1
|
Wu Q, Xie Z, Cao X, Hu D, Sheng L, Guo X, Yan D, Ding C, Li C, Xiao J, Liu C, Wu K, Gong Y, Fan Q, Wang Q, Liu J, Liu Y. Chaihu-Shugan-San alleviates post-stroke depression in mice: Mechanistic insights into exosome-mediated neuroprotection. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119700. [PMID: 40154896 DOI: 10.1016/j.jep.2025.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Post-stroke depression (PSD) is common among stroke survivors and negatively impacts recovery. Chaihu-Shugan-San (CSS), a traditional Chinese medicine, has shown therapeutic potential for mood disorders, particularly PSD. Recent studies suggest that CSS's effects may be mediated by exosomes, but the mechanisms remain unclear. AIM OF STUDY This study aimed to evaluate the therapeutic effects of CSS on PSD in mice and investigate the underlying mechanisms, particularly the role of exosomes. MATERIALS AND METHODS Active compounds in CSS were identified from rat serum using liquid chromatography-mass spectrometry (LC-MS) and analyzed through network pharmacology. In vitro, an oxygen-glucose deprivation/reperfusion (OGD/R) BV2 microglia model was used to assess the effects of CSS-containing serum (CSS-S). Exosomes from OGD/R-treated BV2 microglia were isolated, labeled with PKH26, and analyzed using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). In vivo, a photothrombotic stroke (PT) model combined with chronic unpredictable mild stress (CUMS) was used to induce PSD in mice. Behavioral assessments and histological analysis were performed, along with immunofluorescence (IF), ELISA and q-PCR to measure key protein and miR-146 expression in the hippocampus. RESULTS CSS treatment significantly alleviated depressive-like behaviors in the PSD mouse model. Mice treated with high-dose CSS (4.2 g/kg) exhibited increased sucrose preference, reduced immobility in the tail suspension test (TST) and forced swimming test (FST), and enhanced exploratory activity in the open field test (OFT). Histological analysis demonstrated that CSS treatment improved brain tissue integrity, alleviating neuronal damage and reducing neuroinflammation. Exosome analysis revealed that CSS increased the expression of microglia-derived exosomes in the hippocampus, which were shown to carry miR-146. Further examination of miR-146 isoforms in the hippocampal tissue revealed significant changes: miR-146b-3p and miR-146a-5p were upregulated, while miR-146a-3p and miR-146b-5p were downregulated in PSD mice. Treatment with CSS reversed the altered miRNA expression, indicating a potential mechanism for its neuroprotective effects. Additionally, CSS treatment reduced the expression of inflammatory cytokines such as S100A8, IL1β, IL6, and TNF-α, while restoring the levels of angiogenic factors VEGFC and VEGFR3. ELISA measurements showed significant decreases in cyclic AMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline (NE) in PSD mice; high-dose CSS notably elevated CREB and BDNF levels and showed comparable effects to fluoxetine in restoring 5-HT and DA levels. Additionally, the calcium signaling pathway was implicated, with altered mRNA expressions of CaMKIIα, CREB, phosphorylated CREB (p-CREB), PDE4D, and BDNF, although fluoxetine demonstrated stronger modulatory effects than CSS. CONCLUSIONS CSS alleviates PSD in mice by modulating exosome-mediated signaling, particularly through the regulation of miR-146. The treatment reversed abnormal miRNA expression, reduced neuroinflammation, and improved synaptic function. These findings highlight CSS's potential as an effective therapeutic strategy for PSD by targeting exosome-mediated neuroprotection and miR-146 regulation.
Collapse
Affiliation(s)
- Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xinyue Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Dan Hu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Lei Sheng
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Xueyan Guo
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Dong Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Caixia Ding
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Chuanyou Li
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Jing Xiao
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Chunyu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Ke Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Yue Gong
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| | - Qiqi Fan
- Central Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jinman Liu
- Central Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529099, China.
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu, 210017, China.
| |
Collapse
|
2
|
Gyles T, Parise EM, Estill MS, Browne CJ, Shen L, Nestler EJ, Torres-Berrío A. Transcriptional Profiles in Nucleus Accumbens of Antidepressant Resistance in Chronically Stressed Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643727. [PMID: 40166343 PMCID: PMC11956914 DOI: 10.1101/2025.03.17.643727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Unsuccessful response to several courses of antidepressants is a core feature of treatment-resistant depression (TRD), a severe condition that affects a third of patients with depression treated with conventional pharmacotherapy. However, the molecular mechanisms underlying TRD remain poorly understood. Here, we assessed the successful vs. unsuccessful response to ketamine (KET) in chronically stressed mice that failed to respond to initial treatment with fluoxetine (FLX) as a rodent model of TRD and characterized the associated transcriptional profiles in the nucleus accumbens (NAc) using RNA-sequencing. We observed that failed treatment with FLX exerts a priming effect that promotes behavioral and transcriptional responses to subsequent ketamine treatment. We also identified specific gene networks that are linked to both susceptibility to stress and resistance to antidepressant response. Collectively, these findings offer valuable insights into the molecular mechanisms underlying antidepressant resistance and help address a critical gap in preclinical models of TRD.
Collapse
|
3
|
Cătană CS, Marta MM, Ungureanu D, Crișan CA. MicroRNAs: A Novel Approach for Monitoring Treatment Response in Major Depressive Disorder? Noncoding RNA 2025; 11:21. [PMID: 40126345 PMCID: PMC11932203 DOI: 10.3390/ncrna11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders, with an increasing incidence each year and an important socioeconomic burden. Although new treatments are continuously being developed, there is no effective monitoring method to determine the suitability of treatment and ensure positive outcomes. Therefore, patients often struggle with ineffective antidepressants and their potential adverse effects, which halts any future progress in managing the disorder. Considering the potential of microRNAs (miRNAs) as biomarkers for various pathologies and the increasing evidence of the modulation of several genes involved in MDD, this minireview aimed to evaluate the literature data on the impact of miRNAs in MDD and their usefulness in monitoring treatment response. The correlations between antidepressants and the expression of several miRNAs support the existence of a common epigenetic mechanism of antidepressants and explain the epigenetic differences influencing treatment efficacy in MDD.
Collapse
Affiliation(s)
- Cristina-Sorina Cătană
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Monica Mihaela Marta
- Department of Medical Education, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- “Prof. Dr. Ion Chiricuță” Institute of Oncology, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Cătălina-Angela Crișan
- Department of Psychiatry and Pediatric Psychiatry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
- First Psychiatric Clinic, Cluj County Emergency Hospital, 43 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Wang X, Gao M, Song J, Li M, Chen Y, Lv Y, Jia W, Wan B. Differential Expression of tRNA-Derived Small RNA Markers of Antidepressant Response and Functional Forecast of Duloxetine in MDD Patients. Genes (Basel) 2025; 16:162. [PMID: 40004491 PMCID: PMC11855652 DOI: 10.3390/genes16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Duloxetine, despite being a leading treatment option for major depressive disorder (MDD), exhibits a relatively low adequate response rate when used as a monotherapy, and the fundamental molecular mechanisms remain largely elusive. tRNA-derived small RNA (tsRNA) is a particularly interesting and new class of molecules that is becoming increasingly noticeable for investigation. METHODS We integrated small RNA sequencing with bioinformatics approaches to dissect the expression profiles of tsRNAs and decipher their functional roles post-duloxetine treatment. Subsequently, molecular docking experiments were carried out to validate the potential functions. RESULTS Ten tsRNAs significantly changed in the duloxetine response group after an 8-week therapy. Correlation analyses revealed that these tsRNAs predominantly interacted with miRNAs across multiple biological pathways and processes, such as the ECM-receptor interaction and B cell activation. Molecular docking analysis corroborated the binding capabilities of duloxetine with key proteins associated with ECM1 and BAFF, respectively. CONCLUSIONS The identified changes in tsRNAs can precisely mirror the response of duloxetine in MDD treatment, offering novel insights into the underlying mechanisms of duloxetine action.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.)
| | - Ming Gao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Song
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaolong Li
- School of Chemical Science and Engineering, Tongji University, Shanghai 200070, China
| | - Yu Chen
- Department of Clinical Medicine, He University, Shenyang 110163, China
| | - Yingfang Lv
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.)
| | - Wei Jia
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Bingbing Wan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; (X.W.)
| |
Collapse
|
5
|
Bright U, Akirav I. Cannabidiol Modulates Neuroinflammatory and Estrogen-Related Pathways in a Sex-Specific Manner in a Chronic Stress Model of Depression. Cells 2025; 14:99. [PMID: 39851527 PMCID: PMC11763596 DOI: 10.3390/cells14020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS). UCMS influenced immobility in a sex-specific manner, increasing it in males and decreasing it in females, effects that were reversed by CBD. CBD also normalized the UCMS-induced upregulation of tumor necrosis factor α (TNF-α) in the CA1 and VS in males. In both sexes, UCMS induced the upregulation of the nuclear factor kappa B subunit 1 (NF-κB1) gene in the VS, which was unaffected by CBD. Additionally, CBD reversed CB1 downregulation in the VS of males but not in the vmPFC of either sex. In males, CBD restored the UCMS-induced downregulation of VS estrogen receptor genes ERα and ERβ. UCMS also altered miR-146a-5p expression, downregulating it in females (VS) and upregulating it in males (CA1), with no CBD effect. These findings highlight the sex-specific mechanisms of CBD's antidepressant effect, with hippocampal neuroinflammatory and estrogenic pathways playing a key role in males.
