1
|
Liang X, Liang W, Wu W, Yang C. Recent advances in chiral recognition using macrocyclic receptors. Chem Commun (Camb) 2025. [PMID: 40298286 DOI: 10.1039/d5cc00828j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chiral recognition is essential for various life activities in living organisms and has important implications for areas, such as asymmetric synthesis, drug production and materials science. Synthetic receptors contribute to the understanding of the stereoselective mechanism as well as facilitate the isolation and enrichment of chiral substrates. Supramolecular macrocycles are widely used in chiral recognition studies due to well-defined cavities and abundant active interaction sites. Several macrocyclic molecules with strong enantioselectivity have recently been reported, which generally have unique cavity features such as endofunctionalization or rigidity, and novel macrocyclic receptors with different cavity structural characters exhibit different chiral mechanisms. This featured review mainly summarizes the strongly enantioselective chiral macrocycles in recent years and reviews the corresponding recognition mechanisms according to the cavity properties, aiming to highlight some potential regularities of the mechanisms behind these cavity-strong chiral recognitions and possible challenges in this field.
Collapse
Affiliation(s)
- Xiaotong Liang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University, Chengdu, 610064, China.
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University, Chengdu, 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
2
|
Zhang X, Lyu Y, Ding J, Wang X, Johannessen B, Jiang SP, Zheng J. Using waste CO 2 to produce essential amino acids for humans: An efficient photoelectrochemical route. SCIENCE ADVANCES 2025; 11:eadr8651. [PMID: 40106565 PMCID: PMC11922045 DOI: 10.1126/sciadv.adr8651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
l-phenylalanine (l-Phe), an essential amino acid for humans, is widely used as building blocks. Currently, l-Phe is obtained via biosynthetic methods including microbial and enzymatic processes, but their tightly complex feedback regulation and lengthy reaction steps lead to a low practical yield of l-Phe. Here, we have designed a hierarchical Si-based photocathode for l-Phe synthesis by photoelectrochemical coupling of waste CO2 and nitrophenyl ethane, achieving a high yield rate of 37.5 μg·hour-1·cm-2 and a remarkable Faradaic efficiency of 21.2% at low applied potential under 1 sun illumination. The hierarchical structure with CuO-TiO2-C mixtures dispersed in amorphous TiO2 layer/n+p-Si creates an internal built-in electric field and forms plentiful conducting channels to efficiently realize the injection of electrons into Cu and Ti sites. These Cu and Ti sites adsorb and activate the CO2 and nitrophenyl ethane, respectively, cooperatively facilitating the l-Phe synthesis. This work introduces an environmentally friendly and highly efficient approach for converting solar energy into valuable amino acid products.
Collapse
Affiliation(s)
- Xiaoran Zhang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077 Hong Kong SAR, P. R. China
| | - Yanhong Lyu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Jingjing Ding
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077 Hong Kong SAR, P. R. China
| | | | - San Ping Jiang
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, P. R. China
- WA School of Mines: Minerals, Energy & Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - Jianyun Zheng
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
- Shenzhen Research institute of Hunan University, Shenzhen 518055, China
| |
Collapse
|
3
|
Zhang Z, Luo E, Wang W, Huang D, Liu J, Du Z. Molecularly Imprinted Nanozymes with Substrate Specificity: Current Strategies and Future Direction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408343. [PMID: 39655386 DOI: 10.1002/smll.202408343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Indexed: 02/06/2025]
Abstract
Molecular imprinting technology (MIT) stands out for its exceptional simplicity and customization capabilities and has been widely employed in creating artificial antibodies that can precisely recognize and efficiently capture target molecules. Concurrently, nanozymes have emerged as promising enzyme mimics in the biomedical field, characterized by their remarkable stability, ease of production scalability, robust catalytic activity, and high tunability. Drawing inspiration from natural enzymes, molecularly imprinted nanozymes combine the unique benefits of both MIT and nanozymes, thereby conferring biomimetic catalysts with substrate specificity and catalytic selectivity. In this review, the latest strategies for the fabrication of molecularly imprinted nanozymes, focusing on the use of organic polymers and inorganic nanomaterials are explored. Additionally, cutting-edge techniques for generating atom-layer-imprinted islands with ultra-thin atomic-scale thickness is summarized. Their applications are particularly noteworthy in the fields of catalyst optimization, detection techniques, and therapeutic strategies, where they boost reaction selectivity and efficiency, enable precise identification and quantification of target substances, and enhance therapeutic effectiveness while minimizing adverse effects. Lastly, the prevailing challenges in the field and delineate potential avenues for future progress is encapsulated. This review will foster advancements in artificial enzyme technology and expand its applications.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030032, China
| | - Wenjuan Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhi Du
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| |
Collapse
|
4
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Yang X, Wang K. Mechanisms for translating chiral enantiomers separation research into macroscopic visualization. Adv Colloid Interface Sci 2025; 335:103342. [PMID: 39561657 DOI: 10.1016/j.cis.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Chirality is a common phenomenon in nature, including the dominance preference of small biomolecules, the special spatial conformation of biomolecules, and the biological and physiological processes triggered by chirality. The selective chiral recognition of molecules in nature from up-bottom or bottom-up is of great significance for living organisms. Such as the transcription of DNA, the recognition of membrane proteins, and the catalysis of enzymes all involve chiral recognition processes. The selective recognition between these macromolecules is mainly achieved through non covalent interactions such as hydrophobic interactions, ammonia bonding, electrostatic interactions, metal coordination, van der Waals forces, and π-π stacking. Researchers have been committed to studying how to convert this weak non covalent interaction into macroscopic visualization, which has further understood of the interactions between chiral molecules and is of great significance for simulating the interactions between molecules in living organisms. This article reviews several models of chiral recognition mechanisms, the interaction forces involved in the chiral recognition process, and the research progress of chiral recognition mechanisms. The outlook in this review points out that studying chiral recognition interactions provides an important bridge between chiral materials and the life sciences, providing an ideal platform for studying chiral phenomena in biological systems.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050 Lanzhou, PR China.
