulated spheroid cohesive spreading, while Trop2 depletion had the opposite effect. Combining cell biological and biophysical approaches, we demonstrate that while EpCAM and Trop2 both contribute to moderate cell contractility, their depletions differentially impact on the process of "wetting" a substrate, here both matrix and neighboring cells, by affecting the balance of cortical tension at cell and tissue interfaces. These distinct phenotypes can be explained by partial enrichment at specific interfaces. Our data are consistent with the EpCAM-Trop2 pair acting as a mechanostat that tunes adhesive and migratory behaviours.
Collapse
Affiliation(s)
- Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
- SGS, Mississauga, ON, L5T 1W8, Canada
| | - Marie Fagotto-Kaufmann
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Department of Neurobiology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Artur Ruppel
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
| | | | - Martial Balland
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
| | - Paul Lasko
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
| | - François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France.
| |
Collapse
|
3
|
Abitua PB, Stump LM, Aksel DC, Schier AF. Axis formation in annual killifish: Nodal and β-catenin regulate morphogenesis without Huluwa prepatterning. Science 2024; 384:1105-1110. [PMID: 38843334 DOI: 10.1126/science.ado7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 06/16/2024]
Abstract
Axis formation in fish and amphibians typically begins with a prepattern of maternal gene products. Annual killifish embryogenesis, however, challenges prepatterning models as blastomeres disperse and then aggregate to form the germ layers and body axes. We show that huluwa, a prepatterning factor thought to break symmetry by stabilizing β-catenin, is truncated and inactive in Nothobranchius furzeri. Nuclear β-catenin is not selectively stabilized on one side of the blastula but accumulates in cells forming the aggregate. Blocking β-catenin activity or Nodal signaling disrupts aggregate formation and germ layer specification. Nodal signaling coordinates cell migration, establishing an early role for this signaling pathway. These results reveal a surprising departure from established mechanisms of axis formation: Huluwa-mediated prepatterning is dispensable, and β-catenin and Nodal regulate morphogenesis.
Collapse
Affiliation(s)
- Philip B Abitua
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Laura M Stump
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Deniz C Aksel
- Biophysics Program, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
- Biozentrum, University of Basel, 4051 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Marchello R, Colombi A, Preziosi L, Giverso C. A non local model for cell migration in response to mechanical stimuli. Math Biosci 2024; 368:109124. [PMID: 38072125 DOI: 10.1016/j.mbs.2023.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Cell migration is one of the most studied phenomena in biology since it plays a fundamental role in many physiological and pathological processes such as morphogenesis, wound healing and tumorigenesis. In recent years, researchers have performed experiments showing that cells can migrate in response to mechanical stimuli of the substrate they adhere to. Motion towards regions of the substrate with higher stiffness is called durotaxis, while motion guided by the stress or the deformation of the substrate itself is called tensotaxis. Unlike chemotaxis (i.e. the motion in response to a chemical stimulus), these migratory processes are not yet fully understood from a biological point of view. In this respect, we present a mathematical model of single-cell migration in response to mechanical stimuli, in order to simulate these two processes. Specifically, the cell moves by changing its direction of polarization and its motility according to material properties of the substrate (e.g., stiffness) or in response to proper scalar measures of the substrate strain or stress. The equations of motion of the cell are non-local integro-differential equations, with the addition of a stochastic term to account for random Brownian motion. The mechanical stimulus to be integrated in the equations of motion is defined according to experimental measurements found in literature, in the case of durotaxis. Conversely, in the case of tensotaxis, substrate strain and stress are given by the solution of the mechanical problem, assuming that the extracellular matrix behaves as a hyperelastic Yeoh's solid. In both cases, the proposed model is validated through numerical simulations that qualitatively reproduce different experimental scenarios.
Collapse
Affiliation(s)
- Roberto Marchello
- Mathematics Area, SISSA (International School for Advanced Studies), Via Bonomea 265, Trieste, 34136, Italy
| | - Annachiara Colombi
- Department of Mathematical Sciences G. L. Lagrange, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences G. L. Lagrange, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Chiara Giverso
- Department of Mathematical Sciences G. L. Lagrange, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy.
| |
Collapse
|
5
|
Yang F, Chen P, Jiang H, Xie T, Shao Y, Kim DH, Li B, Sun Y. Directional Cell Migration Guided by a Strain Gradient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302404. [PMID: 37735983 PMCID: PMC11467785 DOI: 10.1002/smll.202302404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Strain gradients widely exist in development and physiological activities. The directional movement of cells is essential for proper cell localization, and directional cell migration in responses to gradients of chemicals, rigidity, density, and topography of extracellular matrices have been well-established. However; it is unclear whether strain gradients imposed on cells are sufficient to drive directional cell migration. In this work, a programmable uniaxial cell stretch device is developed that creates controllable strain gradients without changing substrate stiffness or ligand distributions. It is demonstrated that over 60% of the single rat embryonic fibroblasts migrate toward the lower strain side in static and the 0.1 Hz cyclic stretch conditions at ≈4% per mm strain gradients. It is confirmed that such responses are distinct from durotaxis or haptotaxis. Focal adhesion analysis confirms higher rates of contact area and protrusion formation on the lower strain side of the cell. A 2D extended motor-clutch model is developed to demonstrate that the strain-introduced traction force determines integrin fibronectin pairs' catch-release dynamics, which drives such directional migration. Together, these results establish strain gradient as a novel cue to regulate directional cell migration and may provide new insights in development and tissue repairs.