Collapse
Affiliation(s)
- Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
6
|
Kachel M, Dola A, Kubiak M, Majewska W, Nowakowska J, Langwiński W, Hryhorowicz S, Szczepankiewicz A. MicroRNA Expression Profile Is Altered by Short-Term and Chronic Lithium Treatment in a Rat Model of Depression. J Mol Neurosci 2024; 74:116. [PMID: 39674983 DOI: 10.1007/s12031-024-02298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Depression is a common disease that affects 3.8% of the global population. Despite various antidepressant treatments, one-third of patients do not respond to antidepressants, therefore augmentation with mood stabilizers such as lithium may be required in this group. One of the suggested pathomechanisms of depression is the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and recent reports showed that microRNAs (miRNA) can impact its activity by epigenetic regulation. We aimed to explore the miRNA expression profile in the depression model and its changes upon short-term and chronic lithium treatment in the rat brain (pituitary, hypothalamus, and hippocampus). We used a chronic mild stress rat model of depression and short- and long-term lithium treatment. The behavior was assessed by an open-field test. The miRNA expression profile in the pituitary was estimated by sequencing and validated in the hypothalamus and hippocampus with qPCR. We found several miRNAs in the pituitary that were significantly altered between CMS-exposed and control rats as well as after short- and long-term lithium treatment. MicroRNAs chosen for validation in the hypothalamus and hippocampus (rno-miR-146a-5p, rno-miR-127-3p) showed no significant changes in expression. We performed in silico analysis and estimated potential pathways involved in lithium action for miRNAs differentially expressed in the pituitary at different time points. Specific microRNA subsets showed altered expression in the pituitary in depression model upon short- and long-term lithium treatment. We identified that biological pathways of target genes for these altered miRNAs differ, with the Foxo pathway potentially involved in disease development.
Collapse
Affiliation(s)
- Maria Kachel
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Dola
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Mikołaj Kubiak
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Majewska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Nowakowska
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | | | | |
Collapse
|
7
|
Khoodoruth MAS, Khoodoruth WNCK, Uroos M, Al-Abdulla M, Khan YS, Mohammad F. Diagnostic and mechanistic roles of MicroRNAs in neurodevelopmental & neurodegenerative disorders. Neurobiol Dis 2024; 202:106717. [PMID: 39461569 DOI: 10.1016/j.nbd.2024.106717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/15/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
MicroRNAs (miRNAs) are emerging as crucial elements in the regulation of gene expression, playing a significant role in the underlying neurobiology of a wide range of neuropsychiatric disorders. This review examines the intricate involvement of miRNAs in neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Fragile X syndrome (FXS), autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), Tourette syndrome (TS), schizophrenia (SCZ), and mood disorders. This review highlights how miRNA dysregulation can illuminate the molecular pathways of these diseases and potentially serve as biomarkers for early diagnosis and prognosis. Specifically, miRNAs' ability to target genes critical to the pathology of neurodegenerative diseases, their role in the development of trinucleotide repeat and neurodevelopmental disorders, and their distinctive patterns in SCZ and mood disorders are discussed. The review also stresses the value of miRNAs in precision neuropsychiatry, where they could predict treatment outcomes and aid in disease management. Furthermore, the study of conserved miRNAs in model organisms like Drosophila underscores their broad utility and provides deeper mechanistic insights into their biological functions. This comprehensive examination of miRNAs across various conditions advocates for their integration into clinical practice, promising advancements in personalized healthcare for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Mohamed Adil Shah Khoodoruth
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | | | | | - Majid Al-Abdulla
- Mental Health Service, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Yasser Saeed Khan
- Child and Adolescent Mental Health Service, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Mohammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar.
| |
Collapse
|
8
|
Bazarra Castro GJ, Casitas V, Martínez Macho C, Madero Pohlen A, Álvarez-Salas A, Barbero Pablos E, Fernández-Alén JA, Torres Díaz CV. Biomarkers: The Key to Enhancing Deep Brain Stimulation Treatment for Psychiatric Conditions. Brain Sci 2024; 14:1065. [PMID: 39595828 PMCID: PMC11592218 DOI: 10.3390/brainsci14111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is currently a promising technique for psychiatric patients with severe and treatment-resistant symptoms. However, the results to date have been quite heterogeneous, and the indications for psychosurgery with DBS remain in an experimental phase. One of the major challenges limiting the advancement of DBS in psychiatric disorders is the lack of objective criteria for diagnosing certain conditions, which are often based more on clinical scales rather than measurable biological markers. Additionally, there is a limited capacity to objectively assess treatment outcomes. METHODS This overview examines the literature on the available biomarkers in psychosurgery in relation to DBS, as well as other relevant biomarkers in psychiatry with potential applicability for this treatment modality. RESULTS There are five types of biomarkers: clinical/behavioral, omic, neuroimaging, electrophysiological, and neurobiochemical. The information provided by each biomarker within these categories is highly variable and may be relevant for diagnosis, response prediction, target selection, program adjustment, etc. Conclusions: A better understanding of biomarkers and their applications would allow DBS in psychosurgery to advance on a more objective basis, guided by the information provided by them and within the context of precision psychiatry.
Collapse
Affiliation(s)
| | - Vicente Casitas
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Carlos Martínez Macho
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Alejandra Madero Pohlen
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Amelia Álvarez-Salas
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Enrique Barbero Pablos
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Jose A. Fernández-Alén
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| | - Cristina V. Torres Díaz
- Department of Neurosurgery, University Hospital La Princesa, 28006 Madrid, Spain; (G.J.B.C.)
| |
Collapse
|
9
|
Wang Y, Huang Y, Luo X, Lai X, Yu L, Zhao Z, Zhang A, Li H, Huang G, Li Y, Wang J, Wu Q. Deciphering the role of miRNA-134 in the pathophysiology of depression: A comprehensive review. Heliyon 2024; 10:e39026. [PMID: 39435111 PMCID: PMC11492588 DOI: 10.1016/j.heliyon.2024.e39026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
This study summarizes the significance of microRNA-134 (miRNA-134) in the pathophysiology, diagnosis, and treatment of depression, a disease still under investigation due to its complexity. miRNA-134 is an endogenous short non-coding RNA that can bind to the 3' untranslated region (3'UTR) of miRNA-134, inhibiting gene translation and showing great potential in the regulation of mood, synaptic plasticity, and neuronal function. This study included 15 articles retrieved from four English-language databases: PubMed, Embase, The Cochrane Library, and Web of Science, and three Chinese literature databases: CNKI, Wanfang, and Chinese Science and Technology Periodical Database (VIP).We evaluated each of the 15 articles using the Critical Appraisal Skills Program (CASP) tool.The standard integrates analyzes of genomic, transcriptomic, neuroimaging, and behavioral data analyses related to miRNA-134 and depression. A multidimensional framework based on standardized criteria was used for quality assessment. The main findings indicate that miRNA-134 significantly affects synaptic plasticity and neurotransmitter regulation, in particular the synthesis and release of serotonin and dopamine. miRNA-134 shows high sensitivity and specificity as a biomarker for the diagnosis of depression and has therapeutic potential for the targeted treatment of depression. miRNA-134 plays a crucial role in the pathogenesis of depression, providing valuable insights for early diagnosis and the development of targeted therapeutic strategies. This work highlights the potential of miRNA-134 as a focal point for advancing personalized medicine approaches for depression.
Collapse
Affiliation(s)
- Yunkai Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yali Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, Guangzhou, 510655, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Hong Li
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Xu Z, Rasteh AM, Dong A, Wang P, Liu H. Identification of molecular targets of Hypericum perforatum in blood for major depressive disorder: a machine-learning pharmacological study. Chin Med 2024; 19:141. [PMID: 39385284 PMCID: PMC11465934 DOI: 10.1186/s13020-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Hypericum perforatum (HP) is a traditional herb that has been shown to have antidepressant effects, but its mechanism is unclear. This study aims to identify the molecular targets of HP for the treatment of MDD. METHODS We performed differential analysis and weighted gene co-expression network analysis (WGCNA) with blood mRNA expression cohort of MDD and healthy control to identify DEGs and significant module genes (gene list 1). Three databases, CTD, DisGeNET, and GeneCards, were used to retrieve MDD-related gene intersections to obtain MDD-predicted targets (gene list 2). The validated targets were retrieved from the TCMSP database (gene list 3). Based on these three gene lists, 13 key pathways were identified. The PPI network was constructed by extracting the intersection of genes and HP-validated targets on all key pathways. Key therapeutic targets were obtained using MCODE and machine learning (LASSO, SVM-RFE). Clinical diagnostic assessments (Nomogram, Correlation, Intergroup expression), and gene set enrichment analysis (GSEA) were performed for the key targets. In addition, immune cell analysis was performed on the blood mRNA expression cohort of MDD to explore the association between the key targets and immune cells. Finally, molecular docking prediction was performed for the targets of HP active ingredients on MDD. RESULTS Differential expression analysis and WGCNA module analysis yielded 933 potential targets for MDD. Three disease databases were intersected with 982 MDD-predicted targets. The TCMSP retrieved 275 valid targets for HP. Separate enrichment analysis intersected 13 key pathways. Five key targets (AKT1, MAPK1, MYC, EGF, HSP90AA1) were finally screened based on all enriched genes and HP valid targets. Combined with the signaling pathway and immune cell analysis suggested the effect of peripheral immunity on MDD and the important role of neutrophils in immune inflammation. Finally, the binding of HP active ingredients (quercetin, kaempferol, and luteolin) and all 5 key targets were predicted based on molecular docking. CONCLUSIONS The active constituents of Hypericum perforatum can act on MDD and key targets and pathways of this action were identified.