| |
Collapse
|
5
|
Chen C, Ma Y, Yao K, Ji Q, Liu W. Enantioselective adsorption on chiral ceramics with medium entropy. Nat Commun 2024; 15:10105. [PMID: 39572550 PMCID: PMC11582819 DOI: 10.1038/s41467-024-54414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Chiral metal surfaces provide an environment for enantioselective adsorption in various processes such as asymmetric catalysis, chiral recognition, and separation. However, they often suffer from limitations such as reduced enantioselectivity caused by kink coalescence and atomic roughness. Here, we present an approach using medium-entropy ceramic (MEC), specifically (CrMoTa)Si2 with a C40 hexagonal crystal structure, which overcomes the trade-off between thermal stability and enantioselectivity. Experimental confirmation is provided by employing quartz crystal microbalance (QCM), where the electrode is coated with MEC films using non-reactive magnetron sputtering technology. The chiral nature is verified through transmission electron microscopy and circular dichroism. Density-functional theory (DFT) calculations show that the stability of MEC films is significantly higher than that of high-index Cu surfaces. Through a combination of high-throughput DFT calculations and theoretical modeling, we demonstrate the high enantioselectivity (42% e.e.) of the chiral MEC for serine, a prototype molecule for studying enantioselective adsorption. The QCM results show that the adsorption amount of L-serine is 1.58 times higher than that of D-serine within a concentration range of 0-60 mM. These findings demonstrate the potential application of MECs in chiral recognition.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yinglin Ma
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, Jiangsu, China
| | - Kunda Yao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, Jiangsu, China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
6
|
Gao Z, Yan X, Jia Q, Zhang J, Guo G, Li H, Li H, Xie G, Tao Y, Chen R. Stimulating Chiral Selective Expression of Room Temperature Phosphorescence for Chirality Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410671. [PMID: 39377218 PMCID: PMC11600253 DOI: 10.1002/advs.202410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Chiral recognition is crucial for applications in chiral purity assessment and biomedical fields. However, achieving chiral recognition through visible room temperature phosphorescence remains challenging. Here, two chiral molecules, designated as host and guest are synthesized, which possess similar structural configurations. A viable strategy involving a chiral configuration-dependent energy transfer process to enable selective phosphorescence expression is proposed, thereby enabling chiral recognition in a host-guest doping system. The chiral and structural similarity between host and guest facilitates efficient Dexter energy transfer due to the reduced spatial distance between the molecules. This mechanism significantly enhances the intensity of red phosphorescence from the guest molecule, characterized by an emission peak at 612 nm and a prolonged lifetime of 32.7 ms. This work elucidates the mechanism of chiral-dependent energy transfer, demonstrating its potential for selectively expressing phosphorescence in chiral recognition.
Collapse
Affiliation(s)
- Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Qi Jia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Jingru Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| |
Collapse
|
7
|
Skvortsova A, Han JH, Tosovska A, Bainova P, Kim RM, Burtsev V, Erzina M, Fitl P, Urbanova M, Svorcik V, Ha IH, Nam KT, Lyutakov O. Enantioselective Molecular Detection by Surface Enhanced Raman Scattering at Chiral Gold Helicoids on Grating Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48526-48535. [PMID: 39224930 PMCID: PMC11403552 DOI: 10.1021/acsami.4c09301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Distinct advantages of surface enhanced Raman scattering (SERS) in molecular detection can benefit the enantioselective discrimination of specific molecular configurations. However, many of the recent methods still lack versatility and require customized anchors to chemically interact with the studied analyte. In this work, we propose the utilization of helicoid-shaped chiral gold nanoparticles arranged in an ordered array on a gold grating surface for enantioselective SERS recognition. This arrangement ensured a homogeneous distribution of chiral plasmonic hot spots and facilitated the enhancement of the SERS response of targeted analytes through plasmon coupling between gold helicoid multimers (formed in the grating valleys) and adjacent regions of the gold grating. Naproxen enantiomers (R(+) and S(-)) were employed as model compounds, revealing a clear dependence of their SERS response on the chirality of the gold helicoids. Additionally, propranolol and penicillamine enantiomers were used to validate the universality of the proposed approach. Finally, numerical simulations were conducted to elucidate the roles of intensified local electric field and optical helicity density on the SERS signal intensity and on the chirality of the nanoparticles and enantiomers. Unlike previously reported methods, our approach relies on the excitation of a chiral plasmonic near-field and its interaction with the chiral environment of analyte molecules, obviating the need for the enantioselective entrapment of targeted molecules. Moreover, our method is not limited to specific analyte classes and can be applied to a broad range of chiral molecules.
Collapse
Affiliation(s)
- Anastasiia Skvortsova
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Andrea Tosovska
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Polina Bainova
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Mariia Erzina
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Premysl Fitl
- Department of Physics and Measurements, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Marie Urbanova
- Department of Physics and Measurements, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| |
Collapse
|
8
|
Zhang Y, Ma Y, Sun W, Li W, Li G. Structural and Electronic Chirality in Inorganic Crystals: from Construction to Application. Chemistry 2024; 30:e202400436. [PMID: 38571318 DOI: 10.1002/chem.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Chirality represents a fundamental characteristic inherent in nature, playing a pivotal role in the emergence of homochirality and the origin of life. While the principles of chirality in organic chemistry are well-documented, the exploration of chirality within inorganic crystal structures continues to evolve. This ongoing development is primarily due to the diverse nature of crystal/amorphous structures in inorganic materials, along with the intricate symmetrical and asymmetrical relationships in the geometry of their constituent atoms. In this review, we commence with a summary of the foundational concept of chirality in molecules and solid states matters. This is followed by an introduction of structural chirality and electronic chirality in three-dimensional and two-dimensional inorganic materials. The construction of chirality in inorganic materials is classified into physical photolithography, wet-chemistry method, self-assembly, and chiral imprinting. Highlighting the significance of this field, we also summarize the research progress of chiral inorganic materials for applications in optical activity, enantiomeric recognition and chiral sensing, selective adsorption and enantioselective separation, asymmetric synthesis and catalysis, and chirality-induced spin polarization. This review aims to provide a reference for ongoing research in chiral inorganic materials and potentially stimulate innovative strategies and novel applications in the realm of chirality.
Collapse
Affiliation(s)
- Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yuzhe Ma
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wei Li
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
9
|
Li S, Xu X, Xu L, Lin H, Kuang H, Xu C. Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis. Nat Commun 2024; 15:3506. [PMID: 38664409 PMCID: PMC11045795 DOI: 10.1038/s41467-024-47657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Asymmetric transformations and synthesis have garnered considerable interest in recent decades due to the extensive need for chiral organic compounds in biomedical, agrochemical, chemical, and food industries. The field of chiral inorganic catalysts, garnering considerable interest for its contributions to asymmetric organic transformations, has witnessed remarkable advancements and emerged as a highly innovative research area. Here, we review the latest developments in this dynamic and emerging field to comprehensively understand the advances in chiral inorganic nanocatalysts and stimulate further progress in asymmetric catalysis.
