1
|
Zhong L, Zhu J, Chen J, Jin X, Liu L, Ji S, Luo J, Wang H. MGAT4EP promotes tumor progression and serves as a prognostic marker for breast cancer. Cancer Biol Ther 2025; 26:2475604. [PMID: 40069131 PMCID: PMC11901376 DOI: 10.1080/15384047.2025.2475604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer remains a global health challenge with varied prognoses despite treatment advancements. Therefore, this study explores the pseudogene MGAT4EP as a potential biomarker and therapeutic target in breast cancer. Using TCGA data and bioinformatics, MGAT4EP was identified as significantly overexpressed in breast cancer tissues and associated with poor prognosis. Multivariate Cox regression confirmed MGAT4EP as important prognostic factor. A clinical prediction model based on MGAT4EP expression showed high accuracy for 1-, 3-, and 5-year survival rates and was translated into a nomogram for clinical application. Functional studies revealed that silencing MGAT4EP via siRNA promoted apoptosis, inhibited migration and invasion in breast cancer cells. RNA-seq, GSEA, and GO analyses linked MGAT4EP to apoptosis and focal adhesion pathways. Notably, knock down of MGAT4EP significantly suppressed tumor growth and metastasis in xenograft and lung metastasis models. Taken together, these findings establish MGAT4EP as an attractive target for metastatic breast cancer and provide a potential a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianfeng Zhu
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jie Chen
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xuchu Jin
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liangquan Liu
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shufeng Ji
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Luo
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Wang
- School of Pharmacy, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Nummi P, Cajuso T, Norri T, Taira A, Kuisma H, Välimäki N, Lepistö A, Renkonen-Sinisalo L, Koskensalo S, Seppälä TT, Ristimäki A, Tahkola K, Mattila A, Böhm J, Mecklin JP, Siili E, Pasanen A, Heikinheimo O, Bützow R, Karhu A, Burns KH, Palin K, Aaltonen LA. Structural features of somatic and germline retrotransposition events in humans. Mob DNA 2025; 16:20. [PMID: 40264183 PMCID: PMC12016303 DOI: 10.1186/s13100-025-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Transposons are DNA sequences able to move or copy themselves to other genomic locations leading to insertional mutagenesis. Although transposon-derived sequences account for half of the human genome, most elements are no longer transposition competent. Moreover, transposons are normally repressed through epigenetic silencing in healthy adult tissues but become derepressed in several human cancers, with high activity detected in colorectal cancer. Their impact on non-malignant and malignant tissue as well as the differences between somatic and germline retrotransposition remain poorly understood. With new sequencing technologies, including long read sequencing, we can access intricacies of retrotransposition, such as insertion sequence details and nested repeats, that have been previously challenging to characterize. RESULTS In this study, we investigate somatic and germline retrotransposition by analyzing long read sequencing from 56 colorectal cancers and 112 uterine leiomyomas. We identified 1495 somatic insertions in colorectal samples, while striking lack of insertions was detected in uterine leiomyomas. Our findings highlight differences between somatic and germline events, such as transposon type distribution, insertion length, and target site preference. Leveraging long-read sequencing, we provide an in-depth analysis of the twin-priming phenomenon, detecting it across transposable element types that remain active in humans, including Alus. Additionally, we detect an abundance of germline transposons in repetitive DNA, along with a relationship between replication timing and insertion target site. CONCLUSIONS Our study reveals a stark contrast in somatic transposon activity between colorectal cancers and uterine leiomyomas, and highlights differences between somatic and germline transposition. This suggests potentially different conditions in malignant and non-malignant tissues, as well as in germline and somatic tissues, which could be involved in the transposition process. Long-read sequencing provided important insights into transposon behavior, allowing detailed examination of structural features such as twin priming and nested elements.
Collapse
Affiliation(s)
- Päivi Nummi
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Tatiana Cajuso
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tuukka Norri
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki, 00014, Finland
| | - Aurora Taira
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Heli Kuisma
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Faculty of Medicine and Health Technology, University of Tampere and TAYS Cancer Centre, Tampere, 33100, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, 33520, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki University, Helsinki, 00290, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Kyösti Tahkola
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Anne Mattila
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jan Böhm
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jukka-Pekka Mecklin
- Department of Science, Well Being Services County of Central Finland, Jyväskylä, 40620, Finland
- Department of Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Emma Siili
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Annukka Pasanen
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Ralf Bützow
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Auli Karhu
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland.
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland.
