1
|
Chen ICK, Khatri S, Herron MD, Rosenzweig F. Genetic Predisposition Toward Multicellularity in Chlamydomonas reinhardtii. Genome Biol Evol 2025; 17:evaf090. [PMID: 40380887 PMCID: PMC12124119 DOI: 10.1093/gbe/evaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/19/2025] Open
Abstract
The evolution from unicellular to multicellular organisms facilitates further phenotypic innovations, notably cellular differentiation. Multiple research groups have shown that, in the laboratory, simple, obligate multicellularity can evolve from a unicellular ancestor under appropriate selection. However, little is known about the extent to which deterministic factors such as ancestral genotype and environmental context influence the likelihood of this evolutionary transition. To test whether certain genotypes are predisposed to evolve multicellularity in different environments, we carried out a set of 24 evolution experiments, each founded by a population consisting of 10 different strains of the unicellular green alga Chlamydomonas reinhardtii, all in equal proportions. Twelve of the initially identical replicate populations were subjected to predation by the protist Paramecium tetraurelia, while the other 12 were subjected to settling selection by slow centrifugation. Population subsamples were transferred to fresh media on a weekly basis for a total of 40 transfers (∼600 generations). Heritable multicellular structures arose in 4 of 12 predation-selected populations (6 multicellular isolates in total), but never in the settling selection populations. By comparing whole genome sequences of the founder and evolved strains, we discovered that every multicellular isolate arose from one of two founders. Cell cluster size varied not only among evolved strains derived from different ancestors but also among strains derived from the same ancestor. These findings show that both deterministic and stochastic factors influence whether initially unicellular populations can evolve simple multicellular structures.
Collapse
Affiliation(s)
- I Chen Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shania Khatri
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Doulcier G, Remigi P, Rexin D, Rainey PB. Evolutionary dynamics of nascent multicellular lineages. Proc Biol Sci 2025; 292:20241195. [PMID: 40300626 PMCID: PMC12040459 DOI: 10.1098/rspb.2024.1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 01/17/2025] [Indexed: 05/01/2025] Open
Abstract
The evolution of multicellular organisms involves the emergence of cellular collectives that eventually become units of selection in their own right. The process can be facilitated by ecological conditions that impose heritable variance in fitness on nascent collectives, with long-term persistence depending on the capacity of competing lineages to transition reliably between soma- and germ-like stages of proto-life cycles. Prior work with experimental bacterial populations showed rapid increases in collective-level fitness, with the capacity to switch between life cycle phases being a particular focus of selection. Here, we report experiments in which the most successful lineage from the earlier study was further propagated for 10 life cycle generations under regimes that required different investments in the soma-like phase. To explore the adaptive significance of switching, a control was included in which reliable transitioning between life cycle phases was abolished. The switch proved central to the maintenance of fitness. Moreover, in a non-switch treatment, where solutions to producing a robust and enduring soma-phase were required, the evolution of mutL-dependent switching emerged de novo. A newly developed computational pipeline (colgen) was used to display the moment-by-moment evolutionary dynamics of lineages, providing rare visual evidence of the roles of chance, history and selection. Colgen, underpinned by a Bayesian model, was further used to propagate hundreds of mutations back through temporal genealogical series, predict lineages and time points corresponding to changes of likely adaptive significance, and in one instance, via a combination of targeted sequencing, genetics and analyses of fitness consequences, the adaptive significance of a single mutation was demonstrated. Overall, our results shed light on the mechanisms by which collectives adapt to new selective challenges and demonstrate the value of genealogy-centred approaches for investigating the dynamics of lineage-level selection.
Collapse
Affiliation(s)
- Guilhem Doulcier
- Department of Philosophy, Macquarie University, Sydney, New SouthWales2109, Australia
- Department ofTheoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philippe Remigi
- Laboratory of Biophysics and Evolution, ESPCI, Université Paris Sciences et Lettres, Paris, France
- NewZealand Institute for Advanced Study, Auckland, New Zealand
| | - Daniel Rexin
- Laboratory of Biophysics and Evolution, ESPCI, Université Paris Sciences et Lettres, Paris, France
- Laboratoire des Interactions Plantes-Microbes Environnement (LIPME), INRAE, CNRS, Université deToulouse, Castanet-Tolosan, France
- Institute of Environmental Science and Research Ltd., ESR, Porirua, New Zealand
| | - Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Laboratory of Biophysics and Evolution, ESPCI, Université Paris Sciences et Lettres, Paris, France
- Laboratoire des Interactions Plantes-Microbes Environnement (LIPME), INRAE, CNRS, Université deToulouse, Castanet-Tolosan, France
| |
Collapse
|
3
|
Isaksson H, Lind P, Libby E. Adaptive evolutionary trajectories in complexity: Transitions between unicellularity and facultative differentiated multicellularity. Proc Natl Acad Sci U S A 2025; 122:e2411692122. [PMID: 39841150 PMCID: PMC11789074 DOI: 10.1073/pnas.2411692122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Multicellularity spans a wide gamut in terms of complexity, from simple clonal clusters of cells to large-scale organisms composed of differentiated cells and tissues. While recent experiments have demonstrated that simple forms of multicellularity can readily evolve in response to different selective pressures, it is unknown if continued exposure to those same selective pressures will result in the evolution of increased multicellular complexity. We use mathematical models to consider the adaptive trajectories of unicellular organisms exposed to periodic bouts of abiotic stress, such as drought or antibiotics. Populations can improve survival in response to the stress by evolving multicellularity or cell differentiation-or both; however, these responses have associated costs when the stress is absent. We define a parameter space of fitness-relevant traits and identify where multicellularity, differentiation, or their combination is fittest. We then study the effects of adaptation by allowing populations to fix mutations that improve their fitness. We find that while the same mutation can be beneficial to populations of different complexity, e.g., strict unicellularity or life cycles with stages of differentiated multicellularity, the magnitudes of their effects can differ and alter which is fittest. As a result, we observe adaptive trajectories that gain and lose complexity. We also show that the order of mutations, historical contingency, can cause some transitions to be permanent in the absence of neutral evolution. Ultimately, we find that continued exposure to a selective driver for multicellularity can either lead to increasing complexity or a return to unicellularity.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
- IceLab, Umeå University, Umeå90187, Sweden
| | - Peter Lind
- IceLab, Umeå University, Umeå90187, Sweden
- Department of Molecular Biology, Umeå University, Umeå90187, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå90187, Sweden
- IceLab, Umeå University, Umeå90187, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| |
Collapse
|
4
|
Prost-Boxoen L, Bafort Q, Van de Vloet A, Almeida-Silva F, Paing YT, Casteleyn G, D’hondt S, De Clerck O, de Peer YV. Asymmetric genome merging leads to gene expression novelty through nucleo-cytoplasmic disruptions and transcriptomic shock in Chlamydomonas triploids. THE NEW PHYTOLOGIST 2025; 245:869-884. [PMID: 39501615 PMCID: PMC7616817 DOI: 10.1111/nph.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well-understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression. We employed Chlamydomonas reinhardtii as a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line. Five independent clonal lineages derived from this triploid line were evolved for 425 asexual generations in a laboratory natural selection experiment. Utilizing fitness assays, flow cytometry, and RNA-Seq, we assessed the immediate consequences of genome merging and subsequent evolution. Our findings reveal substantial alterations in genome size, gene expression, protein homeostasis, and cytonuclear stoichiometry. Gene expression exhibited expression-level dominance and transgressivity (i.e. expression level higher or lower than either parent). Ongoing expression-level dominance and a pattern of 'functional dominance' from the haploid parent was observed. Despite major genomic and nucleo-cytoplasmic disruptions, enhanced fitness was detected in the triploid strain. By comparing gene expression across generations, our results indicate that proteostasis restoration is a critical component of rapid adaptation following genome merging in Chlamydomonas reinhardtii and possibly other systems.