Collapse
Affiliation(s)
- Zewen Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Hengrui Liu
- Cancer Research Institute, Jinan University, Guangzhou, China.
- Tianjin Yinuo Biomedical Co., Ltd, Tianjin, China.
| |
Collapse
|
11
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Sanchez-Ruiz JA, Treviño-Alvarez AM, Zambrano-Lucio M, Lozano Díaz ST, Wang N, Biernacka JM, Tye SJ, Cuellar-Barboza AB. The Wnt signaling pathway in major depressive disorder: A systematic review of human studies. Psychiatry Res 2024; 339:115983. [PMID: 38870775 DOI: 10.1016/j.psychres.2024.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Despite uncertainty about the specific molecular mechanisms driving major depressive disorder (MDD), the Wnt signaling pathway stands out as a potentially influential factor in the pathogenesis of MDD. Known for its role in intercellular communication, cell proliferation, and fate, Wnt signaling has been implicated in diverse biological phenomena associated with MDD, spanning neurodevelopmental to neurodegenerative processes. In this systematic review, we summarize the functional differences in protein and gene expression of the Wnt signaling pathway, and targeted genetic association studies, to provide an integrated synthesis of available human data examining Wnt signaling in MDD. Thirty-three studies evaluating protein expression (n = 15), gene expression (n = 9), or genetic associations (n = 9) were included. Only fifteen demonstrated a consistently low overall risk of bias in selection, comparability, and exposure. We found conflicting observations of limited and distinct Wnt signaling components across diverse tissue sources. These data do not demonstrate involvement of Wnt signaling dysregulation in MDD. Given the well-established role of Wnt signaling in antidepressant response, we propose that a more targeted and functional assessment of Wnt signaling is needed to understand its role in depression pathophysiology. Future studies should include more components, assess multiple tissues concurrently, and follow a standardized approach.
Collapse
Affiliation(s)
- Jorge A Sanchez-Ruiz
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Sofía T Lozano Díaz
- Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Ning Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
13
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
14
|
Chamakioti M, Chrousos GP, Kassi E, Vlachakis D, Yapijakis C. Stress-Related Roles of Exosomes and Exosomal miRNAs in Common Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:8256. [PMID: 39125827 PMCID: PMC11311345 DOI: 10.3390/ijms25158256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes, natural nanovesicles that contain a cargo of biologically active molecules such as lipids, proteins, and nucleic acids, are released from cells to the extracellular environment. They then act as autocrine, paracrine, or endocrine mediators of communication between cells by delivering their cargo into recipient cells and causing downstream effects. Exosomes are greatly enriched in miRNAs, which are small non-coding RNAs that act both as cytoplasmic post-transcriptional repression agents, modulating the translation of mRNAs into proteins, as well as nuclear transcriptional gene activators. Neuronal exosomal miRNAs have important physiologic functions in the central nervous system (CNS), including cell-to-cell communication, synaptic plasticity, and neurogenesis, as well as modulating stress and inflammatory responses. Stress-induced changes in exosomal functions include effects on neurogenesis and neuroinflammation, which can lead to the appearance of various neuropsychiatric disorders such as schizophrenia, major depression, bipolar disorder, and Alzheimer's and Huntington's diseases. The current knowledge regarding the roles of exosomes in the pathophysiology of common mental disorders is discussed in this review.
Collapse
Affiliation(s)
- Myrsini Chamakioti
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Eva Kassi
- 1st Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, Laikon Hospital, 115 27 Athens, Greece;
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 118 55 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
15
|
Tian H, Gao S, Xu M, Yang M, Shen M, Liu J, Li G, Zhuang D, Hu Z, Wang C. tiRNA-Gly-GCC-001 in major depressive disorder: Promising diagnostic and therapeutic biomarker. Br J Pharmacol 2024; 181:1952-1972. [PMID: 38439581 DOI: 10.1111/bph.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND PURPOSE In major depressive disorder (MDD), exploration of biomarkers will be helpful in diagnosing the disorder as well as in choosing a treatment and predicting the treatment response. Currently, tRNA-derived small ribonucleic acids (tsRNAs) have been established as promising non-invasive biomarker candidates that may enable a more reliable diagnosis or monitoring of various diseases. Herein, we aimed to explore tsRNA expression together with functional activities in MDD development. EXPERIMENTAL APPROACH Serum samples were obtained from patients with MDD and healthy controls, and small RNA sequencing (RNA-Seq) was used to profile tsRNA expression. Dysregulated tsRNAs in MDD were validated by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic utility of specific tsRNAs and the expression of these tsRNAs after antidepressant treatment were analysed. KEY RESULTS In total, 38 tsRNAs were significantly differentially expressed in MDD samples relative to healthy individuals (34 up-regulated and 4 down-regulated). qRT-PCR was used to validate the expression of six tsRNAs that were up-regulated in MDD (tiRNA-1:20-chrM.Ser-GCT, tiRNA-1:33-Gly-GCC-1, tRF-1:22-chrM.Ser-GCT, tRF-1:31-Ala-AGC-4-M6, tRF-1:31-Pro-TGG-2 and tRF-1:32-chrM.Gln-TTG). Interestingly, serum tiRNA-Gly-GCC-001 levels exhibited an area under the ROC curve of 0.844. Moreover, tiRNA-Gly-GCC-001 is predicted to suppress brain-derived neurotrophic factor (BDNF) expression. Furthermore, significant tiRNA-Gly-GCC-001 down-regulation was evident following an 8-week treatment course and served as a promising baseline predictor of patient response to antidepressant therapy. CONCLUSION AND IMPLICATIONS Our current work reports for the first time that tiRNA-Gly-GCC-001 is a promising MDD biomarker candidate that can predict patient responses to antidepressant therapy.
Collapse
Affiliation(s)
- Haihua Tian
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shugui Gao
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Miaomiao Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mei Yang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mengyuan Shen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jimeng Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guangxue Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Cánepa ET, Berardino BG. Epigenetic mechanisms linking early-life adversities and mental health. Biochem J 2024; 481:615-642. [PMID: 38722301 DOI: 10.1042/bcj20230306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/15/2024]
Abstract
Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.
Collapse
Affiliation(s)
- Eduardo T Cánepa
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética y Adversidades Tempranas, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
17
|
Cai L, Xu J, Liu J, Luo H, Yang R, Gui X, Wei L. miRNAs in treatment-resistant depression: a systematic review. Mol Biol Rep 2024; 51:638. [PMID: 38727891 DOI: 10.1007/s11033-024-09554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/15/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Treatment-resistant depression (TRD) is a condition in a subset of depressed patients characterized by resistance to antidepressant medications. The global prevalence of TRD has been steadily increasing, yet significant advancements in its diagnosis and treatment remain elusive despite extensive research efforts. The precise underlying pathogenic mechanisms are still not fully understood. Epigenetic mechanisms play a vital role in a wide range of diseases. In recent years, investigators have increasingly focused on the regulatory roles of miRNAs in the onset and progression of TRD. miRNAs are a class of noncoding RNA molecules that regulate the translation and degradation of their target mRNAs via interaction, making the exploration of their functions in TRD essential for elucidating their pathogenic mechanisms. METHODS AND RESULTS A systematic search was conducted in four databases, namely PubMed, Web of Science, Cochrane Library, and Embase, focusing on studies related to treatment-resistant depression and miRNAs. The search was performed using terms individually or in combination, such as "treatment-resistant depression," "medication-resistant depression," and "miRNAs." The selected articles were reviewed and collated, covering the time period from the inception of each database to the end of February 2024. We found that miRNAs play a crucial role in the pathophysiology of TRD through three main aspects: 1) involvement in miRNA-mediated inflammatory responses (including miR-155, miR-345-5p, miR-146a, and miR-146a-5p); 2) influence on 5-HT transport processes (including miR-674,miR-708, and miR-133a); and 3) regulation of synaptic plasticity (including has-miR-335-5p,has-miR- 1292-3p, let-7b, and let-7c). Investigating the differential expression and interactions of these miRNAs could contribute to a deeper understanding of the molecular mechanisms underlying TRD. CONCLUSIONS miRNAs might play a pivotal role in the pathogenesis of TRD. Gaining a deeper understanding of the roles and interrelations of miRNAs in TRD will contribute to elucidating disease pathogenesis and potentially provide avenues for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Jingwen Xu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Huazheng Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Rongrong Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, People's Republic of China
| | - Xiongbin Gui
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, People's Republic of China.
