1
|
Bisen S, Gogoi P, Sharma A, Mukhopadhyay CS, Singh NK. A Disintegrin and Metalloproteinase 10 Regulates Ephrin B2-Mediated Endothelial Cell Sprouting and Ischemic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00114-2. [PMID: 40252970 DOI: 10.1016/j.ajpath.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/21/2025]
Abstract
Retinal neovascularization is the leading cause of visual impairment in diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. The extracellular matrix breakdown by metalloproteinase leads to vascular complications in various proliferative retinopathies. A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is involved in physiological angiogenesis. However, limited information exists regarding the role of ADAM10 in proliferative retinopathies. In this study, the levels of active ADAM10 were significantly up-regulated in the ischemic retina, and down-regulation or inactivation of ADAM10 significantly inhibited the proliferation, sprouting, migration, and tube formation of human retinal microvascular endothelial cell. Furthermore, the endothelial cell (EC)-specific deletion of ADAM10 (ADAM10iΔEC) significantly attenuated vascular leakage, edema, endothelial cell sprouting, and retinal neovascularization in ischemic retinas of mice exposed to oxygen-induced retinopathy. In experiments investigating the mechanisms through which ADAM10 regulated pathologic angiogenesis, ADAM10 regulated ephrin B2 (EfnB2) expression in endothelial cells. Down-regulation of EfnB2 expression influenced human retinal microvascular endothelial cell proliferation, migration, sprouting, and tube formation. In addition, a significant up-regulation of EfnB2 expression in the ischemic retina was detected. EC-specific depletion of ADAM10 significantly reduced EfnB2 expression, suggesting its involvement in ADAM10-regulated retinal neovascularization. The findings demonstrate how EC-specific ADAM10 regulates pathologic retinal neovascularization in the ischemic retina, indicating its significance as a potential therapeutic target for proliferative retinopathies.
Collapse
Affiliation(s)
- Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, Michigan; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan
| | - Purnima Gogoi
- Integrative Biosciences Center, Wayne State University, Detroit, Michigan; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan; Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, Michigan; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan
| | - Chandra S Mukhopadhyay
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, Michigan; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan.
| |
Collapse
|
2
|
Erhardt V, Hartig E, Lorenzo K, Megathlin HR, Tarchini B, Hosur V. Systematic optimization and prediction of cre recombinase for precise genome editing in mice. Genome Biol 2025; 26:85. [PMID: 40186303 PMCID: PMC11971878 DOI: 10.1186/s13059-025-03560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The Cre-Lox system is a powerful tool in mouse genetics, enabling precise spatiotemporal control of gene expression and conditional knockout models. Since its development, it has transformed genome editing by facilitating targeted deletions, translocations, inversions, and complex modifications-double-floxed inverse orientation. Its utility extends beyond mice to rats, pigs, and zebrafish. However, challenges such as high costs, lengthy timelines, and unpredictable recombination remain, highlighting the need for ongoing improvements to enhance efficiency, reliability, and applicability across genetic models. RESULTS In this study, we perform a systematic analysis of Cre-mediated recombination in mice, creating 11 new strains with conditional alleles at the Rosa26 locus, using the C57BL/6J background. Factors influencing recombination efficiency include inter-loxP distance, mutant loxP sites, zygosity, chromosomal location, and breeder age. Our results demonstrate that the choice of Cre-driver strain plays a significant role in recombination efficiency. Optimal recombination is achieved when loxP sites are spaced by less than 4 kb and mutant loxP sites by 3 kb. Complete recombination fails with wildtype loxP sites spaced ≥ 15 kb or mutant lox71/66 sites spaced ≥ 7 kb. The best recombination efficiency is observed in breeders aged 8-20 weeks and when using heterozygous floxed alleles. CONCLUSION The Cre-Lox system remains indispensable for genetic engineering, offering flexibility beyond standalone applications by integrating with CRISPR-based methods to expand its utility. Despite challenges, our findings provide a framework for optimizing Cre-mediated recombination. By refining Cre-Lox strategies, this knowledge enhances experimental precision, improves reproducibility, and ultimately reduces the time and cost of genome modification.
Collapse
Affiliation(s)
- Valerie Erhardt
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Kristian Lorenzo
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- The Roux Institute at Northeastern University, Portland, ME, USA
| | - Hannah R Megathlin
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, UMaine, Orono, ME, USA
| | - Basile Tarchini
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
| |
Collapse
|
3
|
Jarjour NN, Dalzell TS, Maurice NJ, Wanhainen KM, Peng C, O'Flanagan SD, DePauw TA, Block KE, Valente WJ, Ashby KM, Masopust D, Jameson SC. Collaboration between interleukin-7 and -15 enables adaptation of tissue-resident and circulating memory CD8 + T cells to cytokine deficiency. Immunity 2025; 58:616-631.e5. [PMID: 40023156 DOI: 10.1016/j.immuni.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/25/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Interleukin-7 (IL-7) is considered a critical regulator of memory CD8+ T cell homeostasis. However, this is primarily based on circulating memory populations, and the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not been directly tested. Here, we addressed the role for IL-7Rα in circulating and resident memory CD8+ T cells (Trm) after their establishment. We found that inducible Il7ra deletion had only a modest effect on persistence of circulating memory and Trm subsets, causing reduced basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Rα dependence on memory CD8+ T cells, including Trm cells described as IL-15 independent. In the absence of IL-15 signaling, IL-7Rα was elevated, and loss of IL-7Rα signaling reduced IL-15-elicited proliferation, suggesting crosstalk between these pathways in memory CD8+ T cells. Thus, across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8+ T cells, conferring resilience to altered availability of either cytokine.
Collapse
Affiliation(s)
- Nicholas N Jarjour
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Talia S Dalzell
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J Maurice
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M Wanhainen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Taylor A DePauw
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katharine E Block
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - William J Valente
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Kirikae H, He X, Ohnishi T, Miyazaki H, Yoshikawa T, Owada Y, Maekawa M. Gene Expression Profiling in the Cortex of Fabp4 Knockout Mice. Neuropsychopharmacol Rep 2025; 45:e70006. [PMID: 39921359 PMCID: PMC11806211 DOI: 10.1002/npr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
AIMS Fatty acid binding protein 4, adipocyte (Fabp4), is well known for its role in peripheral lipid metabolism, but its potential role in brain function remains largely unexplored. This study aimed to investigate Fabp4 expression in the adult mouse brain and explore gene expression changes in Fabp4 knockout (KO) mice to assess its potential impact on brain function. METHODS We conducted in situ hybridization to assess Fabp4 expression in key brain regions of adult mice. In parallel, differential gene expression analysis using RNA-seq was conducted in the prefrontal cortex of Fabp4 KO mice to identify genes affected by Fabp4 deficiency. RESULTS No Fabp4 expression was detected in the brains of mice, suggesting a lack of direct involvement in the central nervous system. However, Fabp4 KO mice exhibited significant changes in gene expression in the brain, with 31 genes upregulated and 30 downregulated. Downregulated genes were linked to histone methylation and metabolic processes, while upregulated ones were associated with synaptic organization. CONCLUSION Although Fabp4 is not expressed in the brain, its deficiency leads to substantial changes in gene expression, likely mediated by peripheral metabolic pathways and epigenetic regulation. These changes may explain the previously observed autism-like behaviors and increased dendritic spine density in Fabp4 KO mice. This study sheds light on the role of systemic lipid metabolism in neurodevelopmental disorders such as autism spectrum disorder (ASD) and highlights epigenetic mechanisms as potential mediators of these effects.
Collapse
Affiliation(s)
- Hinako Kirikae
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Xiaofeng He
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuo Ohnishi
- Department of NutritionAkita Nutrition Junior CollegeAkitaJapan
| | - Hirofumi Miyazaki
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Takeo Yoshikawa
- Laboratory for Molecular PsychiatryRIKEN Center for Brain Science WakoSaitamaJapan
| | - Yuji Owada
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Motoko Maekawa
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
5
|
Han S, Yang EM, Hur EM. A brief guide for gene delivery to the brain using adeno-associated viral vectors. Mol Cells 2025; 48:100189. [PMID: 39904462 PMCID: PMC11879685 DOI: 10.1016/j.mocell.2025.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
The advent of recombinant adeno-associated viral (rAAV) vector-mediated gene delivery has accelerated the comprehensive analysis and manipulation of the nervous system owing to its ability to regulate gene expression in a spatiotemporal manner, thereby facilitating the study of brain physiology and the investigation of the pathophysiology of neurological disorders. Here, we provide a concise guide to stereotaxic gene delivery into the mouse brain using rAAV vectors. Key considerations for designing a customized rAAV vector are discussed, along with an overview of the surgical procedures of intracranial stereotaxic injection. This article aims to assist neuroscientists in establishing experimental setups for genetic manipulation in the mouse brain.