Collapse
Affiliation(s)
- Lucas Prost-Boxoen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Antoine Van de Vloet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yunn Thet Paing
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Griet Casteleyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Department of Biology, Ghent University, Ghent, Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Cho DH, Yun JH, Choi DY, Heo J, Kim EK, Ha J, Yoo C, Choi HI, Lee YJ, Kim HS. Long-term acclimation to organic carbon enhances the production of loliolide from Scenedesmus deserticola. BIORESOURCE TECHNOLOGY 2024; 412:131408. [PMID: 39222861 DOI: 10.1016/j.biortech.2024.131408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Production of functional biocompounds from microalgae has garnered interest from different industrial sectors; however, their overall productivity must be substantially improved for commercialization. Herein, long-term acclimation of Scenedesmus deserticola was conducted using glucose as an organic carbon source to enhance its heterotrophic capabilities and the production potential of loliolide. A year-long acclimation on agar plates led to the selection of S. deserticola HS4, which exhibited at least 2-fold increase in loliolide production potential; S. deserticola HS4 was subjected to further screening of its cultivation conditions and fed-batch cultivation was subsequently performed in liter-scale reactors. While S. deserticola HS4 exhibited shifts in cellular morphology and biochemical composition, the results suggested a substantial increase in its loliolide productivity regardless of trophic modes. Collectively, these results highlight the potential of long-term acclimation as an effective strategy for improving microalgal crops to align with industrial production practices.
Collapse
Affiliation(s)
- Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Dong-Yoon Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Jina Heo
- Department of Economy and Future Strategy Research, CRI, Cheongju 28517, Republic of Korea.
| | - Eun Kyung Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Juran Ha
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Chan Yoo
- ASK LABS, KRIBB BVC Center 109, Daejeon 34141, Republic of Korea.
| | - Hong Il Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon 34113, Republic of Korea; ASK LABS, KRIBB BVC Center 109, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Pineau RM, Kahn PC, Lac DT, Belpaire TER, Denning MG, Wong W, Ratcliff WC, Bozdag GO. Experimental evolution of multicellularity via cuboidal cell packing in fission yeast. Evol Lett 2024; 8:695-704. [PMID: 39957727 PMCID: PMC11827335 DOI: 10.1093/evlett/qrae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 02/18/2025] Open
Abstract
The evolution of multicellularity represents a major transition in life's history, enabling the rise of complex organisms. Multicellular groups can evolve through multiple developmental modes, but a common step is the formation of permanent cell-cell attachments after division. The characteristics of the multicellular morphology that emerges have profound consequences for the subsequent evolution of a nascent multicellular lineage, but little prior work has investigated these dynamics directly. Here, we examine a widespread yet understudied emergent multicellular morphology: cuboidal packing. Extinct and extant multicellular organisms across the tree of life have evolved to form groups in which spherical cells divide but remain attached, forming approximately cubic subunits. To experimentally investigate the evolution of cuboidal cell packing, we used settling selection to favor the evolution of simple multicellularity in unicellular, spherical Schizosaccharomyces pombe yeast. Multicellular clusters with cuboidal organization rapidly evolved, displacing the unicellular ancestor. These clusters displayed key hallmarks of an evolutionary transition in individuality: groups possess an emergent life cycle driven by physical fracture, group size is heritable, and they respond to group-level selection via multicellular adaptation. In 2 out of 5 lineages, group formation was driven by mutations in the ace2 gene, preventing daughter cell separation after division. Remarkably, ace2 mutations also underlie the transition to multicellularity in Saccharomyces cerevisiae and Candida glabrata, lineages that last shared a common ancestor > 300 million years ago. Our results provide insight into the evolution of cuboidal cell packing, an understudied multicellular morphology, and highlight the deeply convergent potential for a transition to multicellular individuality within fungi.
Collapse
Affiliation(s)
- Rozenn M Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Penelope C Kahn
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tom E R Belpaire
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, Leuven, Belgium
| | - Mia G Denning
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Whitney Wong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
7
|
Doulcier G, Takacs P, Hammerschmidt K, Bourrat P. Stability of ecologically scaffolded traits during evolutionary transitions in individuality. Nat Commun 2024; 15:6566. [PMID: 39095362 PMCID: PMC11297203 DOI: 10.1038/s41467-024-50625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Evolutionary transitions in individuality are events in the history of life leading to the emergence of new levels of individuality. Recent studies have described an ecological scaffolding scenario of such transitions focused on the evolutionary consequences of an externally imposed renewing meta-population structure with limited dispersal. One difficulty for such a scenario has been explaining the stability of collective-level traits when scaffolding conditions no longer apply. Here, we show that the stability of scaffolded traits can rely on evolutionary hysteresis: even if the environment is reverted to an ancestral state, collectives do not return to ancestral phenotypes. We describe this phenomenon using a stochastic meta-population model and adaptive dynamics. Further, we show that ecological scaffolding may be limited to Goldilocks zones of the environment. We conjecture that Goldilocks zones-even if they might be rare-could act as initiators of evolutionary transitions and help to explain the near ubiquity of collective-level individuality.
Collapse
Affiliation(s)
- Guilhem Doulcier
- Philosophy Department, Macquarie University, New South Wales 2109, Australia.
- Theoretical Biology Department, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Peter Takacs
- Philosophy Department, Macquarie University, New South Wales 2109, Australia
- Department of Philosophy and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | | | - Pierrick Bourrat
- Philosophy Department, Macquarie University, New South Wales 2109, Australia.
- Department of Philosophy and Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia.
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia.
| |
Collapse
|
8
|
Pineau RM, Libby E, Demory D, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. Nat Ecol Evol 2024; 8:1010-1020. [PMID: 38486107 PMCID: PMC11090753 DOI: 10.1038/s41559-024-02367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth's ecosystems. Yet little is known about how early steps in the evolution of multicellularity affect eco-evolutionary dynamics. Through long-term experimental evolution, we observed niche partitioning and the adaptive divergence of two specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subjected to selection for rapid growth, followed by selection favouring larger group size. Small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations, specializing on divergent aspects of a trade-off between growth rate and survival. Through modelling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically impactful emergent properties of this evolutionary transition.
Collapse
Affiliation(s)
- Rozenn M Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric Libby
- Integrated Science Lab, Umeå university, Umeå, Sweden.
- Department of Mathematics and Mathematical Statistics, Umeå university, Umeå, Sweden.
| | - David Demory
- CNRS, Sorbonne Université, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Pablo Bravo
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
9
|
Oh JJ, Ammu S, Vriend VD, Kieffer R, Kleiner FH, Balasubramanian S, Karana E, Masania K, Aubin-Tam ME. Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305505. [PMID: 37851509 DOI: 10.1002/adma.202305505] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Indexed: 10/20/2023]
Abstract
Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C. reinhardtii) in three-dimensionally shaped hydrogels in dependence of geometry and size. The embedded C. reinhardtii cells photosynthesize and form confined cell clusters, which grow faster when located close to the ELM periphery due to favorable gas exchange and light conditions. Taking advantage of location-specific growth patterns, this work successfully designs and prints photosynthetic ELMs with increased CO2 capturing rate, featuring high surface to volume ratio. This strategy to control cell growth for higher productivity of ELMs resembles the already established adaptations found in multicellular plant leaves.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Satya Ammu
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Vivian Dorine Vriend
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Roland Kieffer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Friedrich Hans Kleiner
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Srikkanth Balasubramanian
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Elvin Karana
- Department of Sustainable Design Engineering, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, Delft, 2628 CE, The Netherlands
| | - Kunal Masania
- Shaping Matter Lab, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| |
Collapse
|
10
|
Ornelas MY, Cournoyer JE, Bram S, Mehta AP. Evolution and synthetic biology. Curr Opin Microbiol 2023; 76:102394. [PMID: 37801925 PMCID: PMC10842511 DOI: 10.1016/j.mib.2023.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
Evolutionary observations have often served as an inspiration for biological design. Decoding of the central dogma of life at a molecular level and understanding of the cellular biochemistry have been elegantly used to engineer various synthetic biology applications, including building genetic circuits in vitro and in cells, building synthetic translational systems, and metabolic engineering in cells to biosynthesize and even bioproduce complex high-value molecules. Here, we review three broad areas of synthetic biology that are inspired by evolutionary observations: (i) combinatorial approaches toward cell-based biomolecular evolution, (ii) engineering interdependencies to establish microbial consortia, and (iii) synthetic immunology. In each of the areas, we will highlight the evolutionary premise that was central toward designing these platforms. These are only a subset of the examples where evolution and natural phenomena directly or indirectly serve as a powerful source of inspiration in shaping synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Marya Y Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Jason E Cournoyer
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Stanley Bram
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States
| | - Angad P Mehta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Matthews Avenue, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana, Champaign, United States; Cancer Center at Illinois, University of Illinois at Urbana, Champaign, United States.
