1
|
Huang W, Tang Y, Lu M, Peng Z, Li S, Chen X, Wei F, Guo T, Ye J, Long Y. Context-dependent anaerobic oxidation of methane: Insight for methane emission mitigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125896. [PMID: 40412172 DOI: 10.1016/j.jenvman.2025.125896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/12/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Anaerobic oxidation of methane (AOM) exhibits context-dependent metabolic versatility, governed by electron acceptor heterogeneity and anthropogenic perturbations. This study investigates the AOM potential by simulating three environments, high-dissolved organic carbon (DOC), high-nitrate with moderate sulfate, and sulfate-enhanced conditions, to investigate AOM potential under controlled perturbations. Substrate conversion dynamics were observed by monitoring the variation of methane, sulfate, nitrate, iron, etc., and microbial community shifts were analyzed by 16S rDNA high-throughput sequencing. In the high-carbon condition, characterized by high DOC (5.65-21.83 mmolC·L-1) but low nitrate and sulfate (both <1 mmol L-1) levels, methanogens such as Methanobacterium sp. IM1 and Thermoplasmata dominated the stage, overpowering anaerobic methanotrophic archaea (ANME), while no methane oxidation but obvious methane production occurred. Shifting to the scenario with high nitrate (3.51 mmolN·L-1) and moderate sulfate (1.36 mmolS·L-1), ammonium accumulation played the role of a spoiler. It weakened AOM process (Kmo = 0.58 d-1) and stirred up a competitive relationship between sulfur-driven ammonium-oxidizing archaea (e.g., Nitrososphaeraceae, Nitrosotaleaceae) and methanotrophs (e.g., Marine group II, Wosearchaeales, Roseiarcus). However, once nitrate was consumed to a low level, sulfate reduction relieved the ammonium pressure and re-activated iron, the suppression of AOM eased (Kmo = 1.44 d-1). Under the sulfate-enhanced circumstances, where the sulfate level increased to 1.47-2.55 mmolS·L-1, the AOM process accelerated (Kmo = 4.02 d-1) even under high-nitrate conditions (1.66 ± 0.12 mmolN·L-1). Methanotrophs and sulfur-metabolizing bacteria then co-thrived, showing a close display of cooperation. Our findings offer a pivotal framework to clarify AOM's contribution to natural methane emissions and give a new perspective for the development of methane mitigation technologies.
Collapse
Affiliation(s)
- Wenwen Huang
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Yi Tang
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Mengchen Lu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Zhenzhen Peng
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Shubing Li
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Xunsen Chen
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Fangrong Wei
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Teng Guo
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - JinShao Ye
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Yan Long
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong Province, China.
| |
Collapse
|
2
|
Llada IM, Lourenco JM, Dycus MM, Carpenter JM, Jarrell ZR, Jones DP, Suen G, Hill NS, Filipov NM. Impact of Low-Level Ergot Alkaloids and Endophyte Presence in Tall Fescue Grass on the Metabolome and Microbiome of Fall-Grazing Steers. Toxins (Basel) 2025; 17:251. [PMID: 40423333 DOI: 10.3390/toxins17050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Fescue toxicosis (FT) is a mycotoxin-related disease caused by the ingestion of tall fescue, naturally infected with the ergot alkaloid (EA)-producing endophyte Epichloë coenophiala. Some grazing on endophyte-free (E-) or non-toxic (NT), commercial endophyte-infected pastures takes place in the US as well. Earlier, we found that grazing on toxic fescue with low levels of EAs during fall affects thermoregulation, behavior, and weight gain. Building on these findings, the current study aimed to investigate how the presence of low EA-producing E+ or NT endophytes can influence animal metabolome, microbiome, and, ultimately, overall animal health. Eighteen Angus steers were placed on NT, E+, and E- fescue pastures for 28 days. Urine, rumen fluid (RF), rumen solid (RS), and feces were collected pre-exposure, and on days 2, 7, 14, 21, and 28. An untargeted high-resolution metabolomics approach was used to analyze urine and RF, while 16S rRNA-based next-generation sequencing (NGS) was used to examine RF, RS, feces, and fescue plant microbiomes. While alpha- or beta-microbiota diversity across all analyzed matrices were unaffected, there were specific effects of E+ on the relative abundance of some taxa (i.e., Prevotellaceae). Additionally, E+ grazing impacted aromatic amino acid metabolism in the urine and the metabolism of lipids in both the RF and urine. In both matrices, trace amine-related metabolic features differed markedly between E+ and the other groups. Compared to the endophyte-free group, endophyte presence, whether novel or toxic, influenced amino acid and carbohydrate metabolism, as well as unsaturated fatty acid biosynthesis. These findings suggest that low-EA-producing and non-toxic endophytes in fescue have more prominent effects on the metabolome than the microbiome, and this metabolome perturbation might be associated with decreased performance and reported physiological signs of FT.
Collapse
Affiliation(s)
- Ignacio M Llada
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Jeferson M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Madison M Dycus
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Zachery R Jarrell
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicholas S Hill
- Department of Crop and Soil Sciences, College of Agriculture, University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Min BR, Yutaka U, Ismael H, Abdo H, Chaudhary S, Hilaire M, Kanyi V. Malted Barley as a Potential Feed Supplementation for the Reduction of Enteric Methane Emissions, Rumen Digestibility, and Microbiome Community Changes in Laboratory Conditions. Animals (Basel) 2025; 15:664. [PMID: 40075947 PMCID: PMC11898181 DOI: 10.3390/ani15050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Three sets of in vitro rumen fermentation experiments were conducted to determine the effects of diets that included malted barley (MB) and basal diets (grain- and forage-based) on the in vitro gas production, greenhouse gas (GHG) emissions, rumen fermentation profiles, and microbiome changes in the rumen when supplemented with feedlot or dairy rations. The first experiment (Exp. 1) was conducted to evaluate the effects of various levels of MB (0% [referred to as a control], 10%, 20%, and 30%, as-fed basis) supplemented with a grain-based diet in a feedlot ration (2.5 g/bottle) after 48 h ruminal incubation on the in vitro gas production, GHG emissions, and rumen fermentation rate. The second two sets of in vitro experiments (Exp. 2a, b) were conducted to determine (1) the effects of linear dose levels of malted barley (MB; 0%, 10%, 20%, 30%, and 40% as-fed) with two different basal diets (grain-based and forage-based) and (2) the effects of different sources of MB (control, Korean, Canadian, and the USA; 30% MB, as-fed) in a dairy ration after 24 h incubation on in vitro gas production, rumen fermentation profiles, GHG emissions (methane [CH4] and nitrous oxide [N2O]), in vitro dry matter disappearance rate (IVDMD), and microbiome changes. Commercially available α-amylase (0.2 g/100 mL) was used as a sub-control in Exp. 2a. Using gas chromatography, all gases were collected using an ANKOM Gas Production system and analyzed for CH4 and N2O. In Exp. 1, total gas production, cumulative gas, and GHG productions (CH4, N2O) linearly decreased (p ≤ 0.05) with increasing MB supplementation. In Exp. 2a, cumulative in vitro gas, total gas production, and rumen fermentation profiles (e.g., total VFA, acetate, butyrate, iso-butyrate, valerate, and iso-valerate) linearly decreased (p < 0.05-0.01) with increasing MB supplementation, with diet-treatment interactions (p < 0.001). In addition, CH4 and N2O production (mL/g DM) linearly and quadratically decreased (p < 0.01) with increasing MB supplementation across the diets. However, IVDMD linearly and/or quadratically increased (p < 0.01) with increasing MB, with diet-treatment interactions (p < 0.001). The average populations of Bacteroidetes, Proteobacteria, and Spirochaetes were significantly decreased (p < 0.01-0.001) for MB treatment groups compared to the control group. Therefore, it may be possible to suppress methane production directly and indirectly by adding MB and α-amylase by modifying ruminal fermentation profiles.
Collapse
Affiliation(s)
- Byeng Ryel Min
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.I.); (H.A.); (S.C.); (M.H.); (V.K.)
| | - Uyeno Yutaka
- Department of Agriculture, Shinshu University, Minamiminowa 8304, Nagano 3994511, Japan;
| | - Hossam Ismael
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.I.); (H.A.); (S.C.); (M.H.); (V.K.)
| | - Heba Abdo
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.I.); (H.A.); (S.C.); (M.H.); (V.K.)
| | - Santosh Chaudhary
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.I.); (H.A.); (S.C.); (M.H.); (V.K.)
| | - Mariline Hilaire
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.I.); (H.A.); (S.C.); (M.H.); (V.K.)
| | - Vivian Kanyi
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36088, USA; (H.I.); (H.A.); (S.C.); (M.H.); (V.K.)
| |
Collapse
|
4
|
Liu J, Zhou M, Zhou L, Dang R, Xiao L, Tan Y, Li M, Yu J, Zhang P, Hernández M, Lichtfouse E. Methane production related to microbiota in dairy cattle feces. ENVIRONMENTAL RESEARCH 2025; 267:120642. [PMID: 39701354 DOI: 10.1016/j.envres.2024.120642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Methane (CH4) emission from livestock feces, led by ruminants, shows a profound impact on global warming. Despite this, we have almost no information on the syntrophy of the intact microbiome metabolisms, from carbohydrates to the one-carbon units, covering multiple stages of ruminant development. In this study, syntrophic effects of polysaccharide degradation and acetate-producing bacteria, and methanogenic archaea were revealed through metagenome-assembled genomes from water saturated dairy cattle feces. Although CH4 is thought to be produced by archaea, more edges, nodes, and balanced interaction types revealed by network analysis provided a closed bacteria-archaea network. The CH4 production potential and pathways were further evaluated through dynamic, thermodynamic and 13C stable isotope analysis. The powerful CH4 production potential benefited from the metabolic flux: classical polysaccharides, soluble sugar (glucose, galactose, lactose), acetate, and CH4 produced via typical acetoclastic methanogenesis. In comparison, a cooperative model dominated by hydrogenotrophic methanogenic archaea presented a weak ability to generate CH4. Our findings comprehensively link carbon and CH4 metabolism paradigm to specific microbial lineages which are shaped related to developmental stages of the dairy cattle, directing influencing global warming from livestock and waste treatment.
Collapse
Affiliation(s)
- Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou, 253023, China
| | - Meng Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Lifeng Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Liaocheng University School of Geography and Environment, Liaocheng, 252059, China
| | - Run Dang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Liaocheng University School of Geography and Environment, Liaocheng, 252059, China
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yang Tan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Meng Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou, 253023, China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou, 253023, China.
| | - Peng Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Marcela Hernández
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| |
Collapse
|
5
|
McAllister TA, Thomas KD, Gruninger RJ, Elshahed M, Li Y, Cheng Y. INTERNATIONAL SYMPOSIUM ON RUMINANT PHYSIOLOGY: Rumen fungi, archaea and their interactions. J Dairy Sci 2025:S0022-0302(25)00009-8. [PMID: 39824485 DOI: 10.3168/jds.2024-25713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H2 transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO2 to CH4 by methanogens. This symbiotic relationship is bolstered by hydrogensomes, fungal organelles that generate H2 and formate. Interspecies H2 transfer prevents the accumulation of reducing equivalents that would otherwise impede fermentation. The extent to which hydrogenosomes serve as a conduit for H2 flow to methanogens is unknown, but it is likely greater with low quality forages. Strategies that alter the production of CH4 could also have implications for H2 transfer by anaerobic fungi. Understanding the factors that drive these interactions and H2 flow could provide insight into the effect of reducing CH4 production on the activity of ruminal fungi and the digestion of low-quality feeds.