| | - Liping Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530000, Guangxi, People's Republic of China
| |
Collapse
|
18
|
Luan X, Xing H, Guo F, Liu W, Jiao Y, Liu Z, Wang X, Gao S. The role of ncRNAs in depression. Heliyon 2024; 10:e27307. [PMID: 38496863 PMCID: PMC10944209 DOI: 10.1016/j.heliyon.2024.e27307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Depressive disorders have a significant impact on public health, and depression have an unsatisfactory recurrence rate and are challenging to treat. Non-coding RNAs (ncRNAs) are RNAs that do not code protein, which have been shown to be crucial for transcriptional regulation. NcRNAs are important to the onset, progress and treatment of depression because they regulate various physiological functions. This makes them distinctively useful as biomarkers for diagnosing and tracking responses to therapy among individuals with depression. It is important to seek out and summarize the research findings on the impact of ncRNAs on depression since significant advancements have been made in this area recently. Hence, we methodically outlined the findings of published researches on ncRNAs and depression, focusing on microRNAs. Above all, this review aims to improve our understanding of ncRNAs and provide new insights of the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Xinchi Luan
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Han Xing
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weiyi Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yang Jiao
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Zhenyu Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xuezhe Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
19
|
Mitsi V, Ruiz A, Polizu C, Farzinpour Z, Ramakrishnan A, Serafini RA, Parise EM, Floodstrand M, Sial OK, Gaspari S, Tang CY, Nestler EJ, Schmidt EF, Shen L, Zachariou V. RGS4 Actions in Mouse Prefrontal Cortex Modulate Behavioral and Transcriptomic Responses to Chronic Stress and Ketamine. Mol Pharmacol 2024; 105:272-285. [PMID: 38351270 PMCID: PMC10949159 DOI: 10.1124/molpharm.123.000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/16/2024] [Indexed: 03/16/2024] Open
Abstract
The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.
Collapse
Affiliation(s)
- Vasiliki Mitsi
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Claire Polizu
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Zahra Farzinpour
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Madeline Floodstrand
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Omar K Sial
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Sevasti Gaspari
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Cheuk Y Tang
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric F Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| |
Collapse
|
20
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
21
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
22
|
Carneiro BA, Franco Guerreiro-Costa LN, Lins-Silva D, Faria Guimaraes D, Souza LS, Leal GC, Caliman-Fontes AT, Beanes G, Costa RDS, Quarantini LC. MicroRNAs as Diagnostic Biomarkers and Predictors of Antidepressant Response in Major Depressive Disorder: A Systematic Review. Cureus 2024; 16:e56910. [PMID: 38665721 PMCID: PMC11043793 DOI: 10.7759/cureus.56910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the hardships of major depressive disorder (MDD), biomarkers for the diagnosis and pharmacological management of this condition are lacking. MicroRNAs are epigenetic mechanisms that could provide promising MDD biomarkers. Our aim was to summarize the findings and provide validation for the selection and use of specific microRNAs as biomarkers in the diagnosis and treatment of MDD. A systematic review was conducted using the PubMed/Medline, Cochrane, PsycINFO, Embase, and LILACS databases from March 2022 to November 2023, with clusters of terms based on "microRNA" and "antidepressant". Studies involving human subjects, animal models, and cell cultures were included, whereas those that evaluated herbal medicines, non-pharmacological therapies, or epigenetic mechanisms other than miRNA were excluded. The review revealed differences in the expression of various microRNAs when considering the time of assessment (before or after antidepressant treatment) and the population studied. However, due to the heterogeneity of the microRNAs investigated, the limited size of the samples, and the wide variety of antidepressants used, few conclusions could be made. Despite the observed heterogeneity, the following microRNAs were determined to be important factors in MDD and the antidepressant response: mir-1202, mir-135, mir-124, and mir-16. The findings indicate the potential for the use of microRNAs as biomarkers for the diagnosis and treatment of MDD; however, more homogeneous studies are needed.
Collapse
Affiliation(s)
- Beatriz A Carneiro
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | | | - Daniel Lins-Silva
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Daniela Faria Guimaraes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Lucca S Souza
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Gustavo C Leal
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Ana Teresa Caliman-Fontes
- Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
| | - Graziele Beanes
- Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
| | - Ryan Dos S Costa
- Medicine, Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, BRA
| | | |
Collapse
|
23
|
Lei WX, Zhang L, Chen JL, Zheng GH, Guo LN, Jiang T, Yin ZY, Ming-Ying, Yu QM, Wang N. The role and mechanism of miR-425-3p regulating neuronal pyroptosis -mediated inorganic arsenic-induced generalized anxiety disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115781. [PMID: 38056122 DOI: 10.1016/j.ecoenv.2023.115781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Pyroptosis plays a critical role in the pathogenesis of mental disorders. However, its specific role and mechanism in arsenic (As)-induced generalized anxiety disorder (GAD) remain elusive. We utilized the data from CtdBbase, Phenopedia and DisGeNet to analyze genes that interact with arsenic poisoning and GAD. Subsequently KEGG and GO enrichment analysis were conducted to preliminatively predict the mechanism of inorganic arsenic-induced GAD. Male Wistar rats were administered water containing NaAsO2 (50, 100 μg/L) to evaluate GAD-like behavior through open field test and elevated plus maze. The expression of differential miRNAs including miR-425-3p, and pyroptosis in the prefrontal cortex of rats were detected. Furthermore, SKNSH cells were stimulated with NaAsO2 to examine the molecular changes, and then miR-425-3p mimic was transfected into SKNSH cells to detect pyroptosis in order to verify the function of miR-425-3p. Inorganic arsenic was confirmed to induce GAD-like behavior in rats, characterized by decreased locomotor activity and exploratory activities. Rats with inorganic arsenic-induced GAD exhibited reduced miR-425-3p expression levels in the prefrontal cortex and increased expression of pyroptosis-related proteins, including NF-κB, NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18. Treating with different concentrations of NaAsO2 showed that inorganic arsenic exposure downregulates miR-425-3p expression in SKNSH cells and upregulates the expression levels of pyroptosis-related proteins. Dual-luciferase reporter gene experiments demonstrated that miR-425-3p targets the NFKB1. Overexpressing miR-425-3p reversed the inorganic arsenic-induced pyroptosis in SKNSH cells by inhibiting the expression of NF-κB, NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18. Our findings suggest that inorganic arsenic exposure may induce GAD-like behavior in rats by downregulating miR-425-3p in prefrontal cortex, which targets NF-κB and regulates pyroptosis in neuronal cells.
Collapse
Affiliation(s)
- Wei-Xing Lei
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China; Luoyuan Center for Disease Control and Prevention, Fuzhou 350600, China
| | - Lei Zhang
- College of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China
| | - Jin-Li Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Gao-Hui Zheng
- Luoyuan Center for Disease Control and Prevention, Fuzhou 350600, China
| | - Lin-Nan Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Tao Jiang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Zi-Yue Yin
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Ming-Ying
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China
| | - Qi-Ming Yu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China.
| | - Na Wang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin, China.