| |
Collapse
|
11
|
Kalambokidis M, Travisano M. Multispecies interactions shape the transition to multicellularity. Proc Biol Sci 2023; 290:20231055. [PMID: 37727086 PMCID: PMC10509594 DOI: 10.1098/rspb.2023.1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
The origin of multicellularity transformed the adaptive landscape on Earth, opening diverse avenues for further innovation. The transition to multicellular life is understood as the evolution of cooperative groups which form a new level of individuality. Despite the potential for community-level interactions, most studies have not addressed the competitive context of this transition, such as competition between species. Here, we explore how interspecific competition shapes the emergence of multicellularity in an experimental system with two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, where multicellularity evolves in response to selection for faster settling ability. We find that the multispecies context slows the rate of the transition to multicellularity, and the transition to multicellularity significantly impacts community composition. Multicellular K. lactis emerges first and sweeps through populations in monocultures faster than in cocultures with S. cerevisiae. Following the transition, the between-species competitive dynamics shift, likely in part to intraspecific cooperation in K. lactis. Hence, we document an eco-evolutionary feedback across the transition to multicellularity, underscoring how ecological context is critical for understanding the causes and consequences of innovation. By including two species, we demonstrate that cooperation and competition across several biological scales shapes the origin and persistence of multicellularity.
Collapse
Affiliation(s)
- Maria Kalambokidis
- Department of Ecology, Evolution, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Travisano
- Department of Ecology, Evolution, University of Minnesota, St. Paul, MN 55108, USA
- The BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
13
|
Zamani-Dahaj SA, Burnetti A, Day TC, Yunker PJ, Ratcliff WC, Herron MD. Spontaneous Emergence of Multicellular Heritability. Genes (Basel) 2023; 14:1635. [PMID: 37628687 PMCID: PMC10454505 DOI: 10.3390/genes14081635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The major transitions in evolution include events and processes that result in the emergence of new levels of biological individuality. For collectives to undergo Darwinian evolution, their traits must be heritable, but the emergence of higher-level heritability is poorly understood and has long been considered a stumbling block for nascent evolutionary transitions. Using analytical models, synthetic biology, and biologically-informed simulations, we explored the emergence of trait heritability during the evolution of multicellularity. Prior work on the evolution of multicellularity has asserted that substantial collective-level trait heritability either emerges only late in the transition or requires some evolutionary change subsequent to the formation of clonal multicellular groups. In a prior analytical model, we showed that collective-level heritability not only exists but is usually more heritable than the underlying cell-level trait upon which it is based, as soon as multicellular groups form. Here, we show that key assumptions and predictions of that model are borne out in a real engineered biological system, with important implications for the emergence of collective-level heritability.
Collapse
Affiliation(s)
- Seyed Alireza Zamani-Dahaj
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Anthony Burnetti
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Thomas C. Day
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Peter J. Yunker
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Matthew D. Herron
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| |
Collapse
|
14
|
Chavhan Y, Dey S, Lind PA. Bacteria evolve macroscopic multicellularity by the genetic assimilation of phenotypically plastic cell clustering. Nat Commun 2023; 14:3555. [PMID: 37322016 PMCID: PMC10272148 DOI: 10.1038/s41467-023-39320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
The evolutionary transition from unicellularity to multicellularity was a key innovation in the history of life. Experimental evolution is an important tool to study the formation of undifferentiated cellular clusters, the likely first step of this transition. Although multicellularity first evolved in bacteria, previous experimental evolution research has primarily used eukaryotes. Moreover, it focuses on mutationally driven (and not environmentally induced) phenotypes. Here we show that both Gram-negative and Gram-positive bacteria exhibit phenotypically plastic (i.e., environmentally induced) cell clustering. Under high salinity, they form elongated clusters of ~ 2 cm. However, under habitual salinity, the clusters disintegrate and grow planktonically. We used experimental evolution with Escherichia coli to show that such clustering can be assimilated genetically: the evolved bacteria inherently grow as macroscopic multicellular clusters, even without environmental induction. Highly parallel mutations in genes linked to cell wall assembly formed the genomic basis of assimilated multicellularity. While the wildtype also showed cell shape plasticity across high versus low salinity, it was either assimilated or reversed after evolution. Interestingly, a single mutation could genetically assimilate multicellularity by modulating plasticity at multiple levels of organization. Taken together, we show that phenotypic plasticity can prime bacteria for evolving undifferentiated macroscopic multicellularity.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Pune, India
| | - Peter A Lind
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
15
|
Barrere J, Nanda P, Murray AW. Alternating selection for dispersal and multicellularity favors regulated life cycles. Curr Biol 2023; 33:1809-1817.e3. [PMID: 37019107 PMCID: PMC10175205 DOI: 10.1016/j.cub.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
The evolution of complex multicellularity opened paths to increased morphological diversity and organizational novelty. This transition involved three processes: cells remained attached to one another to form groups, cells within these groups differentiated to perform different tasks, and the groups evolved new reproductive strategies.1,2,3,4,5 Recent experiments identified selective pressures and mutations that can drive the emergence of simple multicellularity and cell differentiation,6,7,8,9,10,11 but the evolution of life cycles, particularly how simple multicellular forms reproduce, has been understudied. The selective pressure and mechanisms that produced a regular alternation between single cells and multicellular collectives are still unclear.12 To probe the factors regulating simple multicellular life cycles, we examined a collection of wild isolates of the budding yeast S. cerevisiae.12,13 We found that all these strains can exist as multicellular clusters, a phenotype that is controlled by the mating-type locus and strongly influenced by the nutritional environment. Inspired by this variation, we engineered inducible dispersal in a multicellular laboratory strain and demonstrated that a regulated life cycle has an advantage over constitutively single-celled or constitutively multicellular life cycles when the environment alternates between favoring intercellular cooperation (a low sucrose concentration) and dispersal (a patchy environment generated by emulsion). Our results suggest that the separation of mother and daughter cells is under selection in wild isolates and is regulated by their genetic composition and the environments they encounter and that alternating patterns of resource availability may have played a role in the evolution of life cycles.
Collapse
Affiliation(s)
- Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Piyush Nanda
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Wang X, Zhang Y, Xie M, Wang Z, Qiao H. Temperature-Promoted Giant Unilamellar Vesicle (GUV) Aggregation: A Way of Multicellular Formation. Curr Issues Mol Biol 2023; 45:3757-3771. [PMID: 37232711 DOI: 10.3390/cimb45050242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
The evolution of unicellular to multicellular life is considered to be an important step in the origin of life, and it is crucial to study the influence of environmental factors on this process through cell models in the laboratory. In this paper, we used giant unilamellar vesicles (GUVs) as a cell model to investigate the relationship between environmental temperature changes and the evolution of unicellular to multicellular life. The zeta potential of GUVs and the conformation of the headgroup of phospholipid molecules at different temperatures were examined using phase analysis light scattering (PALS) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), respectively. In addition, the effect of increasing temperature on the aggregation of GUVs was further investigated in ionic solutions, and the possible mechanisms involved were explored. The results showed that increasing temperature reduced the repulsive forces between cells models and promoted their aggregation. This study could effectively contribute to our understanding of the evolution of primitive unicellular to multicellular life.