Collapse
Affiliation(s)
- Si Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Hengwei Lin
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Choi S, Liu C, Seo DH, Im SW, Kim RM, Jo J, Kim JW, Park GS, Kim M, Brinck T, Nam KT. Kink-Controlled Gold Nanoparticles for Electrochemical Glucose Oxidation. NANO LETTERS 2024; 24:4528-4536. [PMID: 38573311 DOI: 10.1021/acs.nanolett.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Enzymes in nature efficiently catalyze chiral organic molecules by elaborately tuning the geometrical arrangement of atoms in the active site. However, enantioselective oxidation of organic molecules by heterogeneous electrocatalysts is challenging because of the difficulty in controlling the asymmetric structures of the active sites on the electrodes. Here, we show that the distribution of chiral kink atoms on high-index facets can be precisely manipulated even on single gold nanoparticles; and this enabled stereoselective oxidation of hydroxyl groups on various sugar molecules. We characterized the crystallographic orientation and the density of kink atoms and investigated their specific interactions with the glucose molecule due to the geometrical structure and surface electrostatic potential.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Soft Foundry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Liu
- Department of Chemistry, CBH, KTH Royal Institute of Technology; Stockholm SE-10044, Sweden
- Stockholm University, Chemical Physics, Albanova University Center, Stockholm SE-10690, Sweden
| | - Da Hye Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Soft Foundry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyeon Jo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Won Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyeong-Su Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Soft Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Next-Generation Semiconductor Convergence Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tore Brinck
- Department of Chemistry, CBH, KTH Royal Institute of Technology; Stockholm SE-10044, Sweden
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Soft Foundry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Suwankaisorn B, Aroonratsameruang P, Kuhn A, Wattanakit C. Enantioselective recognition, synthesis, and separation of pharmaceutical compounds at chiral metallic surfaces. ChemMedChem 2024; 19:e202300557. [PMID: 38233349 DOI: 10.1002/cmdc.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The development of new pharmaceutical compounds is challenging because most of them are based on enantiopure chiral molecules, which exhibit unique properties for therapy. However, the synthesis of pharmaceutical compounds in the absence of a chiral environment naturally leads to a racemic mixture. Thus, to control their synthesis, an asymmetric environment is required, and chiral homogeneous catalysts are typically used to synthesize enantiopure pharmaceutical compounds (EPC). Nevertheless, homogeneous catalysts are difficult to recover after the reaction, generating additional problems and costs in practical processes. Thus, the development of chiral heterogeneous catalysts is a timely topic. In a more general context, such chiral materials cannot only be used for synthesis, but also to recognize and separate enantiomers. In the frame of these different challenges, we give in this review a short introduction to strategies to extrinsically and intrinsically modify heterogeneous metal matrixes for the enantioselective synthesis, recognition, and separation of chiral pharmaceutical compounds.
Collapse
Affiliation(s)
- Banyong Suwankaisorn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 16, avenue Pey Berland, 33607, Pessac, France
| | - Ponart Aroonratsameruang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
| | - Alexander Kuhn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 16, avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo.1 Payupnai, Wangchan, Rayong, Thailand, 21210
| |
Collapse
|
12
|
Eguchi M, Han M, Asakura Y, Hill JP, Henzie J, Ariga K, Rowan AE, Chaikittisilp W, Yamauchi Y. Materials Space-Tectonics: Atomic-level Compositional and Spatial Control Methodologies for Synthesis of Future Materials. Angew Chem Int Ed Engl 2023; 62:e202307615. [PMID: 37485623 DOI: 10.1002/anie.202307615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Reactions occurring at surfaces and interfaces necessitate the creation of well-designed surface and interfacial structures. To achieve a combination of bulk material (i.e., framework) and void spaces, a meticulous process of "nano-architecting" of the available space is necessary. Conventional porous materials such as mesoporous silica, zeolites, and metal-organic frameworks lack advanced cooperative functionalities owing to their largely monotonous pore geometries and limited conductivities. To overcome these limitations and develop functional structures with surface-specific functions, the novel materials space-tectonics methodology has been proposed for future materials synthesis. This review summarizes recent examples of materials synthesis based on designing building blocks (i.e., tectons) and their hybridization, along with practical guidelines for implementing materials syntheses and state-of-the-art examples of practical applications. Lastly, the potential integration of materials space-tectonics with emerging technologies, such as materials informatics, is discussed.
Collapse
Affiliation(s)
- Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Minsu Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yusuke Asakura
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, 464-8603, Japan
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Watcharop Chaikittisilp
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, 464-8603, Japan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
13
|
Somsri S, Suwankaisorn B, Yomthong K, Srisuwanno W, Klinyod S, Kuhn A, Wattanakit C. Highly Enantioselective Synthesis of Pharmaceuticals at Chiral-Encoded Metal Surfaces. Chemistry 2023; 29:e202302054. [PMID: 37555292 DOI: 10.1002/chem.202302054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Enantioselective catalysis is of crucial importance in modern chemistry and pharmaceutical science. Although various concepts have been used for the development of enantioselective catalysts to obtain highly pure chiral compounds, most of them are based on homogeneous catalytic systems. Recently, we successfully developed nanostructured metal layers imprinted with chiral information, which were applied as electrocatalysts for the enantioselective synthesis of chiral model compounds. However, so far such materials have not been employed as heterogeneous catalysts for the enantioselective synthesis of real pharmaceutical products. In this contribution, we report the asymmetric synthesis of chiral pharmaceuticals (CPs) with chiral imprinted Pt-Ir surfaces as a simple hydrogenation catalyst. By fine-tuning the experimental parameters, a very high enantioselectivity (up to 95 % enantiomeric excess) with good catalyst stability can be achieved. The designed materials were also successfully used as catalytically active stationary phases for the continuous asymmetric flow synthesis of pharmaceutical compounds. This illustrates the possibility of producing real chiral pharmaceuticals at such nanostructured metal surfaces for the first time.
Collapse
Affiliation(s)
- Supattra Somsri
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Banyong Suwankaisorn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Krissanapat Yomthong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wanmai Srisuwanno
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sorasak Klinyod
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
14
|
Yuan G, Wang C, Xi Z, Li S, Sun X, Hang P, Liu X, Han J, Guo R. Supramolecular Polyaniline-Metal Ion as Chiral Nanozymes for Enantioselective Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303739. [PMID: 37507827 DOI: 10.1002/smll.202303739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Understanding origin of asymmetric information encoded on chiral nanozymes is important in mediating enantioselective catalysis. Herein, the supramolecular chiral nanozymes constructed from P/M-polyaniline (P/M-PANI) nanotwists and metal ions (M2+ , M = Cu, Ni, Co, and Zn) are designed through thioglycolic acid (TA) without chiral molecules to show the regulated catalytic efficiency and enantioselectivity. With combination of chiral environment from supramolecular scaffolds and catalytic center from metal ions, the P-PANI-TA-M2+ as nanozymes show preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the M-PANI-TA-M2+ show better selectivity to R-DOPA oxidation. Among them, though the Cu2+ doped supramolecular nanotwists show the highest catalytic efficiency, the Co2+ doped ones with moderate catalytic efficiency can exhibit the best enantioselectivity with select factor as high as 2.07. The molecular dynamic (MD) simulation clarifies the mechanism of enantioselective catalysis caused by the differential kinetics with S/R-DOPA enantiomers adsorbed on chiral PANI surface and free in solution. This work systematically studies the synergistic effect between the chiral supramolecular nanostructures assembled by achiral species and metal ions as peroxidase-like catalytic centers to regulate the enantioselectivity, providing deep understanding of the origin of asymmetric catalysis and serving as strong foundation to guide the design of nanozymes with high enantioselectivity.