Collapse
Affiliation(s)
- Seungwan Han
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun Mo Yang
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea
| | - Eun-Mi Hur
- Laboratory of Neuroscience, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Comparative Medicine Disease Research Center, Science Research Center, Seoul National University, Seoul 08826, South Korea; Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
6
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Halurkar MS, Inoue O, Singh A, Mukherjee R, Ginugu M, Ahn C, Bonatto Paese CL, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-Cre transgene elicits complex developmental and metabolic phenotypes. Nat Commun 2025; 16:770. [PMID: 39824816 PMCID: PMC11742029 DOI: 10.1038/s41467-024-54763-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/20/2024] [Indexed: 01/20/2025] Open
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, tissue specific growth defects, and craniofacial abnormalities. Mapping the transgene insertion site reveals insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Archana Singh
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Pioneering Medicines, 140 First St., Suite 302, Cambridge, MA, USA
| | - Meghana Ginugu
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher Ahn
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Rutkowski N, Görlitz F, Wiesner E, Binz-Lotter J, Feil S, Feil R, Benzing T, Hackl MJ. Real-time imaging of cGMP signaling shows pronounced differences between glomerular endothelial cells and podocytes. Sci Rep 2024; 14:26099. [PMID: 39478086 PMCID: PMC11525973 DOI: 10.1038/s41598-024-76768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Recent clinical trials of drugs enhancing cyclic guanosine monophosphate (cGMP) signaling for cardiovascular diseases have renewed interest in cGMP biology within the kidney. However, the role of cGMP signaling in glomerular endothelial cells (GECs) and podocytes remains largely unexplored. Using acute kidney slices from mice expressing the FRET-based cGMP biosensor cGi500 in endothelial cells or podocytes enabled real-time visualization of cGMP. Stimulation with atrial natriuretic peptide (ANP) or SNAP (NO donor) and various phosphodiesterase (PDE) inhibitors elevated intracellular cGMP in both cell types. GECs showed a transient cGMP response upon particulate or soluble guanylyl cyclase activation, while the cGMP response in podocytes reached a plateau following ANP administration. Co-stimulation (ANP + SNAP) led to an additive response in GECs. The administration of PDE inhibitors revealed a broader basal PDE activity in GECs dominated by PDE2a. In podocytes, basal PDE activity was mainly restricted to PDE3 and PDE5 activity. Our data demonstrate the existence of both guanylyl cyclase pathways in GECs and podocytes with cell-specific differences in cGMP synthesis and degradation, potentially suggesting new therapeutic options for kidney diseases.
Collapse
Affiliation(s)
- Nelli Rutkowski
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frederik Görlitz
- Bio- and Nanophotonics, Department of Microsystem Engineering, University of Freiburg, Freiburg, Germany
| | - Eva Wiesner
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Susanne Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), University of Tübingen, Tübingen, Germany
| | - Thomas Benzing
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matthias J Hackl
- Department II Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Cluster of Excellence Cellular Stress Responses in Aging- associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Nephrolab Cologne, CECAD Research Center, University Hospital of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany.
| |
Collapse
|
9
|
Detrés Román CR, Erwin MM, Rudloff MW, Revetta F, Murray KA, Favret NR, Roetman JJ, Roland JT, Washington MK, Philip M. Vaccination generates functional progenitor tumor-specific CD8 T cells and long-term tumor control. J Immunother Cancer 2024; 12:e009129. [PMID: 39362791 PMCID: PMC11459355 DOI: 10.1136/jitc-2024-009129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) therapies are an important treatment for patients with advanced cancers; however, only a subset of patients with certain types of cancer achieve durable remission. Cancer vaccines are an attractive strategy to boost patient immune responses, but less is known about whether and how immunization can induce long-term tumor immune reprogramming and arrest cancer progression. We developed a clinically relevant genetic cancer mouse model in which hepatocytes sporadically undergo oncogenic transformation. We compared how tumor-specific CD8 T cells (TST) differentiated in mice with early sporadic lesions as compared with late lesions and tested how immunotherapeutic strategies, including vaccination and ICB, impact TST function and liver cancer progression. METHODS Mice with a germline floxed allele of the SV40 large T antigen (TAG) undergo spontaneous recombination and activation of the TAG oncogene, leading to rare early cancerous TAG-expressing lesions that inevitably progress to established liver cancer. We assessed the immunophenotype (CD44, PD1, TCF1, and TOX expression) and function (TNFα and IFNγ cytokine production) of tumor/TAG-specific CD8 T cells in mice with early and late liver lesions by flow cytometry. We vaccinated mice, either alone or in combination with ICB, to test whether these immunotherapeutic interventions could stop liver cancer progression and improve survival. RESULTS In mice with early lesions, a subset of TST were PD1+ TCF1+ TOX- and could produce IFNγ while TST present in mice with late liver cancers were PD1+ TCF1lo/- TOX+ and unable to make effector cytokines. Strikingly, vaccination with attenuated TAG epitope-expressing Listeria monocytogenes (LMTAG) blocked liver cancer development and led to a population of TST that were PD1-heterogeneous, TCF1+ TOX- and polyfunctional cytokine producers. Vaccine-elicited TCF1+TST could self-renew and differentiate, establishing them as progenitor TST. In contrast, ICB administration did not slow cancer progression or improve LMTAG vaccine efficacy. CONCLUSION Vaccination, but not ICB, generated a population of functional progenitor TST and halted cancer progression in a clinically relevant model of sporadic liver cancer. In patients with early cancers or at high risk of cancer recurrence, immunization may be the most effective strategy.
Collapse
Affiliation(s)
| | - Megan M Erwin
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael W Rudloff
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Frank Revetta
- Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen A Murray
- Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Natalie R Favret
- Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jessica J Roetman
- Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joseph T Roland
- Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary K Washington
- Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Philip
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
11
|
Garcia-Gonzalez I, Rocha SF, Hamidi A, Garcia-Ortega L, Regano A, Sanchez-Muñoz M, Lytvyn M, Garcia-Cabero A, Roig-Soucase S, Schoofs H, Castro M, Sabata H, Potente M, Graupera M, Makinen T, Benedito R. iSuRe-HadCre is an essential tool for effective conditional genetics. Nucleic Acids Res 2024; 52:e56. [PMID: 38850155 PMCID: PMC11260470 DOI: 10.1093/nar/gkae472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Methods for modifying gene function at high spatiotemporal resolution in mice have revolutionized biomedical research, with Cre-loxP being the most widely used technology. However, the Cre-loxP technology has several drawbacks, including weak activity, leakiness, toxicity, and low reliability of existing Cre-reporters. This is mainly because different genes flanked by loxP sites (floxed) vary widely in their sensitivity to Cre-mediated recombination. Here, we report the generation, validation, and utility of iSuRe-HadCre, a new dual Cre-reporter and deleter mouse line that avoids these drawbacks. iSuRe-HadCre achieves this through a novel inducible dual-recombinase genetic cascade that ensures that cells expressing a fluorescent reporter had only transient Cre activity, that is nonetheless sufficient to effectively delete floxed genes. iSuRe-HadCre worked reliably in all cell types and for the 13 floxed genes tested. This new tool will enable the precise, efficient, and trustworthy analysis of gene function in entire mouse tissues or in single cells.
Collapse
Affiliation(s)
- Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana F Rocha
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Anahita Hamidi
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lourdes Garcia-Ortega
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alvaro Regano
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Maria S Sanchez-Muñoz
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Aroa Garcia-Cabero
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergi Roig-Soucase
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Hans Schoofs
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Marco Castro
- Angiogenesis & Metabolism Laboratory, Center of Vascular Biomedicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Helena Sabata
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Center of Vascular Biomedicine, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Taija Makinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
- Translational Cancer Medicine Program, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
12
|
Hosur V, Erhardt V, Hartig E, Lorenzo K, Megathlin H, Tarchini B. Large-Scale Genome-Wide Optimization and Prediction of the Cre Recombinase System for Precise Genome Manipulation in Mice. RESEARCH SQUARE 2024:rs.3.rs-4595968. [PMID: 39011108 PMCID: PMC11247941 DOI: 10.21203/rs.3.rs-4595968/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The Cre-Lox recombination system is a powerful tool in mouse genetics, offering spatial-temporal control over gene expression and facilitating the large-scale generation of conditional knockout mice. Its versatility also extends to other research models, such as rats, pigs, and zebrafish. However, the Cre-Lox technology presents a set of challenges that includes high costs, a time-intensive process, and the occurrence of unpredictable recombination events, which can lead to unexpected phenotypic outcomes. To better understand factors affecting recombination, we embarked on a systematic and genome-wide analysis of Cre-mediated recombination in mice. To ensure uniformity and reproducibility, we generated 11 novel strains with conditional alleles at the ROSA26 locus, utilizing a single inbred mouse strain background, C57BL/6J. We examined several factors influencing Cre-recombination, including the inter-loxP distance, mutant loxP sites, the zygosity of the conditional alleles, chromosomal location, and the age of the breeders. We discovered that the selection of the Cre-driver strain profoundly impacts recombination efficiency. We also found that successful and complete recombination is best achieved when loxP sites are spaced between 1 to 4 kb apart, with mutant loxP sites facilitating recombination at distances of 1 to 3 kb. Furthermore, we demonstrate that complete recombination does not occur at an inter-loxP distance of ≥ 15 kb with wildtype loxP sites, nor at a distance of ≥ 7 kb with mutant lox71/66 sites. Interestingly, the age of the Cre-driver mouse at the time of breeding emerged as a critical factor in recombination efficiency, with best results observed between 8 and 20 weeks old. Moreover, crossing heterozygous floxed alleles with the Cre-driver strain resulted in more efficient recombination than using homozygous floxed alleles. Lastly, maintaining an inter-loxP distance of 4 kb or less ensures efficient recombination of the conditional allele, regardless of the chromosomal location. While CRISPR/Cas has revolutionized genome editing in mice, Cre-Lox technology remains a cornerstone for the generation of sophisticated alleles and for precise control of gene expression in mice. The knowledge gained here will enable investigators to select a Cre-Lox approach that is most efficient for their desired outcome in the generation of both germline and non-germline mouse models of human disease, thereby reducing time and cost of Cre-Lox technology-mediated genome modification.