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| |
Collapse
|
3
|
Omole AD, Czuppon P. Maintenance of long-term transposable element activity through regulation by nonautonomous elements. Genetics 2025; 229:iyae209. [PMID: 39810601 DOI: 10.1093/genetics/iyae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times. However, previous modeling studies indicate that interactions between autonomous and nonautonomous elements usually result in the extinction of one type. Here, we study a stochastic model that allows for the stable coexistence of autonomous and nonautonomous retrotransposons. We determine the conditions for this coexistence and derive an analytical expression for the stationary distribution of their copy numbers, showing that nonautonomous elements regulate stochastic fluctuations and the number of autonomous elements in stationarity. We find that the stationary variances of each element can be expressed as a function of the average copy numbers and their covariance, enabling data comparison and model validation. These results suggest that continued transposition activity of transposable elements, regulated by nonautonomous elements, is a possible evolutionary outcome that could for example explain the long coevolutionary history of autonomous LINE1 and nonautonomous Alu element transposition in the human ancestry.
Collapse
Affiliation(s)
- Adekanmi Daniel Omole
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| |
Collapse
|
4
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
5
|
Mendez-Dorantes C, Zeng X, Karlow JA, Schofield P, Turner S, Kalinowski J, Denisko D, Lee EA, Burns KH, Zhang CZ. Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628481. [PMID: 39764018 PMCID: PMC11702581 DOI: 10.1101/2024.12.14.628481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1. We provide definitive evidence that L1 expression frequently and directly causes both local and long-range chromosomal rearrangements, small and large segmental copy-number alterations, and subclonal copy-number heterogeneity due to ongoing chromosomal instability. Mechanistically, all these alterations arise from DNA double-strand breaks (DSBs) generated by L1-encoded ORF2p. The processing of ORF2p-generated DSB ends prior to their ligation can produce diverse rearrangements of the target sequences. Ligation between DSB ends generated at distal loci can generate either stable chromosomes or unstable dicentric, acentric, or ring chromosomes that undergo subsequent evolution through breakage-fusion bridge cycles or DNA fragmentation. Together, these findings suggest L1 is a potent mutagenic force capable of driving genome evolution beyond simple insertions.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Xi Zeng
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PRC
| | - Jennifer A Karlow
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Phillip Schofield
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Serafina Turner
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jupiter Kalinowski
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Danielle Denisko
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
6
|
Kogan V, Molodtsov I, Fleyshman DI, Leontieva OV, Koman IE, Gudkov AV. The reconstruction of evolutionary dynamics of processed pseudogenes indicates deep silencing of "retrobiome" in naked mole rat. Proc Natl Acad Sci U S A 2024; 121:e2313581121. [PMID: 39467133 PMCID: PMC11551321 DOI: 10.1073/pnas.2313581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/02/2024] [Indexed: 10/30/2024] Open
Abstract
Approximately half of mammalian genomes are occupied by retrotransposons, highly repetitive interspersed genetic elements expanded through the mechanism of reverse transcription. The evolution of this "retrobiome" involved a series of explosive amplifications, presumably associated with high mutation rates, interspersed with periods of silencing. A by-product of retrotransposon activity is the formation of processed pseudogenes (PPGs)-intron-less, promoter-less DNA copies of messenger RNA (mRNA). We examined the proportion of PPGs with varying degrees of deviation from their ancestor mRNAs as an indicator of the intensity of retrotranspositions at different times in the past. Our analysis revealed a high proportion of "young'' (recently acquired) PPGs in the DNA of mice and rats, indicating significant retrobiome activity during the recent evolution of these species. The ongoing process of new PPG entries in mouse germ line DNA was confirmed by identifying diversity in PPG content within the single strain of mice, C57BL/6. In contrast, the highly abundant PPGs of the naked mole rat (NMR) exhibited substantial deviation from their mRNAs, with a near-complete lack of PPGs without mutations, indicative of the silencing of the retrobiome in the most recent evolutionary past, preceded by a period of high activity. This distinctive feature of the NMR genome was confirmed through the analysis of a broad range of mammalian species. The peculiar evolutionary dynamics of PPGs in the NMR, an organism with exceptional longevity and resistance to cancer, may reflect the role played by the retrobiome in aging and cancer.
Collapse
Affiliation(s)
- Valeria Kogan
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Ivan Molodtsov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Daria I. Fleyshman
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Olga V. Leontieva
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Igor E. Koman
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| |
Collapse
|
7
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
8
|
Cinar M, Martinez-Medina L, Puvvula P, Arakelyan A, Vardarajan B, Anthony N, Nagaraju G, Park D, Feng L, Sheff F, Mosunjac M, Saxe D, Flygare S, Alese O, Kaufman J, Lonial S, Sarmiento J, Lossos I, Vertino P, Lopez J, El-Rayes B, Bernal-Mizrachi L. Transposon DNA sequences facilitate the tissue-specific gene transfer of circulating tumor DNA between human cells. Nucleic Acids Res 2024; 52:7539-7555. [PMID: 38783375 PMCID: PMC11260451 DOI: 10.1093/nar/gkae427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The exchange of genes between cells is known to play an important physiological and pathological role in many organisms. We show that circulating tumor DNA (ctDNA) facilitates cell-specific gene transfer between human cancer cells and explain part of the mechanisms behind this phenomenon. As ctDNA migrates into the nucleus, genetic information is transferred. Cell targeting and ctDNA integration require ERVL, SINE or LINE DNA sequences. Chemically manufactured AluSp and MER11C sequences replicated multiple myeloma (MM) ctDNA cell targeting and integration. Additionally, we found that ctDNA may alter the treatment response of MM and pancreatic cancer models. This study shows that retrotransposon DNA sequences promote cancer gene transfer. However, because cell-free DNA has been detected in physiological and other pathological conditions, our findings have a broader impact than just cancer. Furthermore, the discovery that transposon DNA sequences mediate tissue-specific targeting will open up a new avenue for the delivery of genes and therapies.