Collapse
Affiliation(s)
- Feiyu Yang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pengcheng Chen
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Han Jiang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Tianfa Xie
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bo Li
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
6
|
Borgonovo J, Allende-Castro C, Medinas DB, Cárdenas D, Cuevas MP, Hetz C, Concha ML. Immunohistochemical characterisation of the adult Nothobranchius furzeri intestine. Cell Tissue Res 2024; 395:21-38. [PMID: 38015266 DOI: 10.1007/s00441-023-03845-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Nothobranchius furzeri is emerging as an exciting vertebrate organism in the field of biomedicine, developmental biology and ecotoxicology research. Its short generation time, compressed lifespan and accelerated ageing make it a versatile model for longitudinal studies with high traceability. Although in recent years the use of this model has increased enormously, there is still little information on the anatomy, morphology and histology of its main organs. In this paper, we present a description of the digestive system of N. furzeri, with emphasis on the intestine. We note that the general architecture of the intestinal tissue is shared with other vertebrates, and includes a folding mucosa, an outer muscle layer and a myenteric plexus. By immunohistochemical analysis, we reveal that the mucosa harbours the same type of epithelial cells observed in mammals, including enterocytes, goblet cells and enteroendocrine cells, and that the myenteric neurons express neurotransmitters common to other species, such as serotonin, substance P and tyrosine hydroxylase. In addition, we detect the presence of a proliferative compartment at the base of the intestinal folds. The description of the normal intestinal morphology provided here constitutes a baseline information to contrast with tissue alterations in future lines of research assessing pathologies, ageing-related diseases or damage caused by toxic agents.
Collapse
Affiliation(s)
- Janina Borgonovo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Camilo Allende-Castro
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Danilo B Medinas
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Deyanira Cárdenas
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Medical Technology School, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Paz Cuevas
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Medical Technology School, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Miguel L Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Biomedical Neuroscience Institute, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
7
|
Vásquez-Sepúlveda S, Guerrero N, Lemus CG, Meynard M, Cerda M, Concha ML, Bertocchi C, Ravasio A. Protocol for extracting live blastoderm cells from embryos of annual killifish. STAR Protoc 2023; 4:102344. [PMID: 37352104 PMCID: PMC10320274 DOI: 10.1016/j.xpro.2023.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 06/25/2023] Open
Abstract
The implementation of in vitro approaches using undifferentiated embryonic cells from annual killifish to complement existing in vivo developmental studies has been hindered by a lack of efficient isolation techniques. Here, we present a protocol to isolate annual killifish blastoderm cells, at the epiboly and early dispersion phase, from embryos. We describe steps for hair removal, embryo cleaning, dechorionation, and cell purification. This protocol may also be used to develop strategies to isolate cells from embryos presenting similar challenges.
Collapse
Affiliation(s)
- Sebastian Vásquez-Sepúlveda
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology Pontificia Universidad Católica de Chile, Santiago 8320165, Chile
| | - Nestor Guerrero
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Biomedical Neuroscience Institute, Santiago 8380453, Chile
| | - Carmen Gloria Lemus
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Biomedical Neuroscience Institute, Santiago 8380453, Chile
| | - Margarita Meynard
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Biomedical Neuroscience Institute, Santiago 8380453, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago 8380453, Chile
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Biomedical Neuroscience Institute, Santiago 8380453, Chile
| | - Miguel Luis Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Biomedical Neuroscience Institute, Santiago 8380453, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago 8380453, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology Pontificia Universidad Católica de Chile, Santiago 8320165, Chile; Graduate School of Engineering Science, Osaka University, Osaka 565-0871, Japan.
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| |
Collapse
|
8
|
Pérez-Verdugo F, Soto R. Continuum description of confluent tissues with spatial heterogeneous activity. SOFT MATTER 2023; 19:6501-6512. [PMID: 37581478 DOI: 10.1039/d3sm00254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A continuum description is built to characterize the stationary and transient deformations of confluent tissues subject to heterogeneous activities. By defining a coarse-grained texture matrix field to represent the shape and size of cells, we derive the coarse-grained stress tensor for the vertex model. Activity in the tissue takes the form of inhomogeneous apical contractions, which can be modeled as reductions of the vertex model reference areas or perimeters representing activity in the medial and perimeter regions of the cells, respectively. For medial activity, the extra stress is just an isotropic pressure, while for perimeter activity, it also has a deviatoric component, which is aligned with the texture matrix. The predictions of the continuum description are compared with the average spatiotemporal deformations obtained in simulations of the vertex model subject to localized apical contractions, showing an excellent agreement, even if the active patch is as small as one cell. The fluctuations around the average are more prominent when the activity is in the medial region due to the lack of negative active shape feedback, which, coupled with the confluent property, increases cellular shape and size variations.