| |
Collapse
|
24
|
Wu X, Zhang Y, Wang P, Li X, Song Z, Wei C, Zhang Q, Luo B, Liu Z, Yang Y, Ren Z, Liu H. Clinical and preclinical evaluation of miR-144-5p as a key target for major depressive disorder. CNS Neurosci Ther 2023; 29:3598-3611. [PMID: 37308778 PMCID: PMC10580367 DOI: 10.1111/cns.14291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Neuronal abnormalities are closely associated with major depressive disorder (MDD). Available evidence suggests a role for microRNAs (miRNAs) in regulating the expression of genes involved in MDD. Hence, miRNAs that can be potential therapeutic targets need to be identified. METHODS A mouse model of chronic unpredictable stress (CUS) was used to evaluate the function of miRNAs in MDD. miR-144-5p was screened from the hippocampi of CUS mice based on sequencing results. Adenovirus-associated vectors were used to overexpress or knockdown miR-144-5p in mice. BpV(pic) and LY294002 were used to determine the relationship between miR-144-5p target genes PTEN and TLR4 in neuronal impairment caused by miR-144-5p deficiency. Western blotting, immunofluorescence, ELISA immunosorbent assay, and Golgi staining were used to detect neuronal abnormalities. Serum samples from healthy individuals and patients with MDD were used to detect miR-144-5p levels in the serum and serum exosomes using qRT-PCR. RESULTS miR-144-5p expression was significantly decreased within the hippocampal dentate gyrus (DG) of CUS mice. Upregulation of miR-144-5p in the DG ameliorated depression-like behavior in CUS mice and attenuated neuronal abnormalities by directly targeting PTEN and TLR4 expression. Furthermore, miR-144-5p knockdown in normal mice led to depression-like behavior via inducing neuronal abnormalities, including abnormal neurogenesis, neuronal apoptosis, altered synaptic plasticity, and neuroinflammation. miR-144-5p deficiency-mediated neuronal impairment was mediated by PI3K/Akt/FoxO1 signaling. Furthermore, miR-144-5p levels were downregulated in the sera of patients with MDD and associated with depressive symptoms. Consistently, serum exosome-derived miR-144-5p levels were decreased in patients with MDD. CONCLUSION miR-144-5p plays a vital role in regulating neuronal abnormalities in depression. Our findings provide translational evidence that miR-144-5p is a new potential therapeutic target for MDD.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Yulong Zhang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Ping Wang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Xiaohui Li
- Department of AnatomyAnhui Medical UniversityHefeiChina
| | - Zhen Song
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Chuke Wei
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Qing Zhang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Bei Luo
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Zhichun Liu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Yingying Yang
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| | - Zhenhua Ren
- Department of AnatomyAnhui Medical UniversityHefeiChina
| | - Huanzhong Liu
- Department of PsychiatryChaohu Hospital of Anhui Medical UniversityHefeiChina
- Department of Psychiatry, School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiChina
- Department of Psychiatry, Anhui Psychiatric CenterAnhui Medical UniversityHefeiChina
| |
Collapse
|
25
|
Deng Y, Gong P, Han S, Zhang J, Zhang S, Zhang B, Lin Y, Xu K, Wen G, Liu K. Reduced cerebral cortex thickness is related to overexpression of exosomal miR-146a-5p in medication-free patients with major depressive disorder. Psychol Med 2023; 53:6253-6260. [PMID: 36426595 PMCID: PMC10520590 DOI: 10.1017/s0033291722003567] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies have confirmed that miR-146a-5p overexpression suppresses neurogenesis, thereby enhancing depression-like behaviors. However, it remains unclear how miR-146a-5p dysregulation produces in vivo brain structural abnormalities in patients with major depressive disorder (MDD). METHODS In this case-control study, we combined cortical morphology analysis of magnetic resonance imaging (MRI) and miR-146a-5p quantification to investigate the neuropathological effect of miR-146a-5p on cortical thickness in MDD patients. Serum-derived exosomes that were considered to readily cross the blood-brain barrier and contain miR-146a-5p were isolated for miRNA quantification. Moreover, follow-up MRI scans were performed in the MDD patients after 6 weeks of antidepressant treatment to further validate the clinical relevance of the relationship between miR-146a-5p and brain structural abnormalities. RESULTS In total, 113 medication-free MDD patients and 107 matched healthy controls were included. Vertex-vise general linear model revealed miR-146a-5p-dependent cortical thinning in MDD patients compared with healthy individuals, i.e., overexpression of miR-146a-5p was associated with reduced cortical thickness in the left orbitofrontal cortex (OFC), anterior cingulate cortex, bilateral lateral occipital cortices (LOCs), etc. Moreover, this relationship between baseline miR-146a-5p and cortical thinning was nonsignificant for all regions in the patients who had received antidepressant treatment, and higher baseline miR-146a-5p expression was found to be related to greater longitudinal cortical thickening in the left OFC and right LOC. CONCLUSIONS The findings of this study reveal a relationship between miR-146a-5p overexpression and cortical atrophy and thus may help specify the in vivo mediating effect of miR-146a-5p dysregulation on brain structural abnormalities in patients with MDD.
Collapse
Affiliation(s)
- Yanjia Deng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ping Gong
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shuguang Han
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Jingyu Zhang
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Lin
- The fifth affiliated hospital of Sun-Yat Sen University, Sun-Yat Sen University, Zhuhai, China
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Ge Wen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
26
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Pedro Amorim Neto D, Vitor Pereira de Godoy J, Tostes K, Pelegrini Bosque B, Vieira Rodrigues P, Aparecida Rocco S, Luis Sforça M, de Castro Fonseca M. Metabolic Disturbances in the Gut-brain Axis of a Mouse Model of MPTP-induced Parkinsonism Evaluated by Nuclear Magnetic Resonance. Neuroscience 2023; 526:21-34. [PMID: 37331688 DOI: 10.1016/j.neuroscience.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by α-synuclein (αSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. Animals received escalating administration of MPTP. Tissues and fecal pellets were collected, and the metabolites were identified through the untargeted Nuclear Magnetic Resonance spectroscopic (1H NMR) technique. We found differences in many metabolites from all the tissues evaluated. The differential expression of metabolites in these samples mainly reflects inflammatory aspects, cytotoxicity, and mitochondrial impairment (oxidative stress and energy metabolism) in the animal model used. The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson's disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease.
Collapse
Affiliation(s)
- Dionísio Pedro Amorim Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Hospital de Amor, Hospital de Cancer de Barretos, Barretos, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Paulla Vieira Rodrigues
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Silvana Aparecida Rocco
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Mauricio Luis Sforça
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Matheus de Castro Fonseca
- Laboratory of Sarkis Mazmanian, Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
28
|
Radley JJ, Herman JP. Preclinical Models of Chronic Stress: Adaptation or Pathology? Biol Psychiatry 2023; 94:194-202. [PMID: 36631383 PMCID: PMC10166771 DOI: 10.1016/j.biopsych.2022.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The experience of prolonged stress changes how individuals interact with their environment and process interoceptive cues, with the end goal of optimizing survival and well-being in the face of a now-hostile world. The chronic stress response includes numerous changes consistent with limiting further damage to the organism, including development of passive or active behavioral strategies and metabolic adjustments to alter energy mobilization. These changes are consistent with symptoms of pathology in humans, and as a result, chronic stress has been used as a translational model for diseases such as depression. While it is of heuristic value to understand symptoms of pathology, we argue that the chronic stress response represents a defense mechanism that is, at its core, adaptive in nature. Transition to pathology occurs only after the adaptive capacity of an organism is exhausted. We offer this perspective as a means of framing interpretations of chronic stress studies in animal models and how these data relate to adaptation as opposed to pathology.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio.
| |
Collapse
|
29
|
Funatsuki T, Ogata H, Tahara H, Shimamoto A, Takekita Y, Koshikawa Y, Nonen S, Higasa K, Kinoshita T, Kato M. Changes in Multiple microRNA Levels with Antidepressant Treatment Are Associated with Remission and Interact with Key Pathways: A Comprehensive microRNA Analysis. Int J Mol Sci 2023; 24:12199. [PMID: 37569574 PMCID: PMC10418406 DOI: 10.3390/ijms241512199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Individual treatment outcomes to antidepressants varies widely, yet the determinants to this difference remain elusive. MicroRNA (miRNA) gene expression regulation in major depressive disorder (MDD) has attracted interest as a biomarker. This 4-week randomized controlled trial examined changes in the plasma miRNAs that correlated with the treatment outcomes of mirtazapine (MIR) and selective serotonin reuptake inhibitor (SSRI) monotherapy. Pre- and post- treatment, we comprehensively analyzed the miRNA levels in MDD patients, and identified the gene pathways linked to these miRNAs in 46 patients. Overall, 141 miRNA levels significantly demonstrated correlations with treatment remission after 4 weeks of MIR, with miR-1237-5p showing the most robust and significant correlation after Bonferroni correction. These 141 miRNAs displayed a negative correlation with remission, indicating a decreasing trend. These miRNAs were associated with 15 pathways, including TGF-β and MAPK. Through database searches, the genes targeted by these miRNAs with the identified pathways were compared, and it was found that MAPK1, IGF1, IGF1R, and BRAF matched. Alterations in specific miRNAs levels before and after MIR treatment correlated with remission. The miRNAs mentioned in this study have not been previously reported. No other studies have investigated treatment with MIR. The identified miRNAs also correlated with depression-related genes and pathways.
Collapse
Affiliation(s)
- Toshiya Funatsuki
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Haruhiko Ogata
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Hidetoshi Tahara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan;
| | - Yoshiteru Takekita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo Medical University, Nishinomiya 650-8530, Japan;
| | - Koichiro Higasa
- Institute of Biomedical Science, Department of Genome Analysis, Kansai Medical University, Osaka 573-1191, Japan;
| | - Toshihiko Kinoshita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (T.F.); (H.O.); (Y.T.); (Y.K.); (T.K.)