Collapse
Affiliation(s)
| | | | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics
| | | | | | | |
Collapse
|
13
|
Erhardt V, Hartig E, Lorenzo K, Megathlin HR, Tarchini B, Hosur V. Large-Scale Genome-Wide Optimization and Prediction of the Cre Recombinase System for Precise Genome Manipulation in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599022. [PMID: 38948742 PMCID: PMC11212873 DOI: 10.1101/2024.06.14.599022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Cre-Lox recombination system is a powerful tool in mouse genetics, offering spatial-temporal control over gene expression and facilitating the large-scale generation of conditional knockout mice. Its versatility also extends to other research models, such as rats, pigs, and zebrafish. However, the Cre-Lox technology presents a set of challenges that includes high costs, a time-intensive process, and the occurrence of unpredictable recombination events, which can lead to unexpected phenotypic outcomes. To better understand factors affecting recombination, we embarked on a systematic and genome-wide analysis of Cre-mediated recombination in mice. To ensure uniformity and reproducibility, we generated 11 novel strains with conditional alleles at the ROSA26 locus, utilizing a single inbred mouse strain background, C57BL/6J. We examined several factors influencing Cre-recombination, including the inter-loxP distance, mutant loxP sites, the zygosity of the conditional alleles, chromosomal location, and the age of the breeders. We discovered that the selection of the Cre-driver strain profoundly impacts recombination efficiency. We also found that successful and complete recombination is best achieved when loxP sites are spaced between 1 to 4 kb apart, with mutant loxP sites facilitating recombination at distances of 1 to 3 kb. Furthermore, we demonstrate that complete recombination does not occur at an inter-loxP distance of ≥ 15 kb with wildtype loxP sites, nor at a distance of ≥ 7 kb with mutant lox71/66 sites. Interestingly, the age of the Cre-driver mouse at the time of breeding emerged as a critical factor in recombination efficiency, with best results observed between 8 and 20 weeks old. Moreover, crossing heterozygous floxed alleles with the Cre-driver strain resulted in more efficient recombination than using homozygous floxed alleles. Lastly, maintaining an inter-loxP distance of 4 kb or less ensures efficient recombination of the conditional allele, regardless of the chromosomal location. While CRISPR/Cas has revolutionized genome editing in mice, Cre-Lox technology remains a cornerstone for the generation of sophisticated alleles and for precise control of gene expression in mice. The knowledge gained here will enable investigators to select a Cre-Lox approach that is most efficient for their desired outcome in the generation of both germline and non-germline mouse models of human disease, thereby reducing time and cost of Cre-Lox technology-mediated genome modification.
Collapse
Affiliation(s)
- Valerie Erhardt
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | - Elli Hartig
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Tufts University School of Medicine, Boston, MA
| | - Kristian Lorenzo
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- The Roux Institute at Northeastern University, Portland, ME
| | - Hannah R Megathlin
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Graduate School of Biomedical Sciences and Engineering, UMaine, Orono, ME
| | - Basile Tarchini
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
- Tufts University School of Medicine, Boston, MA
| | - Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| |
Collapse
|
14
|
Jarjour NN, Dalzell TS, Maurice NJ, Wanhainen KM, Peng C, DePauw TA, Block KE, Valente WJ, Ashby KM, Masopust D, Jameson SC. Collaboration between IL-7 and IL-15 enables adaptation of tissue-resident and circulating memory CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596695. [PMID: 38895229 PMCID: PMC11185530 DOI: 10.1101/2024.05.31.596695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Interleukin-7 (IL-7) is considered a critical regulator of memory CD8+ T cell homeostasis, but this is primarily based on analysis of circulating and not tissue-resident memory (TRM) subsets. Furthermore, the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not been directly tested. Using inducible deletion, we found that Il7ra loss had only a modest effect on persistence of circulating memory and TRM subsets and that IL-7Rα was primarily required for normal basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Rα dependence on memory CD8+ T cells, including TRM populations previously described as IL-15-independent. In the absence of IL-15 signaling, IL-7Rα was upregulated, and loss of IL-7Rα signaling reduced proliferation in response to IL-15, suggesting cross-regulation in memory CD8+ T cells. Thus, across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8+ T cells, conferring resilience to altered availability of either cytokine.
Collapse
Affiliation(s)
- Nicholas N. Jarjour
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Talia S. Dalzell
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J. Maurice
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M. Wanhainen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Changwei Peng
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Present address: Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA 02115, USA
| | - Taylor A. DePauw
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katharine E. Block
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - William J. Valente
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - K. Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Masopust
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Lead contact
| |
Collapse
|
15
|
Zierke L, John D, Gischke M, Tran QT, Sendler M, Weiss FU, Bornscheuer UT, Ritter C, Lerch MM, Aghdassi AA. Initiation of acute pancreatitis in mice is independent of fusion between lysosomes and zymogen granules. Cell Mol Life Sci 2024; 81:207. [PMID: 38709385 DOI: 10.1007/s00018-024-05247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.
Collapse
Affiliation(s)
- Lukas Zierke
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Daniel John
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Marcel Gischke
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Quang Trung Tran
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
- Department of Internal Medicine, Hue University, Hue, Vietnam
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Christoph Ritter
- Department of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch Str, 17475, Greifswald, Germany.
| |
Collapse
|
16
|
Lau MYH, Gadiwalla S, Jones S, Galliano E. Different electrophysiological profiles of genetically labelled dopaminergic neurons in the mouse midbrain and olfactory bulb. Eur J Neurosci 2024; 59:1480-1499. [PMID: 38169095 DOI: 10.1111/ejn.16239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Dopaminergic (DA) neurons play pivotal roles in diverse brain functions, spanning movement, reward processing and sensory perception. DA neurons are most abundant in the midbrain (Substantia Nigra pars compacta [SNC] and Ventral Tegmental Area [VTA]) and the olfactory bulb (OB) in the forebrain. Interestingly, a subtype of OB DA neurons is capable of regenerating throughout life, while a second class is exclusively born during embryonic development. Compelling evidence in SNC and VTA also indicates substantial heterogeneity in terms of morphology, connectivity and function. To further investigate this heterogeneity and directly compare form and function of midbrain and forebrain bulbar DA neurons, we performed immunohistochemistry and whole-cell patch-clamp recordings in ex vivo brain slices from juvenile DAT-tdTomato mice. After confirming the penetrance and specificity of the dopamine transporter (DAT) Cre line, we compared soma shape, passive membrane properties, voltage sags and action potential (AP) firing across midbrain and forebrain bulbar DA subtypes. We found that each DA subgroup within midbrain and OB was highly heterogeneous, and that DA neurons across the two brain areas are also substantially different. These findings complement previous work in rats as well as gene expression and in vivo datasets, further questioning the existence of a single "dopaminergic" neuronal phenotype.
Collapse
Affiliation(s)
- Maggy Yu Hei Lau
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Sana Gadiwalla
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Susan Jones
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| |
Collapse
|
17
|
Detrés Román CR, Rudloff MW, Revetta F, Favret NR, Murray KA, Roetman JJ, Erwin MM, Washington MK, Philip M. Vaccination generates functional progenitor tumor-specific CD8 T cells and long-term tumor control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582064. [PMID: 38464229 PMCID: PMC10925145 DOI: 10.1101/2024.02.26.582064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Immune checkpoint blockade (ICB) therapies are an important treatment for patients with advanced cancers; however only a subset of patients with certain types of cancer achieves durable remissions. Cancer vaccines are an attractive strategy to boost patient immune responses, but less is known about whether and how immunization can induce long-term tumor immune reprogramming and arrest cancer progression. We developed a clinically-relevant genetic cancer mouse model in which hepatocytes sporadically undergo oncogenic transformation. We compared how tumor-specific CD8 T cells (TST) differentiate in mice with early sporadic lesions as compared to late lesions and tested how immunotherapeutic strategies, including vaccination and ICB, reprogram TST and impact liver cancer progression. Methods Mice with a germline floxed allele of the SV40 large T antigen (TAG) undergo spontaneous recombination and activation of the TAG oncogene, leading to rare early pre-cancerous lesions that inevitably progress to established liver cancer. We assessed the immunophenotype and function of TAG-specific CD8 T cells in mice with early and late liver lesions. We vaccinated mice, either alone or in combination with ICB, to test whether these immunotherapeutic interventions could stop liver cancer progression. Results In mice with early lesions, a subset of TST were PD1 + TCF1 + TOX - and could produce IFNγ, while TST present in mice with late liver cancers were PD1 + TCF1 lo/- TOX + and unable to make effector cytokines. Strikingly, vaccination with attenuated TAG epitope-expressing Listeria monocytogenes (LM TAG ) blocked liver cancer development and led to a population of TST that were TCF1 + TOX - TST and polyfunctional cytokine producers. In contrast, ICB administration did not slow cancer progression or improve LM TAG vaccine efficacy. Conclusion Vaccination, but not ICB, generated a population of progenitor TST and halted cancer progression in a clinically relevant model of sporadic liver cancer. In patients with early cancers or at high-risk of cancer recurrence, immunization may be the most effective strategy. What is already known on this topic Immunotherapy, including immune checkpoint blockade and cancer vaccines, fails to induce long-term remissions in most patients with cancer. What this study adds Hosts with early lesions but not hosts with advanced cancer retain a progenitor TCF1+ TST population. This population can be reprogrammed and therapeutically exploited by vaccination, but not ICB, to block tumor progression. How this study might affect research practice or policy For people at high-risk of cancer progression, vaccination administered when a responsive progenitor TST population is present may be the optimal immunotherapy to induce long-lasting progression-free survival.