Collapse
Affiliation(s)
- Xinmao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yangruizi Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Maobin Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
17
|
Isaksson H, Brännström Å, Libby E. Minor variations in multicellular life cycles have major effects on adaptation. PLoS Comput Biol 2023; 19:e1010698. [PMID: 37083675 PMCID: PMC10156057 DOI: 10.1371/journal.pcbi.1010698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/03/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Multicellularity has evolved several independent times over the past hundreds of millions of years and given rise to a wide diversity of complex life. Recent studies have found that large differences in the fundamental structure of early multicellular life cycles can affect fitness and influence multicellular adaptation. Yet, there is an underlying assumption that at some scale or categorization multicellular life cycles are similar in terms of their adaptive potential. Here, we consider this possibility by exploring adaptation in a class of simple multicellular life cycles of filamentous organisms that only differ in one respect, how many daughter filaments are produced. We use mathematical models and evolutionary simulations to show that despite the similarities, qualitatively different mutations fix. In particular, we find that mutations with a tradeoff between cell growth and group survival, i.e. "selfish" or "altruistic" traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles that produce few daughters while in life cycles producing many daughters either type of mutation can spread depending on the environment. Our results show that subtle changes in multicellular life cycles can fundamentally alter adaptation.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami, Japan
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Grochau-Wright ZI, Nedelcu AM, Michod RE. The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model. Genes (Basel) 2023; 14:genes14040941. [PMID: 37107699 PMCID: PMC10137558 DOI: 10.3390/genes14040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA-the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.
Collapse
Affiliation(s)
| | - Aurora M Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Davison DR, Michod RE. Steps to individuality in biology and culture. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210407. [PMID: 36688387 PMCID: PMC9869451 DOI: 10.1098/rstb.2021.0407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 01/24/2023] Open
Abstract
Did human culture arise through an evolutionary transition in individuality (ETI)? To address this question, we examine the steps of biological ETIs to see how they could apply to the evolution of human culture. For concreteness, we illustrate the ETI stages using a well-studied example, the evolution of multicellularity in the volvocine algae. We then consider how those stages could apply to a cultural transition involving integrated groups of cultural traditions and the hominins that create and transmit traditions. We focus primarily on the early Pleistocene and examine hominin carnivory and the cultural change from Oldowan to Acheulean technology. We use Pan behaviour as an outgroup comparison. We summarize the important similarities and differences we find between ETI stages in the biological and cultural realms. As we are not cultural anthropologists, we may overlook or be mistaken in the processes we associate with each step. We hope that by clearly describing these steps to individuality and illustrating them with cultural principles and processes, other researchers may build upon our initial exercise. Our analysis supports the hypothesis that human culture has undergone an ETI beginning with a Pan-like ancestor, continuing during the Pleistocene, and culminating in modern human culture. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Dinah R. Davison
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, AZ 85721, USA
| | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Bafort Q, Prost L, Aydogdu E, Van de Vloet A, Casteleyn G, Van de Peer Y, De Clerck O. Studying Whole-Genome Duplication Using Experimental Evolution of Chlamydomonas. Methods Mol Biol 2023; 2545:351-372. [PMID: 36720822 DOI: 10.1007/978-1-0716-2561-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this chapter, we present the use of Chlamydomonas reinhardtii in experiments designed to study the evolutionary impacts of whole genome duplication. We shortly introduce the algal species and depict why it is an excellent model for experimental evolution. Subsequently, we discuss the most relevant steps and methods in the design of a ploidy-related Chlamydomonas experiment. These steps include strain selection, ploidy determination, different methods of making diplo- and polyploid Chlamydomonas cells, replication, culturing conditions, preservation, and the ways to quantify phenotypic and genotypic change.
Collapse
Affiliation(s)
- Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,Department of Biology, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Lucas Prost
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium. .,Department of Biology, Ghent University, Ghent, Belgium. .,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Eylem Aydogdu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Antoine Van de Vloet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Griet Casteleyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | |
Collapse
|
21
|
Leptos KC, Chioccioli M, Furlan S, Pesci AI, Goldstein RE. Phototaxis of Chlamydomonas arises from a tuned adaptive photoresponse shared with multicellular Volvocine green algae. Phys Rev E 2023; 107:014404. [PMID: 36797913 PMCID: PMC7616094 DOI: 10.1103/physreve.107.014404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
A fundamental issue in biology is the nature of evolutionary transitions from unicellular to multicellular organisms. Volvocine algae are models for this transition, as they span from the unicellular biflagellate Chlamydomonas to multicellular species of Volvox with up to 50,000 Chlamydomonas-like cells on the surface of a spherical extracellular matrix. The mechanism of phototaxis in these species is of particular interest since they lack a nervous system and intercellular connections; steering is a consequence of the response of individual cells to light. Studies of Volvox and Gonium, a 16-cell organism with a plate-like structure, have shown that the flagellar response to changing illumination of the cellular photosensor is adaptive, with a recovery time tuned to the rotation period of the colony around its primary axis. Here, combining high-resolution studies of the flagellar photoresponse of micropipette-held Chlamydomonas with 3D tracking of freely swimming cells, we show that such tuning also underlies its phototaxis. A mathematical model is developed based on the rotations around an axis perpendicular to the flagellar beat plane that occur through the adaptive response to oscillating light levels as the organism spins. Exploiting a separation of timescales between the flagellar photoresponse and phototurning, we develop an equation of motion that accurately describes the observed photoalignment. In showing that the adaptive timescales in Volvocine algae are tuned to the organisms' rotational periods across three orders of magnitude in cell number, our results suggest a unified picture of phototaxis in green algae in which the asymmetry in torques that produce phototurns arise from the individual flagella of Chlamydomonas, the flagellated edges of Gonium, and the flagellated hemispheres of Volvox.
Collapse
Affiliation(s)
- Kyriacos C. Leptos
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Cheng SLH, Wu HW, Xu H, Singh RM, Yao T, Jang IC, Chua NH. Nutrient status regulates MED19a phase separation for ORESARA1-dependent senescence. THE NEW PHYTOLOGIST 2022; 236:1779-1795. [PMID: 36093737 DOI: 10.1111/nph.18478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The mediator complex is highly conserved in eukgaryotes and is integral for transcriptional responses. Mediator subunits associate with signal-responsive transcription factors (TF) to activate expression of specific signal-responsive genes. As the key TF of Arabidopsis thaliana senescence, ORESARA1 (ORE1) is required for nitrogen deficiency (-N) induced senescence; however, the mediator subunit that associates with ORE1 remains unknown. Here, we show that Arabidopsis MED19a associates with ORE1 to activate -N senescence-responsive genes. Disordered MED19a forms inducible nuclear condensates under -N that is regulated by decreasing MED19a lysine acetylation. MED19a carboxyl terminus (cMED19a) harbors a mixed-charged intrinsically disordered region (MC-IDR) required for ORE1 interaction and liquid-liquid phase separation (LLPS). Plant and human cMED19 are sufficient to form heterotypic condensates with ORE1. Human cMED19 MC-IDR, but not yeast cMED19 IDR, partially complements med19a suggesting functional conservation in evolutionarily distant eukaryotes. Phylogenetic analysis of eukaryotic cMED19 revealed that the MC-IDR could arise through convergent evolution. Our result of MED19 MC-IDR suggests that plant MED19 is regulated by phase separation during stress responses.