| |
Collapse
|
30
|
Lin R, Kos A, Lopez JP, Dine J, Fiori LM, Yang J, Ben-Efraim Y, Aouabed Z, Ibrahim P, Mitsuhashi H, Wong TP, Ibrahim EC, Belzung C, Blier P, Farzan F, Frey BN, Lam RW, Milev R, Muller DJ, Parikh SV, Soares C, Uher R, Nagy C, Mechawar N, Foster JA, Kennedy SH, Chen A, Turecki G. SNORD90 induces glutamatergic signaling following treatment with monoaminergic antidepressants. eLife 2023; 12:e85316. [PMID: 37432876 PMCID: PMC10335830 DOI: 10.7554/elife.85316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Pharmacotherapies for the treatment of major depressive disorder were serendipitously discovered almost seven decades ago. From this discovery, scientists pinpointed the monoaminergic system as the primary target associated with symptom alleviation. As a result, most antidepressants have been engineered to act on the monoaminergic system more selectively, primarily on serotonin, in an effort to increase treatment response and reduce unfavorable side effects. However, slow and inconsistent clinical responses continue to be observed with these available treatments. Recent findings point to the glutamatergic system as a target for rapid acting antidepressants. Investigating different cohorts of depressed individuals treated with serotonergic and other monoaminergic antidepressants, we found that the expression of a small nucleolar RNA, SNORD90, was elevated following treatment response. When we increased Snord90 levels in the mouse anterior cingulate cortex (ACC), a brain region regulating mood responses, we observed antidepressive-like behaviors. We identified neuregulin 3 (NRG3) as one of the targets of SNORD90, which we show is regulated through the accumulation of N6-methyladenosine modifications leading to YTHDF2-mediated RNA decay. We further demonstrate that a decrease in NRG3 expression resulted in increased glutamatergic release in the mouse ACC. These findings support a molecular link between monoaminergic antidepressant treatment and glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Rixing Lin
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Aron Kos
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Julien Dine
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Yair Ben-Efraim
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Pascal Ibrahim
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research CentreMontrealCanada
- Department of Psychiatry, McGill UniversityMontrealCanada
| | - El Cherif Ibrahim
- Aix-Marseille Université, CNRS, INT, Institute Neuroscience TimoneMarseilleFrance
| | - Catherine Belzung
- UMR 1253, iBrain, UFR Sciences et Techniques; Parc GrandmontToursFrance
| | - Pierre Blier
- Mood Disorders Research Unit, University of Ottawa Institute of Mental Health ResearchOntarioCanada
| | | | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster UniversityHamiltonCanada
- Mood Disorders Program, St. Joseph’s Healthcare HamiltonHamiltonCanada
| | - Raymond W Lam
- Department of Psychiatry, University of British ColumbiaColumbiaCanada
| | - Roumen Milev
- Departments of Psychiatry and Psychology, Queens UniversityOntarioCanada
| | - Daniel J Muller
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
- Centre for Addiction and Mental HealthTorontoCanada
| | - Sagar V Parikh
- Department of Psychiatry, University of MichiganAnn ArborUnited States
| | - Claudio Soares
- Departments of Psychiatry and Psychology, Queens UniversityOntarioCanada
| | - Rudolf Uher
- Nova Scotia Health AuthorityHalifaxCanada
- Department of Psychiatry, Dalhousie UniversityHalifaxCanada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster UniversityHamiltonCanada
- Mood Disorders Program, St. Joseph’s Healthcare HamiltonHamiltonCanada
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Krembil Research Institute, University of TorontoTorontoCanada
- St Michael’s Hospital, Li Ka Shing Knowledge Institute, Centre for Depression and Suicide StudiesTorontoCanada
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryMunichGermany
- Department of Brain Sciences, Weizmann Institute of ScienceRehovotIsrael
- Department of Molecular Neuroscience, Weizmann Institute of ScienceRehovotIsrael
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Department of Psychiatry, McGill UniversityMontrealCanada
| |
Collapse
|
31
|
Waddell NJ, Liu Y, Chitaman JM, Kaplan GJ, Wang Z, Feng J. Transcription and DNA methylation signatures of paternal behavior in hippocampal dentate gyrus of prairie voles. Sci Rep 2023; 13:11020. [PMID: 37419920 PMCID: PMC10328943 DOI: 10.1038/s41598-023-37521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
In socially monogamous prairie voles (Microtus ochrogaster), parental behaviors not only occur in mothers and fathers, but also exist in some virgin males. In contrast, the other virgin males display aggressive behaviors towards conspecific pups. However, little is known about the molecular underpinnings of this behavioral dichotomy, such as gene expression changes and their regulatory mechanisms. To address this, we profiled the transcriptome and DNA methylome of hippocampal dentate gyrus of four prairie vole groups, namely attacker virgin males, parental virgin males, fathers, and mothers. While we found a concordant gene expression pattern between parental virgin males and fathers, the attacker virgin males have a more deviated transcriptome. Moreover, numerous DNA methylation changes were found in pair-wise comparisons among the four groups. We found some DNA methylation changes overlapping with transcription differences, across gene-bodies and promoter regions. Furthermore, the gene expression changes and methylome alterations are selectively enriched in certain biological pathways, such as Wnt signaling, which suggest a canonical transcription regulatory role of DNA methylation in paternal behavior. Therefore, our study presents an integrated view of prairie vole dentate gyrus transcriptome and epigenome that provides a DNA epigenetic based molecular insight of paternal behavior.
Collapse
Affiliation(s)
- Nicholas J Waddell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Yan Liu
- Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Javed M Chitaman
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Graham J Kaplan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology, Florida State University, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| | - Jian Feng
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
32
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
33
|
Radosavljevic M, Svob Strac D, Jancic J, Samardzic J. The Role of Pharmacogenetics in Personalizing the Antidepressant and Anxiolytic Therapy. Genes (Basel) 2023; 14:1095. [PMID: 37239455 PMCID: PMC10218654 DOI: 10.3390/genes14051095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Collapse
Affiliation(s)
- Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
34
|
Nguyen HD, Kim MS. The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships : The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships. Biol Trace Elem Res 2023; 201:2200-2221. [PMID: 35798913 DOI: 10.1007/s12011-022-03343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Converging evidence indicates heavy metal-induced genes, transcription factors (TFs), and microRNAs (miRNAs) are critical pathological components of metabolic syndrome (MetS) and cognitive impairment. Thus, our goals are to identify the interaction of mixed heavy metals (cadmium + lead + mercury) with genes, TFs, and miRNAs involved in MetS and its components, as well as cognitive impairment development. The most commonly retrieved genes for each disease were different, but essential biological pathways such as oxidative stress, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, apoptosis, the IL-6 signaling pathway, and Alzheimer's disease were highlighted. The genes CASP3, BAX, BCL2, IL6, TNF, APOE, HMOX1, and IGF were found to be mutually affected by the heavy metal mixture studied, suggesting the importance of apoptosis, inflammation, lipid, heme, and glucose metabolism in MetS and cognitive impairment, as well as the potentiality of targeting these genes in prospective therapeutic intervention for these diseases. EGR2, ATF3, and NFE2L2 were noted as the most key TFs implicated in the etiology of MetS and its components, as well as cognitive impairment. We also found six miRNAs induced by studied heavy metals were the mutual miRNAs linked to MetS, its components, and cognitive impairment. In particular, we used miRNAsong to construct and verify a miRNA sponge sequence for these miRNAs. These sponges are promising molecules for the treatment of MetS and its components, as well as cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
35
|
Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry 2023; 13:129. [PMID: 37076454 PMCID: PMC10115809 DOI: 10.1038/s41398-023-02412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and heterogeneous psychiatric syndrome with genetic and environmental influences. In addition to neuroanatomical and circuit-level disturbances, dysregulation of the brain transcriptome is a key phenotypic signature of MDD. Postmortem brain gene expression data are uniquely valuable resources for identifying this signature and key genomic drivers in human depression; however, the scarcity of brain tissue limits our capacity to observe the dynamic transcriptional landscape of MDD. It is therefore crucial to explore and integrate depression and stress transcriptomic data from numerous, complementary perspectives to construct a richer understanding of the pathophysiology of depression. In this review, we discuss multiple approaches for exploring the brain transcriptome reflecting dynamic stages of MDD: predisposition, onset, and illness. We next highlight bioinformatic approaches for hypothesis-free, genome-wide analyses of genomic and transcriptomic data and their integration. Last, we summarize the findings of recent genetic and transcriptomic studies within this conceptual framework.
Collapse
Affiliation(s)
- Emily M Hicks
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Carina Seah
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Alanna Cote
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Departments of Psychiatry and of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
36
|
Ben David G, Amir Y, Salalha R, Sharvit L, Richter-Levin G, Atzmon G. Can Epigenetics Predict Drug Efficiency in Mental Disorders? Cells 2023; 12:1173. [PMID: 37190082 PMCID: PMC10136455 DOI: 10.3390/cells12081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Psychiatric disorders affect millions of individuals and their families worldwide, and the costs to society are substantial and are expected to rise due to a lack of effective treatments. Personalized medicine-customized treatment tailored to the individual-offers a solution. Although most mental diseases are influenced by genetic and environmental factors, finding genetic biomarkers that predict treatment efficacy has been challenging. This review highlights the potential of epigenetics as a tool for predicting treatment efficacy and personalizing medicine for psychiatric disorders. We examine previous studies that have attempted to predict treatment efficacy through epigenetics, provide an experimental model, and note the potential challenges at each stage. While the field is still in its infancy, epigenetics holds promise as a predictive tool by examining individual patients' epigenetic profiles in conjunction with other indicators. However, further research is needed, including additional studies, replication, validation, and application beyond clinical settings.
Collapse
Affiliation(s)
- Gil Ben David
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
| | - Yam Amir
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| | - Randa Salalha
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (G.B.D.); (R.S.)