Collapse
Affiliation(s)
- Ganyin Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shixin Li
- School of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Pengyuan Hang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
15
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
16
|
Arnaboldi S. Wireless electrochemical actuation of soft materials towards chiral stimuli. Chem Commun (Camb) 2023; 59:2072-2080. [PMID: 36748650 PMCID: PMC9933456 DOI: 10.1039/d2cc06630k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Different areas of modern chemistry, require wireless systems able to transfer chirality from the molecular to the macroscopic event. The ability to recognize the enantiomers of a chiral analyte is highly desired, since in the majority of cases such molecules present different physico-chemical properties that could lead, eventually, to dangerous or harmful interactions with the environment or the human body. From an electrochemical point of view, enantiomers have the same electrochemical behavior except when they interact in a chiral environment. In this Feature Article, different approaches for the electrochemical recognition of chiral information based on the actuation of conducting polymers are described. Such a dynamic behavior of π-conjugated materials is based on an electrochemically induced shrinking/swelling transition of the polymeric matrix. Since all the systems, described so far in the literature, are achiral and require a direct connection to a power supply, new strategies will be presented in the manuscript, concerning the implementation of chirality in electrochemical actuators and their use in a wireless manner through bipolar electrochemistry. Herein, the synergy between the wireless unconventional actuation and the outstanding enantiorecognition of inherent chiral oligomers is presented as an easy and straightforward read out of chiral information in solution. This approach presents different advantages in comparison to classic electrochemical systems such as its wireless nature and the possible real-time data acquisition.
Collapse
Affiliation(s)
- Serena Arnaboldi
- Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, 20133, Milano, Italy.
| |
Collapse
|
17
|
Kang Y, Tang Y, Zhu L, Jiang B, Xu X, Guselnikova O, Li H, Asahi T, Yamauchi Y. Porous Nanoarchitectures of Nonprecious Metal Borides: From Controlled Synthesis to Heterogeneous Catalyst Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yunqing Kang
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Yi Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Liyang Zhu
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai200234, China
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Olga Guselnikova
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai200234, China
| | - Toru Asahi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo169-0051, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo169-0051, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
18
|
Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: Recent advances and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Fang Y, Liu X, Liu Z, Han L, Ai J, Zhao G, Terasaki O, Cui C, Yang J, Liu C, Zhou Z, Chen L, Che S. Synthesis of amino acids by electrocatalytic reduction of CO2 on chiral Cu surfaces. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat Commun 2022; 13:5757. [PMID: 36180485 PMCID: PMC9525700 DOI: 10.1038/s41467-022-33448-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Chiral discrimination is critical in environmental and life sciences. However, an ideal chiral discrimination strategy has not yet been developed because of the inevitable nonspecific binding entity of wrong enantiomers or insufficient intrinsic optical activities of chiral molecules. Here, we propose an "inspector" recognition mechanism (IRM), which is implemented on a chiral imprinted polydopamine (PDA) layer coated on surface-enhanced Raman scattering (SERS) tag layer. The IRM works based on the permeability change of the imprinted PDA after the chiral recognition and scrutiny of the permeability by an inspector molecule. Good enantiomer can specifically recognize and fully fill the chiral imprinted cavities, whereas the wrong cannot. Then a linear shape aminothiol molecule, as an inspector of the recognition status is introduced, which can only percolate through the vacant and nonspecifically occupied cavities, inducing the SERS signal to decrease. Accordingly, chirality information exclusively stems from good enantiomer specific binding, while nonspecific recognition of wrong enantiomer is curbed. The IRM benefits from sensitivity and versatility, enabling absolute discrimination of a wide variety of chiral molecules regardless of size, functional groups, polarities, optical activities, Raman scattering, and the number of chiral centers.
Collapse
|
21
|
Aloni SS, Nassir M, Mastai Y. Chiral Porous Carbon Surfaces for Enantiospecific Synthesis. Polymers (Basel) 2022; 14:2765. [PMID: 35890540 PMCID: PMC9319770 DOI: 10.3390/polym14142765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Chiral surfaces, developed in the last decade, serve as media for enantioselective chemical reactions. Until today, they have been based mostly on developments in silica templating, and are made mainly from imprints of silicate materials developed a long time ago. Here, a chiral porous activated carbon surface was developed based on a chiral ionic liquid, and the surface chemistry and pore structure were studied to lay a new course of action in the field. The enantioselectivities of surfaces are examined by using variety of methods such as circular dichroism, linear sweep voltammetry and catalysis. These techniques revealed a 28.1% preference for the D enantiomer of the amino acid proline, and linear sweep voltammetry confirmed chirality recognition by another probe. An aldol surface chiral catalytic reaction was devised and allowed to determine the root of the enantiomeric excess. These results affirm the path toward a new type of chiral surface.
Collapse
Affiliation(s)
| | | | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.S.A.); (M.N.)
| |
Collapse
|
22
|
Kawasaki Y, Nakagawa M, Ito T, Imura Y, Wang KH, Kawai T. Chiral transcription from chiral Au nanowires to self-assembled monolayers of achiral azobenzene derivatives. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yukie Kawasaki
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Nakagawa
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Tomoki Ito
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
23
|
Magnetic Field Effect on the Handedness of Electrodeposited Heusler Alloy. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magneto-electrochemistry (MEC) experiments were carried out in the electrodeposition of a ferromagnetic Heusler alloy. The electrodeposition was carried out in the absence (as a reference) and in the presence of a magnetic field that was applied perpendicularly to the electrode–solution interface. The obtained metallic deposit was characterized by SEM-EDS, XRF, and XRD techniques. The ferromagnetic properties are assessed on the basis of SQUID measurements. The experimental results indicate that the influence of the presence of the magnetic field induces differences in the electrochemical measurements and a macroscopic handedness (chirality) in the deposit, which is a function of magnet orientation. Eventually, the coercivity of the Heusler alloy that was obtained in the presence of the magnetic field was larger compared to that of the deposit that was obtained without a magnetic field.