Collapse
|
18
|
Kocherlakota S, Baes M. Benefits and Caveats in the Use of Retinal Pigment Epithelium-Specific Cre Mice. Int J Mol Sci 2024; 25:1293. [PMID: 38279294 PMCID: PMC10816505 DOI: 10.3390/ijms25021293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood-retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.
Collapse
Affiliation(s)
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Sprengel R, Eltokhi A, Single FN. Generation of Rare Human NMDA Receptor Variants in Mice. Methods Mol Biol 2024; 2799:79-105. [PMID: 38727904 DOI: 10.1007/978-1-0716-3830-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The analysis of rare NMDAR gene variants in mice, coupled with a fundamental understanding of NMDAR function, plays a crucial role in achieving therapeutic success when addressing NMDAR dysfunctions in human patients. For the generation of such NMDAR mouse models, a basic knowledge of receptor structure, along with skills in database sequence analysis, cloning in E. coli, genetic manipulation of embryonic stem (ES) cells, and ultimately the genetic modification of mouse embryos, is essential. Primarily, this chapter will focus on the design and synthesis of NMDAR gene-targeting vectors that can be used successfully for the genetic manipulation of mice. We will outline the core principles of the design and synthesis of a gene targeting vector that facilitates the introduction of single-point mutations in NMDAR-encoding genes in mice. The transformation of ES cells, selection of positive ES cell colonies, manipulation of mouse embryos, and genotyping strategies will be described briefly.
Collapse
Affiliation(s)
- Rolf Sprengel
- Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Ahmed Eltokhi
- Department of Biomedical Sciences, School of Medicine, Mercer University, Columbus, GA, USA
| | - Frank N Single
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
20
|
Matsumoto Y, Ikeda S, Kimura T, Ono K, Ashida N. Col1α2-Cre-mediated recombination occurs in various cell types due to Cre expression in epiblasts. Sci Rep 2023; 13:22483. [PMID: 38110549 PMCID: PMC10728165 DOI: 10.1038/s41598-023-50053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
The Cre-LoxP system has been commonly used for cell-specific genetic manipulation. However, many Cre strains exhibit excision activity in unexpected cell types or tissues. Therefore, it is important to identify the cell types in which recombination takes place. Fibroblasts are a cell type that is inadequately defined due to a lack of specific markers to detect the entire cell lineage. Here, we investigated the Cre recombination induced by Col1α2-iCre, one of the most common fibroblast-mesenchymal Cre driver lines, by using a double-fluorescent Cre reporter line in which GFP is expressed when recombination occurs. Our results indicated that Col1α2-iCre activity was more extensive across cell types than previously reported: Col1α2-iCre-mediated recombination was found in not only cells of mesenchymal origin but also those of other lineages, including haematopoietic cells, myocardial cells, lung and intestinal epithelial cells, and neural cells. In addition, study of embryos revealed that recombination by Col1α2-iCre was observed in the early developmental stage before gastrulation in epiblasts, which would account for the recombination across various cell types in adult mice. These results offer more insights into the activity of Col1α2-iCre and suggest that experimental results obtained using Col1α2-iCre should be carefully interpreted.
Collapse
Affiliation(s)
- Yuzuru Matsumoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Hirakata Kohsai Hospital, Osaka, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
21
|
Lin X, Qu J, Yin L, Wang R, Wang X. Aerobic exercise-induced decrease of chemerin improved glucose and lipid metabolism and fatty liver of diabetes mice through key metabolism enzymes and proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159409. [PMID: 37871796 DOI: 10.1016/j.bbalip.2023.159409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Our previous studies have implicated an important role of adipokine chemerin in exercise-induced improvements of glycolipid metabolism and fatty liver in diabetes rat, but the underlying mechanisms remain unknown. This study first used an exogenous chemerin supplement to clarify the roles of decreased chemerin in exercised diabetes mice and possible mechanisms of glucose and lipid metabolism key enzymes and proteins [such as adipose triglyceride lipase (ATGL), lipoprotein lipase (LPL), phosphoenolpyruvate carboxykinase (PEPCK), and glucose transporter 4 (GLUT4)]. In addition, two kinds of adipose-specific chemerin knockout mice were generated to demonstrate the regulation of chemerin on glucose and lipid metabolism enzymes and proteins. We found that in diabetes mice, exercise-induced improvements of glucose and lipid metabolism and fatty liver, and exercise-induced increases of ATGL, LPL, and GLUT4 in liver, gastrocnemius and fat were reversed by exogenous chemerin. Furthermore, in chemerin knockdown mice, chemerin(-/-)∙adiponectin mice had lower body fat mass, improved blood glucose and lipid, and no fatty liver; while chemerin(-/-)∙fabp4 mice had hyperlipemia and unchanged body fat mass. Peroxisome proliferator-activated receptor γ (PPARγ), ATGL, LPL, GLUT4 and PEPCK in the liver and gastrocnemius had improve changes in chemerin(-/-)·adiponectin mice while deteriorated alterations in chemerin(-/-)·fabp4 mice, although PPARγ, ATGL, LPL, and GLUT4 increased in the fat of two kinds of chemerin(-/-) mice. CONCLUSIONS: Decreased chemerin exerts an important role in exercise-induced improvements of glucose and lipid metabolism and fatty liver in diabetes mice, which was likely to be through PPARγ mediating elevations of ATGL, LPL and GLUT4 in peripheral metabolic organs.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jing Qu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lijun Yin
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
22
|
Shimokawa I. Mechanisms underlying retardation of aging by dietary energy restriction. Pathol Int 2023; 73:579-592. [PMID: 37975408 PMCID: PMC11551835 DOI: 10.1111/pin.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Moderate restriction of dietary energy intake, referred to here as dietary restriction (DR), delays aging and extends lifespan in experimental animals compared with a diet of ad libitum feeding (AL) control animals. Basic knowledge of the mechanisms underlying the effects of DR could be applicable to extending the healthspan in humans. This review highlights the importance of forkhead box O (FoxO) transcription factors downstream of the growth hormone-insulin-like growth factor 1 signaling in the effects of DR. Our lifespan studies in mice with heterozygous Foxo1 or Foxo3 gene knockout indicated differential roles of FoxO1 and FoxO3 in the tumor-inhibiting and life-extending effects of DR. Subsequent studies suggested a critical role of FoxO3 in metabolic and mitochondrial bioenergetic adaptation to DR. Our studies also verified hypothalamic neuropeptide Y (Npy) as a vital neuropeptide showing pleiotropic and sexually dimorphic effects for extending the healthspan in the context of nutritional availability. Npy was necessary for DR to exert its effects in male and female mice; meanwhile, under AL conditions, the loss of Npy prevented obesity and insulin resistance only in female mice. Overnutrition disrupts FoxO- and Npy-associated metabolic and mitochondrial bioenergetic adaptive processes, causing the acceleration of aging and related diseases.
Collapse
Affiliation(s)
- Isao Shimokawa
- Department of Pathology INagasaki University School of Medicine and Graduate School of Biomedical SciencesNagasakiJapan
- SAGL, LLCFukuokaJapan
| |
Collapse
|
23
|
Sundberg JP, Rice RH. Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet Pathol 2023; 60:829-842. [PMID: 37191004 DOI: 10.1177/03009858231170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The skin and adnexa can be difficult to interpret because they change dramatically with the hair cycle throughout life. However, a variety of methods are commonly available to collect skin and perform assays that can be useful for figuring out morphological and molecular changes. This overview provides information on basic approaches to evaluate skin and its molecular phenotype, with references for more detail, and interpretation of results on the skin and adnexa in the mouse. These approaches range from mouse genetic nomenclature, setting up a cutaneous phenotyping study, skin grafts, hair follicle reconstitution, wax stripping, electron microscopy, and Köbner reaction to very specific approaches such as lipid and protein analyses on a large scale.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
24
|
Ueki K, Nishida Y, Aoyama S, Uzawa H, Kanai A, Ito M, Ikeda K, Iida H, Miyatsuka T, Watada H. Establishment of Pancreatic β-Cell-Specific Gene Knockout System Based on CRISPR-Cas9 Technology With AAV8-Mediated gRNA Delivery. Diabetes 2023; 72:1609-1620. [PMID: 37625131 DOI: 10.2337/db23-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The Cre-loxP system provides valuable resources to analyze the importance of tissue-specific gene knockout (KO), including pancreatic β-cells associated with the pathogenesis of diabetes. However, it is expensive and time consuming to generate transgenic mice harboring floxed genes of interest and cross them with cell-specific Cre expression mice. We establish a βCas9 system with mice expressing Cas9 in pancreatic β-cells and adeno-associated virus 8 (AAV8)-mediated guide RNA (gRNA) delivery based on CRISPR-Cas9 technology to overcome those shortcomings. Interbreeding CAG-loxP-STOP-loxP (LSL)-Cas9 with Ins1-Cre mice generates normal glucose-tolerant βCas9 mice expressing Cas9 with fluorescent reporter EGFP specifically in β-cells. We also show significant β-cell-specific gene KO efficiency with AAV8-mediated delivery of gRNA for EGFP reporter by intraperitoneal injection in the mice. As a proof of concept, we administered AAV8 to βCas9 mice for expressing gRNA for Pdx1, a culprit gene of maturity-onset diabetes of the young 4. As reported previously, we demonstrate that those mice show glucose intolerance with transdifferentiation of Pdx1 KO β-cells into glucagon-expressing cells. We successfully generated a convenient β-cell-specific gene KO system with βCas9 mice and AAV8-mediated gRNA delivery. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Kyosei Ueki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Shuhei Aoyama
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Hirotsugu Uzawa
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Akiko Kanai
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Minami Ito
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Koki Ikeda
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Hitoshi Iida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Japan
| |
Collapse
|
25
|
Halurkar MS, Inoue O, Mukherjee R, Paese CLB, Duszynski M, Brugmann SA, Lim HW, Sanchez-Gurmaches J. The widely used Ucp1-CreEvdr transgene elicits complex developmental and metabolic phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563165. [PMID: 37904917 PMCID: PMC10614962 DOI: 10.1101/2023.10.20.563165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we performed comprehensive analysis of the Ucp1-CreEvdr line which is widely used for brown fat research. Hemizygotes exhibited major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function. Ucp1-CreEvdr homozygotes also show high mortality, growth defects, and craniofacial abnormalities. Mapping the transgene insertion site revealed insertion in chromosome 1 accompanied by large genomic alterations disrupting several genes expressed in a range of tissues. Notably, Ucp1-CreEvdr transgene retains an extra Ucp1 gene copy that may be highly expressed under high thermogenic burden. Our multi-faceted analysis highlights a complex phenotype arising from the presence of the Ucp1-CreEvdr transgene independently of the intended genetic manipulations. Overall, comprehensive validation of transgenic mice is imperative to maximize discovery while mitigating unexpected, off-target effects.