Collapse
Affiliation(s)
- Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1.
| | - Krysty D Thomas
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada T1J 4B1
| | - Mostafa Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, 74074, USA
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095
| |
Collapse
|
6
|
Nomosatryo S, Lipus D, Bartholomäus A, Henny C, Ridwansyah I, Sujarta P, Yang S, Wagner D, Kallmeyer J. The role of anthropogenic influences on a tropical lake ecosystem and its surrounding catchment: a case study of Lake Sentani. FEMS Microbiol Ecol 2025; 101:fiae162. [PMID: 39689918 PMCID: PMC11707878 DOI: 10.1093/femsec/fiae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Lake Sentani is a tropical lake in Indonesia, consisting of four interconnected sub-basins of different water depths. While previous work has highlighted the impact of catchment composition on biogeochemical processes in Lake Sentani, little is currently known about the microbiological characteristics across this unique ecosystem. With recent population growth in this historically rural area, the anthropogenic impact on Lake Sentani and hence its microbial life is also increasing. Therefore, we aimed to explore the influence of environmental and anthropogenic factors on the microbial diversity of Lake Sentani. Here, we present a detailed microbiological evaluation of Lake Sentani, analyzing 49 different sites across the lake, its tributary rivers and their river mouths to assess diversity and community structure using 16S rRNA gene sequencing. Our results reveal distinct communities in lake and river sediments, supporting the observed geochemical differences. Taxonomic assessment showed the potential impact of anthropogenic pressure along the northern, urbanized shore, as river and river mouth samples revealed high abundances of Bacteroidota, Firmicutes, and Cyanobacteria, which could be attributed to pollution and eutrophication. In contrast, lake sediment communities were dominated by Thermodesulfovibrionia, Methanomethylicia, Bathyarchaeia, and Thermoplasmata, suggesting sulfate reducing, thermophilic, acidophilic bacteria and methanogenic archaea to play an important role in tropical lake systems. This study provides novel insights into ecological functions of tropical lakes and contributes to the optimization of management strategies of Lake Sentani, ensuring its holistic preservation in the future.
Collapse
Affiliation(s)
- Sulung Nomosatryo
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Jakarta-Bogor KM 46, Cibinong, Bogor 16911, Indonesia
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19144, United States
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Jakarta-Bogor KM 46, Cibinong, Bogor 16911, Indonesia
| | - Iwan Ridwansyah
- Research Center for Limnology and Water Resources, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Jakarta-Bogor KM 46, Cibinong, Bogor 16911, Indonesia
| | - Puguh Sujarta
- Cendrawasih University, Department of Biology, Faculty of Mathematics and Natural Sciences, Jl. Kamp. Wolker, Waena, Jayapura 99358, Indonesia
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, 14476, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| |
Collapse
|
7
|
Brandi LA, Nunes AT, Faleiros CA, Poleti MD, Oliveira ECDM, Schmidt NT, Sousa RLM, Fukumasu H, Balieiro JCC, Brandi RA. Dietary Energy Sources Affect Cecal and Fecal Microbiota of Healthy Horses. Animals (Basel) 2024; 14:3494. [PMID: 39682460 DOI: 10.3390/ani14233494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Different energy sources are often used in horse diets to enhance health and performance. Understanding how diet impacts the cecal and fecal microbiota is crucial for meeting the nutritional needs of horses. High-throughput sequencing and qPCR were used to compare the fecal and cecal microbiota of five healthy horses receiving three different diets: hay diet (HAY), hay + starch and sugar (SS), and hay + fiber and oil ingredients (FO). Assessment of short-chain fatty acids, pH, and buffer capacity was also performed. The HAY diet was associated with the highest values of fecal pH; the FO and SS diets were associated with higher values of BC6 in the cecum, and the SS diet had higher BC5 values in feces (p < 0.05). HAY was associated with a lower alpha diversity in feces and with a higher abundance of Treponema, Fibrobacter, Lachnospiraceae AC2044, and Prevotellaceae UCG-003 in feces. SS was associated with a higher abundance of Desulfovibrio, the Lachnospiraceae AC2044 group, and Streptococcus in the cecum, and Streptococcus and Prevotellaceae UCG-001 in feces, while FO was associated with higher Prevotella, Prevotellaceae UCG-003, and Akkermansia in the cecum, and the Rikenellaceae RC9 gut group and Ruminococcus in feces. This study indicated that different energy sources can influence cecal and fecal microbiota composition and fecal diversity without significantly affecting fermentation processes under experimental conditions. These findings suggest that the diets studied may not pose immediate health risks; however, further research is needed to generalize these effects on gastrointestinal microbiota in broader equine populations.
Collapse
Affiliation(s)
- Laura A Brandi
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Elisângela C de M Oliveira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Natalia T Schmidt
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Ricardo L M Sousa
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Julio C C Balieiro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Roberta A Brandi
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| |
Collapse
|
8
|
Bature I, Xiaohu W, Ding X. The roles of phytogenic feed additives, trees, shrubs, and forages on mitigating ruminant methane emission. Front Vet Sci 2024; 11:1475322. [PMID: 39649683 PMCID: PMC11622700 DOI: 10.3389/fvets.2024.1475322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Ruminant animals naturally emit methane gas owing to anaerobic microbial fermentation in the rumen, and these gases are considered major contributors to global warming. Scientists worldwide are attempting to minimize methane emissions from ruminant animals. Some of these attempts include the manipulation of rumen microbes using antibiotics, synthetic chemicals, dietary interventions, probiotics, propionate enhancers, stimulation of acetogens, manipulation of rumination time, vaccination, and genetic selection of animals that produce low methane (CH4). The majority of synthetic additives are harmful to both beneficial rumen microbes and the host or only temporarily affect methanogenesis. Phytogenic feed additives (PFAs) have recently emerged as the best alternatives to antibiotics and synthetic chemicals because of growing public concerns regarding drug resistance and the negative impacts of antibiotics and synthetic chemicals on humans, livestock, and the environment. These additives reduce methane production and improve the volatile fatty acid profile. In this review, we provide an overview of PFA sources and how their bioactive components affect the rumen microbiome to reduce methane emissions. Additionally, we highlight the mechanisms of action of PFAs as a whole, as well as some of their bioactive components. We also review some selected trees, herbs, shrubs, and forages and their roles in reducing methane emissions.
Collapse
Affiliation(s)
- Ibrahim Bature
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Animal Science, Federal University Dutsin-Ma, Dutsin-Ma, Nigeria
| | - Wu Xiaohu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Zhao Y, Tan J, Fang L, Jiang L. Harnessing meta-omics to unveil and mitigate methane emissions in ruminants: Integrative approaches and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175732. [PMID: 39182764 DOI: 10.1016/j.scitotenv.2024.175732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Methane emissions from enteric fermentation present a dual challenge globally: they not only contribute significantly to atmospheric greenhouse gases but also represent a considerable energy loss for ruminant animals. Utilizing high-throughput omics technologies to analyze rumen microbiome samples (meta-omics, i.e., metagenomics, metatranscriptomics, metaproteomics, metabolomics) holds vast potential for uncovering the intricate interplay between diet, microbiota, and methane emissions in these animals. The primary obstacle is the effective integration of diverse meta-omic approaches and their broader application across different ruminant species. Genetic variability significantly impacts methane production in ruminants, suggesting that genomic selection could be a viable strategy to reduce emissions. While substantial research has been conducted on the microbiological aspects of methane production, there remains a critical need to delineate the specific genetic interactions between the host and its microbiome. Advancements in meta-omics technologies are poised to shed light on these interactions, enhancing our understanding of the genetic factors that govern methane output. This review explores the potential of meta-omics to accelerate genetic advancements that could lead to reduced methane emissions in ruminants. By employing a systems biology approach, the integration of various omics technologies allows for the identification of key genomic regions and genetic markers linked to methane production. These markers can then be leveraged in selective breeding programs to cultivate traits associated with lower emissions. Moreover, the review addresses current challenges in applying genomic selection for this purpose and discusses how omics technologies can overcome these obstacles. The systematic integration and analysis of diverse biological data provide deeper insights into the genetic underpinnings and overall biology of methane production traits in ruminants. Ultimately, this comprehensive approach not only aids in reducing the environmental impact of agriculture but also contributes to the sustainability and efficiency of livestock management.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Luoyun Fang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
10
|
Mi J, Jing X, Ma C, Shi F, Cao Z, Yang X, Yang Y, Kakade A, Wang W, Long R. A metagenomic catalogue of the ruminant gut archaeome. Nat Commun 2024; 15:9609. [PMID: 39505912 PMCID: PMC11542040 DOI: 10.1038/s41467-024-54025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
While the ruminant gut archaeome regulates the gut microbiota and hydrogen balance, it is also a major producer of the greenhouse gas methane. However, ruminant gut archaeome diversity within the gastrointestinal tract (GIT) of ruminant animals worldwide remains largely underexplored. Here, we construct a catalogue of 998 unique archaeal genomes recovered from the GITs of ruminants, utilizing 2270 metagenomic samples across 10 different ruminant species. Most of the archaeal genomes (669/998 = 67.03%) belong to Methanobacteriaceae and Methanomethylophilaceae (198/998 = 19.84%). We recover 47/279 previously undescribed archaeal genomes at the strain level with completeness of >80% and contamination of <5%. We also investigate the archaeal gut biogeography across various ruminants and demonstrate that archaeal compositional similarities vary significantly by breed and gut location. The catalogue contains 42,691 protein clusters, and the clustering and methanogenic pathway analysis reveal strain- and host-specific dependencies among ruminant animals. We also find that archaea potentially carry antibiotic and metal resistance genes, mobile genetic elements, virulence factors, quorum sensors, and complex archaeal viromes. Overall, this catalogue is a substantial repository for ruminant archaeal recourses, providing potential for advancing our understanding of archaeal ecology and discovering strategies to regulate methane production in ruminants.