Collapse
Affiliation(s)
- Steven Le Hung Cheng
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543, Singapore
| | | | - Haiying Xu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Reuben Manjit Singh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Tao Yao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biochemistry, School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117596, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, 1 Create Way, #03-06/07/8 Research Wing, Singapore, 138602, Singapore
| |
Collapse
|
23
|
Calla B. Stronger together: How unicellular algae respond to stress by socialization. PLANT PHYSIOLOGY 2022; 190:1554-1555. [PMID: 36005928 PMCID: PMC9614493 DOI: 10.1093/plphys/kiac398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
|
24
|
de Carpentier F, Maes A, Marchand CH, Chung C, Durand C, Crozet P, Lemaire SD, Danon A. How abiotic stress-induced socialization leads to the formation of massive aggregates in Chlamydomonas. PLANT PHYSIOLOGY 2022; 190:1927-1940. [PMID: 35775951 PMCID: PMC9614484 DOI: 10.1093/plphys/kiac321] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 05/05/2023]
Abstract
Multicellular organisms implement a set of reactions involving signaling and cooperation between different types of cells. Unicellular organisms, on the other hand, activate defense systems that involve collective behaviors between individual organisms. In the unicellular model alga Chlamydomonas (Chlamydomonas reinhardtii), the existence and the function of collective behaviors mechanisms in response to stress remain mostly at the level of the formation of small structures called palmelloids. Here, we report the characterization of a mechanism of abiotic stress response that Chlamydomonas can trigger to form massive multicellular structures. We showed that these aggregates constitute an effective bulwark within which the cells are efficiently protected from the toxic environment. We generated a family of mutants that aggregate spontaneously, the socializer (saz) mutants, of which saz1 is described here in detail. We took advantage of the saz mutants to implement a large-scale multiomics approach that allowed us to show that aggregation is not the result of passive agglutination, but rather genetic reprogramming and substantial modification of the secretome. The reverse genetic analysis we conducted allowed us to identify positive and negative regulators of aggregation and to make hypotheses on how this process is controlled in Chlamydomonas.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | - Céline Chung
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Cyrielle Durand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Polytech-Sorbonne, Sorbonne Université, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | | |
Collapse
|
25
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
26
|
Bao L, Ren J, Nguyen M, Slusarczyk AS, Thole JM, Martinez SP, Huang J, Fujita T, Running MP. The cellular function of ROP GTPase prenylation is important for multicellularity in the moss Physcomitrium patens. Development 2022; 149:275605. [DOI: 10.1242/dev.200279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
ABSTRACT
A complete picture of how signaling pathways lead to multicellularity is largely unknown. Previously, we generated mutations in a protein prenylation enzyme, GGB, and showed that it is essential for maintaining multicellularity in the moss Physcomitrium patens. Here, we show that ROP GTPases act as downstream factors that are prenylated by GGB and themselves play an important role in the multicellularity of P. patens. We also show that the loss of multicellularity caused by the suppression of GGB or ROP GTPases is due to uncoordinated cell expansion, defects in cell wall integrity and the disturbance of the directional control of cell plate orientation. Expressing prenylatable ROP in the ggb mutant not only rescues multicellularity in protonemata but also results in development of gametophores. Although the prenylation of ROP is important for multicellularity, a higher threshold of active ROP is required for gametophore development. Thus, our results suggest that ROP activation via prenylation by GGB is a key process at both cell and tissue levels, facilitating the developmental transition from one dimension to two dimensions and to three dimensions in P. patens.
Collapse
Affiliation(s)
- Liang Bao
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | - Junling Ren
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | - Mary Nguyen
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| | | | - Julie M. Thole
- Saint Louis University 3 Department of Biology , , St Louis, MO 63103 , USA
| | | | - Jinling Huang
- East Carolina University 4 Department of Biology , , Greenville, NC 27858
| | - Tomomichi Fujita
- Hokkaido University 5 Faculty of Science , , Sapporo 060-0810 , Japan
| | - Mark P. Running
- University of Louisville 1 Department of Biology , , Louisville, KY 40208 , USA
| |
Collapse
|
27
|
Day TC, Márquez-Zacarías P, Bravo P, Pokhrel AR, MacGillivray KA, Ratcliff WC, Yunker PJ. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. BIOPHYSICS REVIEWS 2022; 3:021305. [PMID: 35673523 PMCID: PMC9164275 DOI: 10.1063/5.0080845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.
Collapse
Affiliation(s)
- Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
28
|
Lin Y, Xu X, Maróti G, Strube ML, Kovács ÁT. Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. NPJ Biofilms Microbiomes 2022; 8:27. [PMID: 35418164 PMCID: PMC9007996 DOI: 10.1038/s41522-022-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that produce biofilms on abiotic and biotic surfaces. While genetic and morphological diversification enables the adaptation of multicellular communities, this area remains largely unknown in the Bacillus cereus group. In this work, we dissected the experimental evolution of Bacillus thuringiensis 407 Cry- during continuous recolonization of plastic beads. We observed the evolution of a distinct colony morphotype that we named fuzzy spreader (FS) variant. Most multicellular traits of the FS variant displayed higher competitive ability versus the ancestral strain, suggesting an important role for diversification in the adaptation of B. thuringiensis to the biofilm lifestyle. Further genetic characterization of FS variant revealed the disruption of a guanylyltransferase gene by an insertion sequence (IS) element, which could be similarly observed in the genome of a natural isolate. The evolved FS and the deletion mutant in the guanylyltransferase gene (Bt407ΔrfbM) displayed similarly altered aggregation and hydrophobicity compared to the ancestor strain, suggesting that the adaptation process highly depends on the physical adhesive forces.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
29
|
The possible modes of microbial reproduction are fundamentally restricted by distribution of mass between parent and offspring. Proc Natl Acad Sci U S A 2022; 119:e2122197119. [PMID: 35294281 PMCID: PMC8944278 DOI: 10.1073/pnas.2122197119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cells and simple cell colonies reproduce by fragmenting their bodies into pieces. Produced newborns need to grow before they can reproduce again. How big a cell or a cell colony should grow? How many offspring should be produced? Should they be of equal size or diverse? We show that the simple fact that the immediate mass of offspring cannot exceed the mass of parents restricts possible answers to these questions. For example, our theory states that, when mass is conserved in the course of fragmentation, the evolutionarily optimal reproduction mode is fragmentation into exactly two, typically equal, parts. Our theory also shows conditions which promote evolution of asymmetric division or fragmentation into multiple pieces. Multiple modes of asexual reproduction are observed among microbial organisms in natural populations. These modes are not only subject to evolution, but may drive evolutionary competition directly through their impact on population growth rates. The most prominent transition between two such modes is the one from unicellularity to multicellularity. We present a model of the evolution of reproduction modes, where a parent organism fragments into smaller parts. While the size of an organism at fragmentation, the number of offspring, and their sizes may vary a lot, the combined mass of fragments is limited by the mass of the parent organism. We found that mass conservation can fundamentally limit the number of possible reproduction modes. This has important direct implications for microbial life: For unicellular species, the interplay between cell shape and kinetics of the cell growth implies that the largest and the smallest possible cells should be rod shaped rather than spherical. For primitive multicellular species, these considerations can explain why rosette cell colonies evolved a mechanistically complex binary split reproduction. Finally, we show that the loss of organism mass during sporulation can explain the macroscopic sizes of the formally unicellular microorganism Myxomycetes plasmodium. Our findings demonstrate that a number of seemingly unconnected phenomena observed in unrelated species may be different manifestations of the same underlying process.
Collapse
|
30
|
Selective drivers of simple multicellularity. Curr Opin Microbiol 2022; 67:102141. [PMID: 35247708 DOI: 10.1016/j.mib.2022.102141] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/21/2022]
Abstract
In order to understand the evolution of multicellularity, we must understand how and why selection favors the first steps in this process: the evolution of simple multicellular groups. Multicellularity has evolved many times in independent lineages with fundamentally different ecologies, yet no work has yet systematically examined these diverse selective drivers. Here we review recent developments in systematics, comparative biology, paleontology, synthetic biology, theory, and experimental evolution, highlighting ten selective drivers of simple multicellularity. Our survey highlights the many ecological opportunities available for simple multicellularity, and stresses the need for additional work examining how these first steps impact the subsequent evolution of complex multicellularity.