Collapse
Affiliation(s)
- Manasi Suchit Halurkar
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Oto Inoue
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | | | - Molly Duszynski
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
| | - Samantha A. Brugmann
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Surgery, Division of Plastic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
26
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 2023; 111:3084-3101.e5. [PMID: 37797581 PMCID: PMC10575685 DOI: 10.1016/j.neuron.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; BROAD Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
27
|
Zhao C, Ries C, Du Y, Zhang J, Sakimura K, Itoi K, Deussing JM. Differential CRH expression level determines efficiency of Cre- and Flp-dependent recombination. Front Neurosci 2023; 17:1163462. [PMID: 37599997 PMCID: PMC10434532 DOI: 10.3389/fnins.2023.1163462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Corticotropin-releasing hormone expressing (CRH+) neurons are distributed throughout the brain and play a crucial role in shaping the stress responses. Mouse models expressing site-specific recombinases (SSRs) or reporter genes are important tools providing genetic access to defined cell types and have been widely used to address CRH+ neurons and connected brain circuits. Here, we investigated a recently generated CRH-FlpO driver line expanding the CRH system-related tool box. We directly compared it to a previously established and widely used CRH-Cre line with respect to the FlpO expression pattern and recombination efficiency. In the brain, FlpO mRNA distribution fully recapitulates the expression pattern of endogenous Crh. Combining both Crh locus driven SSRs driver lines with appropriate reporters revealed an overall coherence of respective spatial patterns of reporter gene activation validating CRH-FlpO mice as a valuable tool complementing existing CRH-Cre and reporter lines. However, a substantially lower number of reporter-expressing neurons was discerned in CRH-FlpO mice. Using an additional CRH reporter mouse line (CRH-Venus) and a mouse line allowing for conversion of Cre into FlpO activity (CAG-LSL-FlpO) in combination with intersectional and subtractive mouse genetic approaches, we were able to demonstrate that the reduced number of tdTomato reporter expressing CRH+ neurons can be ascribed to the lower recombination efficiency of FlpO compared to Cre recombinase. This discrepancy particularly manifests under conditions of low CRH expression and can be overcome by utilizing homozygous CRH-FlpO mice. These findings have direct experimental implications which have to be carefully considered when targeting CRH+ neurons using CRH-FlpO mice. However, the lower FlpO-dependent recombination efficiency also entails advantages as it provides a broader dynamic range of expression allowing for the visualization of cells showing stress-induced CRH expression which is not detectable in highly sensitive CRH-Cre mice as Cre-mediated recombination has largely been completed in all cells generally possessing the capacity to express CRH. These findings underscore the importance of a comprehensive evaluation of novel SSR driver lines prior to their application.
Collapse
Affiliation(s)
- Chen Zhao
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jingwei Zhang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Keiichi Itoi
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
28
|
Tromp A, Wang H, Hall TE, Mowry B, Giacomotto J. Optimising the zebrafish Cre/Lox toolbox. Codon improved iCre, new gateway tools, Cre protein and guidelines. Front Physiol 2023; 14:1221310. [PMID: 37601640 PMCID: PMC10433388 DOI: 10.3389/fphys.2023.1221310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
We recently introduced the Cre/Lox technology in our laboratory for both transient (mRNA injections) and stable/transgenic experiments. We experienced significant issues such as silencing, mosaicism, and partial recombination using both approaches. Reviewing the literature gave us the impression that these issues are common among the zebrafish community using the Cre/Lox system. While some researchers took advantage of these problems for specific applications, such as cell and lineage tracing using the Zebrabow construct, we tried here to improve the efficiency and reliability of this system by constituting and testing a new set of tools for zebrafish genetics. First, we implemented a codon-improved Cre version (iCre) designed for rodent studies to counteract some of the aforementioned problems. This eukaryotic-like iCre version was engineered to i) reduce silencing, ii) increase mRNA stability, iii) enhance translational efficiency, and iv) improve nuclear translocation. Second, we established a new set of tol2-kit compatible vectors to facilitate the generation of either iCre-mRNA or iCre-transgenes for transient and transgenic experiments, respectively. We then validated the use of this material and are providing tips for users. Interestingly, during the validation steps, we found that maternal iCRE-mRNA and/or protein deposition from female transgenics systematically led to complete/homogeneous conversion of all tested Lox-responder-transgenes, as opposed to some residual imperfect conversion when using males-drivers or mRNA injections. Considering that we did not find any evidence of Cre-protein soaking and injections in the literature as it is usually conducted with cells, we tested these approaches. While soaking of cell-permeant CRE-protein did not lead to any detectable Lox-conversion, 1ng-10 ng protein injections led to robust and homogeneous Lox-recombination, suggesting that the use of protein could be a robust option for exogenous delivery. This approach may be particularly useful to manipulate housekeeping genes involved in development, sex determination and reproduction which are difficult to investigate with traditional knockout approaches. All in all, we are providing here a new set of tools that should be useful in the field.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Haitao Wang
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Thomas E. Hall
- Institute for Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Centre for Cellular Phenomics, School of Environment and Science, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Hamberger F, Mederacke YS, Mederacke I. An inducible model for genetic manipulation and fate-tracing of PDGFRβ-expressing fibrogenic cells in the liver. Sci Rep 2023; 13:7322. [PMID: 37147343 PMCID: PMC10162963 DOI: 10.1038/s41598-023-34353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Myofibroblasts are the source of extracellular matrix protein during liver fibrogenesis. Fibroblasts, hepatic stellate cells (HSCs) and vascular smooth muscle cells are mesenchymal subpopulations in the liver that are characterized by the expression of PDGFRβ and contribute to the pool of these myofibroblasts. Conditional knockout models are important to better understand the function of specific liver cell populations including mesenchymal cells. While there is a limited number of constitutive mouse models for liver mesenchymal cell specific transgene expression, there is no established model for inducible gene targeting in HSCs or PDGFRβ-expressing mesenchymal cell populations in the liver. To address this, we investigated whether the tamoxifen inducible PDGFRβ-P2A-CreERT2 mouse can be used as a reliable tool to specifically express transgens in liver mesenchymal cells. Our data demonstrate, that PDGFRβ-P2A-CreERT2 specifically and efficiently marks over 90% of retinoid positive HSCs in healthy and fibrotic liver in mice upon tamoxifen injection, and that those cells give rise to Col1a1-expressing myofibroblasts in different models of liver fibrosis. Together with a negligible background recombination of only about 0.33%, this confirms that the PDGFRβ-P2A-CreERT2 mouse is nearly as efficient as established constitutive LratCre and PDGFRβ-Cre mouse models for recombination in HSCs, and that it is a powerful model for mesenchymal liver cell studies that require an inducible Cre approach.
Collapse
Affiliation(s)
- Florian Hamberger
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Young-Seon Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ingmar Mederacke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
30
|
Golovkine GR, Roberts AW, Morrison HM, Rivera-Lugo R, McCall RM, Nilsson H, Garelis NE, Repasy T, Cronce M, Budzik J, Van Dis E, Popov LM, Mitchell G, Zalpuri R, Jorgens D, Cox JS. Autophagy restricts Mycobacterium tuberculosis during acute infection in mice. Nat Microbiol 2023; 8:819-832. [PMID: 37037941 PMCID: PMC11027733 DOI: 10.1038/s41564-023-01354-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/03/2023] [Indexed: 04/12/2023]
Abstract
Whether or not autophagy has a role in defence against Mycobacterium tuberculosis infection remains unresolved. Previously, conditional knockdown of the core autophagy component ATG5 in myeloid cells was reported to confer extreme susceptibility to M. tuberculosis in mice, whereas depletion of other autophagy factors had no effect on infection. We show that doubling cre gene dosage to more robustly deplete ATG16L1 or ATG7 resulted in increased M. tuberculosis growth and host susceptibility in mice, although ATG5-depleted mice are more sensitive than ATG16L1- or ATG7-depleted mice. We imaged individual macrophages infected with M. tuberculosis and identified a shift from apoptosis to rapid necrosis in autophagy-depleted cells. This effect was dependent on phagosome permeabilization by M. tuberculosis. We monitored infected cells by electron microscopy, showing that autophagy protects the host macrophage by partially reducing mycobacterial access to the cytosol. We conclude that autophagy has an important role in defence against M. tuberculosis in mammals.