Collapse
Affiliation(s)
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Montenegro-Rojas I, Yañez G, Skog E, Guerrero-Calvo O, Andaur-Lobos M, Dolfi L, Cellerino A, Cerda M, Concha ML, Bertocchi C, Rojas NO, Ravasio A, Rudge TJ. A computational framework for testing hypotheses of the minimal mechanical requirements for cell aggregation using early annual killifish embryogenesis as a model. Front Cell Dev Biol 2023; 11:959611. [PMID: 37020464 PMCID: PMC10067630 DOI: 10.3389/fcell.2023.959611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: Deciphering the biological and physical requirements for the outset of multicellularity is limited to few experimental models. The early embryonic development of annual killifish represents an almost unique opportunity to investigate de novo cellular aggregation in a vertebrate model. As an adaptation to seasonal drought, annual killifish employs a unique developmental pattern in which embryogenesis occurs only after undifferentiated embryonic cells have completed epiboly and dispersed in low density on the egg surface. Therefore, the first stage of embryogenesis requires the congregation of embryonic cells at one pole of the egg to form a single aggregate that later gives rise to the embryo proper. This unique process presents an opportunity to dissect the self-organizing principles involved in early organization of embryonic stem cells. Indeed, the physical and biological processes required to form the aggregate of embryonic cells are currently unknown. Methods: Here, we developed an in silico, agent-based biophysical model that allows testing how cell-specific and environmental properties could determine the aggregation dynamics of early Killifish embryogenesis. In a forward engineering approach, we then proceeded to test two hypotheses for cell aggregation (cell-autonomous and a simple taxis model) as a proof of concept of modeling feasibility. In a first approach (cell autonomous system), we considered how intrinsic biophysical properties of the cells such as motility, polarity, density, and the interplay between cell adhesion and contact inhibition of locomotion drive cell aggregation into self-organized clusters. Second, we included guidance of cell migration through a simple taxis mechanism to resemble the activity of an organizing center found in several developmental models. Results: Our numerical simulations showed that random migration combined with low cell-cell adhesion is sufficient to maintain cells in dispersion and that aggregation can indeed arise spontaneously under a limited set of conditions, but, without environmental guidance, the dynamics and resulting structures do not recapitulate in vivo observations. Discussion: Thus, an environmental guidance cue seems to be required for correct execution of early aggregation in early killifish development. However, the nature of this cue (e.g., chemical or mechanical) can only be determined experimentally. Our model provides a predictive tool that could be used to better characterize the process and, importantly, to design informed experimental strategies.
Collapse
Affiliation(s)
- Ignacio Montenegro-Rojas
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Yañez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Skog
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar Guerrero-Calvo
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Andaur-Lobos
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luca Dolfi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Alessandro Cellerino
- BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina. Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Medical Informatics and Telemedicine, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Facultad de Medicina. Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology Pontificia Universidad Católica de Chile, Santiago, Chile
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Nicolás O. Rojas
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Timothy J. Rudge
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences. Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210264. [PMID: 36252221 PMCID: PMC9574637 DOI: 10.1098/rstb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Teleost eggs have evolved a highly derived early developmental pattern within vertebrates as a result of the meroblastic cleavage pattern, giving rise to a polar stratified architecture containing a large acellular yolk and a small cellular blastoderm on top. Besides the acellular yolk, the teleost-specific yolk syncytial layer (YSL) and the superficial epithelial enveloping layer are recognized as extraembryonic structures that play critical roles throughout embryonic development. They provide enriched microenvironments in which molecular feedback loops, cellular interactions and mechanical signals emerge to sculpt, among other things, embryonic patterning along the dorsoventral and left-right axes, mesendodermal specification and the execution of morphogenetic movements in the early embryo and during organogenesis. An emerging concept points to a critical role of extraembryonic structures in reinforcing early genetic and morphogenetic programmes in reciprocal coordination with the embryonic blastoderm, providing the necessary boundary conditions for development to proceed. In addition, the role of the enveloping cell layer in providing mechanical, osmotic and immunological protection during early stages of development, and the autonomous nutritional support provided by the yolk and YSL, have probably been key aspects that have enabled the massive radiation of teleosts to colonize every ecological niche on the Earth. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Santiago 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 7800003, Chile
| |
Collapse
|
11
|
Koyama H, Suzuki M, Yasue N, Sasaki H, Ueno N, Fujimori T. Differential Cellular Stiffness Contributes to Tissue Elongation on an Expanding Surface. Front Cell Dev Biol 2022; 10:864135. [PMID: 35425767 PMCID: PMC9001851 DOI: 10.3389/fcell.2022.864135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Pattern formation and morphogenesis of cell populations is essential for successful embryogenesis. Steinberg proposed the differential adhesion hypothesis, and differences in cell–cell adhesion and interfacial tension have proven to be critical for cell sorting. Standard theoretical models such as the vertex model consider not only cell–cell adhesion/tension but also area elasticity of apical cell surfaces and viscous friction forces. However, the potential contributions of the latter two parameters to pattern formation and morphogenesis remain to be determined. In this theoretical study, we analyzed the effect of both area elasticity and the coefficient of friction on pattern formation and morphogenesis. We assumed the presence of two cell populations, one population of which is surrounded by the other. Both populations were placed on the surface of a uniformly expanding environment analogous to growing embryos, in which friction forces are exerted between cell populations and their expanding environment. When the area elasticity or friction coefficient in the cell cluster was increased relative to that of the surrounding cell population, the cell cluster was elongated. In comparison with experimental observations, elongation of the notochord in mice is consistent with the hypothesis based on the difference in area elasticity but not the difference in friction coefficient. Because area elasticity is an index of cellular stiffness, we propose that differential cellular stiffness may contribute to tissue elongation within an expanding environment.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology (Div. Embryology, NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Makoto Suzuki
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.,Division of Morphogenesis, National Institute for Basic Biology (Div. Morphogenesis, NIBB), Okazaki, Japan.,Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University (ARC, Hiroshima Univ.), Higashihiroshima, Japan
| | - Naoko Yasue
- Division of Morphogenesis, National Institute for Basic Biology (Div. Morphogenesis, NIBB), Okazaki, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University (FBS, Osaka Univ.), Suita, Japan
| | - Naoto Ueno
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan.,Division of Morphogenesis, National Institute for Basic Biology (Div. Morphogenesis, NIBB), Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology (Div. Embryology, NIBB), Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| |
Collapse
|
12
|
Fulton T, Verd B, Steventon B. The unappreciated generative role of cell movements in pattern formation. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211293. [PMID: 35601454 PMCID: PMC9043703 DOI: 10.1098/rsos.211293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms underpinning the formation of patterned cellular landscapes has been the subject of extensive study as a fundamental problem of developmental biology. In most cases, attention has been given to situations in which cell movements are negligible, allowing researchers to focus on the cell-extrinsic signalling mechanisms, and intrinsic gene regulatory interactions that lead to pattern emergence at the tissue level. However, in many scenarios during development, cells rapidly change their neighbour relationships in order to drive tissue morphogenesis, while also undergoing patterning. To draw attention to the ubiquity of this problem and propose methodologies that will accommodate morphogenesis into the study of pattern formation, we review the current approaches to studying pattern formation in both static and motile cellular environments. We then consider how the cell movements themselves may contribute to the generation of pattern, rather than hinder it, with both a species specific and evolutionary viewpoint.