Collapse
Affiliation(s)
- Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Xiaoping Jing
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Chouxian Ma
- Independent Researcher, Changsha, 410023, China
| | - Fuyu Shi
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ze Cao
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xin Yang
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Apurva Kakade
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Weiwei Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruijun Long
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Khan FA, Ali A, Wu D, Huang C, Zulfiqar H, Ali M, Ahmed B, Yousaf MR, Putri EM, Negara W, Imran M, Pandupuspitasari NS. Editing microbes to mitigate enteric methane emissions in livestock. World J Microbiol Biotechnol 2024; 40:300. [PMID: 39134917 DOI: 10.1007/s11274-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Azhar Ali
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hamza Zulfiqar
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Ali
- Institute of Animal and Diary sciences, Faculty of Animal Husbandry, Agriculture University, Faisalabad, Pakistan
| | - Bilal Ahmed
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Rizwan Yousaf
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
12
|
Ozbayram EG, Kleinsteuber S, Sträuber H, Schroeder BG, da Rocha UN, Corrêa FB, Harms H, Nikolausz M. Three-domain microbial communities in the gut of Pachnoda marginata larvae: A comparative study revealing opposing trends in gut compartments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13324. [PMID: 39143010 PMCID: PMC11324371 DOI: 10.1111/1758-2229.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
This study aimed to examine the bacterial, methanogenic archaeal, and eukaryotic community structure in both the midgut and hindgut of Pachnoda marginata larvae using an amplicon sequencing approach. The goal was to investigate how various diets and the soil affect the composition of these three-domain microbial communities within the gut of insect larvae. The results indicated a notable variation in the microbial community composition among the gut compartments. The majority of the bacterial community in the hindgut was composed of Ruminococcaceae and Christensenellaceae. Nocardiaceae, Microbacteriaceae, and Lachnospiraceae were detected in midgut samples from larvae feeding on the leaf diet, whereas Sphingomonadaceae, Rhodobacteraceae, and Promicromonasporaceae dominated the bacterial community of midgut of larvae feeding on the straw diet. The diet was a significant factor that influenced the methanogenic archaeal and eukaryotic community patterns. The methanogenic communities in the two gut compartments significantly differed from each other, with the midgut communities being more similar to those in the soil. A higher diversity of methanogens was observed in the midgut samples of both diets compared to the hindgut. Overall, the microbiota of the hindgut was more host-specific, while the assembly of the midgut was more influenced by the environmental microorganisms.
Collapse
Affiliation(s)
- Emine Gozde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic SciencesIstanbul UniversityFatih, IstanbulTurkey
| | - Sabine Kleinsteuber
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Heike Sträuber
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Bruna Grosch Schroeder
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Ulisses Nunes da Rocha
- Department of Applied Microbial EcologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Felipe Borim Corrêa
- Department of Applied Microbial EcologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Hauke Harms
- Department of Applied Microbial EcologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Marcell Nikolausz
- Department of Microbial BiotechnologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
13
|
Ungerfeld EM, Pitta D. Review: Biological consequences of the inhibition of rumen methanogenesis. Animal 2024:101170. [PMID: 38772773 DOI: 10.1016/j.animal.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Decreasing enteric CH4 emissions from ruminants is important for containing global warming to 1.5 °C and avoid the worst consequences of climate change. However, the objective of mitigating enteric CH4 emissions is difficult to reconcile with the forecasted increase in production of ruminant meat and milk, unless CH4 production per animal and per kilogram of animal product are decreased substantially. Chemical compound 3-nitrooxypropanol and bromoform-containing red algae Asparagopsis are currently the most potent inhibitors of rumen methanogenesis, but their average efficacy would have to be increased to mitigate enteric CH4 emissions to contain global warming to 1.5 °C, if the demand for ruminant products increases as predicted. We propose that it may be possible to enhance the efficacy of inhibitors of methanogenesis through understanding the mechanisms that cause variation in their efficacy across studies. We also propose that a more thorough understanding of the effects of inhibiting methanogenesis on rumen and postabsorptive metabolism may help improve feed efficiency and cost-effectiveness as co-benefits of the methanogenesis inhibition intervention. For enhancing efficacy, we examine herein how different inhibitors of methanogenesis affect the composition of the rumen microbial community and discuss some mechanisms that may explain dissimilar sensitivities among methanogens to different types of inhibitors. For improving feed efficiency and cost-effectiveness, we discuss the consequences of inhibiting methanogenesis on rumen fermentation, and how changes in rumen fermentation can in turn affect postabsorptive metabolism and animal performance. The objectives of this review are to identify knowledge gaps of the consequences of inhibiting methanogenesis on rumen microbiology and rumen and postabsorptive metabolism, propose research to address those knowledge gaps and discuss the implications that this research can have for the efficacy and adoption of inhibitors of methanogenesis. Depending on its outcomes, research on the microbiological, biochemical, and metabolic consequences of the inhibition of rumen methanogenesis could help the adoption of feed additives inhibitors of methanogenesis to mitigate enteric CH4 emissions from ruminants to ameliorate climate change.
Collapse
Affiliation(s)
- E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Camino Cajón a Vilcún km 10, 4880000 Vilcún, La Araucanía, Chile.
| | - D Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 19348 Kenneth Square, PA, United States
| |
Collapse
|
14
|
Lambo MT, Ma H, Liu R, Dai B, Zhang Y, Li Y. Review: Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants' enteric methane emission. Animal 2024; 18:101134. [PMID: 38593679 DOI: 10.1016/j.animal.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.
Collapse
Affiliation(s)
- M T Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - H Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - R Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - B Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Sun B, Zhu R, Shi Y, Zhang W, Zhou Z, Ma D, Wang R, Dai H, Che C. Effects of coal-fired power plants on soil microbial diversity and community structures. J Environ Sci (China) 2024; 137:206-223. [PMID: 37980009 DOI: 10.1016/j.jes.2023.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants. However, the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking. Here, we collected the samples of power plant soils (PS), coal-stacking soils (CSS) and agricultural soils (AS) around three coal-fired power plants and background control soils (BG) in Huainan, a typical mineral resource-based city in East China, and investigated the microbial diversity and community structures through a high-throughput sequencing technique. Coal-stacking significantly increased (p < 0.05) the contents of total carbon, total nitrogen, total sulfur and Mo in the soils, whereas the deposition of atmospheric pollutants enhanced the levels of V, Cu, Zn and Pb. Proteobacteria, Actinobacteria, Thaumarchaeota, Thermoplasmata, Ascomycota and Basidiomycota were the dominant taxa in all soils. The bacterial community showed significant differences (p < 0.05) among PS, CSS, AS and BG, whereas archaeal and fungal communities showed significant differences (p < 0.01) according to soil samples around three coal-fired power plants. The predominant environmental variables affecting soil bacterial, archaeal and fungal communities were Mo-TN-TS, Cu-V-Mo, and organic matter (OM)-Mo, respectively. Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants. This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants.
Collapse
Affiliation(s)
- Bowen Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 450046, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zeming Zhou
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Ma
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Runfang Wang
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Haitao Dai
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chenshuai Che
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Roques S, Martinez-Fernandez G, Ramayo-Caldas Y, Popova M, Denman S, Meale SJ, Morgavi DP. Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production. Annu Rev Anim Biosci 2024; 12:321-343. [PMID: 38079599 DOI: 10.1146/annurev-animal-021022-024931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.
Collapse
Affiliation(s)
- Simon Roques
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | | | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain;
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| | - Stuart Denman
- Agriculture and Food, CSIRO, St. Lucia, Queensland, Australia; ,
| | - Sarah J Meale
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton, Queensland, Australia;
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France; , ,
| |
Collapse
|
17
|
Hodge I, Quille P, O’Connell S. A Review of Potential Feed Additives Intended for Carbon Footprint Reduction through Methane Abatement in Dairy Cattle. Animals (Basel) 2024; 14:568. [PMID: 38396536 PMCID: PMC10885959 DOI: 10.3390/ani14040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Eight rumen additives were chosen for an enteric methane-mitigating comparison study including garlic oil (GO), nitrate, Ascophyllum nodosum (AN), Asparagopsis (ASP), Lactobacillus plantarum (LAB), chitosan (CHI), essential oils (EOs) and 3-nitrooxypropanol (3-NOP). Dose-dependent analysis was carried out on selected feed additives using a meta-analysis approach to determine effectiveness in live subjects or potential efficacy in live animal trials with particular attention given to enteric gas, volatile fatty acid concentrations, and rumen microbial counts. All meta-analysis involving additives GO, nitrates, LAB, CHI, EOs, and 3-NOP revealed a reduction in methane production, while individual studies for AN and ASP displayed ruminal bacterial community improvement and a reduction in enteric CH4. Rumen protozoal depression was observed with GO and AN supplementation as well as an increase in propionate production with GO, LAB, ASP, CHI, and 3-NOP rumen fluid inoculation. GO, AN, ASP, and LAB demonstrated mechanisms in vitro as feed additives to improve rumen function and act as enteric methane mitigators. Enzyme inhibitor 3-NOP displays the greatest in vivo CH4 mitigating capabilities compared to essential oil commercial products. Furthermore, this meta-analysis study revealed that in vitro studies in general displayed a greater level of methane mitigation with these compounds than was seen in vivo, emphasising the importance of in vivo trials for final verification of use. While in vitro gas production systems predict in vivo methane production and fermentation trends with reasonable accuracy, it is necessary to confirm feed additive rumen influence in vivo before practical application.
Collapse
Affiliation(s)
- Ian Hodge
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
- Research and Development Biotechnology Centre, Marigot Ltd., Shanbally, P43 E409 Ringaskiddy, Cork, Ireland
| | - Patrick Quille
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
| | - Shane O’Connell
- Department of Biological and Pharmaceutical Science, Munster Technological University, V92 HD4V Tralee, Kerry, Ireland; (P.Q.); (S.O.)
- Research and Development Biotechnology Centre, Marigot Ltd., Shanbally, P43 E409 Ringaskiddy, Cork, Ireland
| |
Collapse
|
18
|
Mackie RI, Kim H, Kim NK, Cann I. - Invited Review - Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production. Anim Biosci 2024; 37:323-336. [PMID: 38186257 PMCID: PMC10838669 DOI: 10.5713/ab.23.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 01/09/2024] Open
Abstract
Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and possibly homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate the rumen ecosystem for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilization could be a significant starting point for the development of successful interventions aimed at redirecting electron flow and reducing methane emissions. We conclude by discussing in brief ruminant methane mitigation approaches as a model to help understand the fate of H2 and formate in the rumen ecosystem.
Collapse
Affiliation(s)
- Roderick I. Mackie
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,
USA
- Carle R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801,
USA
| | - Hyewon Kim
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,
USA
| | - Na Kyung Kim
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,
USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801,
USA
- Carle R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801,
USA
- Department of Microbiology, University of Illinois, Urbana, IL 61801,
USA
| |
Collapse
|
19
|
Qi W, Xue MY, Jia MH, Zhang S, Yan Q, Sun HZ. - Invited Review - Understanding the functionality of the rumen microbiota: searching for better opportunities for rumen microbial manipulation. Anim Biosci 2024; 37:370-384. [PMID: 38186256 PMCID: PMC10838668 DOI: 10.5713/ab.23.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
Rumen microbiota play a central role in the digestive process of ruminants. Their remarkable ability to break down complex plant fibers and proteins, converting them into essential organic compounds that provide animals with energy and nutrition. Research on rumen microbiota not only contributes to improving animal production performance and enhancing feed utilization efficiency but also holds the potential to reduce methane emissions and environmental impact. Nevertheless, studies on rumen microbiota face numerous challenges, including complexity, difficulties in cultivation, and obstacles in functional analysis. This review provides an overview of microbial species involved in the degradation of macromolecules, the fermentation processes, and methane production in the rumen, all based on cultivation methods. Additionally, the review introduces the applications, advantages, and limitations of emerging omics technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics, in investigating the functionality of rumen microbiota. Finally, the article offers a forward-looking perspective on the new horizons and technologies in the field of rumen microbiota functional research. These emerging technologies, with continuous refinement and mutual complementation, have deepened our understanding of rumen microbiota functionality, thereby enabling effective manipulation of the rumen microbial community.