Collapse
Affiliation(s)
- Guillaume R Golovkine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Evotec, Toulouse, France
| | - Allison W Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Huntly M Morrison
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rita M McCall
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, USA
| | - Hannah Nilsson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicholas E Garelis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Bio-Rad Laboratories, Seattle, WA, USA
| | - Michael Cronce
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UCSF Graduate program in Bioengineering, Berkeley, CA, USA
| | - Jonathan Budzik
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Erik Van Dis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lauren M Popov
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Novome Biotechnologies, San Francisco, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Open Innovation @ NITD, Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
31
|
Shih YT, Alipio JB, Sahay A. An inhibitory circuit-based enhancer of Dyrk1a function reverses Dyrk1a -associated impairment in social recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526955. [PMID: 36778241 PMCID: PMC9915696 DOI: 10.1101/2023.02.03.526955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heterozygous mutations in the Dual specificity tyrosine-phosphorylation-regulated kinase 1a Dyrk1a gene define a syndromic form of Autism Spectrum Disorder. The synaptic and circuit mechanisms mediating Dyrk1a functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which Dyrk1a recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, Ablim3, as a synaptic substrate of Dyrk1a. We demonstrate that Ablim3 downregulation in dentate granule cells of adult hemizygous Dyrk1a mice is sufficient to restore PV IN mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult hemizygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting Dyrk1a synaptic and circuit substrates as "enhancers of Dyrk1a function" harbors potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments. Highlights Dyrk1a in mossy fibers recruits PV IN mediated feed-forward inhibition of CA3 and CA2Dyrk1a-Ablim3 signaling in mossy fiber-PV IN synapses promotes inhibition of CA3 and CA2 Downregulating Ablim3 restores PV IN excitability, CA3/CA2 inhibition and social recognition in Dyrk1a+/- mice Chemogenetic activation of PV INs in CA3/CA2 rescues social recognition in Dyrk1a+/- mice.
Collapse
|
32
|
Lintott LG, Nutter LMJ. Genetic and Molecular Quality Control of Genetically Engineered Mice. Methods Mol Biol 2023; 2631:53-101. [PMID: 36995664 DOI: 10.1007/978-1-0716-2990-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genetically engineered mice are used as avatars to understand mammalian gene function and develop therapies for human disease. During genetic modification, unintended changes can occur, and these changes may result in misassigned gene-phenotype relationships leading to incorrect or incomplete experimental interpretations. The types of unintended changes that may occur depend on the allele type being made and the genetic engineering approach used. Here we broadly categorize allele types as deletions, insertions, base changes, and transgenes derived from engineered embryonic stem (ES) cells or edited mouse embryos. However, the methods we describe can be adapted to other allele types and engineering strategies. We describe the sources and consequ ences of common unintended changes and best practices for detecting both intended and unintended changes by screening and genetic and molecular quality control (QC) of chimeras, founders, and their progeny. Employing these practices, along with careful allele design and good colony management, will increase the chance that investigations using genetically engineered mice will produce high-quality reproducible results, to enable a robust understanding of gene function, human disease etiology, and therapeutic development.
Collapse
Affiliation(s)
- Lauri G Lintott
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada.
- The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
33
|
Eftekharpour E, Shcholok T. Cre-recombinase systems for induction of neuron-specific knockout models: a guide for biomedical researchers. Neural Regen Res 2023; 18:273-279. [PMID: 35900402 PMCID: PMC9396489 DOI: 10.4103/1673-5374.346541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology. Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location, respectively. Using these technologies in mouse embryos led to the generation of mouse knockout models and many scientific discoveries. The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as clustered regularly interspaced short palindromic repeats for targetted gene deletion. However, several limitations including unwanted off-target gene deletion have hindered their widespread use in the field. Cre-recombinase technology has provided additional capacity for cell-specific gene deletion. In this review, we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes. This article has been constructed to provide some background information for the new trainees on the mechanism and to provide necessary information for the design, and application of the Cre-recombinase system through reviewing the most frequent promoters that are currently available for genetic manipulation of neurons. We additionally will provide a summary of the latest technological developments that can be used for targeting neurons. This may also serve as a general guide for the selection of appropriate models for biomedical research.
Collapse
|
34
|
Veras FP, Publio GA, Melo BM, Prado DS, Norbiato T, Cecilio NT, Hiroki C, Damasceno LEA, Jung R, Toller-Kawahisa JE, Martins TV, Assunção SF, Lima D, Alves MG, Vieira GV, Tavares LA, Alves-Rezende ALR, Karbach SH, Nakaya HI, Cunha TM, Souza CS, Cunha FQ, Sales KU, Waisman A, Alves-Filho JC. Pyruvate kinase M2 mediates IL-17 signaling in keratinocytes driving psoriatic skin inflammation. Cell Rep 2022; 41:111897. [PMID: 36577385 DOI: 10.1016/j.celrep.2022.111897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
Psoriasis is an inflammatory skin disease characterized by keratinocyte proliferation and inflammatory cell infiltration induced by IL-17. However, the molecular mechanism through which IL-17 signaling in keratinocytes triggers skin inflammation remains not fully understood. Pyruvate kinase M2 (PKM2), a glycolytic enzyme, has been shown to have non-metabolic functions. Here, we report that PKM2 mediates IL-17A signaling in keratinocytes triggering skin psoriatic inflammation. We find high expression of PKM2 in the epidermis of psoriatic patients and mice undergoing psoriasis models. Specific depletion of PKM2 in keratinocytes attenuates the development of experimental psoriasis by reducing the production of pro-inflammatory mediators. Mechanistically, PKM2 forms a complex with Act1 and TRAF6 regulating NF-κB transcriptional signaling downstream of the IL-17 receptor. As IL-17 also induces PKM2 expression in keratinocytes, our findings reveal a sustained signaling circuit critical for the psoriasis-driving effects of IL-17A, suggesting that PKM2 is a potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Flávio P Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany.
| | - Gabriel A Publio
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruno M Melo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Douglas S Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thainá Norbiato
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nerry T Cecilio
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Hiroki
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Eduardo A Damasceno
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rebecca Jung
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Juliana E Toller-Kawahisa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Timna V Martins
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Stella F Assunção
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diogenes Lima
- Department of Clinical and Toxicological Analyses of the School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia G Alves
- Department of Cell Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel V Vieira
- Department of Cell Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas A Tavares
- Department of Cell Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Ana L R Alves-Rezende
- Division of Dermatology, Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Susanne H Karbach
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany; Center for Cardiology, Cardiology I, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Helder I Nakaya
- Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Clinical and Toxicological Analyses of the School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cacilda S Souza
- Division of Dermatology, Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Katiuchia U Sales
- Department of Cell Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center of Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
35
|
Beebe NL, Silveira MA, Goyer D, Noftz WA, Roberts MT, Schofield BR. Neurotransmitter phenotype and axonal projection patterns of VIP-expressing neurons in the inferior colliculus. J Chem Neuroanat 2022; 126:102189. [PMID: 36375740 PMCID: PMC9772258 DOI: 10.1016/j.jchemneu.2022.102189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Neurons in the inferior colliculus (IC), the midbrain hub of the central auditory pathway, send ascending and descending projections to other auditory brain regions, as well as projections to other sensory and non-sensory brain regions. However, the axonal projection patterns of individual classes of IC neurons remain largely unknown. Vasoactive intestinal polypeptide (VIP) is a neuropeptide expressed by subsets of neurons in many brain regions. We recently identified a class of IC stellate neurons that we called VIP neurons because they are labeled by tdTomato (tdT) expression in VIP-IRES-Cre x Ai14 mice. Here, using fluorescence in situ hybridization, we found that tdT+ neurons in VIP-IRES-Cre x Ai14 mice express Vglut2, a marker of glutamatergic neurons, and VIP, suggesting that VIP neurons use both glutamatergic and VIPergic signaling to influence their postsynaptic targets. Next, using viral transfections with a Cre-dependent eGFP construct, we labeled the axonal projections of VIP neurons. As a group, VIP neurons project intrinsically, within the ipsilateral and contralateral IC, and extrinsically to all the major targets of the IC. Within the auditory system, VIP neurons sent axons and formed axonal boutons in higher centers, including the medial geniculate nucleus and the nucleus of the brachium of the IC. Less dense projections terminated in lower centers, including the nuclei of the lateral lemniscus, superior olivary complex, and dorsal cochlear nucleus. VIP neurons also project to several non-auditory brain regions, including the superior colliculus, periaqueductal gray, and cuneiform nucleus. The diversity of VIP projections compared to the homogeneity of VIP neuron intrinsic properties suggests that VIP neurons play a conserved role at the microcircuit level, likely involving neuromodulation through glutamatergic and VIPergic signaling, but support diverse functions at the systems level through their participation in different projection pathways.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - David Goyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
36
|
Transcription Factor Hb9 Is Expressed in Glial Cell Lineages in the Developing Mouse Spinal Cord. eNeuro 2022; 9:ENEURO.0214-22.2022. [PMID: 36265906 PMCID: PMC9636997 DOI: 10.1523/eneuro.0214-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Hb9 (Mnx1) is a transcription factor described as a spinal cord motor neuron (MN)-specific marker and critical factor for the postmitotic specification of these cells. To date, expression of Hb9 in other cell types has not been reported. We performed a fate-mapping approach to examine distributions of Hb9-expressing cells and their progeny ("Hb9-lineage cells") within the embryonic and adult spinal cord of Hb9cre;Ai14 mice. We found that Hb9-lineage cells are distributed in a gradient of increasing abundance throughout the rostrocaudal spinal cord axis during embryonic and postnatal stages. Furthermore, although the majority of Hb9-lineage cells at cervical spinal cord levels are MNs, at more caudal levels, Hb9-lineage cells include small-diameter dorsal horn neurons, astrocytes, and oligodendrocytes. In the peripheral nervous system, we observed a similar phenomenon with more abundant Hb9-lineage Schwann cells in muscles of the lower body versus upper body muscles. We cultured spinal cord progenitors in vitro and found that gliogenesis was increased by treatment with the caudalizing factor FGF-8B, while glial tdTomato expression was increased by treatment with both FGF-8B and GDF-11. Together, these observations suggest that early and transient expression of Hb9 in spinal cord neural progenitors may be induced by caudalizing factors such as FGF and GDF signaling. Furthermore, our work raises the possibility that early Hb9 expression may influence the development of spinal cord macroglia and Schwann cells, especially at caudal regions. Together, these findings highlight the importance of using caution when designing experiments using Hb9cre mice to perform spinal cord MN-specific manipulations.