Collapse
Affiliation(s)
- Timothy Fulton
- Department of Genetics, University of Cambridge, Cambridge, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
13
|
Monnot P, Gangatharan G, Baraban M, Pottin K, Cabrera M, Bonnet I, Breau MA. Intertissue mechanical interactions shape the olfactory circuit in zebrafish. EMBO Rep 2022; 23:e52963. [PMID: 34889034 PMCID: PMC8811657 DOI: 10.15252/embr.202152963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
While the chemical signals guiding neuronal migration and axon elongation have been extensively studied, the influence of mechanical cues on these processes remains poorly studied in vivo. Here, we investigate how mechanical forces exerted by surrounding tissues steer neuronal movements and axon extension during the morphogenesis of the olfactory placode in zebrafish. We mainly focus on the mechanical contribution of the adjacent eye tissue, which develops underneath the placode through extensive evagination and invagination movements. Using quantitative analysis of cell movements and biomechanical manipulations, we show that the developing eye exerts lateral traction forces on the olfactory placode through extracellular matrix, mediating proper morphogenetic movements and axon extension within the placode. Our data shed new light on the key participation of intertissue mechanical interactions in the sculpting of neuronal circuits.
Collapse
Affiliation(s)
- Pauline Monnot
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Institut CurieUniversité PSLSorbonne UniversitéCNRS UMR168Laboratoire Physico Chimie CurieParisFrance
- Laboratoire Jean PerrinParisFrance
| | - Girisaran Gangatharan
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Marion Baraban
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Laboratoire Jean PerrinParisFrance
| | - Karen Pottin
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Melody Cabrera
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
| | - Isabelle Bonnet
- Institut CurieUniversité PSLSorbonne UniversitéCNRS UMR168Laboratoire Physico Chimie CurieParisFrance
| | - Marie Anne Breau
- Centre National de la Recherche Scientifique (CNRS)Institut de Biologie Paris‐Seine (IBPS)Developmental Biology LaboratorySorbonne UniversitéParisFrance
- Laboratoire Jean PerrinParisFrance
- Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance
| |
Collapse
|
14
|
Pérez-Verdugo F, Reig G, Cerda M, Concha ML, Soto R. Geometrical characterization of active contraction pulses in epithelial cells using the two-dimensional vertex model. J R Soc Interface 2022; 19:20210851. [PMID: 35078339 PMCID: PMC8790349 DOI: 10.1098/rsif.2021.0851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 01/28/2023] Open
Abstract
Several models have been proposed to describe the dynamics of epithelial tissues undergoing morphogenetic changes driven by apical constriction pulses, which differ in where the constriction is applied, either at the perimeter or in the medial regions. To help discriminate between these models, we analyse the impact of where constriction is applied on the final geometry of the active contracted cell, using the two-dimensional vertex model. We find that medial activity, characterized by a reduction in the reference area, generates anisotropic cell shapes, whereas isotropic cell shapes are produced when the reference perimeter is reduced. When plasticity is included, sufficiently slow processes of medial contractile activity, compared with the characteristic times of elasticity and plasticity, cells can achieve less elongated shapes. Similarly, for perimeter activity, the highest level of contraction is achieved. Finally, we apply the model to describe the apical contractile pulses observed within the epithelial enveloping cell layer during the pre-epiboly of the annual killifish Austrolebias nigripinnis. The analysis of the cell shape changes allowed a global fit of all parameters of the vertex model, with the pulses being quantitatively captured using perimeter activity and area plasticity.