Collapse
|
24
|
Cheng S, Tang D, Zhang Y, Xu L, Liu K, Huang K, Yin Z. Specific and Sensitive Detection of Tartrazine on the Electrochemical Interface of a Molecularly Imprinted Polydopamine-Coated PtCo Nanoalloy on Graphene Oxide. BIOSENSORS 2022; 12:326. [PMID: 35624626 PMCID: PMC9138349 DOI: 10.3390/bios12050326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
A novel electrochemical sensor designed to recognize and detect tartrazine (TZ) was constructed based on a molecularly imprinted polydopamine (MIPDA)-coated nanocomposite of platinum cobalt (PtCo) nanoalloy-functionalized graphene oxide (GO). The nanocomposites were characterized and the TZ electrochemical detection performance of the sensor and various reference electrodes was investigated. Interestingly, the synergistic effect of the strong electrocatalytic activity of the PtCo nanoalloy-decorated GO and the high TZ recognition ability of the imprinted cavities of the MIPDA coating resulted in a large and specific response to TZ. Under the optimized conditions, the sensor displayed linear response ranges of 0.003-0.180 and 0.180-3.950 µM, and its detection limit was 1.1 nM (S/N = 3). The electrochemical sensor displayed high anti-interference ability, good stability, and adequate reproducibility, and was successfully used to detect TZ in spiked food samples. Comparison of important indexes of this sensor with those of previous electrochemical sensors for TZ revealed that this sensor showed improved performance. This surface-imprinted sensor provides an ultrasensitive, highly specific, effective, and low-cost method for TZ determination in foodstuffs.
Collapse
Affiliation(s)
- Shuwen Cheng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| | - Danyao Tang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| | - Yi Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Libin Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| | - Kunping Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China;
| | - Kejing Huang
- China Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical and Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Zhengzhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; (S.C.); (D.T.); (Y.Z.); (L.X.)
| |
Collapse
|
25
|
Meng Y, Fan J, Wang M, Gong W, Zhang J, Ma J, Mi H, Huang Y, Yang S, Ruoff RS, Geng J. Encoding Enantiomeric Molecular Chiralities on Graphene Basal Planes. Angew Chem Int Ed Engl 2022; 61:e202117815. [PMID: 35107863 DOI: 10.1002/anie.202117815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/06/2022]
Abstract
Graphene has demonstrated broad applications due to its prominent properties. Its molecular structure makes graphene achiral. Here, we propose a direct way to prepare chiral graphene by transferring chiral structural conformation from chiral conjugated amino acids onto graphene basal plane through π-π interaction followed by thermal fusion. Using atomic resolution transmission electron microscopy, we estimated an areal coverage of the molecular imprints (chiral regions) up to 64 % on the basal plane of graphene (grown by chemical vapor deposition). The high concentration of molecular imprints in their single layer points to a close packing of the deposited amino acid molecules prior to "thermal fusion". Such "molecular chirality-encoded graphene" was tested as an electrode in electrochemical enantioselective recognition. The chirality-encoded graphene might find use for other chirality-related studies and the encoding procedure might be extended to other two-dimensional materials.
Collapse
Affiliation(s)
- Yongqiang Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Jingbiao Fan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China.,Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, China
| | - Meihui Wang
- Centre for Multidimensional Carbon Materials, Institute of Basic Science, Ulsan, 44919, Republic of Korea
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Jinping Zhang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, China
| | - Junpeng Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Hongyu Mi
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, China
| | - Yan Huang
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University, Urumqi, 830046, China
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania, 19104, USA
| | - Rodney S Ruoff
- Centre for Multidimensional Carbon Materials, Institute of Basic Science, Ulsan, 44919, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.,School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, No. 399 Bin-Shui-Xi Road, Xi-Qing District, Tianjin, 300387, China
| |
Collapse
|
26
|
Vaňkátová P, Kubíčková A, Kalíková K. Enantioseparation of liquid crystals and their utilization as enantiodiscrimination materials. J Chromatogr A 2022; 1673:463074. [DOI: 10.1016/j.chroma.2022.463074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
27
|
Maruyama J, Maruyama S, Kashiwagi Y, Watanabe M, Shinagawa T, Nagaoka T, Tamai T, Ryu N, Matsuo K, Ohwada M, Chida K, Yoshii T, Nishihara H, Tani F, Uyama H. Helically aligned fused carbon hollow nanospheres with chiral discrimination ability. NANOSCALE 2022; 14:3748-3757. [PMID: 35167641 DOI: 10.1039/d1nr07971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While the functions of carbon materials with precisely controlled nanostructures have been reported in many studies, their chiral discriminating abilities have not been reported yet. Herein, chiral discrimination is achieved using helical carbon materials devoid of chiral attachments. A Fe3O4 nanoparticle template with ethyl cellulose (carbon source) is self-assembled on dispersed multiwalled carbon nanotubes (MWCNTs) fixed in a lamellar structure, with helical nanoparticle alignment induced by the addition of a binaphthyl derivative. Carbonization followed by template removal produces helically aligned fused carbon hollow nanospheres (CHNSs) with no chiral molecules left. Helicity is confirmed using vacuum-ultraviolet circular dichroism spectroscopy. Chiral discrimination, as revealed by the electrochemical reactions of binaphthol and a chiral ferrocene derivative in aqueous and nonaqueous electrolytes, respectively, is attributable to the chiral space formed between the CHNS and MWCNT surfaces.
Collapse
Affiliation(s)
- Jun Maruyama
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Shohei Maruyama
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Yukiyasu Kashiwagi
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Mitsuru Watanabe
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Tsutomu Shinagawa
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Toru Nagaoka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Toshiyuki Tamai
- Osaka Research Institute of Industrial Science and Technology, 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan.
| | - Naoya Ryu
- Kumamoto Industrial Research Institute, 3-11-38, Higashimachi, Higashi-ku, Kumamoto 862-0901, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Mao Ohwada
- Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Koki Chida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
28
|
Butcha S, Lapeyre V, Wattanakit C, Kuhn A. Self-assembled monolayer protection of chiral-imprinted mesoporous platinum electrodes for highly enantioselective synthesis. Chem Sci 2022; 13:2339-2346. [PMID: 35310499 PMCID: PMC8864712 DOI: 10.1039/d2sc00056c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
In modern chemistry, chiral (electro)catalysis is a powerful strategy to produce enantiomerically pure compounds (EPC). However, it still struggles with uncontrollable stereochemistry due to side reactions, eventually producing a racemic mixture. To overcome this important challenge, a well-controlled design of chiral catalyst materials is mandatory to produce enantiomers with acceptable purity. In this context, we propose the synergetic combination of two strategies, namely the elaboration of mesoporous Pt films, imprinted with chiral recognition sites, together with the spatially controlled formation of a self-assembled monolayer. Chiral imprinted metals have been previously suggested as electrode materials for enantioselective recognition, separation and synthesis. However, the outermost surface of such electrodes is lacking chiral information and thus leads to unspecific reactions. Functionalising selectively this part of the electrode with a monolayer of organosulfur ligands allows an almost total suppression of undesired side reactions and thus leads to a boost of enantiomeric excess to values of over 90% when using these surfaces in the frame of enantioselective electrosynthesis. In addition, this strategy also decreases the total reaction time by one order of magnitude. The study therefore opens up promising perspectives for the development of heterogeneous enantioselective electrocatalysis strategies.