Collapse
|
37
|
Iwayama T, Sakashita H, Takedachi M, Murakami S. Periodontal tissue stem cells and mesenchymal stem cells in the periodontal ligament. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:172-178. [PMID: 35607404 PMCID: PMC9123259 DOI: 10.1016/j.jdsr.2022.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal tissue stem cells, which play a crucial role in maintaining the homeostasis of periodontal tissues, are found in the periodontal ligament (PDL). These cells have long been referred to as mesenchymal stem/stromal cells (MSCs), and their clinical applications have been extensively studied. However, tissue stem cells in the PDL have not been thoroughly investigated, and they may be different from MSCs. Recent advances in stem cell biology, such as genetic lineage tracing, identification of label-retaining cells, and single-cell transcriptome analysis, have made it possible to analyze tissue stem cells in the PDL in vivo. In this review, we summarize recent findings on these stem cell populations in PDL and discuss future research directions toward developing periodontal regenerative therapy.
Collapse
|
38
|
Abstract
Polycystic ovary syndrome (PCOS) is a complex disease affecting up to 15% of women of reproductive age. Women with PCOS suffer from reproductive dysfunctions with excessive androgen secretion and irregular ovulation, leading to reduced fertility and pregnancy complications. The syndrome is associated with a wide range of comorbidities including type 2 diabetes, obesity, and psychiatric disorders. Despite the high prevalence of PCOS, its etiology remains unclear. To understand the pathophysiology of PCOS, how it is inherited, and how to predict PCOS, and prevent and treat women with the syndrome, animal models provide an important approach to answering these fundamental questions. This minireview summarizes recent investigative efforts on PCOS-like rodent models aiming to define underlying mechanisms of the disease and provide guidance in model selection. The focus is on new genetic rodent models, on a naturally occurring rodent model, and provides an update on prenatal and peripubertal exposure models.
Collapse
|
39
|
The KEAP1-NRF2 System and Esophageal Cancer. Cancers (Basel) 2022; 14:cancers14194702. [PMID: 36230622 PMCID: PMC9564177 DOI: 10.3390/cancers14194702] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/18/2022] Open
Abstract
NRF2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that regulates the expression of many cytoprotective genes. NRF2 activation is mainly regulated by KEAP1 (kelch-like ECH-associated protein 1) through ubiquitination and proteasome degradation. Esophageal cancer is classified histologically into two major types: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC harbors more genetic alterations in the KEAP-NRF2 system than EAC does, which results in NRF2 activation in these cancers. NRF2-addicted ESCC exhibits increased malignancy and acquisition of resistance to chemoradiotherapy. Therefore, it has been recognized that the development of drugs targeting the KEAP1-NRF2 system based on the molecular dissection of NRF2 function is important and urgent for the treatment of ESCC, along with efficient clinical screening for NRF2-addicted ESCC patients. Recently, the fate of NRF2-activated cells in esophageal tissues, which was under the influence of strong cell competition, and its relationship to the pathogenesis of ESCC, was clarified. In this review, we will summarize the current knowledge of the KEAP1-NRF2 system and the treatment of ESCC. We propose three main strategies for the treatment of NRF2-addicted cancer: (1) NRF2 inhibitors, (2) synthetic lethal drugs for NRF2-addicted cancers, and (3) NRF2 inducers of the host defense system.
Collapse
|
40
|
Rashbrook VS, Brash JT, Ruhrberg C. Cre toxicity in mouse models of cardiovascular physiology and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:806-816. [PMID: 37692772 PMCID: PMC7615056 DOI: 10.1038/s44161-022-00125-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 09/12/2023]
Abstract
The Cre-LoxP system provides a widely used method for studying gene requirements in the mouse as the main mammalian genetic model organism. To define the molecular and cellular mechanisms that underlie cardiovascular development, function and disease, various mouse strains have been engineered that allow Cre-LoxP-mediated gene targeting within specific cell types of the cardiovascular system. Despite the usefulness of this system, evidence is accumulating that Cre activity can have toxic effects in cells, independently of its ability to recombine pairs of engineered LoxP sites in target genes. Here, we have gathered published evidence for Cre toxicity in cells and tissues relevant to cardiovascular biology and provide an overview of mechanisms proposed to underlie Cre toxicity. Based on this knowledge, we propose that each study utilising the Cre-LoxP system to investigate gene function in the cardiovascular system should incorporate appropriate controls to account for Cre toxicity.
Collapse
Affiliation(s)
- Victoria S. Rashbrook
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T. Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
41
|
Damage-Induced Mutation Clustering in Gram-Positive Bacteria: Preliminary Data. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The phenomenon of a nonrandom distribution of mutations in a genome has been observed for many years. In fact, recent findings have indicated the presence of mutation clusters in different biological systems, including chemically treated yeast, transgenic mice, and human cancer cells. Until now, an asymmetrical distribution of mutations was only described in a single bacterial species. Here, we used ethyl methanesulfonate mutagenesis and a whole-genome sequencing approach to determine if this phenomenon is universal and not confined to Gram-negative bacteria. The Gram-positive bacterium Bacillus subtilis was selected for ethyl methanesulfonate treatment, followed by the next-generation sequencing of several mutagenized B. subtilis genomes. A nonrandom distribution of mutations was observed. This pilot study with a limited number of sequenced clones may indicate not only the universality of the phenomenon of mutation clusters but also the effectiveness of the use of a whole-genome sequencing approach in studying this phenomenon.
Collapse
|
42
|
Byrne DJ, Lipovsek M, Crespo A, Grubb MS. Brief sensory deprivation triggers plasticity of dopamine-synthesising enzyme expression in genetically labelled olfactory bulb dopaminergic neurons. Eur J Neurosci 2022; 56:3591-3612. [PMID: 35510299 PMCID: PMC9540594 DOI: 10.1111/ejn.15684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In the glomerular layer of the olfactory bulb, local dopaminergic interneurons play a key role in regulating the flow of sensory information from nose to cortex. These dual dopamine- and GABA-releasing cells are capable of marked experience-dependent changes in the expression of neurotransmitter-synthesising enzymes, including tyrosine hydroxylase (TH). However, such plasticity has most commonly been studied in cell populations identified by their expression of the enzyme being studied and after long periods of sensory deprivation. Here, instead, we used brief 1- or 3-day manipulations of olfactory experience in juvenile mice, coupled with a conditional genetic approach that labelled neurons contingent upon their expression of the dopamine transporter (DAT-tdTomato). This enabled us to evaluate the potential for rapid changes in neurotransmitter-synthesising enzyme expression in an independently identified neuronal population. Our labelling strategy showed good specificity for olfactory bulb dopaminergic neurons, while revealing a minority sub-population of non-dopaminergic DAT-tdTomato cells that expressed the calcium-binding protein calretinin. Crucially, the proportions of these neuronal subtypes were not affected by brief alterations in sensory experience. Short-term olfactory manipulations also produced no significant changes in immunofluorescence or whole-bulb mRNA for the GABA-synthesising enzyme GAD67/Gad1. However, in bulbar DAT-tdTomato neurons, brief sensory deprivation was accompanied by a transient, small drop in immunofluorescence for the dopamine-synthesising enzyme dopa decarboxylase (DDC) and a sustained decrease for TH. Deprivation also produced a sustained decrease in whole-bulb Th mRNA. Careful characterisation of an independently identified, genetically labelled neuronal population therefore enabled us to uncover rapid experience-dependent changes in dopamine-synthesising enzyme expression.