Collapse
Affiliation(s)
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Mauricio Cerda
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile
- Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
- Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel L. Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile
- Biomedical Neuroscience Institute, Independencia 1027, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Pulgar E, Schwayer C, Guerrero N, López L, Márquez S, Härtel S, Soto R, Heisenberg CP, Concha ML. Apical contacts stemming from incomplete delamination guide progenitor cell allocation through a dragging mechanism. eLife 2021; 10:66483. [PMID: 34448451 PMCID: PMC8460252 DOI: 10.7554/elife.66483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
The developmental strategies used by progenitor cells to allow a safe journey from their induction place towards the site of terminal differentiation are still poorly understood. Here, we uncovered a mechanism of progenitor cell allocation that stems from an incomplete process of epithelial delamination that allows progenitors to coordinate their movement with adjacent extra-embryonic tissues. Progenitors of the zebrafish laterality organ originate from the superficial epithelial enveloping layer by an apical constriction process of cell delamination. During this process, progenitors retain long-lasting apical contacts that enable the epithelial layer to pull a subset of progenitors on their way to the vegetal pole. The remaining delaminated cells follow the movement of apically attached progenitors by a protrusion-dependent cell-cell contact mechanism, avoiding sequestration by the adjacent endoderm, ensuring their collective fate and allocation at the site of differentiation. Thus, we reveal that incomplete delamination serves as a cellular platform for coordinated tissue movements during development.
Collapse
Affiliation(s)
- Eduardo Pulgar
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Cornelia Schwayer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Néstor Guerrero
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Loreto López
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Susana Márquez
- Physics Department, FCFM, Universidad de Chile, Santiago, Chile
| | - Steffen Härtel
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,National Center for Health Information Systems, CENS, Santiago, Chile
| | - Rodrigo Soto
- Physics Department, FCFM, Universidad de Chile, Santiago, Chile
| | | | - Miguel L Concha
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
16
|
All Roads Lead to Directional Cell Migration. Trends Cell Biol 2020; 30:852-868. [PMID: 32873438 DOI: 10.1016/j.tcb.2020.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023]
Abstract
Directional cell migration normally relies on a variety of external signals, such as chemical, mechanical, or electrical, which instruct cells in which direction to move. Many of the major molecular and physical effects derived from these cues are now understood, leading to questions about whether directional cell migration is alike or distinct under these different signals, and how cells might be directed by multiple simultaneous cues, which would be expected in complex in vivo environments. In this review, we compare how different stimuli are spatially distributed, often as gradients, to direct cell movement and the mechanisms by which they steer cells. A comparison of the downstream effectors of directional cues suggests that different external signals regulate a common set of components: small GTPases and the actin cytoskeleton, which implies that the mechanisms downstream of different signals are likely to be closely related and underlies the idea that cell migration operates by a common set of physical principles, irrespective of the input.
Collapse
|
17
|
Koyama H, Fujimori T. Isotropic expansion of external environment induces tissue elongation and collective cell alignment. J Theor Biol 2020; 496:110248. [PMID: 32275986 DOI: 10.1016/j.jtbi.2020.110248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 12/01/2022]
Abstract
Cell movement is crucial for morphogenesis in multicellular organisms. Growing embryos or tissues often expand isotropically, i.e., uniformly, in all dimensions. On the surfaces of these expanding environments, which we call "fields," cells are subjected to frictional forces and move passively in response. However, the potential roles of isotropically expanding fields in morphogenetic events have not been investigated well. Our previous mathematical simulations showed that a tissue was elongated on an isotropically expanding field (Imuta et al., 2014). However, the underlying mechanism remains unclarified, and how cells behave during tissue elongation was not investigated. In this study, we mathematically analyzed the effect of isotropically expanding fields using a vertex model, a standard type of multi-cellular model. We found that cells located on fields were elongated along a similar direction each other and exhibited a columnar configuration with nearly single-cell width. Simultaneously, it was confirmed that the cell clusters were also elongated, even though field expansion was absolutely isotropic. We then investigated the mechanism underlying these counterintuitive phenomena. In particular, we asked whether the dynamics of elongation was predominantly determined by the properties of the field, the cell cluster, or both. Theoretical analyses involving simplification of the model revealed that cell clusters have an intrinsic ability to asymmetrically deform, leading to their elongation. Importantly, this ability is effective only under the non-equilibrium conditions provided by field expansion. This may explain the elongation of the notochord, located on the surface of the growing mouse embryo. We established the mechanism underlying tissue elongation induced by isotropically expanding external environments, and its involvement in collective cell alignment with cell elongation, providing key insight into morphogenesis involving multiple adjacent tissues.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Japan.
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Japan
| |
Collapse
|
18
|
Jara-Wilde J, Castro I, Lemus CG, Palma K, Valdés F, Castañeda V, Hitschfeld N, Concha ML, Härtel S. Optimising adjacent membrane segmentation and parameterisation in multicellular aggregates by piecewise active contours. J Microsc 2020; 278:59-75. [PMID: 32141623 DOI: 10.1111/jmi.12887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/30/2019] [Accepted: 03/04/2020] [Indexed: 11/28/2022]
Abstract
In fluorescence microscopy imaging, the segmentation of adjacent cell membranes within cell aggregates, multicellular samples, tissue, organs, or whole organisms remains a challenging task. The lipid bilayer is a very thin membrane when compared to the wavelength of photons in the visual spectra. Fluorescent molecules or proteins used for labelling membranes provide a limited signal intensity, and light scattering in combination with sample dynamics during in vivo imaging lead to poor or ambivalent signal patterns that hinder precise localisation of the membrane sheets. In the proximity of cells, membranes approach and distance each other. Here, the presence of membrane protrusions such as blebs; filopodia and lamellipodia; microvilli; or membrane vesicle trafficking, lead to a plurality of signal patterns, and the accurate localisation of two adjacent membranes becomes difficult. Several computational methods for membrane segmentation have been introduced. However, few of them specifically consider the accurate detection of adjacent membranes. In this article we present ALPACA (ALgorithm for Piecewise Adjacent Contour Adjustment), a novel method based on 2D piecewise parametric active contours that allows: (i) a definition of proximity for adjacent contours, (ii) a precise detection of adjacent, nonadjacent, and overlapping contour sections, (iii) the definition of a polyline for an optimised shared contour within adjacent sections and (iv) a solution for connecting adjacent and nonadjacent sections under the constraint of preserving the inherent cell morphology. We show that ALPACA leads to a precise quantification of adjacent and nonadjacent membrane zones in regular hexagons and live image sequences of cells of the parapineal organ during zebrafish embryo development. The algorithm detects and corrects adjacent, nonadjacent, and overlapping contour sections within a selected adjacency distance d, calculates shared contour sections for neighbouring cells with minimum alterations of the contour characteristics, and presents piecewise active contour solutions, preserving the contour shape and the overall cell morphology. ALPACA quantifies adjacent contours and can improve the meshing of 3D surfaces, the determination of forces, or tracking of contours in combination with previously published algorithms. We discuss pitfalls, strengths, and limits of our approach, and present a guideline to take the best decision for varying experimental conditions for in vivo microscopy.