Collapse
|
31
|
Dudin O, Wielgoss S, New AM, Ruiz-Trillo I. Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biol 2022; 20:e3001551. [PMID: 35349578 PMCID: PMC8963540 DOI: 10.1371/journal.pbio.3001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Significant increases in sedimentation rate accompany the evolution of multicellularity. These increases should lead to rapid changes in ecological distribution, thereby affecting the costs and benefits of multicellularity and its likelihood to evolve. However, how genetic and cellular traits control this process, their likelihood of emergence over evolutionary timescales, and the variation in these traits as multicellularity evolves are still poorly understood. Here, using isolates of the ichthyosporean genus Sphaeroforma-close unicellular relatives of animals with brief transient multicellular life stages-we demonstrate that sedimentation rate is a highly variable and evolvable trait affected by at least 2 distinct physical mechanisms. First, we find extensive (>300×) variation in sedimentation rates for different Sphaeroforma species, mainly driven by size and density during the unicellular-to-multicellular life cycle transition. Second, using experimental evolution with sedimentation rate as a focal trait, we readily obtained, for the first time, fast settling and multicellular Sphaeroforma arctica isolates. Quantitative microscopy showed that increased sedimentation rates most often arose by incomplete cellular separation after cell division, leading to clonal "clumping" multicellular variants with increased size and density. Strikingly, density increases also arose by an acceleration of the nuclear doubling time relative to cell size. Similar size- and density-affecting phenotypes were observed in 4 additional species from the Sphaeroforma genus, suggesting that variation in these traits might be widespread in the marine habitat. By resequencing evolved isolates to high genomic coverage, we identified mutations in regulators of cytokinesis, plasma membrane remodeling, and chromatin condensation that may contribute to both clump formation and the increase in the nuclear number-to-volume ratio. Taken together, this study illustrates how extensive cellular control of density and size drive sedimentation rate variation, likely shaping the onset and further evolution of multicellularity.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Aaron M. New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
32
|
Day TC, Höhn SS, Zamani-Dahaj SA, Yanni D, Burnetti A, Pentz J, Honerkamp-Smith AR, Wioland H, Sleath HR, Ratcliff WC, Goldstein RE, Yunker PJ. Cellular organization in lab-evolved and extant multicellular species obeys a maximum entropy law. eLife 2022; 11:e72707. [PMID: 35188101 PMCID: PMC8860445 DOI: 10.7554/elife.72707] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved 'snowflake' yeast and the green alga Volvox carteri. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This 'entropic' cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.
Collapse
Affiliation(s)
- Thomas C Day
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Stephanie S Höhn
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Seyed A Zamani-Dahaj
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Quantitative Biosciences Graduate Program, Georgia Institute of TechnologyAtlantaUnited States
| | - David Yanni
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Anthony Burnetti
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Jennifer Pentz
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Aurelia R Honerkamp-Smith
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Hugo Wioland
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Hannah R Sleath
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Peter J Yunker
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
33
|
Jiménez-Marín B, Olson BJSC. The Curious Case of Multicellularity in the Volvocine Algae. Front Genet 2022; 13:787665. [PMID: 35295942 PMCID: PMC8919427 DOI: 10.3389/fgene.2022.787665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution of multicellularity is a major evolutionary transition that underlies the radiation of many species in all domains of life, especially in eukaryotes. The volvocine green algae are an unconventional model system that holds great promise in the field given its genetic tractability, late transition to multicellularity, and phenotypic diversity. Multiple efforts at linking multicellularity-related developmental landmarks to key molecular changes, especially at the genome level, have provided key insights into the molecular innovations or lack thereof that underlie multicellularity. Twelve developmental changes have been proposed to explain the evolution of complex differentiated multicellularity in the volvocine algae. Co-option of key genes, such as cell cycle and developmental regulators has been observed, but with few exceptions, known co-option events do not seem to coincide with most developmental features observed in multicellular volvocines. The apparent lack of "master multicellularity genes" combined with no apparent correlation between gene gains for developmental processes suggest the possibility that many multicellular traits might be the product gene-regulatory and functional innovations; in other words, multicellularity can arise from shared genomic repertoires that undergo regulatory and functional overhauls.
Collapse
Affiliation(s)
- Berenice Jiménez-Marín
- Division of Biology, Kansas State University, Manhattan, KS, United States
- Interdepartmental Genetics Graduate Program, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
34
|
Hervey JRD, Bombelli P, Lea-Smith DJ, Hulme AK, Hulme NR, Rullay AK, Keighley R, Howe CJ. A dual compartment cuvette system for correcting scattering in whole-cell absorbance spectroscopy of photosynthetic microorganisms. PHOTOSYNTHESIS RESEARCH 2022; 151:61-69. [PMID: 34390453 PMCID: PMC8795073 DOI: 10.1007/s11120-021-00866-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Absorption spectroscopy is widely used to determine absorption and transmission spectra of chromophores in solution, in addition to suspensions of particles, including micro-organisms. Light scattering, caused by photons deflected from part or all of the cells or other particles in suspension, results in distortions to the absorption spectra, lost information and poor resolution. A spectrophotometer with an integrating sphere may be used to alleviate this problem. However, these instruments are not universally available in biology laboratories, for reasons such as cost. Here, we describe a novel, rapid, and inexpensive technique that minimises the effect of light scattering when performing whole-cell spectroscopy. This method involves using a custom made dual compartment cuvette containing titanium dioxide in one chamber as a scattering agent. Measurements were conducted of a range of different photosynthetic micro-organisms of varying cell size and morphology, including cyanobacteria, eukaryotic microalgae and a purple non-sulphur bacterium. A concentration of 1 mg ml-1 titanium dioxide, using a spectrophotometer with a slit width of 5 nm, produced spectra for cyanobacteria and microalgae similar (1-4% difference) to those obtained using an integrating sphere. The spectrum > 520 nm was similar to that with an integrating sphere with the purple non-sulphur bacterium. This system produced superior results to those obtained using a recently reported method, the application of the diffusing agent, Scotch™ Magic tape, to the side of the cuvette. The protocol can be completed in an equivalent period of time to standard whole-cell absorbance spectroscopy techniques, and is, in principle, suitable for any dual-beam spectrophotometer.
Collapse
Affiliation(s)
- John R D Hervey
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - David J Lea-Smith
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Alan K Hulme
- Starna Scientific Ltd, Hainault Business Park, 52/54 Fowler Rd, Ilford, IG6 3UT, UK
| | - Nathan R Hulme
- Starna Scientific Ltd, Hainault Business Park, 52/54 Fowler Rd, Ilford, IG6 3UT, UK
| | | | - Robert Keighley
- Shimadzu UK Limited, Unit 1, Mill Crt, Featherstone, MK12 5RD, UK
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
35
|
Lindsey CR, Rosenzweig F, Herron MD. Phylotranscriptomics points to multiple independent origins of multicellularity and cellular differentiation in the volvocine algae. BMC Biol 2021; 19:182. [PMID: 34465312 PMCID: PMC8408923 DOI: 10.1186/s12915-021-01087-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The volvocine algae, which include the single-celled species Chlamydomonas reinhardtii and the colonial species Volvox carteri, serve as a model in which to study the evolution of multicellularity and cellular differentiation. Studies reconstructing the history of this group have by and large relied on datasets of one to a few genes for phylogenetic inference and ancestral character state reconstruction. As a result, volvocine phylogenies lack concordance depending on the number and/or type of genes (i.e., chloroplast vs nuclear) chosen for phylogenetic inference. While multiple studies suggest that multicellularity evolved only once in the volvocine algae, that each of its three colonial families is monophyletic, and that there have been at least three independent origins of cellular differentiation in the group, other studies call into question one or more of these conclusions. An accurate assessment of the evolutionary history of the volvocine algae requires inference of a more robust phylogeny. RESULTS We performed RNA sequencing (RNA-seq) on 55 strains representing 47 volvocine algal species and obtained similar data from curated databases on 13 additional strains. We then compiled a dataset consisting of transcripts for 40 single-copy, protein-coding, nuclear genes and subjected the predicted amino acid sequences of these genes to maximum likelihood, Bayesian inference, and coalescent-based analyses. These analyses show that multicellularity independently evolved at least twice in the volvocine algae and that the colonial family Goniaceae is not monophyletic. Our data further indicate that cellular differentiation arose independently at least four, and possibly as many as six times, within the volvocine algae. CONCLUSIONS Altogether, our results demonstrate that multicellularity and cellular differentiation are evolutionarily labile in the volvocine algae, affirming the importance of this group as a model system for the study of major transitions in the history of life.