Collapse
Affiliation(s)
- Wenlingli Qi
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yuan Xue
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Hui Jia
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Zeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Xie F, Zhao S, Zhan X, Zhou Y, Li Y, Zhu W, Pope PB, Attwood GT, Jin W, Mao S. Unraveling the phylogenomic diversity of Methanomassiliicoccales and implications for mitigating ruminant methane emissions. Genome Biol 2024; 25:32. [PMID: 38263062 PMCID: PMC10804542 DOI: 10.1186/s13059-024-03167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Methanomassiliicoccales are a recently identified order of methanogens that are diverse across global environments particularly the gastrointestinal tracts of animals; however, their metabolic capacities are defined via a limited number of cultured strains. RESULTS Here, we profile and analyze 243 Methanomassiliicoccales genomes assembled from cultured representatives and uncultured metagenomes recovered from various biomes, including the gastrointestinal tracts of different animal species. Our analyses reveal the presence of numerous undefined genera and genetic variability in metabolic capabilities within Methanomassiliicoccales lineages, which is essential for adaptation to their ecological niches. In particular, gastrointestinal tract Methanomassiliicoccales demonstrate the presence of co-diversified members with their hosts over evolutionary timescales and likely originated in the natural environment. We highlight the presence of diverse clades of vitamin transporter BtuC proteins that distinguish Methanomassiliicoccales from other archaeal orders and likely provide a competitive advantage in efficiently handling B12. Furthermore, genome-centric metatranscriptomic analysis of ruminants with varying methane yields reveal elevated expression of select Methanomassiliicoccales genera in low methane animals and suggest that B12 exchanges could enable them to occupy ecological niches that possibly alter the direction of H2 utilization. CONCLUSIONS We provide a comprehensive and updated account of divergent Methanomassiliicoccales lineages, drawing from numerous uncultured genomes obtained from various habitats. We also highlight their unique metabolic capabilities involving B12, which could serve as promising targets for mitigating ruminant methane emissions by altering H2 flow.
Collapse
Affiliation(s)
- Fei Xie
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengwei Zhao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiu Zhan
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Zhou
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yin Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
21
|
Majhi S, Kerry RG, Sahoo L. Profiling of microbiome diversity in cattle: present status and future prospectives. APPLICATIONS OF METAGENOMICS 2024:129-142. [DOI: 10.1016/b978-0-323-98394-5.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
|
22
|
Ni R, Wang S, Lin X, Song L. Antibiotics inhibit methanogenesis during municipal solid waste decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167397. [PMID: 37758143 DOI: 10.1016/j.scitotenv.2023.167397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Municipal solid waste (MSW) landfills are significant sources of antibiotics. However, the effects of antibiotics on MSW decomposition process and methanogenesis during solid waste decomposition remain insufficiently characterized. This study investigated the effects of environmentally relevant concentrations (ERCs) of antibiotics (200 μg/kg for each antibiotic) on MSW decomposition and methanogenesis in bioreactors treated with and without eight antibiotics (three tetracyclines, three sulfonamides, and two macrolides). The key phases of MSW decomposition, namely the aerobic, anaerobic acid, and methanogenic phases, were determined by analyzing the key physiochemical parameters of the leachate, including pH, chemical oxygen demand, and biochemical oxygen demand. We assessed the bacterial and archaeal compositions, along with the abundance of the gene encoding the alpha subunit of methyl-coenzyme M reductase (mcrA), during MSW decomposition using high throughput 16S ribosomal RNA (rRNA) gene sequencing and quantitative polymerase chain reactions, respectively. Our results revealed that antibiotics significantly altered the compositions of bacteria and methanogens, leading to decreased mcrA abundance and methanogenesis. Specifically, antibiotics inhibited cellulose-degrading bacteria (Firmicutes) and archaea (E2) in the anaerobic acid phase and hydrolytic bacteria (Proteobacteria) in the methanogenic phase, resulting in lower degradation of biodegradable matter than that of the biodegradation without antibiotics treatment. However, the typical MSW decomposition process indicated by the key decomposition phases was successfully separated in both bioreactors, suggesting that antibiotics did not affect overall MSW decomposition process development or the associated individual decomposition phases establishment. These findings suggest that antibiotics at ERCs may inhibit methanogenesis during MSW decomposition, thereby providing fundamental information for methane management and climate change studies.
Collapse
Affiliation(s)
- Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shuijing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China.
| |
Collapse
|
23
|
Botero Rute LM, Caro-Quintero A, Acosta-González A. Enhancing the Conventional Culture: the Evaluation of Several Culture Media and Growth Conditions Improves the Isolation of Ruminal Bacteria. MICROBIAL ECOLOGY 2023; 87:13. [PMID: 38082143 PMCID: PMC10713758 DOI: 10.1007/s00248-023-02319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
The rumen microbiota is critical in cattle digestion. Still, its low cultivability makes it difficult to study its ecological function and biotechnological potential. To improve the recovery of ruminal microorganisms, this study combined the evaluation of several cultivation parameters with metabarcoding analysis. The parameters tested comprised eight media cultures, three sample dilutions (10-2, 10-6, 10-12), and two incubation times (3 and 7 days). Bacterial populations were determined through Illumina sequencing of 16S rRNA from three biological replicates. The results indicate that none of the culture media recovered all rumen populations and that there was an altered relative abundance of the dominant phyla. In the rumen, Bacteroidetes and Firmicutes comprised 75% and 15% of the relative abundance, respectively, while in the culture media, these were 15% and 60%, respectively. Principal coordinate analysis (PCoA) of the bacterial community revealed significant shifts in population composition due to dilution, with 10-2 and 10-6 dilutions clustered closely while the 10-12 dilution differed markedly. In contrast, incubation duration did not influence population diversity. According to the results, two media, CAN and KNT, were selected based on their ability to recover more similar populations compared to the rumen sample. The metataxonomic study showed that CAN media had consistent reproducibility over time, while KNT showed enrichment of different taxa due to the use of rumen fluid as a substrate. From these, 64 pure cultures were obtained and 54 were identified through 16S rRNA gene sequencing. Being Streptococcus the most frequently isolated genus, this prevalence contrasts with the liquid media composition, underscoring the importance of refining single colony isolation strategies. Although no culture medium could replicate the native rumen bacterial population perfectly, our findings highlight the potential of CAN and KNT media in recovering populations that are more closely aligned to natural rumen conditions. In conclusion, our study emphasizes the importance of integrating molecular approaches in selecting suitable cultivation media and parameters to depict rumen bacteria accurately.
Collapse
Affiliation(s)
- Lina Marcela Botero Rute
- AGROSAVIA, Km. 14 via Mosquera, Mosquera, Cundinamarca, Colombia
- Maestría en Diseño y Gestión de Procesos, Facultad de Ingeniería, Universidad de la Sabana, Km. 7 Autopista Norte, Chia, 25001, Colombia
| | - Alejandro Caro-Quintero
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Alejandro Acosta-González
- Bioprospection Research Group (GIBP), Facultad de Ingeniería, Universidad de La Sabana, Km. 7 Autopista Norte, Chia, 25001, Colombia
| |
Collapse
|
24
|
Borrel G, Fadhlaoui K, Ben Hania W, Gaci N, Pehau-Arnaudet G, Chaudhary PP, Vandekerckove P, Ballet N, Alric M, O’Toole PW, Fardeau ML, Ollivier B, Brugère JF. Methanomethylophilus alvi gen. nov., sp. nov., a Novel Hydrogenotrophic Methyl-Reducing Methanogenic Archaea of the Order Methanomassiliicoccales Isolated from the Human Gut and Proposal of the Novel Family Methanomethylophilaceae fam. nov. Microorganisms 2023; 11:2794. [PMID: 38004804 PMCID: PMC10673518 DOI: 10.3390/microorganisms11112794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The methanogenic strain Mx-05T was isolated from the human fecal microbiome. A phylogenetic analysis based on the 16S rRNA gene and protein marker genes indicated that the strain is affiliated with the order Methanomassiliicoccales. It shares 86.9% 16S rRNA gene sequence identity with Methanomassiliicoccus luminyensis, the only member of this order previously isolated. The cells of Mx-05T were non-motile cocci, with a diameter range of 0.4-0.7 μm. They grew anaerobically and reduced methanol, monomethylamine, dimethylamine, and trimethylamine into methane, using H2 as an electron donor. H2/CO2, formate, ethanol, and acetate were not used as energy sources. The growth of Mx-05T required an unknown medium factor(s) provided by Eggerthella lenta and present in rumen fluid. Mx-05T grew between 30 °C and 40 °C (optimum 37 °C), over a pH range of 6.9-8.3 (optimum pH 7.5), and between 0.02 and 0.34 mol.L-1 NaCl (optimum 0.12 mol.L-1 NaCl). The genome is 1.67 Mbp with a G+C content of 55.5 mol%. Genome sequence annotation confirmed the absence of the methyl branch of the H4MPT Wood-Ljungdahl pathway, as described for other Methanomassiliicoccales members. Based on an average nucleotide identity analysis, we propose strain Mx-05T as being a novel representative of the order Methanomassiliicoccales, within the novel family Methanomethylophilaceae, for which the name Methanomethylophilus alvi gen. nov, sp. nov. is proposed. The type strain is Mx-05T (JCM 31474T).