- Department of Psychology, Faculty of Social Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
- Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa 3498838, Israel; (Y.A.)
| |
Collapse
|
37
|
Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol 2023; 14:1129186. [PMID: 37063278 PMCID: PMC10090555 DOI: 10.3389/fphar.2023.1129186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with increasing prevalence worldwide. It is a leading cause of disability and suicide, severely affecting physical and mental health. However, the study of depression remains at an exploratory stage in terms of diagnostics and treatment due to the complexity of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs capable of binding to the 3’untranslated region of mRNAs. Because of their ability to repress translation process of genes and are found at high levels in brain tissues, investigation of their role in depression has gradually increased recently. This article summarizes recent research progress on the relationship between microRNAs and depression. The microRNAs play a regulatory role in the pathophysiology of depression, involving dysregulation of monoamines, abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA axis, and dysregulation of inflammatory responses. These microRNAs might provide new clue for the diagnosis and treatment of MDD, and the development of antidepressant drugs.
Collapse
Affiliation(s)
- Ruidong Ding
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dingyuan Su
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Wang
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Jia-Yi Wang
- San-Quan College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
38
|
Chai H, Chen X, Shi R, Miao P. Irregular DNA Triangular Prism/Triplex Assembly for Duplicate MiRNA Analysis with Nicking Endonuclease-Mediated Amplification. Anal Chem 2023; 95:4564-4569. [PMID: 36812460 DOI: 10.1021/acs.analchem.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Highly sensitive and selective detection of microRNA (miRNA) is becoming more and more important in the discovery, diagnosis, and prognosis of various diseases. Herein, we develop a three-dimensional DNA nanostructure based electrochemical platform for duplicate detection of miRNA amplified by nicking endonuclease. Target miRNA first helps construction of three-way junction structures on the surfaces of gold nanoparticles. After nicking endonuclease-powered cleavage reactions, single-stranded DNAs labeled with electrochemical species are released. These strands can be facilely immobilized at four edges of the irregular triangular prism DNA (iTPDNA) nanostructure via triplex assembly. By evaluating the electrochemical response, target miRNA levels can be determined. In addition, the triplexes can be disassociated by simply changing pH conditions, and the iTPDNA biointerface can be regenerated for duplicate analyses. The developed electrochemical method not only exhibits an excellent prospect in the detection of miRNA but also may inspire the engineering of recyclable biointerfaces for biosensing platforms.
Collapse
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250103, China
| | - Ruiju Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250103, China
| |
Collapse
|
39
|
Roy B, Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response. Neurosci Biobehav Rev 2023; 146:105040. [PMID: 36639069 PMCID: PMC9974865 DOI: 10.1016/j.neubiorev.2023.105040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Stress-related neuropathologies are pivotal in developing major depressive disorder (MDD) and are often governed by gene-regulatory changes. Being a stress-responsive gene-regulatory factor, microRNAs (miRNAs) have tremendous biomolecular potential to define an altered gene-regulatory landscape in the MDD brain. MiRNAs' regulatory roles in the MDD brain are closely aligned with changes in plasticity, neurogenesis, and stress-axis functions. MiRNAs act at the epigenetic interface between stress-induced environmental stimuli and cellular pathologies by triggering large-scale gene expression changes in a highly coordinated fashion. The parallel changes in peripheral circulation may provide an excellent opportunity for miRNA to devise more effective treatment strategies and help explore their potential as biomarkers in treatment response. This review discusses the role of miRNAs as epigenetic modifiers in the etiopathogenesis of MDD. Concurrently, key research is highlighted to show the progress in using miRNAs as predictive biomarkers for treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Potential of Circulating miRNAs as Molecular Markers in Mood Disorders and Associated Suicidal Behavior. Int J Mol Sci 2023; 24:ijms24054664. [PMID: 36902096 PMCID: PMC10003208 DOI: 10.3390/ijms24054664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Mood disorders are the most prevalent psychiatric disorders associated with significant disability, morbidity, and mortality. The risk of suicide is associated with severe or mixed depressive episodes in patients with mood disorders. However, the risk of suicide increases with the severity of depressive episodes and is often presented with higher incidences in bipolar disorder (BD) patients than in patients with major depression (MDD). Biomarker study in neuropsychiatric disorders is critical for developing better treatment plans by facilitating more accurate diagnosis. At the same time, biomarker discovery also provides more objectivity to develop state-of-the-art personalized medicine with increased accuracy through clinical interventions. Recently, colinear changes in miRNA expression between brain and systemic circulation have added great interest in examining their potential as molecular markers in mental disorders, including MDD, BD, and suicidality. A present understanding of circulating miRNAs in body fluids implicates their role in managing neuropsychiatric conditions. Most notably, their use as prognostic and diagnostic markers and their potential role in treatment response have significantly advanced our knowledge base. The present review discusses circulatory miRNAs and their underlying possibilities to be used as a screening tool for assessing major psychiatric conditions, including MDD, BD, and suicidal behavior.
Collapse
|
41
|
Yoshimura R, Okamoto N, Chibaatar E, Natsuyama T, Ikenouchi A. The Serum Brain-Derived Neurotrophic Factor Increases in Serotonin Reuptake Inhibitor Responders Patients with First-Episode, Drug-Naïve Major Depression. Biomedicines 2023; 11:biomedicines11020584. [PMID: 36831119 PMCID: PMC9953440 DOI: 10.3390/biomedicines11020584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor synthesized in the cell bodies of neurons and glia, which affects neuronal maturation, the survival of nervous system, and synaptic plasticity. BDNF play an important role in the pathophysiology of major depression (MD). The serum BDNF levels changed over time, or with the improvement in depressive symptoms. However, the change of serum BDNF during pharmacotherapy remains obscure in MDD. In particular, the changes in serum BDNF associated with pharmacotherapy have not yet been fully elucidated. The present study aimed to compare the changes in serum BDNF concentrations in first-episode, drug-naive patients with MD treated with antidepressants between treatment-response and treatment-nonresponse groups. The study included 35 inpatients and outpatients composed of 15 males and 20 females aged 36.7 ± 6.8 years at the Department of Psychiatry of our University Hospital. All patients met the DSM-5 diagnostic criteria for MD. The antidepressants administered included paroxetine, duloxetine, and escitalopram. Severity of depressive state was assessed using the 17-item HAMD before and 8 weeks after drug administration. Responders were defined as those whose total HAMD scores at 8 weeks had decreased by 50% or more compared to those before drug administration, while non-responders were those whose total HAMD scores had decreased by less than 50%. Here we showed that serum BDNF levels were not significantly different at any point between the two groups. The responder group, but not the non-responder group, showed statistically significant changes in serum BDNF 0 and serum BDNF 8. The results suggest that the changes of serum BDNF might differ between the two groups. The measurement of serum BDNF has the potential to be a useful predictor of pharmacotherapy in patients with first-episode, drug-naïve MD.
Collapse
|
42
|
Żurawek D, Turecki G. miR-124-3p mediates polygenic risk shared between schizophrenia and bipolar disorder. Neuron 2023; 111:144-146. [PMID: 36657396 DOI: 10.1016/j.neuron.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this issue of Neuron, Namkung et al. demonstrate that the microRNA miR-124-3p is associated with polygenic risk scores shared between schizophrenia and bipolar disorder and confers risk to behavioral alterations common to these two disorders through modulation of AMPA receptor neurotransmission.
Collapse
Affiliation(s)
- Dariusz Żurawek
- Department of Psychiatry, Douglas Institute, McGill University, 6875 LaSalle Boulevard, Montreal, QC H4H 1R3, Canada
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Institute, McGill University, 6875 LaSalle Boulevard, Montreal, QC H4H 1R3, Canada.
| |
Collapse
|
43
|
Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol Psychiatry 2023; 28:141-153. [PMID: 36517640 PMCID: PMC9812796 DOI: 10.1038/s41380-022-01907-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Early life stress (ELS), such as abuse and neglect during childhood, can lead to psychiatric disorders in later life. Previous studies have suggested that ELS can cause profound changes in gene expression through epigenetic mechanisms, which can lead to psychiatric disorders in adulthood; however, studies on epigenetic modifications associated with ELS and psychiatric disorders in adolescents are limited. Moreover, how these epigenetic modifications can lead to psychiatric disorders in adolescents is not fully understood. Commonly, DNA methylation, histone modification, and the regulation of noncoding RNAs have been attributed to the reprogramming of epigenetic profiling associated with ELS. Although only a few studies have attempted to examine epigenetic modifications in adolescents with ELS, existing evidence suggests that there are commonalities and differences in epigenetic profiling between adolescents and adults. In addition, epigenetic modifications are sex-dependent and are influenced by the type of ELS. In this review, we have critically evaluated the current evidence on epigenetic modifications in adolescents with ELS, particularly DNA methylation and the expression of microRNAs in both preclinical models and humans. We have also clarified the impact of ELS on psychiatric disorders in adolescents to predict the development of neuropsychiatric disorders and to prevent and recover these disorders through personalized medicine.