Collapse
Affiliation(s)
- Charles Ross Lindsey
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frank Rosenzweig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, USA
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
36
|
Boswell J, Lindsey CR, Cook E, Rosenzweig F, Herron M. Cryopreservation of clonal and polyclonal populations of Chlamydomonas reinhardtii. Biol Methods Protoc 2021; 6:bpab011. [PMID: 34250256 PMCID: PMC8263314 DOI: 10.1093/biomethods/bpab011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Long-term preservation of laboratory strains of Chlamydomonas reinhardtii has historically involved either liquid nitrogen cryopreservation, which is expensive and labor intensive, or storage on agar plates, which requires frequent transfer to new plates, and which may leave samples susceptible to contamination as well as genetic drift and/or selection. The emergence of C. reinhardtii as a model organism for genetic analysis and experimental evolution has produced an increasing demand for an efficient method to cryopreserve C. reinhardtii populations. The GeneArt™ Cryopreservation Kit for Algae provides the first method for algal storage at −80°C; however, little is known about how this method affects recovery of different clones, much less polyclonal populations. Here, we compare postfreeze viability of clonal and genetically mixed samples frozen at −80°C using GeneArt™ or cryopreserved using liquid nitrogen. We find that the GeneArt™ protocol yields similar percent recoveries for some but not all clonal cultures, when compared to archiving via liquid N2. We also find that relative frequency of different strains recovered from genetically mixed populations can be significantly altered by cryopreservation. Thus, while cryopreservation using GeneArt™ is an effective means for archiving certain clonal populations, it is not universally so. Strain-specific differences in freeze–thaw tolerance complicate the storage of different clones, and may also bias the recovery of different genotypes from polyclonal populations.
Collapse
Affiliation(s)
- Jacob Boswell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Charles Ross Lindsey
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30336, USA
| | - Emily Cook
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30336, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Matthew Herron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
37
|
The evolution of convex trade-offs enables the transition towards multicellularity. Nat Commun 2021; 12:4222. [PMID: 34244514 PMCID: PMC8270964 DOI: 10.1038/s41467-021-24503-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
The evolutionary transition towards multicellular life often involves growth in groups of undifferentiated cells followed by differentiation into soma and germ-like cells. Theory predicts that germ soma differentiation is facilitated by a convex trade-off between survival and reproduction. However, this has never been tested and these transitions remain poorly understood at the ecological and genetic level. Here, we study the evolution of cell groups in ten isogenic lines of the unicellular green algae Chlamydomonas reinhardtii with prolonged exposure to a rotifer predator. We confirm that growth in cell groups is heritable and characterized by a convex trade-off curve between reproduction and survival. Identical mutations evolve in all cell group isolates; these are linked to survival and reducing associated cell costs. Overall, we show that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome. Multicellularity is a major evolutionary transition that remains poorly characterized at the ecological and genetic level. Exposing unicellular green algae to a rotifer predator showed that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome.
Collapse
|
38
|
Sánchez Á, Vila JCC, Chang CY, Diaz-Colunga J, Estrela S, Rebolleda-Gomez M. Directed Evolution of Microbial Communities. Annu Rev Biophys 2021; 50:323-341. [PMID: 33646814 PMCID: PMC8105285 DOI: 10.1146/annurev-biophys-101220-072829] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype-phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure-function landscape and propose practical guidelines for navigating these ecological landscapes.
Collapse
Affiliation(s)
- Álvaro Sánchez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Jean C C Vila
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Chang-Yu Chang
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Juan Diaz-Colunga
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - Sylvie Estrela
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| | - María Rebolleda-Gomez
- Department of Ecology & Evolutionary Biology and Microbial Sciences Institute, Yale University, New Haven, Connecticut 06520, USA; , , , , ,
| |
Collapse
|
39
|
Isaksson H, Conlin PL, Kerr B, Ratcliff WC, Libby E. The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive Multicellularity. Genes (Basel) 2021; 12:661. [PMID: 33924996 PMCID: PMC8145350 DOI: 10.3390/genes12050661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
Early multicellular organisms must gain adaptations to outcompete their unicellular ancestors, as well as other multicellular lineages. The tempo and mode of multicellular adaptation is influenced by many factors including the traits of individual cells. We consider how a fundamental aspect of cells, whether they reproduce via binary fission or budding, can affect the rate of adaptation in primitive multicellularity. We use mathematical models to study the spread of beneficial, growth rate mutations in unicellular populations and populations of multicellular filaments reproducing via binary fission or budding. Comparing populations once they reach carrying capacity, we find that the spread of mutations in multicellular budding populations is qualitatively distinct from the other populations and in general slower. Since budding and binary fission distribute age-accumulated damage differently, we consider the effects of cellular senescence. When growth rate decreases with cell age, we find that beneficial mutations can spread significantly faster in a multicellular budding population than its corresponding unicellular population or a population reproducing via binary fission. Our results demonstrate that basic aspects of the cell cycle can give rise to different rates of adaptation in multicellular organisms.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
| | - Peter L. Conlin
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Ben Kerr
- Department of Biology, BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, WA 98195, USA;
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
40
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
41
|
Kin K, Schaap P. Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas. Genes (Basel) 2021; 12:487. [PMID: 33801615 PMCID: PMC8067170 DOI: 10.3390/genes12040487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
Multicellularity evolved repeatedly in the history of life, but how it unfolded varies greatly between different lineages. Dictyostelid social amoebas offer a good system to study the evolution of multicellular complexity, with a well-resolved phylogeny and molecular genetic tools being available. We compare the life cycles of the Dictyostelids with closely related amoebozoans to show that complex life cycles were already present in the unicellular common ancestor of Dictyostelids. We propose frost resistance as an early driver of multicellular evolution in Dictyostelids and show that the cell signalling pathways for differentiating spore and stalk cells evolved from that for encystation. The stalk cell differentiation program was further modified, possibly through gene duplication, to evolve a new cell type, cup cells, in Group 4 Dictyostelids. Studies in various multicellular organisms, including Dictyostelids, volvocine algae, and metazoans, suggest as a common principle in the evolution of multicellular complexity that unicellular regulatory programs for adapting to environmental change serve as "proto-cell types" for subsequent evolution of multicellular organisms. Later, new cell types could further evolve by duplicating and diversifying the "proto-cell type" gene regulatory networks.
Collapse
Affiliation(s)
- Koryu Kin
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| |
Collapse
|
42
|
Pichugin Y, Traulsen A. Evolution of multicellular life cycles under costly fragmentation. PLoS Comput Biol 2020; 16:e1008406. [PMID: 33211685 PMCID: PMC7714367 DOI: 10.1371/journal.pcbi.1008406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 12/03/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
A fascinating wealth of life cycles is observed in biology, from unicellularity to the concerted fragmentation of multicellular units. However, the understanding of factors driving their evolution is still limited. We show that costs of fragmentation have a major impact on the evolution of life cycles due to their influence on the growth rates of the associated populations. We model a group structured population of undifferentiated cells, where cell clusters reproduce by fragmentation. Fragmentation events are associated with a cost expressed by either a fragmentation delay, an additional risk, or a cell loss. The introduction of such fragmentation costs vastly increases the set of possible life cycles. Based on these findings, we suggest that the evolution of life cycles involving splitting into multiple offspring can be directly associated with the fragmentation cost. Moreover, the impact of this cost alone is strong enough to drive the emergence of multicellular units that eventually split into many single cells, even under scenarios that strongly disfavour collectives compared to solitary individuals.