Collapse
Affiliation(s)
- Guillaume Borrel
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell, 75015 Paris, France
| | - Khaled Fadhlaoui
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, UMR 6023 CNRS-UCA, Laboratoire Microorganismes: Génome et Environnement LMGE, 63000 Clermont-Ferrand, France
| | - Wajdi Ben Hania
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
| | - Nadia Gaci
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
| | - Gérard Pehau-Arnaudet
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging, 75015 Paris, France
| | - Prem Prashant Chaudhary
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, 59700 Marcq-en-Barœul, France
| | - Monique Alric
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
| | | | - Marie-Laure Fardeau
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
| | - Bernard Ollivier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
| | | |
Collapse
|
25
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
26
|
Thorsteinsson M, Lund P, Weisbjerg MR, Noel SJ, Schönherz AA, Hellwing ALF, Hansen HH, Nielsen MO. Enteric methane emission of dairy cows supplemented with iodoform in a dose-response study. Sci Rep 2023; 13:12797. [PMID: 37550361 PMCID: PMC10406889 DOI: 10.1038/s41598-023-38149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023] Open
Abstract
Enteric methane (CH4) emission is one of the major greenhouse gasses originating from cattle. Iodoform has in studies been found to be a potent mitigator of rumen CH4 formation in vitro. This study aimed to quantify potential of iodoform as an anti-methanogenic feed additive for dairy cows and investigate effects on feed intake, milk production, feed digestibility, rumen microbiome, and animal health indicators. The experiment was conducted as a 4 × 4 Latin square design using four lactating rumen, duodenal, and ileal cannulated Danish Holstein dairy cows. The treatments consisted of four different doses of iodoform (1) 0 mg/day, (2) 320 mg/day, (3) 640 mg/day, and (4) 800 mg/day. Iodoform was supplemented intra-ruminally twice daily. Each period consisted of 7-days of adaptation, 3-days of digesta and blood sampling, and 4-days of gas exchange measurements using respiration chambers. Milk yield and dry matter intake (DMI) were recorded daily. Rumen samples were collected for microbial analyses and investigated for fermentation parameters. Blood was sampled and analyzed for metabolic and health status indicators. Dry matter intake and milk production decreased linearly by maximum of 48% and 33%, respectively, with increasing dose. Methane yield (g CH4/kg DMI) decreased by maximum of 66%, while up to 125-fold increases were observed in hydrogen yield (g H2/kg DMI) with increasing dose of iodoform. Total tract digestibility of DM, OM, CP, C, NDF, and starch were unaffected by treatments, but large shifts, except for NDF, were observed for ruminal to small intestinal digestion of the nutrients. Some indicators of disturbed rumen microbial activity and fermentation dynamics were observed with increasing dose, but total number of ruminal bacteria was unaffected by treatment. Serum and plasma biomarkers did not indicate negative effects of iodoform on cow health. In conclusion, iodoform was a potent mitigator of CH4 emission. However, DMI and milk production were negatively affected and associated with indications of depressed ruminal fermentation. Future studies might reveal if depression of milk yield and feed intake can be avoided if iodoform is continuously administered by mixing it into a total mixed ration.
Collapse
Affiliation(s)
- Mirka Thorsteinsson
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830, Tjele, Denmark.
- iCLIMATE - Interdisciplinary Centre for Climate Change, Aarhus University, 8830, Tjele, Denmark.
- CBIO - Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark.
| | - Peter Lund
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830, Tjele, Denmark
- iCLIMATE - Interdisciplinary Centre for Climate Change, Aarhus University, 8830, Tjele, Denmark
- CBIO - Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark
| | - Martin Riis Weisbjerg
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830, Tjele, Denmark
- iCLIMATE - Interdisciplinary Centre for Climate Change, Aarhus University, 8830, Tjele, Denmark
- CBIO - Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark
| | - Samantha Joan Noel
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830, Tjele, Denmark
- iCLIMATE - Interdisciplinary Centre for Climate Change, Aarhus University, 8830, Tjele, Denmark
- CBIO - Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark
| | - Anna Amanda Schönherz
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830, Tjele, Denmark
- iCLIMATE - Interdisciplinary Centre for Climate Change, Aarhus University, 8830, Tjele, Denmark
- CBIO - Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark
| | - Anne Louise Frydendahl Hellwing
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830, Tjele, Denmark
- iCLIMATE - Interdisciplinary Centre for Climate Change, Aarhus University, 8830, Tjele, Denmark
- CBIO - Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Mette Olaf Nielsen
- Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, 8830, Tjele, Denmark
- iCLIMATE - Interdisciplinary Centre for Climate Change, Aarhus University, 8830, Tjele, Denmark
- CBIO - Centre for Circular Bioeconomy, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
27
|
Morgavi DP, Cantalapiedra-Hijar G, Eugène M, Martin C, Noziere P, Popova M, Ortigues-Marty I, Muñoz-Tamayo R, Ungerfeld EM. Review: Reducing enteric methane emissions improves energy metabolism in livestock: is the tenet right? Animal 2023; 17 Suppl 3:100830. [PMID: 37263815 DOI: 10.1016/j.animal.2023.100830] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 06/03/2023] Open
Abstract
The production of enteric methane in the gastrointestinal tract of livestock is considered as an energy loss in the equations for estimating energy metabolism in feeding systems. Therefore, the spared energy resulting from specific inhibition of methane emissions should be re-equilibrated with other factors of the equation. And, it is commonly assumed that net energy from feeds increases, thus benefitting production functions, particularly in ruminants due to the important production of methane in the rumen. Notwithstanding, we confirm in this work that inhibition of emissions in ruminants does not transpose into consistent improvements in production. Theoretical calculations of energy flows using experimental data show that the expected improvement in net energy for production is small and difficult to detect under the prevailing, moderate inhibition of methane production (≈25%) obtained using feed additives inhibiting methanogenesis. Importantly, the calculation of energy partitioning using canonical models might not be adequate when methanogenesis is inhibited. There is a lack of information on various parameters that play a role in energy partitioning and that may be affected under provoked abatement of methane. The formula used to calculate heat production based on respiratory exchanges should be validated when methanogenesis is inhibited. Also, a better understanding is needed of the effects of inhibition on fermentation products, fermentation heat, and microbial biomass. Inhibition induces the accumulation of H2, the main substrate used to produce methane, that has no energetic value for the host, and it is not extensively used by the majority of rumen microbes. Currently, the fate of this excess of H2 and its consequences on the microbiota and the host are not well known. All this additional information will provide a better account of energy transactions in ruminants when enteric methanogenesis is inhibited. Based on the available information, it is concluded that the claim that enteric methane inhibition will translate into more feed-efficient animals is not warranted.
Collapse
Affiliation(s)
- D P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France.
| | - G Cantalapiedra-Hijar
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - M Eugène
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - C Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - P Noziere
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - M Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - I Ortigues-Marty
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - R Muñoz-Tamayo
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Temuco 4880000, Chile
| |
Collapse
|
28
|
Li B, Wang H, Lai A, Xue J, Wu Q, Yu C, Xie K, Mao Z, Li H, Xing P, Wu QL. Hydrogenotrophic pathway dominates methanogenesis along the river-estuary continuum of the Yangtze River. WATER RESEARCH 2023; 240:120096. [PMID: 37229838 DOI: 10.1016/j.watres.2023.120096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Rivers are considered as an important source of methane (CH4) to the atmosphere, but our understanding for the methanogenic pathway in rivers and its linkage with CH4 emission is very limited. Here, we investigated the diffusive flux of CH4 and its stable carbon isotope signature (δ13C-CH4) along the river-estuary continuum of the Yangtze River. The diffusive CH4 flux was estimated to 27.9 ± 11.4 μmol/m2/d and 36.5 ± 24.4 μmol/m2/d in wet season and dry season, respectively. The δ13C-CH4 values were generally lower than -60‰, with the fractionation factor (αc) higher than 1.055 and the isotope separation factor (εc) ranged from 55 to 100. In situ microbial composition showed that hydrogenotrophic methanogens accounts for over 70% of the total reads. Moreover, the incubation test showed that the headspace CH4 concentration by adding CO2/H2 to the sediment was orders of magnitude higher than that by adding trimethylamine and sodium acetate. These results jointly verified the river-estuary continuum is a minor CH4 source and dominated by hydrogenotrophic pathway. Based on the methanogenic pathway here and previous reported data in the same region, the historical variation of diffusive CH4 flux was calculated and results showed that CH4 emission has reduced 82.5% since the construction of Three Gorges Dam (TGD). Our study verified the dominant methanogenic pathway in river ecosystems and clarified the effect and mechanism of dam construction on riverine CH4 emission.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hongwei Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Anxing Lai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qiong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chunyan Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ke Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
29
|
O’Hara E, Terry SA, Moote P, Beauchemin KA, McAllister TA, Abbott DW, Gruninger RJ. Comparative analysis of macroalgae supplementation on the rumen microbial community: Asparagopsis taxiformis inhibits major ruminal methanogenic, fibrolytic, and volatile fatty acid-producing microbes in vitro. Front Microbiol 2023; 14:1104667. [PMID: 37077241 PMCID: PMC10109387 DOI: 10.3389/fmicb.2023.1104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
Seaweeds have received a great deal of attention recently for their potential as methane-suppressing feed additives in ruminants. To date, Asparagopsis taxiformis has proven a potent enteric methane inhibitor, but it is a priority to identify local seaweed varieties that hold similar properties. It is essential that any methane inhibitor does not compromise the function of the rumen microbiome. In this study, we conducted an in vitro experiment using the RUSITEC system to evaluate the impact of three red seaweeds, A. taxiformis, Palmaria mollis, and Mazzaella japonica, on rumen prokaryotic communities. 16S rRNA sequencing showed that A. taxiformis had a profound effect on the microbiome, particularly on methanogens. Weighted Unifrac distances showed significant separation of A. taxiformis samples from the control and other seaweeds (p < 0.05). Neither P. mollis nor M. japonica had a substantial effect on the microbiome (p > 0.05). A. taxiformis reduced the abundance of all major archaeal species (p < 0.05), leading to an almost total disappearance of the methanogens. Prominent fiber-degrading and volatile fatty acid (VFA)-producing bacteria including Fibrobacter and Ruminococcus were also inhibited by A. taxiformis (p < 0.05), as were other genera involved in propionate production. The relative abundance of several other bacteria including Prevotella, Bifidobacterium, Succinivibrio, Ruminobacter, and unclassified Lachnospiraceae were increased by A. taxiformis suggesting that the rumen microbiome adapted to an initial perturbation. Our study provides baseline knowledge of microbial dynamics in response to seaweed feeding over an extended period and suggests that feeding A. taxiformis to cattle to reduce methane may directly, or indirectly, inhibit important fiber-degrading and VFA-producing bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert J. Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
30
|
Krizsan SJ, Ramin M, Chagas JCC, Halmemies-Beauchet-Filleau A, Singh A, Schnürer A, Danielsson R. Effects on rumen microbiome and milk quality of dairy cows fed a grass silage-based diet supplemented with the macroalga Asparagopsis taxiformis. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The objective was to determine the effects on rumen microbiome and milk quality of reducing the methane (CH4) produced from enteric fermentation by the addition of Asparagopsis taxiformis (AT) to the diets of dairy cows. Six Nordic Red cows at 122 ± 13.7 (mean ± SD) days in milk, of parity 2.7 ± 0.52 and producing 36 kg ± 2.5 kg milk per day at the start of the trial were divided into three blocks by milk yield and assigned to an extra-period Latin-square change-over design comprising two dietary treatments. An extra period of observation was added to the Latin-square change-over design to control for carry-over effects. The dietary treatments were a diet consisting of grass silage and a commercial concentrate mixture (60:40) either not supplemented or supplemented with 0.5% AT on an organic matter intake basis. On average, daily CH4 production, CH4 yield, and CH4 intensity decreased by 60%, 54%, and 58%, respectively, in cows fed the diet supplemented with AT. Furthermore, hydrogen gas emitted by cows fed diets supplemented with AT increased by more than five times compared with cows fed a non-AT-supplemented diet. Feed intake was decreased and milk production altered, reflecting a decreased yield of milk fat in cows fed an AT-supplemented diet, but feed efficiency increased. Rumen fermentation parameters were changed to promote propionate rather than acetate and butyrate fermentation. The most prominent change in milk quality was an increase in bromine and iodine when the diet was supplemented with AT. The reduction in CH4 was associated with a shift from Methanobrevibacter to Methanomethylophilaceae in the archaeal population and a lower relative abundance of Prevotella in the bacterial population. Changes in milk fat odd-numbered and branched-chain fatty acids in the current study of AT supplementation support observed differences in ruminal archaeal and bacterial populations.