Collapse
Affiliation(s)
- J Jara-Wilde
- Departamento de Ciencias de la Computación, FCFM, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - I Castro
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile
| | - C G Lemus
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile
| | - K Palma
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile
| | - F Valdés
- Biomedical Neuroscience Institute, Santiago, Chile.,Escuela de Tecnología Médica, FMed, Universidad de Chile, Santiago, Chile
| | - V Castañeda
- Departamento de Tecnología Médica, FMed, Universidad de Chile, Santiago, Chile
| | - N Hitschfeld
- Departamento de Ciencias de la Computación, FCFM, Universidad de Chile, Santiago, Chile
| | - M L Concha
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - S Härtel
- Biomedical Neuroscience Institute, Santiago, Chile.,Programa de Anatomía y Biología del Desarrollo, ICBM, FMed, Universidad de Chile, Santiago, Chile.,Centro de Informática Médica y Telemedicina, FMed, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Dolfi L, Ripa R, Antebi A, Valenzano DR, Cellerino A. Cell cycle dynamics during diapause entry and exit in an annual killifish revealed by FUCCI technology. EvoDevo 2019; 10:29. [PMID: 31728179 PMCID: PMC6842169 DOI: 10.1186/s13227-019-0142-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Annual killifishes are adapted to surviving and reproducing over alternating dry and wet seasons. During the dry season, all adults die and desiccation-resistant embryos remain encased in dry mud for months or years in a state of diapause where their development is halted in anticipation of the months that have to elapse before their habitats are flooded again. Embryonic development of annual killifishes deviates from canonical teleost development. Epiblast cells disperse during epiboly, and a “dispersed phase” precedes gastrulation. In addition, annual fish have the ability to enter diapause and block embryonic development at the dispersed phase (diapause I), mid-somitogenesis (diapause II) and the final phase of development (diapause III). Developmental transitions associated with diapause entry and exit can be linked with cell cycle events. Here we set to image this transition in living embryos. Results To visibly explore cell cycle dynamics during killifish development in depth, we created a stable transgenic line in Nothobranchius furzeri that expresses two fluorescent reporters, one for the G1 phase and one for the S/G2 phases of the cell cycle, respectively (Fluorescent Ubiquitination-based Cell Cycle Indicator, FUCCI). Using this tool, we observed that, during epiboly, epiblast cells progressively become quiescent and exit the cell cycle. All embryos transit through a phase where dispersed cells migrate, without showing any mitotic activity, possibly blocked in the G1 phase (diapause I). Thereafter, exit from diapause I is synchronous and cells enter directly into the S phase without transiting through G1. The developmental trajectories of embryos entering diapause and of those that continue to develop are different. In particular, embryos entering diapause have reduced growth along the medio-lateral axis. Finally, exit from diapause II is synchronous for all cells and is characterized by a burst of mitotic activity and growth along the medio-lateral axis such that, by the end of this phase, the morphology of the embryos is identical to that of direct-developing embryos. Conclusions Our study reveals surprising levels of coordination of cellular dynamics during diapause and provides a reference framework for further developmental analyses of this remarkable developmental quiescent state.