Collapse
Affiliation(s)
- Sopon Butcha
- School of Molecular Science and Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP 16 Avenue Pey Berland 33607 Pessac France
| | - Véronique Lapeyre
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP 16 Avenue Pey Berland 33607 Pessac France
| | - Chularat Wattanakit
- School of Molecular Science and Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
| | - Alexander Kuhn
- School of Molecular Science and Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology 21210 Wangchan Rayong Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP 16 Avenue Pey Berland 33607 Pessac France
| |
Collapse
|
29
|
Meng Y, Fan J, Wang M, Gong W, Zhang J, Ma J, Mi H, Huang Y, Yang S, Ruoff RS, Geng J. Encoding Enantiomeric Molecular Chiralities on Graphene Basal Planes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yongqiang Meng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology 15 North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Jingbiao Fan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology 15 North Third Ring East Road, Chaoyang District Beijing 100029 China
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region Xinjiang University Urumqi 830046 China
| | - Meihui Wang
- Centre for Multidimensional Carbon Materials Institute of Basic Science Ulsan 44919 Republic of Korea
| | - Wenbin Gong
- School of Physics and Energy Xuzhou University of Technology Xuzhou 221018 China
| | - Jinping Zhang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region Xinjiang University Urumqi 830046 China
| | - Junpeng Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology 15 North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Hongyu Mi
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region Xinjiang University Urumqi 830046 China
| | - Yan Huang
- Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region Xinjiang University Urumqi 830046 China
| | - Shu Yang
- Department of Materials Science and Engineering University of Pennsylvania 3231 Walnut Street Philadelphia Pennsylvania 19104 USA
| | - Rodney S. Ruoff
- Centre for Multidimensional Carbon Materials Institute of Basic Science Ulsan 44919 Republic of Korea
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Department of Materials Science and Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes Tianjin Key Laboratory of Advanced Fibers and Energy Storage School of Material Science and Engineering Tiangong University No. 399 Bin-Shui-Xi Road, Xi-Qing District Tianjin 300387 China
| |
Collapse
|
30
|
Butcha S, Yu J, Pasom Z, Goudeau B, Wattanakit C, Sojic N, Kuhn A. Electrochemiluminescent enantioselective detection with chiral-imprinted mesoporous metal surfaces. Chem Commun (Camb) 2022; 58:10707-10710. [DOI: 10.1039/d2cc02562k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral-imprinted mesoporous Pt-Ir alloy surfaces were combined in a synergetic way with electrochemiluminescence (ECL) to detect the two enantiomers of phenylalanine (PA) as a model compound, acting simultaneously as a...
Collapse
|
31
|
Abstract
π-conducting materials such as chiral polythiophenes exhibit excellent electrochemical stability in doped and undoped states on electrode surfaces (chiral electrodes), which help tune their physical and electronic properties for a wide range of uses. To overcome the limitations of traditional surface immobilization methods, an alternative pathway for the detection of organic and bioorganic targets using chiral electrodes has been developed. Moreover, chiral electrodes have the ability to carry functionalities, which helps the immobilization and recognition of bioorganic molecules. In this review, we describe the use of polythiophenes for the design of chiral electrodes and their applications as electrochemical biosensors.
Collapse
|
32
|
Liu J, Yang L, Qin P, Zhang S, Yung KKL, Huang Z. Recent Advances in Inorganic Chiral Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005506. [PMID: 33594700 DOI: 10.1002/adma.202005506] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Indexed: 05/27/2023]
Abstract
Inorganic nanoparticles offer a multifunctional platform for biomedical applications in drug delivery, biosensing, bioimaging, disease diagnosis, screening, and therapies. Homochirality prevalently exists in biological systems composed of asymmetric biochemical activities and processes, so biomedical applications essentially favor the usage of inorganic chiral nanomaterials, which have been widely studied in the past two decades. Here, the latest investigations are summarized including the characterization of 3D stereochirality, the bionic fabrication of hierarchical chirality, extension of the compositional space to poly-elements, studying optical activities with the (sub-)single-particle resolution, and the experimental demonstration in biomedical applications. These advanced studies pave the way toward fully understanding the two important chiral effects (i.e., the chiroptical and enantioselective effects), and prospectively promote the flexible design and fabrication of inorganic chiral nanoparticles with engineerable functionalities to solve diverse practical problems closely associated with environment and public health.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Lin Yang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Ping Qin
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Shiqing Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Biology, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Biology, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
33
|
Aerathupalathu Janardhanan J, Valaboju A, Dhawan U, Mansoure TH, Yan CCS, Yang CH, Gautam B, Hsu CP, Yu HH. Molecular and nano structures of chiral PEDOT derivatives influence the enantiorecognition of biomolecules. In silico analysis of chiral recognition. Analyst 2021; 146:7118-7125. [PMID: 34739011 DOI: 10.1039/d1an01465j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study we investigated the synergistic effects of the chirality (molecular structure) and surface morphology (nanostructure) of a newly designed sensing platform for the stereoselective recognition of biomolecules. We synthesized 3,4-ethylenedioxythiophene monomers presenting an OH functional group on the side chain (EDOT-OH) with either R or S chirality and then electropolymerized them in a template-free manner to engineer poly(EDOT-OH) nanotubes and smooth films with R or S chirality. We used a quartz crystal microbalance (QCM) to examine the differential binding of fetal bovine serum, RGD peptide, insulin, and (R)- and (S)-mandelic acid (MA) on these chiral polymeric platforms. All of these biomolecules bound stereoselectively and with greater affinity toward the nanotubes than to the smooth films. The sensitive chiral recognition of (S)- and (R)-MA on the (R)-poly(EDOT-OH) nanotube surface occurred with the highest chiral discrepancy ratio of 1.80. In vitro experiments revealed a greater degree of protein deposition from MCF-7 cells on the chiral nanotube surfaces. We employed ab initio molecular dynamics simulations and density functional theory calculations to investigate the mechanism underlying the sensitive chiral recognition between the chiral sensing platforms and the chiral analyte molecules.