Collapse
|
31
|
Bacterial, Archaeal, and Eukaryote Diversity in Planktonic and Sessile Communities Inside an Abandoned and Flooded Iron Mine (Quebec, Canada). Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abandoned and flooded ore mines are examples of hostile environments (cold, dark, oligotrophic, trace metal) with a potential vast diversity of microbial communities rarely characterized. This study aimed to understand the effects of depth, the source of water (surface or groundwater), and abiotic factors on the communities present in the old Forsyth iron mine in Quebec (Canada). Water and biofilm samples from the mine were sampled by a team of technical divers who followed a depth gradient (0 to 183 m deep) to study the planktonic and sessile communities’ diversity and structure. We used 16S/18S rRNA amplicon to characterize the taxonomic diversity of Bacteria, Archaea, and Eukaryotes. Our results show that depth was not a significant factor explaining the difference in community composition observed, but lifestyle (planktonic/sessile) was. We discovered a vast diversity of microbial taxa, with taxa involved in carbon- and sulfur-cycling. Sessile communities seem to be centered on C1-cycling with fungi and heterotrophs likely adapted to heavy-metal stress. Planktonic communities were dominated by ultra-small archaeal and bacterial taxa, highlighting harsh conditions in the mine waters. Microbial source tracking indicated sources of communities from surface to deeper layers and vice versa, suggesting the dispersion of organisms in the mine, although water connectivity remains unknown.
Collapse
|
32
|
Yilmaz K, Kara K. The effect of vegetable and animal oils added to different forages and concentrates on the in vitro fermentation parameters in ruminants. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Kurşat Yilmaz
- Institute of Health Sciences, Department of Animal Nutrition and Nutritional Diseases, Erciyes University, Kayseri, Turkey
| | - Kanber Kara
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Erciyes University, Kayseri, Turkey
| |
Collapse
|
33
|
Kara K, Yılmaz S, Önel SE, Özbilgin A. Effects of plantago species herbage and silage on in vitro ruminal fermentation and microbiome. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2139201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kanber Kara
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Erciyes University, Kayseri, Türkiye
| | - Sena Yılmaz
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Erciyes University, Kayseri, Türkiye
| | - Süleyman Ercüment Önel
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Hatay Mustafa Kemal University, Hatay, Türkiye
| | - Abdullah Özbilgin
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Sivas Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
34
|
Zhang XX, Lv QB, Yan QL, Zhang Y, Guo RC, Meng JX, Ma H, Qin SY, Zhu QH, Li CQ, Liu R, Liu G, Li SH, Sun DB, Ni HB. A Catalog of over 5,000 Metagenome-Assembled Microbial Genomes from the Caprinae Gut Microbiota. Microbiol Spectr 2022; 10:e0221122. [PMID: 36321901 PMCID: PMC9769736 DOI: 10.1128/spectrum.02211-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Most microbiome studies regarding the ruminant digestive tract have focused on the rumen microbiota, whereas only a few studies were performed on investigating the gut microbiota of ruminants, which limits our understanding of this important component. Herein, the gut microbiota of 30 Caprinae animals (sheep and goats) from six provinces in China was characterized using ultradeep (>100 Gbp per sample) metagenome shotgun sequencing. An inventory of Caprinae gut microbial species containing 5,046 metagenomic assembly genomes (MAGs) was constructed. Particularly, 2,530 of the genomes belonged to uncultured candidate species. These genomes largely expanded the genomic repository of the current microbes in the Caprinae gut. Several enzymes and biosynthetic gene clusters encoded by these Caprinae gut species were identified. In summary, our study extends the gut microbiota characteristics of Caprinae and provides a basis for future studies on animal production and animal health. IMPORTANCE We constructed a microbiota catalog containing 5,046 MAGs from Caprinae gut from six regions of China. Most of the MAGs do not overlap known databases and appear to be potentially new species. We also characterized the functional spectrum of these MAGs and analyzed the differences between different regions. Our study enriches the understanding of taxonomic, functional, and metabolic diversity of Caprinae gut microbiota. We are confident that the manuscript will be of utmost interest to a wide range of readers and be widely applied in future research.
Collapse
Affiliation(s)
- Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qing-Bo Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiu-Long Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, Hubei Province, China
| | - Ruo-Chun Guo
- Puensum Genetech Institute, Wuhan, Hubei Province, China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Si-Yuan Qin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, Liaoning Province, China
| | - Qing-He Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chun-Qiu Li
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Sheng-Hui Li
- Puensum Genetech Institute, Wuhan, Hubei Province, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Dong-Bo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science, Heilongjiang Bayi Agriculture University, Daqing, Heilongjiang Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
35
|
Betancur-Murillo CL, Aguilar-Marín SB, Jovel J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022; 11:microorganisms11010001. [PMID: 36677293 PMCID: PMC9866204 DOI: 10.3390/microorganisms11010001] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. Prevotella is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in P. ruminicola strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus Prevotella have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of Prevotella in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice Prevotella researchers and as an update to others more conversant with the topic.
Collapse
Affiliation(s)
- Claudia Lorena Betancur-Murillo
- Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, UNAD, Bogotá 111511, Colombia
| | | | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Correspondence:
| |
Collapse
|
36
|
Jeilu O, Gessesse A, Simachew A, Johansson E, Alexandersson E. Prokaryotic and eukaryotic microbial diversity from three soda lakes in the East African Rift Valley determined by amplicon sequencing. Front Microbiol 2022; 13:999876. [PMID: 36569062 PMCID: PMC9772273 DOI: 10.3389/fmicb.2022.999876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Soda lakes are unique poly-extreme environments with high alkalinity and salinity that support diverse microbial communities despite their extreme nature. In this study, prokaryotic and eukaryotic microbial diversity in samples of the three soda lakes, Lake Abijata, Lake Chitu and Lake Shala in the East African Rift Valley, were determined using amplicon sequencing. Culture-independent analysis showed higher diversity of prokaryotic and eukaryotic microbial communities in all three soda lakes than previously reported. A total of 3,603 prokaryotic and 898 eukaryotic operational taxonomic units (OTUs) were found through culture-independent amplicon sequencing, whereas only 134 bacterial OTUs, which correspond to 3%, were obtained by enrichment cultures. This shows that only a fraction of the microorganisms from these habitats can be cultured under laboratory conditions. Of the three soda lakes, samples from Lake Chitu showed the highest prokaryotic diversity, while samples from Lake Shala showed the lowest diversity. Pseudomonadota (Halomonas), Bacillota (Bacillus, Clostridia), Bacteroidota (Bacteroides), Euryarchaeota (Thermoplasmata, Thermococci, Methanomicrobia, Halobacter), and Nanoarchaeota (Woesearchaeia) were the most common prokaryotic microbes in the three soda lakes. A high diversity of eukaryotic organisms were identified, primarily represented by Ascomycota and Basidiomycota. Compared to the other two lakes, a higher number of eukaryotic OTUs were found in Lake Abijata. The present study showed that these unique habitats harbour diverse microbial genetic resources with possible use in biotechnological applications, which should be further investigated by functional metagenomics.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
37
|
Huuki H, Tapio M, Mäntysaari P, Negussie E, Ahvenjärvi S, Vilkki J, Vanhatalo A, Tapio I. Long-term effects of early-life rumen microbiota modulation on dairy cow production performance and methane emissions. Front Microbiol 2022; 13:983823. [PMID: 36425044 PMCID: PMC9679419 DOI: 10.3389/fmicb.2022.983823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/11/2022] [Indexed: 09/29/2023] Open
Abstract
Rumen microbiota modulation during the pre-weaning period has been suggested as means to affect animal performance later in life. In this follow-up study, we examined the post-weaning rumen microbiota development differences in monozygotic twin-heifers that were inoculated (T-group) or not inoculated (C-group) (n = 4 each) with fresh adult rumen liquid during their pre-weaning period. We also assessed the treatment effect on production parameters and methane emissions of cows during their 1st lactation period. The rumen microbiota was determined by the 16S rRNA gene, 18S rRNA gene, and ITS1 amplicon sequencing. Animal weight gain and rumen fermentation parameters were monitored from 2 to 12 months of age. The weight gain was not affected by treatment, but butyrate proportion was higher in T-group in month 3 (p = 0.04). Apart from archaea (p = 0.084), the richness of bacteria (p < 0.0001) and ciliate protozoa increased until month 7 (p = 0.004) and anaerobic fungi until month 11 (p = 0.005). The microbiota structure, measured as Bray-Curtis distances, continued to develop until months 3, 6, 7, and 10, in archaea, ciliate protozoa, bacteria, and anaerobic fungi, respectively (for all: p = 0.001). Treatment or age × treatment interaction had a significant (p < 0.05) effect on 18 bacterial, 2 archaeal, and 6 ciliate protozoan taxonomic groups, with differences occurring mostly before month 4 in bacteria, and month 3 in archaea and ciliate protozoa. Treatment stimulated earlier maturation of prokaryote community in T-group before month 4 and earlier maturation of ciliate protozoa at month 2 (Random Forest: 0.75 month for bacteria and 1.5 month for protozoa). No treatment effect on the maturity of anaerobic fungi was observed. The milk production and quality, feed efficiency, and methane emissions were monitored during cow's 1st lactation. The T-group had lower variation in energy-corrected milk yield (p < 0.001), tended to differ in pattern of residual energy intake over time (p = 0.069), and had numerically lower somatic cell count throughout their 1st lactation period (p = 0.081), but no differences between the groups in methane emissions (g/d, g/kg DMI, or g/kg milk) were observed. Our results demonstrated that the orally administered microbial inoculant induced transient changes in early rumen microbiome maturation. In addition, the treatment may influence the later production performance, although the mechanisms that mediate these effects need to be further explored.