Collapse
Affiliation(s)
- Luca Dolfi
- 1Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Roberto Ripa
- 2Bio@SNS, Scuola Normale Superiore, Pisa, Italy.,4Present Address: Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- 1Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | | | - Alessandro Cellerino
- 2Bio@SNS, Scuola Normale Superiore, Pisa, Italy.,3Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
20
|
Torres-Paz J, Leclercq J, Rétaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. eLife 2019; 8:50160. [PMID: 31670659 PMCID: PMC6874477 DOI: 10.7554/elife.50160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022] Open
Abstract
Sequential developmental events, starting from the moment of fertilization, are crucial for the acquisition of animal body plan. Subtle modifications in such early events are likely to have major impacts in later morphogenesis, bringing along morphological diversification. Here, comparing the blind cave and the surface morphotypes of Astyanax mexicanus fish, we found heterochronies during gastrulation that produce organizer and axial mesoderm tissues with different properties (including differences in the expression of dkk1b) that may have contributed to cavefish brain evolution. These variations observed during gastrulation depend fully on maternal factors. The developmental evolution of retinal morphogenesis and hypothalamic patterning are among those traits that retained significant maternal influence at larval stages. Transcriptomic analysis of fertilized eggs from both morphotypes and reciprocal F1 hybrids showed a strong and specific maternal signature. Our work strongly suggests that maternal effect genes and developmental heterochronies that occur during gastrulation have impacted morphological brain change during cavefish evolution.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Márquez S, Reig G, Concha M, Soto R. Cell migration driven by substrate deformation gradients. Phys Biol 2019; 16:066001. [PMID: 31394510 DOI: 10.1088/1478-3975/ab39c7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Identifying the cues followed by cells is key to understand processes as embryonic development, tissue homeostasis, or several pathological conditions. Based on a durotaxis model, it is shown that cells moving on predeformed thin elastic membrane follow the direction of increasing strain of the substrate. This mechanism, straintaxis, does not distinguish the origin of the strain, but the active stresses produce large strains on cells or tissues being used as substrates. Hence, straintaxis is the natural realization of duratoaxis in vivo. Considering a circular geometry for the substrate cells, it is shown that if the annular component of the active stress component increases with the radial distance, cells migrate toward the substrate cell borders. With appropriate estimation for the different parameters, the migration speeds are similar to those obtained in recent experiments (Reig et al 2017 Nat. Commun. 8 15431). In these, during the annual killifish epiboly, deep cells that move in contact with the epithelial enveloping cell layer (EVL), migrate toward the EVL cell borders with speeds of microns per minute.
Collapse
Affiliation(s)
- Susana Márquez
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Schliffka MF, Maître JL. Stay hydrated: basolateral fluids shaping tissues. Curr Opin Genet Dev 2019; 57:70-77. [DOI: 10.1016/j.gde.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/15/2019] [Accepted: 06/21/2019] [Indexed: 01/29/2023]
|
23
|
Sampedro MF, Izaguirre MF, Sigot V. E-cadherin expression pattern during zebrafish embryonic epidermis development. F1000Res 2019; 7:1489. [PMID: 30473778 PMCID: PMC6234749 DOI: 10.12688/f1000research.15932.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background: E-cadherin is the major adhesion receptor in epithelial adherens junctions (AJs). On established epidermis, E-cadherin performs fine-tuned cell-cell contact remodeling to maintain tissue integrity, which is characterized by modulation of cell shape, size and packing density. In zebrafish, the organization and distribution of E-cadherin in AJs during embryonic epidermis development remain scarcely described. Methods: Combining classical immunofluorescence, deconvolution microscopy and 3D-segmentation of AJs in epithelial cells, a quantitative approach was implemented to assess the spatial and temporal distribution of E-cadherin across zebrafish epidermis between 24 and 72 hpf. Results: increasing levels of E-cadh protein parallel higher cell density and the appearance of hexagonal cells in the enveloping layer (EVL) as well as the establishments of new cell-cell contacts in the epidermal basal layer (EBL), being significantly between 31 and 48 hpf
. Conclusions: Increasing levels of E-cadherin in AJs correlates with extensive changes in cell morphology towards hexagonal packing during the epidermis morphogenesis.
Collapse
Affiliation(s)
- María Florencia Sampedro
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina.,Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET- Universidad Nacional de Entre Ríos), Oro Verde, 3100, Argentina
| | - María Fernanda Izaguirre
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina
| | - Valeria Sigot
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, 3100, Argentina.,Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET- Universidad Nacional de Entre Ríos), Oro Verde, 3100, Argentina
| |
Collapse
|
24
|
Mendieta-Serrano MA, Mendez-Cruz FJ, Antúnez-Mojica M, Schnabel D, Alvarez L, Cárdenas L, Lomelí H, Ruiz-Santiesteban JA, Salas-Vidal E. NADPH-Oxidase-derived reactive oxygen species are required for cytoskeletal organization, proper localization of E-cadherin and cell motility during zebrafish epiboly. Free Radic Biol Med 2019; 130:82-98. [PMID: 30342187 DOI: 10.1016/j.freeradbiomed.2018.10.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Cell movements are essential for morphogenesis during animal development. Epiboly is the first morphogenetic process in zebrafish in which cells move en masse to thin and spread the deep and enveloping cell layers of the blastoderm over the yolk cell. While epiboly has been shown to be controlled by complex molecular networks, the contribution of reactive oxygen species (ROS) to this process has not previously been studied. Here, we show that ROS are required for epiboly in zebrafish. Visualization of ROS in whole embryos revealed dynamic patterns during epiboly progression. Significantly, inhibition of NADPH oxidase activity leads to a decrease in ROS formation, delays epiboly, alters E-cadherin and cytoskeleton patterns and, by 24 h post-fertilization, decreases embryo survival, effects that are rescued by hydrogen peroxide treatment. Our findings suggest that a delicate ROS balance is required during early development and that disruption of that balance interferes with cell adhesion, leading to defective cell motility and epiboly progression.