Collapse
Affiliation(s)
- Yuriy Pichugin
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
- * E-mail:
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| |
Collapse
|
43
|
|
44
|
Abstract
Most definitions of life assume that, at a minimum, life is a physical form of matter distinct from its environment at a lower state of entropy than its surroundings, using energy from the environment for internal maintenance and activity, and capable of autonomous reproduction. These assumptions cover all of life as we know it, though more exotic entities can be envisioned, including organic forms with novel biochemistries, dynamic inorganic matter, and self-replicating machines. The probability that any particular form of life will be found on another planetary body depends on the nature and history of that alien world. So the biospheres would likely be very different on a rocky planet with an ice-covered global ocean, a barren planet devoid of surface liquid, a frigid world with abundant liquid hydrocarbons, on a rogue planet independent of a host star, on a tidally locked planet, on super-Earths, or in long-lived clouds in dense atmospheres. While life at least in microbial form is probably pervasive if rare throughout the Universe, and technologically advanced life is likely much rarer, the chance that an alternative form of life, though not intelligent life, could exist and be detected within our Solar System is a distinct possibility.
Collapse
|
45
|
Lai PL, Chen TC, Feng CY, Lin H, Ng CH, Chen Y, Hsiao M, Lu J, Huang HC. Selection of a malignant subpopulation from a colorectal cancer cell line. Oncol Lett 2020; 20:2937-2945. [PMID: 32782610 PMCID: PMC7399770 DOI: 10.3892/ol.2020.11829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-associated mortality worldwide; therefore, there is an emerging need for novel experimental models that allow for the identification and validation of biomarkers for CRC-specific progression. In the present study, a repeated sphere-forming assay was used as a strategy to select a malignant subpopulation from a CRC cell line, namely HCT116. The assay was validated by confirming that canonical stemness markers were upregulated in the sphere state at every generation of the selection assay. The resulting subpopulation, after eight rounds of selection, exhibited increased sphere-forming capacity in vitro and increased tumorigenicity in vivo. Furthermore, dipeptidase 1 (DPEP1) was identified as the major differentially expressed gene in the selected clone, and its depletion suppressed the elevated sphere-forming capacity in vitro and tumorigenicity in vivo. Overall, the present study established an experimental strategy to isolate a malignant subpopulation from a CRC cell line. Additionally, results from the present model revealed that DPEP1 may serve as a promising prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Pei-Lun Lai
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ting-Chun Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Chun-Yen Feng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Hsuan Lin
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Chi-Hou Ng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Yun Chen
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,National RNAi Platform/National Core Facility Program for Biotechnology, Taipei 11529, Taiwan, R.O.C.,Department of Life Science, Tzu Chi University, Hualien 970, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Hsiao-Chun Huang
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C.,Graduate Institute of Electronics Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
46
|
Rose CJ. Germ lines and extended selection during the evolutionary transition to multicellularity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:680-686. [PMID: 32681710 DOI: 10.1002/jez.b.22985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/11/2023]
Abstract
The major evolutionary transitions from unicellular organisms to multicellularity resulted in a profusion of complex life forms. During the transition from single cells to multicellular life, groups of cells acquired the capacity for reproduction as discrete units; however, the selective causes and underlying mechanisms remain debated. One perspective views the evolution of multicellularity as a shift in the timescale at which natural selection primarily operates-from that of individual cells to the timescale of reproducing groups of cells. Therefore, a distinguishing feature of multicellular reproduction, as opposed to simple growth of a multicellular collective, is that the capacity for reproduction must develop over a timescale that is greater than the reproductive timescale of a single cell. Here, I suggest that the emergence of specialized reproductive cells (the germ line) was an essential first stage of the evolutionary transition to multicellularity because it imposed the necessary "delay"-allowing natural selection to operate over the longer timescale of a multicellular life cycle, ultimately resulting in the evolution of complex multicellular organisms. This perspective highlights the possibility that the ubiquity of a germ-soma distinction among complex multicellular organisms reflects the fact that such life cycles, on first emergence, had the greatest propensity to participate in Darwinian evolution.
Collapse
Affiliation(s)
- Caroline J Rose
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier, Montpellier, France
| |
Collapse
|
47
|
Niklas KJ, Newman SA. The many roads to and from multicellularity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3247-3253. [PMID: 31819969 PMCID: PMC7289717 DOI: 10.1093/jxb/erz547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/07/2019] [Indexed: 05/02/2023]
Abstract
The multiple origins of multicellularity had far-reaching consequences ranging from the appearance of phenotypically complex life-forms to their effects on Earth's aquatic and terrestrial ecosystems. Yet, many important questions remain. For example, do all lineages and clades share an ancestral developmental predisposition for multicellularity emerging from genomic and biophysical motifs shared from a last common ancestor, or are the multiple origins of multicellularity truly independent evolutionary events? In this review, we highlight recent developments and pitfalls in understanding the evolution of multicellularity with an emphasis on plants (here defined broadly to include the polyphyletic algae), but also draw upon insights from animals and their holozoan relatives, fungi and amoebozoans. Based on our review, we conclude that the evolution of multicellular organisms requires three phases (origination by disparate cell-cell attachment modalities, followed by integration by lineage-specific physiological mechanisms, and autonomization by natural selection) that have been achieved differently in different lineages.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Correspondence:
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
48
|
Pichugin Y, Park HJ, Traulsen A. Evolution of simple multicellular life cycles in dynamic environments. J R Soc Interface 2020; 16:20190054. [PMID: 31088261 DOI: 10.1098/rsif.2019.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mode of reproduction is a critical characteristic of any species, as it has a strong effect on its evolution. As any other trait, the reproduction mode is subject to natural selection and may adapt to the environment. When the environment varies over time, different reproduction modes could be optimal at different times. The natural response to a dynamic environment seems to be bet hedging, where multiple reproductive strategies are stochastically executed. Here, we develop a framework for the evolution of simple multicellular life cycles in a dynamic environment. We use a matrix population model of undifferentiated multicellular groups undergoing fragmentation and ask which mode maximizes the population growth rate. Counterintuitively, we find that natural selection in dynamic environments generally tends to promote deterministic, not stochastic, reproduction modes.
Collapse
Affiliation(s)
- Yuriy Pichugin
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| | - Hye Jin Park
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology , August-Thienemann-Strasse 2, Plön 24306 , Germany
| |
Collapse
|
49
|
de Carpentier F, Lemaire SD, Danon A. When Unity Is Strength: The Strategies Used by Chlamydomonas to Survive Environmental Stresses. Cells 2019; 8:E1307. [PMID: 31652831 PMCID: PMC6912462 DOI: 10.3390/cells8111307] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable model system to study a wide spectrum of scientific fields, including responses to environmental conditions. Most studies are performed under optimal growth conditions or under mild stress. However, when environmental conditions become harsher, the behavior of this unicellular alga is less well known. In this review we will show that despite being a unicellular organism, Chlamydomonas can survive very severe environmental conditions. To do so, and depending on the intensity of the stress, the strategies used by Chlamydomonas can range from acclimation to the formation of multicellular structures, or involve programmed cell death.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
- Faculty of Sciences, Doctoral School of Plant Sciences, Université Paris-Sud, Paris-Saclay, 91400 Orsay, France.
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Antoine Danon
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
50
|
Affiliation(s)
- Matthias Galipaud
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| | - Hanna Kokko
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| |
Collapse
|