Collapse
Affiliation(s)
- Darren J. Byrne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
- Ear InstituteUniversity College LondonLondonUK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| |
Collapse
|
43
|
Zhao Y, Zhao S, Qin XY, He TT, Hu MM, Gong Z, Wang HM, Gong FY, Gao XM, Wang J. Altered Phenotype and Enhanced Antibody-Producing Ability of Peripheral B Cells in Mice with Cd19-Driven Cre Expression. Cells 2022; 11:cells11040700. [PMID: 35203346 PMCID: PMC8870415 DOI: 10.3390/cells11040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Given the importance of B lymphocytes in inflammation and immune defense against pathogens, mice transgenic for Cre under the control of Cd19 promoter (Cd19Cre/+ mice) have been widely used to specifically investigate the role of loxP-flanked genes in B cell development/function. However, impacts of expression/insertion of the Cre transgene on the phenotype and function of B cells have not been carefully studied. Here, we show that the number of marginal zone B and B1a cells was selectively reduced in Cd19Cre/+ mice, while B cell development in the bone marrow and total numbers of peripheral B cells were comparable between Cd19Cre/+ and wild type C57BL/6 mice. Notably, humoral responses to both T cell-dependent and independent antigens were significantly increased in Cd19Cre/+ mice. We speculate that these differences are mainly attributable to reduced surface CD19 levels caused by integration of the Cre-expressing cassette that inactivates one Cd19 allele. Moreover, our literature survey showed that expression of Cd19Cre/+ alone may affect the development/progression of inflammatory and anti-infectious responses. Thus, our results have important implications for the design and interpretation of results on gene functions specifically targeted in B cells in the Cd19Cre/+ mouse strain, for instance, in the context of (auto) inflammatory/infectious diseases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sai Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Yuan Qin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Miao-Miao Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Hong-Min Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Fang-Yuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| |
Collapse
|
44
|
Farooq J, Snyder K, Janesko-Feldman K, Gorse K, Vagni V, Kochanek PM, Jackson TC. RNA Binding Motif 5 Gene Deletion Modulates Cell Signaling in a Sex-Dependent Manner but not Hippocampal Cell Death. J Neurotrauma 2022; 39:577-589. [PMID: 35152732 PMCID: PMC8978574 DOI: 10.1089/neu.2021.0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA-binding motif 5 (RBM5) is a pro-death tumor suppressor gene in cancer cells. It remains to be determined if it is neurotoxic in the brain or rather if it plays a fundamentally different role in the central nervous system (CNS). Brain-specific RBM5 knockout (KO) mice were given a controlled cortical impact (CCI) traumatic brain injury (TBI). Markers of acute cellular damage and repair were measured in hippocampal homogenates 48 h post-CCI. Hippocampal CA1/CA3 cell counts were assessed 7 days post-CCI to determine if early changes in injury markers were associated with histological outcome. No genotype-dependent differences were found in the levels of apoptotic markers (caspase 3, caspase 6, and caspase 9). However, KO females had a paradoxical increase in markers of pro-death calpain activation (145/150-spectrin and breakdown products [SBDP]) and in DNA repair/survival markers. (pH2A.x and pCREB). CCI-injured male KOs had a significant increase in phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMKII). Despite sex/genotype-dependent differences in KOs in the levels of acute cell signaling targets involved in cell death pathways, 7 day hippocampal neuronal survival did not differ from that of wild types (WTs). Similarly, no differences in astrogliosis were observed. Finally, gene analysis revealed increased estrogen receptor α (ERα) levels in the KO hippocampus in females and may suggest a novel mechanism to explain sex-dimorphic effects on cell signaling. In summary, RBM5 inhibition did not affect hippocampal survival after a TBI in vivo but did modify targets involved in neural signal transduction/Ca2+ signaling pathways. Findings here support the view that RBM5 may serve a purpose in the CNS that is dissimilar from its traditional pro-death role in cancer.
Collapse
Affiliation(s)
- Jeffrey Farooq
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Kara Snyder
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Keri Janesko-Feldman
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Kiersten Gorse
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Vincent Vagni
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Patrick M. Kochanek
- University of Pittsburgh School of Medicine, Critical Care Medicine, John G. Rangos Research Center, Safar Center for Resuscitation Research, 4401 Penn Avenue, Pittsburgh, Pennsylvania, United States, 15224
- United States
| | - Travis C. Jackson
- University of South Florida, 7831, Molecular Pharmacology and Physiology, 4202 E Fowler Ave, Tampa, Florida, United States, 33620-9951
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, 560 Channelside Dr, Tampa, Florida, United States, 33602
| |
Collapse
|
45
|
Hidalgo I, Wahlestedt M, Yuan O, Zhang Q, Bryder D, Pronk CJ. Bmi1 induction protects hematopoietic stem cells against pronounced long-term hematopoietic stress. Exp Hematol 2022; 109:35-44. [DOI: 10.1016/j.exphem.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/04/2022]
|
46
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
47
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
48
|
Soundararajan R, Varanasi SM, Patil SS, Srinivas S, Hernández-Cuervo H, Czachor A, Bulkhi A, Fukumoto J, Galam L, Lockey RF, Kolliputi N. Lung fibrosis is induced in ADAR2 overexpressing mice via HuR-induced CTGF signaling. FASEB J 2022; 36:e22143. [PMID: 34985777 PMCID: PMC10395739 DOI: 10.1096/fj.202101511r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Adenosine deaminase acting on RNA 2 (ADAR2), an RNA editing enzyme is involved in a site-selective modification of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Its role in the lungs is unknown. The phenotypic characterization of Adarb1 mice that lacked ADAR2 auto-regulation due to the deletion of editing complementary sequence (ΔECS mice) determined the functional role of ADAR2 in the lungs. ADAR2 protein expression increased in the ΔECS mice. These mice display immune cell infiltration and alveolar disorganization. The lung wet by dry ratio indicates there is no lung edema in ΔECS mice. Bronchoalveolar lavage (BAL) analysis of ΔECS mice reveals a significant increase in neutrophils. Interestingly, ΔECS mice spontaneously develop lung fibrosis as indicated by Sirius red staining of collagen fibers in the lung sections and a significant increase in hydroxyproline level in their lungs. ADAR2 expression increased significantly in a bleomycin mouse model, implicating a role of ADAR2 in lung fibrosis. Furthermore, there is a likely possibility that the genetically modified ΔECS mice does not model the physiological or pathophysiological process of lung fibrosis. Nevertheless, this model is useful in interrogating the role of ADAR2 in the lungs. The Ctgf mRNA and connective tissue growth factor (CTGF) protein significantly increased in ΔECS lungs and occurs in bronchial epithelial cells. There is a significant increase in Human antigen R (ELAVL1; HuR) protein levels in ΔECS lungs and suggests a role in stabilizing Ctgf mRNA. Lung mechanics such as total respiratory resistance, Newtonian resistance and tissue damping were increased, whereas inspiratory capacity was decreased in the ΔECS mice. Taken together, these data indicate that overexpression of ADAR2 causes spontaneous lung fibrosis via HuR-mediated CTGF signaling and implicate a role for ADAR2 auto-regulation in lung homeostasis. The identification of ADAR2 target genes in ΔECS mice would facilitate a mechanistic understanding of the role of ADAR2 in the lungs and provide a therapeutic strategy for lung fibrosis.
Collapse
Affiliation(s)
- Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sai Manasa Varanasi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sriraja Srinivas
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Alexander Czachor
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Adeeb Bulkhi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.,Department of Internal Medicine, College of Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
49
|
Tran TM, Philipp J, Bassi JS, Nibber N, Draper JM, Lin TL, Palanichamy JK, Jaiswal AK, Silva O, Paing M, King J, Katzman S, Sanford JR, Rao DS. The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis. Leukemia 2022; 36:68-79. [PMID: 34321607 PMCID: PMC8727287 DOI: 10.1038/s41375-021-01346-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Despite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes. Here, we find that the RNA-binding protein IGF2BP3, which is overexpressed in MLL-translocated leukemia, strongly amplifies MLL-Af4-mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4-driven leukemia and greatly attenuates disease, with a minimal impact on baseline hematopoiesis. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. At the molecular level, IGF2BP3 regulates a complex posttranscriptional operon governing leukemia cell survival and proliferation. IGF2BP3-targeted mRNA transcripts include important MLL-Af4-induced genes, such as those in the Hoxa locus, and the Ras signaling pathway. Targeting of transcripts by IGF2BP3 regulates both steady-state mRNA levels and, unexpectedly, pre-mRNA splicing. Together, our findings show that IGF2BP3 represents an attractive therapeutic target in this disease, providing important insights into mechanisms of posttranscriptional regulation in leukemia.
Collapse
Affiliation(s)
- Tiffany M Tran
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA
| | - Julia Philipp
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Jaspal Singh Bassi
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Neha Nibber
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jolene M Draper
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Tasha L Lin
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Interdepartmental Doctoral Program, UCLA, Los Angeles, CA, 90095, USA
| | - Jayanth Kumar Palanichamy
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar Jaiswal
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - May Paing
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer King
- Division of Rheumatology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Sol Katzman
- UCSC Genomics Institute, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Dinesh S Rao
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
50
|
Bashford AL, Subramanian V. OUP accepted manuscript. Hum Mol Genet 2022; 31:3245-3265. [PMID: 35470378 PMCID: PMC9523558 DOI: 10.1093/hmg/ddac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew L Bashford
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Vasanta Subramanian
- To whom correspondence should be addressed. Tel: +44 1225386315; Fax: +44 1225386779;
| |
Collapse
|