Collapse
Affiliation(s)
- Hanna Huuki
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Miika Tapio
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Päivi Mäntysaari
- Production Systems, Animal Nutrition, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Enyew Negussie
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Seppo Ahvenjärvi
- Production Systems, Animal Nutrition, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Johanna Vilkki
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Aila Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Ilma Tapio
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
38
|
Sari NF, Ray P, Rymer C, Kliem KE, Stergiadis S. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition. Animals (Basel) 2022; 12:2998. [PMID: 36359121 PMCID: PMC9654579 DOI: 10.3390/ani12212998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Methane (CH4) emission from enteric fermentation of ruminant livestock is a source of greenhouse gases (GHG) and has become a significant concern for global warming. Enteric methane emission is also associated with poor feed efficiency. Therefore, research has focused on identifying dietary mitigation strategies to decrease CH4 emissions from ruminants. In recent years, plant-derived bioactive compounds have been investigated for their potential to reduce CH4 emissions from ruminant livestock. The organosulphur compounds of garlic have been observed to decrease CH4 emission and increase propionate concentration in anaerobic fermentations (in vitro) and in the rumen (in vivo). However, the mode of action of CH4 reduction is not completely clear, and the response in vivo is inconsistent. It might be affected by variations in the concentration and effect of individual substances in garlic. The composition of the diet that is being fed to the animal may also contribute to these differences. This review provides a summary of the effect of garlic and its bioactive compounds on CH4 emissions by ruminants. Additionally, this review aims to provide insight into garlic and its bioactive compounds in terms of enteric CH4 mitigation efficacy, consistency in afficacy, possible mode of action, and safety deriving data from both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Nurul Fitri Sari
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong 16911, West Java, Indonesia
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- The Nature Conservancy, Arlington, VA 22203, USA
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Kirsty E. Kliem
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| |
Collapse
|
39
|
Bačėninaitė D, Džermeikaitė K, Antanaitis R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals (Basel) 2022; 12:2687. [PMID: 36230428 PMCID: PMC9559257 DOI: 10.3390/ani12192687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Agriculture produces greenhouse gases. Methane is a result of manure degradation and microbial fermentation in the rumen. Reduced CH4 emissions will slow climate change and reduce greenhouse gas concentrations. This review compiled studies to evaluate the best ways to decrease methane emissions. Longer rumination times reduce methane emissions and milk methane. Other studies have not found this. Increasing propionate and reducing acetate and butyrate in the rumen can reduce hydrogen equivalents that would otherwise be transferred to methanogenesis. Diet can reduce methane emissions. Grain lowers rumen pH, increases propionate production, and decreases CH4 yield. Methane generation per unit of energy-corrected milk yield reduces with a higher-energy diet. Bioactive bromoform discovered in the red seaweed Asparagopsis taxiformis reduces livestock intestinal methane output by inhibiting its production. Essential oils, tannins, saponins, and flavonoids are anti-methanogenic. While it is true that plant extracts can assist in reducing methane emissions, it is crucial to remember to source and produce plants in a sustainable manner. Minimal lipid supplementation can reduce methane output by 20%, increasing energy density and animal productivity. Selecting low- CH4 cows may lower GHG emissions. These findings can lead to additional research to completely understand the impacts of methanogenesis suppression on rumen fermentation and post-absorptive metabolism, which could improve animal productivity and efficiency.
Collapse
Affiliation(s)
- Dovilė Bačėninaitė
- Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | | | | |
Collapse
|
40
|
Mach N, Midoux C, Leclercq S, Pennarun S, Le Moyec L, Rué O, Robert C, Sallé G, Barrey E. Mining the equine gut metagenome: poorly-characterized taxa associated with cardiovascular fitness in endurance athletes. Commun Biol 2022; 5:1032. [PMID: 36192523 PMCID: PMC9529974 DOI: 10.1038/s42003-022-03977-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Emerging evidence indicates that the gut microbiome contributes to endurance exercise performance. Still, the extent of its functional and metabolic potential remains unknown. Using elite endurance horses as a model system for exercise responsiveness, we built an integrated horse gut gene catalog comprising ~25 million unique genes and 372 metagenome-assembled genomes. This catalog represents 4179 genera spanning 95 phyla and functional capacities primed to exploit energy from dietary, microbial, and host resources. The holo-omics approach shows that gut microbiomes enriched in Lachnospiraceae taxa are negatively associated with cardiovascular capacity. Conversely, more complex and functionally diverse microbiomes are associated with higher glucose concentrations and reduced accumulation of long-chain acylcarnitines and non-esterified fatty acids in plasma, suggesting increased ß-oxidation capacity in the mitochondria. In line with this hypothesis, more fit athletes show upregulation of mitochondrial-related genes involved in energy metabolism, biogenesis, and Ca2+ cytosolic transport, all of which are necessary to improve aerobic work power, spare glycogen usage, and enhance cardiovascular capacity. The results identify an associative link between endurance performance and gut microbiome composition and gene function, laying the basis for nutritional interventions that could benefit horse athletes. An integrated gene catalog of the gut microbiome in elite endurance horses is build. The holo-omics analyses identify an associative link between endurance performance and gut microbiome composition and gene function.
Collapse
Affiliation(s)
- Núria Mach
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France. .,Université de Toulouse, INRAE, ENVT, IHAP, Toulouse, France.
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, PROSE, Antony, France
| | | | | | - Laurence Le Moyec
- Université d'Évry Val d'Essonne, Université Paris-Saclay, Évry, France.,Muséum National d'Histoire Naturelle, CNRS, MCAM, Paris, France
| | - Olivier Rué
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Céline Robert
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Guillaume Sallé
- Université François Rabelais de Tours, INRAE, ISP, Nouzilly, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
41
|
Pitta DW, Indugu N, Melgar A, Hristov A, Challa K, Vecchiarelli B, Hennessy M, Narayan K, Duval S, Kindermann M, Walker N. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows. MICROBIOME 2022; 10:146. [PMID: 36100950 PMCID: PMC9469553 DOI: 10.1186/s40168-022-01341-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Enteric methane emissions from dairy cows are an environmental problem as well as a gross feed energy loss to the animal. Methane is generated in the rumen by methanogenic archaea from hydrogen (H2) + carbon dioxide and from H2 + methanol or methylamines. The methanogenic substrates are provided by non-methanogens during feed fermentation. Methane mitigation approaches have yielded variable results, partially due to an incomplete understanding of the contribution of hydrogenotrophic and methylotrophic archaea to methanogenesis. Research indicates that 3-nitrooxypropanol (3-NOP) reduces enteric methane formation in dairy cows by inhibiting methyl-coenzyme M reductase (MCR), the enzyme responsible for methane formation. The purpose of this study was to utilize metagenomic and metatranscriptomic approaches to investigate the effect of 3-NOP on the rumen microbiome and to determine the fate of H2 that accumulates less than expected under inhibited methanogenesis. RESULTS The inhibitor 3-NOP was more inhibitory on Methanobrevibacter species than methanol-utilizing Methanosphaera and tended to reduce the gene expression of MCR. Under inhibited methanogenesis by 3-NOP, fluctuations in H2 concentrations were accompanied by changes in the expression of [FeFe] hydrogenases in H2-producing bacteria to regulate the amount of H2 production. No previously reported alternative H2 sinks increased under inhibited methanogenesis except for a significant increase in gene expression of enzymes involved in the butyrate pathway. CONCLUSION By taking a metatranscriptomic approach, this study provides novel insights on the contribution of methylotrophic methanogens to total methanogenesis and regulation of H2 metabolism under normal and inhibited methanogenesis by 3-NOP in the rumen. Video Abstract.
Collapse
Affiliation(s)
- Dipti W. Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Audino Melgar
- Department of Animal Science, The Pennsylvania State University, State College, PA 16801 USA
| | - Alexander Hristov
- Department of Animal Science, The Pennsylvania State University, State College, PA 16801 USA
| | - Krishna Challa
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Meagan Hennessy
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Kapil Narayan
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348 USA
| | - Stephane Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| | - Maik Kindermann
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| | - Nicola Walker
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, CH-4303 Kaiseraugst, Switzerland
| |
Collapse
|
42
|
Bica R, Palarea-Albaladejo J, Lima J, Uhrin D, Miller GA, Bowen JM, Pacheco D, Macrae A, Dewhurst RJ. Methane emissions and rumen metabolite concentrations in cattle fed two different silages. Sci Rep 2022; 12:5441. [PMID: 35361825 PMCID: PMC8971404 DOI: 10.1038/s41598-022-09108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, 18 animals were fed two forage-based diets: red clover (RC) and grass silage (GS), in a crossover-design experiment in which methane (CH4) emissions were recorded in respiration chambers. Rumen samples obtained through naso-gastric sampling tubes were analysed by NMR. Methane yield (g/kg DM) was significantly lower from animals fed RC (17.8 ± 3.17) compared to GS (21.2 ± 4.61) p = 0.008. In total 42 metabolites were identified, 6 showing significant differences between diets (acetate, propionate, butyrate, valerate, 3-phenylopropionate, and 2-hydroxyvalerate). Partial least squares discriminant analysis (PLS-DA) was used to assess which metabolites were more important to distinguish between diets and partial least squares (PLS) regressions were used to assess which metabolites were more strongly associated with the variation in CH4 emissions. Acetate, butyrate and propionate along with dimethylamine were important for the distinction between diets according to the PLS-DA results. PLS regression revealed that diet and dry matter intake are key factors to explain CH4 variation when included in the model. Additionally, PLS was conducted within diet, revealing that the association between metabolites and CH4 emissions can be conditioned by diet. These results provide new insights into the methylotrophic methanogenic pathway, confirming that metabolite profiles change according to diet composition, with consequences for CH4 emissions.
Collapse
Affiliation(s)
- R Bica
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK.
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
- Institute National de La Recherche Agronomique (INRAE), 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France.
| | - J Palarea-Albaladejo
- Biomathematics and Statistics Scotland, JCMB, Peter Guthrie Tait Road, The King's Buildings, Edinburgh, EH9 3FD, UK
- Department of Computer Science, Applied Mathematics and Statistics, University of Girona, 17003, Girona, Spain
| | - J Lima
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - D Uhrin
- The University of Edinburgh, EaStCHEM School of Chemistry, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - G A Miller
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| | - J M Bowen
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| | - D Pacheco
- AgResearch Grasslands Research Centre, Tennent Drive, 11 Dairy Farm Road, Palmerston North, 4442, New Zealand
| | - A Macrae
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - R J Dewhurst
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| |
Collapse
|
43
|
Tseten T, Sanjorjo RA, Kwon M, Kim SW. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J Microbiol Biotechnol 2022; 32:269-277. [PMID: 35283433 PMCID: PMC9628856 DOI: 10.4014/jmb.2202.02019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.
Collapse
Affiliation(s)
- Tenzin Tseten
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Rey Anthony Sanjorjo
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonhyuk Kwon
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,
M. Kwon Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding authors S.W. Kim Phone: +82-55-772-1362 Fax: +82-55-759-9363 E-mail:
| |
Collapse
|
44
|
Changes in Soil Chemical Properties Due to Long-Term Compost Fertilization Regulate Methane Turnover Related Gene Abundances in Rice Paddy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maintaining rice yield, soil function, and fertility are essential components of long-term compost fertilization. However, paddy fields are major sources of anthropogenic methane emissions. The aim of the study is to evaluate the changes in soil chemical properties and their concurrent impact on the abundance of methanogenesis (mcrA) and methane oxidation (pmoA) related genes among compost (Com), NPK+Compost (NPKCom), and unfertilized (NF) fallow paddy fields under long-term compost fertilization. Results showed that compost and NPK+Compost fertilization altered the soil chemical properties of paddy fields with a significant increase in the functional gene abundance potentially associated with Methanobacteriaceae for mcrA (1.23 × 106 to 3.84 × 106 copy number g−1 dry soil) and methane oxidizing bacteria such as Methylomonas and Methylobacter for pmoA (1.65 × 106 to 4.3 × 106 copy number g−1 dry soil). Ordination plots visualized these changes, where treatments clustered distinctly indicating that Com and NPKCom treatments were characterized by paddy soils with elevated OM, TN, K and P content and higher abundances of methanogenesis and methane oxidation related genes. The study showed that long-term compost fertilization resulted in paddy fields with high nutrient content and high gene abundance, attributed to methanogens and methane oxidizing bacteria that responded well with compost fertilization. These results indicated the potential of these fallow paddy fields for methane emission and methane oxidation and that they are ‘primed’, potentially influencing subsequent paddy field responses to long-term compost application.