Collapse
|
44
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
The protective effects of curcumin on depression: Genes, transcription factors, and microRNAs involved. J Affect Disord 2022; 319:526-537. [PMID: 36162691 DOI: 10.1016/j.jad.2022.09.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022]
Abstract
BACKGROUND We aim to identify the molecular mechanisms for curcumin's anti-depressant properties, including genes, transcription factors, and miRNAs. METHODS The Comparative Toxicogenomics Database, GeneMania, Metascape, MIENTURNET, and Cytoscape software were used as important data approaches in this study. RESULTS Curcumin may have an anti-depressant effect via the relevant genes: ADORA2A, ALB, BDNF, FGF2, GLO1, GSK3B, IL6, MIF, NOS1, PTGS2, RELN, SELP, SOD1, and NR3C1. Co-expression (50.7 %) and physical interactions (28.7 %) were the primary relationships discovered by gene network analysis. The key pathways involved in curcumin's protective function against depression were "spinal cord injury", "regulation of apoptotic signaling pathway", "positive regulation of protein phosphorylation", "folate metabolism", "neuroinflammation and glutamatergic signaling", and "inflammation response". We also observed 74 miRNAs associated with depression that are targeted by curcumin, with hsa-miR-146a-5p having the greatest expression and interaction. PLSCR1, SNAI1, ZNF267, ATF3, and GTF2B were the most important transcription factors that regulated four curcumin-targeted genes. Curcumin's physicochemical characteristics and pharmacokinetics are consistent with its antidepressant effects due to its high gastrointestinal absorption, which did not remove it from the CNS, and its ability to penetrate the blood-brain barrier. Curcumin also inhibits CYP1A9 and CYP3A4. LIMITATIONS A toxicogenomic design in silico was applied. CONCLUSIONS Our findings suggest that therapy optimization and further research into curcumin's pharmacological properties are required before it may be utilized to treat depression.
Collapse
|
46
|
Tang Y, Song J, Zhu Y, Chen H, Yao W, Zou D. Analysis of clinical characteristics of centrally mediated abdominal pain syndrome, exploration of diagnostic markers and its relationship with the efficacy of duloxetine treatment. Medicine (Baltimore) 2022; 101:e32134. [PMID: 36482519 PMCID: PMC9726388 DOI: 10.1097/md.0000000000032134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Centrally mediated abdominal pain syndrome (CAPS) is characterized by severe abdominal pain. Diagnosis of CAPS is still an exclusionary diagnosis, there remain no effective diagnostic biomarkers so far. Duloxetine is the major pharmacotherapy of CAPS, while some CAPS patients do not respond to duloxetine treatment. However, there is a lack of molecular markers to predict the efficacy of duloxetine. In our pilot study, we have found differential expression profiles of serum miRNAs between CAPS patients and healthy controls. Our study aims to explore the clinical characteristics, specific miRNAs in serum as diagnostic biomarkers of CAPS and predictive biomarkers of the efficacy of duloxetine. METHODS/DESIGN In this prospective cohort study, we plan to enroll 430 participants including 215 CAPS patients and 215 healthy controls. The CAPS group takes duloxetine 30 mg per day as an initial dose. Patients will have 24-week medication period and follow up at week 0, 4, 12, 24 and 36. Blood samples will be obtained from patients at every visits and health controls at the initial visit and a series of questionnaires will be completed by the participants. The primary end points are: The differential expression of miRNAs between CAPS groups and healthy control groups at baseline. The changes in abdominal pain scores before and after duloxetine treatment in patients with CAPS and their relationship with the changes in miRNAs. The secondary end point is the changes in scores of depression, anxiety, sleep quality and quality of life before and after duloxetine treatment in patients with CAPS and their relationship with changes in miRNAs. DISCUSSION Findings of study will provide the reliable basis for diagnosis and the predictor of duloxetine efficacy of CAPS. Importantly, findings grant patients a chance to benefit from treatment.
Collapse
Affiliation(s)
- Yuming Tang
- Department of Gastroenterology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Jiani Song
- Department of Gastroenterology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Ying Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Hefeng Chen
- Department of Pharmacy, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Weiyan Yao
- Department of Gastroenterology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Duowu Zou
- Department of Gastroenterology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
- * Correspondence: Duowu Zou, Department of Gastroenterology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 197 Ruijin Second Road, Huangpu District, Shanghai 200025, China (e-mail: )
| |
Collapse
|
47
|
Yoshida Y, Yajima Y, Kawakami K, Nakamura SI, Tsukahara T, Oishi K, Toyoda A. Salivary microRNA and Metabolic Profiles in a Mouse Model of Subchronic and Mild Social Defeat Stress. Int J Mol Sci 2022; 23:ijms232214479. [PMID: 36430957 PMCID: PMC9692636 DOI: 10.3390/ijms232214479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Identification of early biomarkers of stress is important for preventing mood and anxiety disorders. Saliva is an easy-to-collect and non-invasive diagnostic target. The aim of this study was to characterize the changes in salivary whole microRNAs (miRNAs) and metabolites in mice subjected to subchronic and mild social defeat stress (sCSDS). In this study, we identified seven upregulated and one downregulated miRNAs/PIWI-interacting RNA (piRNA) in the saliva of sCSDS mice. One of them, miR-208b-3p, which is reported as a reliable marker for myocardial infarction, was upregulated in the saliva of sCSDS mice. Histological analysis showed frequent myocardial interstitial fibrosis in the heart of such mice. In addition, gene ontology and pathway analyses suggested that the pathways related to energy metabolism, such as the oxidative phosphorylation and the pentose phosphate pathway, were significantly related to the miRNAs affected by sCSDS in saliva. In contrast, salivary metabolites were not significantly changed in the sCSDS mice, which is consistent with our previous metabolomic study on the plasma of sCSDS mice. Taken in the light of previous studies, the present study provides novel potential stress biomarkers for future diagnosis using saliva.
Collapse
Affiliation(s)
- Yuta Yoshida
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
| | - Yuhei Yajima
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kina Kawakami
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
| | | | | | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Atsushi Toyoda
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Correspondence: ; Tel.: +81-29-888-8584; Fax: +81-29-888-8584
| |
Collapse
|
48
|
Transcriptomic Studies of Antidepressant Action in Rodent Models of Depression: A First Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113543. [DOI: 10.3390/ijms232113543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Antidepressants (ADs) are, for now, the best everyday treatment we have for moderate to severe major depressive episodes (MDEs). ADs are among the most prescribed drugs in the Western Hemisphere; however, the trial-and-error prescription strategy and side-effects leave a lot to be desired. More than 60% of patients suffering from major depression fail to respond to the first AD they are prescribed. For those who respond, full response is only observed after several weeks of treatment. In addition, there are no biomarkers that could help with therapeutic decisions; meanwhile, this is already true in cancer and other fields of medicine. For years, many investigators have been working to decipher the underlying mechanisms of AD response. Here, we provide the first systematic review of animal models. We thoroughly searched all the studies involving rodents, profiling transcriptomic alterations consecutive to AD treatment in naïve animals or in animals subjected to stress-induced models of depression. We have been confronted by an important heterogeneity regarding the drugs and the experimental settings. Thus, we perform a meta-analysis of the AD signature of fluoxetine (FLX) in the hippocampus, the most studied target. Among genes and pathways consistently modulated across species, we identify both old players of AD action and novel transcriptional biomarker candidates that warrant further investigation. We discuss the most prominent transcripts (immediate early genes and activity-dependent synaptic plasticity pathways). We also stress the need for systematic studies of AD action in animal models that span across sex, peripheral and central tissues, and pharmacological classes.
Collapse
|
49
|
Blood miR-144-3p: a novel diagnostic and therapeutic tool for depression. Mol Psychiatry 2022; 27:4536-4549. [PMID: 35902629 PMCID: PMC9832789 DOI: 10.1038/s41380-022-01712-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. There is an urgent need for objective biomarkers to diagnose this highly heterogeneous syndrome, assign treatment, and evaluate treatment response and prognosis. MicroRNAs (miRNAs) are short non-coding RNAs, which are detected in body fluids that have emerged as potential biomarkers of many disease conditions. The present study explored the potential use of miRNAs as biomarkers for MDD and its treatment. We profiled the expression levels of circulating blood miRNAs from mice that were collected before and after exposure to chronic social defeat stress (CSDS), an extensively validated mouse model used to study depression, as well as after either repeated imipramine or single-dose ketamine treatment. We observed robust differences in blood miRNA signatures between stress-resilient and stress-susceptible mice after an incubation period, but not immediately after exposure to the stress. Furthermore, ketamine treatment was more effective than imipramine at re-establishing baseline miRNA expression levels, but only in mice that responded behaviorally to the drug. We identified the red blood cell-specific miR-144-3p as a candidate biomarker to aid depression diagnosis and predict ketamine treatment response in stress-susceptible mice and MDD patients. Lastly, we demonstrate that systemic knockdown of miR-144-3p, via subcutaneous administration of a specific antagomir, is sufficient to reduce the depression-related phenotype in stress-susceptible mice. RNA-sequencing analysis of blood after such miR-144-3p knockdown revealed a blunted transcriptional stress signature as well. These findings identify miR-144-3p as a novel target for diagnosis of MDD as well as for antidepressant treatment, and enhance our understanding of epigenetic processes associated with depression.
Collapse
|
50
|
Relationship between the expression level of miRNA-4485 and the severity of depressive symptoms in major depressive disorder patients. THE EUROPEAN JOURNAL OF PSYCHIATRY 2022. [DOI: 10.1016/j.ejpsy.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|