Collapse
Affiliation(s)
- Jayakrishnan Aerathupalathu Janardhanan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Taiwan International Graduate Program (TIGP), Sustainable Chemical Science & Technology (SCST), Academia Sinica, Taipei 11529, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300, Taiwan
| | - Anusha Valaboju
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Udesh Dhawan
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Tharwat Hassan Mansoure
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | | | - Chou-Hsun Yang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Bhaskarchand Gautam
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,National Center for Theoretical Sciences, Physics Division, Taipei 10617, Taiwan
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
34
|
Xiao X, Chen C, Zhang Y, Kong H, An R, Li S, Liu W, Ji Q. Chiral Recognition on Bare Gold Surfaces by Quartz Crystal Microbalance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiangyun Xiao
- Herbert Gleiter Institute for Nanoscience Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| | - Chao Chen
- Nano and Heterogeneous Materials Center School of Materials Science and Engineering Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| | - Yehao Zhang
- Herbert Gleiter Institute for Nanoscience Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| | - Huihui Kong
- Herbert Gleiter Institute for Nanoscience Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| | - Rong An
- Herbert Gleiter Institute for Nanoscience Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| | - Shuang Li
- Nano and Heterogeneous Materials Center School of Materials Science and Engineering Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| | - Wei Liu
- Nano and Heterogeneous Materials Center School of Materials Science and Engineering Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience Nanjing University of Science and Technology 200 Xiaolingwei Nanjing 210094 China
| |
Collapse
|
35
|
Xiao X, Chen C, Zhang Y, Kong H, An R, Li S, Liu W, Ji Q. Chiral Recognition on Bare Gold Surfaces by Quartz Crystal Microbalance. Angew Chem Int Ed Engl 2021; 60:25028-25033. [PMID: 34545674 DOI: 10.1002/anie.202110187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/06/2022]
Abstract
Quartz crystal microbalance (QCM) is one of the powerful tools for the studies of molecular recognition and chiral discrimination. Its efficiency mainly relies on the design of the functional sensitive layer on the electrode surface. However, the organic sensitive layer may easily cause dissipation of oscillation or detachment and weaken the signal transfer during the molecular recognition processes. In this work, we reveal for the first time that the bare metal surface without the organic selector layer has the capability for chiral recognition in the QCM system. During the adsorption of various chiral amino acids, relatively higher selectivity of D-enantiomers on gold (Au) surface was shown by the QCM detection. Based on analyses of the surface crystalline structure and density functional theory calculations, we demonstrate that the chiral nature of Au surface plays an important role in the selective binding of specific D-amino acids. These results may open new insights on chiral detection by QCM system. It will also promote the construction of novel chiral sensing systems with both efficient detection and separation capability.
Collapse
Affiliation(s)
- Xiangyun Xiao
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Chao Chen
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Yehao Zhang
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Huihui Kong
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Rong An
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Shuang Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Qingmin Ji
- Herbert Gleiter Institute for Nanoscience, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| |
Collapse
|
36
|
Assavapanumat S, Butcha S, Ittisanronnachai S, Kuhn A, Wattanakit C. Heterogeneous Enantioselective Catalysis with Chiral Encoded Mesoporous Pt-Ir Films Supported on Ni Foam. Chem Asian J 2021; 16:3345-3353. [PMID: 34416087 DOI: 10.1002/asia.202100966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/11/2022]
Abstract
The development of heterogeneous catalysts for asymmetric synthesis is one of the most challenging topics in chemistry, as it allows obtaining enantiomerically pure compounds. Recently, metal layers incorporating molecular chiral cavities, obtained by electroreduction of a metal source in the simultaneous presence of a non-ionic surfactant and asymmetric molecules, have been proposed for a wide range of applications, including enantioselective electroanalysis and electrosynthesis, as well as chiral separation. In contrast to this previous work, solely based on electrochemical phenomena, herein we designed and employed nanostructured chiral encoded Pt-Ir alloys, supported on high surface area nickel foams, as heterogeneous catalysts for the asymmetric hydrogenation of aromatic ketones. Fine-tuning the experimental conditions allows achieving very high enantioselectivity (>80%), combined with improved catalyst stability.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Sopon Butcha
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Somlak Ittisanronnachai
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| |
Collapse
|
37
|
Zhang G, Ali MM, Feng X, Zhou J, Hu L. Mesoporous molecularly imprinted materials: From preparation to biorecognition and analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Wang C, Guo AM, Sun QF, Yan Y. Efficient Spin-Dependent Charge Transmission and Improved Enantioselective Discrimination Capability in Self-Assembled Chiral Coordinated Monolayers. J Phys Chem Lett 2021; 12:10262-10269. [PMID: 34652163 DOI: 10.1021/acs.jpclett.1c03106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spin-dependent charge transmission or the so-called chirality-induced spin selectivity (CISS) effect was demonstrated in self-assembled chiral coordinated monolayers. Distinct from the previous CISS phenomenon observed mainly on pure biomolecules, here we expanded this effect to the coordinated complex of chiral biomolecules and metal cations, specifically, cysteine-Cu2+-alanine (Cys/Cu/Ala), in which the complex itself was redox-active. However, the coordinated self-assembled monolayers of cysteine-Cu2+-cysteine did not show any spin-dependent effect. In addition, this phenomenon was explained by developing a theoretical model with spin-orbit coupling. The alanine molecules contributed to multiple transport pathways, leading to experimentally observable spin polarization. Finally, this CISS effect in Cys/Cu/Ala complex was demonstrated to amplify the sensing signal. The enantioselective discrimination efficiency could be improved by controlling the orientation of the external magnetic field.
Collapse
Affiliation(s)
- Chenchen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ai-Min Guo
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
39
|
Park KH, Kwon J, Jeong U, Kim JY, Kotov NA, Yeom J. Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale. ACS NANO 2021; 15:15229-15237. [PMID: 34519483 DOI: 10.1021/acsnano.1c05888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral nanomaterials provide a rich platform for versatile applications. Tuning the wavelength of polarization rotation maxima in the broad range including short-wave infrared (SWIR) is a promising candidate for infrared neural stimulation, imaging, and nanothermometry. However, the majority of previously developed chiral nanomaterials reveal the optical activity in a relatively shorter wavelength range (ultraviolet-visible, UV-vis), not in SWIR. Here, we demonstrate a versatile method to synthesize chiral copper sulfides using cysteine, as the stabilizer, and transferring the chirality from molecular- to the microscale through self-assembly. The assembled structures show broad chiroptical activity in the UV-vis-NIR-SWIR region (200-2500 nm). Importantly, we can tune the chiroptical activity by simply changing the reaction conditions. This approach can be extended to materials platforms for developing next-generation optical devices, metamaterials, telecommunications, and asymmetric catalysts.