Collapse
Affiliation(s)
| | | | - Mayra Antúnez-Mojica
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Denhi Schnabel
- Departamento de Genética del Desarrollo y Fisiología Molecular, Mexico
| | - Laura Alvarez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad #2001, Colonia Chamilpa, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Mexico
| | | | | |
Collapse
|
25
|
LaFlamme A, Young KE, Lang I, Weiser DC. Alternative splicing of (ppp1r12a/mypt1) in zebrafish produces a novel myosin phosphatase targeting subunit. Gene 2018; 675:15-26. [PMID: 29960069 PMCID: PMC6123272 DOI: 10.1016/j.gene.2018.06.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 01/04/2023]
Abstract
Myosin phosphatase is an evolutionarily conserved regulator of actomyosin contractility, comprised of a regulatory subunit (Mypt1), and a catalytic subunit (PP1). Zebrafish has become an ideal model organism for the study of the genetic and cell physiological role of the myosin phosphatase in morphogenesis and embryonic development. We identified and characterized a novel splice variant of Mypt1 (ppp1r12a-tv202) from zebrafish, which is widely expressed during early embryonic development. Importantly, mutant alleles and antisense morpholinos that have been used to demonstrate the important role of Mypt1 in early development, not only disrupt the longer splice variants, but also tv202. The protein product of ppp1r12a-tv202 (Mypt1-202) contains the PP1-binding N-terminus, but lacks the regulatory C-terminus, which contains two highly conserved inhibitory phosphorylation sites. We observed that the protein product of tv202 assembled a constitutively active myosin phosphatase uninhibited by kinases such as Zipk. Thus, we propose that Mypt1-202 plays an important role in maintaining baseline Mlc2 dephosphorylation and actomyosin relaxation during early zebrafish development.
Collapse
Affiliation(s)
- Andrew LaFlamme
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Kyle E Young
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Irene Lang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA.
| |
Collapse
|
26
|
Bi J, Wang R, Zeng X. Lipid rafts regulate the lamellipodia formation of melanoma A375 cells via actin cytoskeleton-mediated recruitment of β1 and β3 integrin. Oncol Lett 2018; 16:6540-6546. [PMID: 30405793 PMCID: PMC6202517 DOI: 10.3892/ol.2018.9466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Lipid rafts, distinct liquid-ordered plasma membrane microdomains, have been shown to regulate tumor cell migration by internalizing and recycling cell-surface proteins. The present study reports that lipid rafts are a prerequisite for lamellipodia formation, which is the first step in the processes of tumor cell migration. The results from the wound-healing assay and immunostaining indicated that lipid rafts were asymmetrically distributed to the leading edge of migrating melanoma A375 cells during lamellipodia formation. When the integrity of lipids rafts was disrupted, lamellipodia formation was inhibited. The investigation of possible molecular mechanisms indicated that lipid rafts recruited β1 and β3 integrins, two important adhesion proteins for cell migration, to the lamellipodia. However, the different distribution characteristics of β1 and β3 integrins implied disparate functions in lamellipodia formation. Further immunostaining experiments showed that the actin cytoskeleton was responsible for lipid raft-mediated β1 and β3 integrin distribution in the lamellipodia. Together, these findings provide novel insights into the regulation of lipid rafts in lamellipodia formation, and suggest that lipid rafts may be novel and attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Jiajia Bi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ruifei Wang
- Key Laboratory for Microorganisms and Functional Molecules, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
27
|
Naumann B, Englert C. Dispersion/reaggregation in early development of annual killifishes: Phylogenetic distribution and evolutionary significance of a unique feature. Dev Biol 2018; 442:69-79. [PMID: 30040922 DOI: 10.1016/j.ydbio.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023]
Abstract
Annual killifishes are members of the Aplocheiloidea and live in ephemeral habitats that desiccate regularly during the dry season and refill during the rainy season. Populations of these fishes survive the dry season by producing drought-resistant diapausing eggs that are buried in the substrate. When the pool refills during the rainy season the juveniles hatch, grow rapidly and reproduce until the pool desiccates again during the next dry season. The association with such unpredictable habitats has led to the evolution to a variety of developmental adaptations such as a dispersed/reaggregation phase of the deep blastomeres, three possible diapause stages, extreme tolerance to high salinity and anoxia, an efficient DNA repair system and an extremely short life span. Here, we review the course of the dispersed/reaggregation phase, its evolution and phylogenetic distribution and diversity within the Aplocheiloidea. The phenomenon of blastomere dispersion/reaggregation in these fishes was first described in the 1960s and 70s. Blastomeres of most teleost fishes segregate into three groups that give rise to the enveloping cell layer, the yolk syncytial layer and the deep blastomeres that will form the embryo itself. When epiboly commences, the deep blastomeres form a more or less coherent cell sheet with a so called embryonic shield at it marginal zone marking the area where gastrulation takes place. In annual killifishes, the deep blastomeres segregate when epiboly starts and disperse when epiboly commences. After epiboly has been completed, the deep blastomeres are randomly distributed and migrate all over the enveloping cell layer. After several days they start to reaggregate and form the actual embryo that starts gastrulation. The evolutionary origin and mechanism behind this peculiar developmental pathway have puzzled developmental biologists for almost 50 years. However, several of these annual killifishes (Nothobranchius furzeri, Austrofundulus limnaeus, Austrolebias charrua and Austrolebias bellottii) have become model organisms in studies on developmental physiology, aging and stress tolerance. This has led to the establishment of modern genetic techniques such as transgenesis and cell fate mapping that are now used to tackle questions about the origin and mechanisms behind the dispersal/reaggregation phase.
Collapse
Affiliation(s)
- Benjamin Naumann
- Institute of Zoology and Evolutionary Research, Jena, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany.
| | - Christoph Englert
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany; Institute of Biochemistry and Biophysics, Jena, Germany
| |
Collapse
|