Collapse
|
45
|
Schorn S, Ahmerkamp S, Bullock E, Weber M, Lott C, Liebeke M, Lavik G, Kuypers MMM, Graf JS, Milucka J. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proc Natl Acad Sci U S A 2022; 119:e2106628119. [PMID: 35165204 PMCID: PMC8892325 DOI: 10.1073/pnas.2106628119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.
Collapse
Affiliation(s)
- Sina Schorn
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Soeren Ahmerkamp
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Emma Bullock
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | | | | | - Manuel Liebeke
- Symbiosis Department, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Gaute Lavik
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jon S Graf
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
46
|
Xue MY, Xie YY, Zhong Y, Ma XJ, Sun HZ, Liu JX. Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle. MICROBIOME 2022; 10:32. [PMID: 35172905 PMCID: PMC8849036 DOI: 10.1186/s40168-022-01228-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/07/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND As the global population continues to grow, competition for resources between humans and livestock has been intensifying. Increasing milk protein production and improving feed efficiency are becoming increasingly important to meet the demand for high-quality dairy protein. In a previous study, we found that milk protein yield in dairy cows was associated with the rumen microbiome. The objective of this study was to elucidate the potential microbial features that underpins feed efficiency in dairy cows using metagenomics, metatranscriptomics, and metabolomics. RESULTS Comparison of metagenomic and metatranscriptomic data revealed that the latter was a better approach to uncover the associations between rumen microbial functions and host performance. Co-occurrence network analysis of the rumen microbiome revealed differential microbial interaction patterns between the animals with different feed efficiency, with high-efficiency animals having more and stronger associations than low-efficiency animals. In the rumen of high-efficiency animals, Selenomonas and members of the Succinivibrionaceae family positively interacted with each other, functioning as keystone members due to their essential ecological functions and active carbohydrate metabolic functions. At the metabolic level, analysis using random forest machine learning suggested that six ruminal metabolites (all derived from carbohydrates) could be used as metabolic markers that can potentially differentiate efficient and inefficient microbiomes, with an accuracy of prediction of 95.06%. CONCLUSIONS The results of the current study provided new insights into the new ruminal microbial features associated with feed efficiency in dairy cows, which may improve the ability to select animals for better performance in the dairy industry. The fundamental knowledge will also inform future interventions to improve feed efficiency in dairy cows. Video Abstract.
Collapse
Affiliation(s)
- Ming-Yuan Xue
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yi Xie
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Zhong
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Jiao Ma
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
López-García A, Saborío-Montero A, Gutiérrez-Rivas M, Atxaerandio R, Goiri I, García-Rodríguez A, Jiménez-Montero JA, González C, Tamames J, Puente-Sánchez F, Serrano M, Carrasco R, Óvilo C, González-Recio O. Fungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattle. Gigascience 2022; 11:giab088. [PMID: 35077540 PMCID: PMC8848325 DOI: 10.1093/gigascience/giab088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitigating the effects of global warming has become the main challenge for humanity in recent decades. Livestock farming contributes to greenhouse gas emissions, with an important output of methane from enteric fermentation processes, mostly in ruminants. Because ruminal microbiota is directly involved in digestive fermentation processes and methane biosynthesis, understanding the ecological relationships between rumen microorganisms and their active metabolic pathways is essential for reducing emissions. This study analysed whole rumen metagenome using long reads and considering its compositional nature in order to disentangle the role of rumen microbes in methane emissions. RESULTS The β-diversity analyses suggested a subtle association between methane production and overall microbiota composition (0.01 < R2 < 0.02). Differential abundance analysis identified 36 genera and 279 KEGGs as significantly associated with methane production (Padj < 0.05). Those genera associated with high methane production were Eukaryota from Alveolata and Fungi clades, while Bacteria were associated with low methane emissions. The genus-level association network showed 2 clusters grouping Eukaryota and Bacteria, respectively. Regarding microbial gene functions, 41 KEGGs were found to be differentially abundant between low- and high-emission animals and were mainly involved in metabolic pathways. No KEGGs included in the methane metabolism pathway (ko00680) were detected as associated with high methane emissions. The KEGG network showed 3 clusters grouping KEGGs associated with high emissions, low emissions, and not differentially abundant in either. A deeper analysis of the differentially abundant KEGGs revealed that genes related with anaerobic respiration through nitrate degradation were more abundant in low-emission animals. CONCLUSIONS Methane emissions are largely associated with the relative abundance of ciliates and fungi. The role of nitrate electron acceptors can be particularly important because this respiration mechanism directly competes with methanogenesis. Whole metagenome sequencing is necessary to jointly consider the relative abundance of Bacteria, Archaea, and Eukaryota in the statistical analyses. Nutritional and genetic strategies to reduce CH4 emissions should focus on reducing the relative abundance of Alveolata and Fungi in the rumen. This experiment has generated the largest ONT ruminal metagenomic dataset currently available.
Collapse
Affiliation(s)
- Adrián López-García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Alejandro Saborío-Montero
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
- Escuela de Zootecnia y Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, 11501 San José, Costa Rica
| | - Mónica Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Raquel Atxaerandio
- NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Idoia Goiri
- NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Aser García-Rodríguez
- NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Jose A Jiménez-Montero
- Confederación de Asociaciones de Frisona Española (CONAFE), Ctra. de Andalucía km 23600 Valdemoro, 28340 Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Javier Tamames
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain
| | - Fernando Puente-Sánchez
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain
| | - Magdalena Serrano
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Rafael Carrasco
- Departamento de Periodismo y Nuevos Medios, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
48
|
Dopheide A, Davis C, Nuñez J, Rogers G, Whitehead D, Grelet GA. Depth-structuring of multi-kingdom soil communities in agricultural pastures. FEMS Microbiol Ecol 2021; 97:6447534. [PMID: 34864997 DOI: 10.1093/femsec/fiab156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
The biodiversity and structure of deep agricultural soil communities are poorly understood, especially for eukaryotes. Using DNA metabarcoding and co-occurrence networks, we tested whether prokaryote, fungal, protist, and nematode biodiversity declines with increasing depth (0-0.1, 0.3-0.5, and 1.1-1.7m) in pastoral soil; whether deep soil organisms are subsets of those at the surface; and whether multi-kingdom networks become more interconnected with increasing depth. Depth-related richness declines were observed for almost all detected fungal classes, protist phyla, and nematode orders, but only 13 of 25 prokaryote phyla, of which nine had increasing richness with depth. Deep soil communities were not simply subsets of surface communities, with 3.8%-12.2% of eukaryotes and 13.2% of prokaryotes detected only in the deepest samples. Eukaryotes mainly occurred in the upper soil layers whereas prokaryotes were more evenly distributed across depths. Plant-feeding nematodes were most abundant in top soil, whereas bacteria feeders were more abundant in deep soil. Co-occurrence network structure differences suggested that deep soil communities are concentrated around scarce niches of resource availability, in contrast to more spatially homogenous and abundant resources at the surface. Together, these results demonstrate effects of depth on the composition, distribution, and structure of prokaryote and eukaryote soil communities.
Collapse
Affiliation(s)
- Andrew Dopheide
- Manaaki Whenua-Landcare Research, 231 Morrin Road, St Johns, Auckland 1072, New Zealand
| | - Carina Davis
- Manaaki Whenua-Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand
| | - Jonathan Nuñez
- Manaaki Whenua-Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand.,School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Upper Riccarton, Christchurch 8041, New Zealand
| | - Graeme Rogers
- Manaaki Whenua-Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand
| | - David Whitehead
- Manaaki Whenua-Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand
| | - Gwen-Aëlle Grelet
- Manaaki Whenua-Landcare Research, 54 Gerald Street, Lincoln 7608, New Zealand
| |
Collapse
|
49
|
Cristobal-Carballo O, McCoard SA, Cookson AL, Laven RA, Ganesh S, Lewis SJ, Muetzel S. Effect of Divergent Feeding Regimes During Early Life on the Rumen Microbiota in Calves. Front Microbiol 2021; 12:711040. [PMID: 34745024 PMCID: PMC8565576 DOI: 10.3389/fmicb.2021.711040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.
Collapse
Affiliation(s)
- Omar Cristobal-Carballo
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Sue A McCoard
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Richard A Laven
- School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Siva Ganesh
- Biostatistics Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Sarah J Lewis
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Stefan Muetzel
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
50
|
Yang S, Li L, Peng X, Zhang R, Song L. Methanogen Community Dynamics and Methanogenic Function Response to Solid Waste Decomposition. Front Microbiol 2021; 12:743827. [PMID: 34707594 PMCID: PMC8542853 DOI: 10.3389/fmicb.2021.743827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Methane production during solid waste decomposition is a typical methanogen-mediated and enzyme-catalyzed anaerobic digestion (AD). Methanogen community dynamics and metabolic diversity during the decomposition are not known. In this study, we investigated methanogen community dynamics and methanogenic pathways during solid waste decomposition in a bioreactor using high-throughput Illumina MiSeq sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt), respectively. We also related the methanogen community differences with solid waste and leachate physiochemical parameters. Results showed that the percentage of biodegradable matter (BDM) in solid waste decreased from 55 ± 5% in aerobic phase (AP) to 30 ± 2% in anaerobic acid phase (ACP), and to 13 ± 11% in methanogenic phase (MP), resulting in 76% BDM consumption by microbes. Methanogen community structure varied in AP, ACP, and MP, showing that Methanomicrobiales and Methanosarcinales were dominant in AP and MP and archaea E2 was abundant in ACP. Each phase had abundant core methanogen orders, genera, and species with significant difference (p < 0.05). Redundancy analysis showed that biochemical oxygen demand (BOD5) and nitrate significantly influenced methanogen community composition, suggesting that methanogen community structure is nutrient-dependent. Two methanogenic pathways including acetoclastic and hydrogenotrophic pathways with associated functional genes differed at three phases. ACP had the lowest abundance of these genes, indicating that methanogenesis was inhibited in acidogenesis. Abundant hydrogenotrophic and acetoclastic methanogenesis functional genes in MP and AP are in response to the abundance of Methanomicrobiales and Methanosarcinales. The findings provide previously unidentified insight into the mechanism of methanogen community structure and function during solid waste bioconversion for methane.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, China
| | - Rui Zhang
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Liyan Song
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,School of Resources and Environmental Engineering, Anhui University, Hefei, China
| |
Collapse
|