Collapse
Affiliation(s)
- Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Uichang Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Young Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
41
|
Butcha S, Assavapanumat S, Ittisanronnachai S, Lapeyre V, Wattanakit C, Kuhn A. Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nat Commun 2021; 12:1314. [PMID: 33637758 PMCID: PMC7910542 DOI: 10.1038/s41467-021-21603-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
The design of efficient chiral catalysts is of crucial importance since it allows generating enantiomerically pure compounds. Tremendous efforts have been made over the past decades regarding the development of materials with enantioselective properties for various potential applications ranging from sensing to catalysis and separation. Recently, chiral features have been generated in mesoporous metals. Although these monometallic matrices show interesting enantioselectivity, they suffer from rather low stability, constituting an important roadblock for applications. Here, a straightforward strategy to circumvent this limitation by using nanostructured platinum-iridium alloys is presented. These materials can be successfully encoded with chiral information by co-electrodeposition from Pt and Ir salts in the simultaneous presence of a chiral compound and a lyotropic liquid crystal as asymmetric template and mesoporogen, respectively. The alloys enable a remarkable discrimination between chiral compounds and greatly improved enantioselectivity when used for asymmetric electrosynthesis (>95 %ee), combined with high electrochemical stability.
Collapse
Affiliation(s)
- Sopon Butcha
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607, Pessac, France
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand
| | - Sunpet Assavapanumat
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand
| | - Somlak Ittisanronnachai
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand
| | - Veronique Lapeyre
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand.
| | - Alexander Kuhn
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, 33607, Pessac, France.
- School of Molecular Science and Engineering and School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210, Rayong, Thailand.
| |
Collapse
|
42
|
Novel chiral voltammetric sensor for tryptophan enantiomers based on 3-neomenthylindene as recognition element. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Niu X, Yang X, Li H, Liu J, Liu Z, Wang K. Application of chiral materials in electrochemical sensors. Mikrochim Acta 2020; 187:676. [DOI: 10.1007/s00604-020-04646-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 01/02/2023]
|
45
|
Ma Y, Shi L, Yue H, Gao X. Recognition at chiral interfaces: From molecules to cells. Colloids Surf B Biointerfaces 2020; 195:111268. [DOI: 10.1016/j.colsurfb.2020.111268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
|
46
|
Suttipat D, Butcha S, Assavapanumat S, Maihom T, Gupta B, Perro A, Sojic N, Kuhn A, Wattanakit C. Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36548-36557. [PMID: 32683858 DOI: 10.1021/acsami.0c09816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of surfaces with chiral features is a fascinating challenge for modern materials science, especially when they are used for chiral separation technologies. In this contribution, the design of hierarchically structured chiral macroporous zeolitic imidazolate framework-8 (ZIF-8) electrodes is presented. They are elaborated by an electrochemical deposition-dissolution technique based on the electrodeposition of metal through a colloidal crystal template, followed by controlled electrooxidation. This generates locally metal cations, which can interact with a chiral ligand present in the solution to form metal-organic frameworks (MOFs). The macroporous structure facilitates the access of the chiral recognition sites, located in the mesoporous MOF, and thus helps to overcome mass transport limitations. The efficiency of the designed functional materials for chiral adsorption and separation can be fine-tuned by applying an adjustable electric potential to the electrode surfaces. This hierarchical chiral ZIF-8 structure was deposited at the walls of a microfluidic device and used as a stationary phase for enantioselective separation. The potential-controlled interaction between the stationary phase and the chiral analytes allows baseline separation of two enantiomers. This opens up interesting perspectives for using hierarchically structured chiral MOFs as an efficient material for the selective adsorption and separation of chiral compounds.
Collapse
Affiliation(s)
- Duangkamon Suttipat
- School of Energy Science and Engineering, School of Molecular Science and Engineering, and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Sopon Butcha
- School of Energy Science and Engineering, School of Molecular Science and Engineering, and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac 33607, France
| | - Sunpet Assavapanumat
- School of Energy Science and Engineering, School of Molecular Science and Engineering, and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac 33607, France
| | - Thana Maihom
- Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Bhavana Gupta
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac 33607, France
| | - Adeline Perro
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac 33607, France
| | - Neso Sojic
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac 33607, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac 33607, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, School of Molecular Science and Engineering, and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
47
|
Chirality at the Nanoparticle Surface: Functionalization and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chiral molecules, such as amino acids and carbohydrates, are the building blocks of nature. As a consequence, most natural supramolecular structures, such as enzymes and receptors, are able to distinguish among different orientations in space of functional groups, and enantiomers of chiral drugs usually have different pharmacokinetic properties and physiological effects. In this regard, the ability to recognize a single enantiomer from a racemic mixture is of paramount importance. Alternatively, the capacity to synthetize preferentially one enantiomer over another through a catalytic process can eliminate (or at least simplify) the subsequent isolation of only one enantiomer. The advent of nanotechnology has led to noteworthy improvements in many fields, from material science to nanomedicine. Similarly, nanoparticles functionalized with chiral molecules have been exploited in several fields. In this review, we report the recent advances of the use of chiral nanoparticles grouped in four major areas, i.e., enantioselective recognition, asymmetric catalysis, biosensing, and biomedicine.
Collapse
|
48
|
Arnaboldi S, Gupta B, Benincori T, Bonetti G, Cirilli R, Kuhn A. Absolute Chiral Recognition with Hybrid Wireless Electrochemical Actuators. Anal Chem 2020; 92:10042-10047. [DOI: 10.1021/acs.analchem.0c01817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Serena Arnaboldi
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Bhavana Gupta
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Tiziana Benincori
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Giorgia Bonetti
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| |
Collapse
|
49
|
Li S, Sun M, Hao C, Qu A, Wu X, Xu L, Xu C, Kuang H. Chiral Cu
x
Co
y
S Nanoparticles under Magnetic Field and NIR Light to Eliminate Senescent Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| |
Collapse
|
50
|
Li S, Sun M, Hao C, Qu A, Wu X, Xu L, Xu C, Kuang H. Chiral Cu
x
Co
y
S Nanoparticles under Magnetic Field and NIR Light to Eliminate Senescent Cells. Angew Chem Int Ed Engl 2020; 59:13915-13922. [DOI: 10.1002/anie.202004575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/03/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Si Li
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Aihua Qu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Biointerface and Biodetection Jiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University JiangSu P. R. China
| |
Collapse
|