Collapse
Affiliation(s)
- Munevver Cinar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | | | - Arsen Arakelyan
- Bioinformatics group, Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | - Neil Anthony
- Integrated Cellular Imaging Core, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ganji P Nagaraju
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongkyoo Park
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Lei Feng
- Kodikaz Therapeutic Solutions, Inc, New York, NY, USA
| | - Faith Sheff
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Marina Mosunjac
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Debra Saxe
- Pathology and Laboratory Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Steven Flygare
- Department of Computational Biology/ Genetics, The University of Utah, Salt Lake City, UT, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Jonathan L Kaufman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Juan M Sarmiento
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Izidore S Lossos
- Department of Medicine, Division of Hematology-Oncology and Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Paula M Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jose A Lopez
- Bloodworks Northwest Research Institute, Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
| | - Bassel El-Rayes
- Division of hematology and oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leon Bernal-Mizrachi
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
10
|
Shiraishi Y, Koya J, Chiba K, Okada A, Arai Y, Saito Y, Shibata T, Kataoka K. Precise characterization of somatic complex structural variations from tumor/control paired long-read sequencing data with nanomonsv. Nucleic Acids Res 2023; 51:e74. [PMID: 37336583 PMCID: PMC10415145 DOI: 10.1093/nar/gkad526] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
We present our novel software, nanomonsv, for detecting somatic structural variations (SVs) using tumor and matched control long-read sequencing data with a single-base resolution. The current version of nanomonsv includes two detection modules, Canonical SV module, and Single breakend SV module. Using tumor/control paired long-read sequencing data from three cancer and their matched lymphoblastoid lines, we demonstrate that Canonical SV module can identify somatic SVs that can be captured by short-read technologies with higher precision and recall than existing methods. In addition, we have developed a workflow to classify mobile element insertions while elucidating their in-depth properties, such as 5' truncations, internal inversions, as well as source sites for 3' transductions. Furthermore, Single breakend SV module enables the detection of complex SVs that can only be identified by long-reads, such as SVs involving highly-repetitive centromeric sequences, and LINE1- and virus-mediated rearrangements. In summary, our approaches applied to cancer long-read sequencing data can reveal various features of somatic SVs and will lead to a better understanding of mutational processes and functional consequences of somatic SVs.
Collapse
Affiliation(s)
- Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Hematology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Cecchi F, Rex K, Schmidt J, Vocke CD, Lee YH, Burkett S, Baker D, Damore MA, Coxon A, Burgess TL, Bottaro DP. Rilotumumab Resistance Acquired by Intracrine Hepatocyte Growth Factor Signaling. Cancers (Basel) 2023; 15:460. [PMID: 36672409 PMCID: PMC9857108 DOI: 10.3390/cancers15020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Drug resistance is a long-standing impediment to effective systemic cancer therapy and acquired drug resistance is a growing problem for molecularly-targeted therapeutics that otherwise have shown unprecedented successes in disease control. The hepatocyte growth factor (HGF)/Met receptor pathway signaling is frequently involved in cancer and has been a subject of targeted drug development for nearly 30 years. To anticipate and study specific resistance mechanisms associated with targeting this pathway, we engineered resistance to the HGF-neutralizing antibody rilotumumab in glioblastoma cells harboring autocrine HGF/Met signaling, a frequent abnormality of this brain cancer in humans. We found that rilotumumab resistance was acquired through an unusual mechanism comprising dramatic HGF overproduction and misfolding, endoplasmic reticulum (ER) stress-response signaling and redirected vesicular trafficking that effectively sequestered rilotumumab and misfolded HGF from native HGF and activated Met. Amplification of MET and HGF genes, with evidence of rapidly acquired intron-less, reverse-transcribed copies in DNA, was also observed. These changes enabled persistent Met pathway activation and improved cell survival under stress conditions. Point mutations in the HGF pathway or other complementary or downstream growth regulatory cascades that are frequently associated with targeted drug resistance in other prevalent cancer types were not observed. Although resistant cells were significantly more malignant, they retained sensitivity to Met kinase inhibition and acquired sensitivity to inhibition of ER stress signaling and cholesterol biosynthesis. Defining this mechanism reveals details of a rapidly acquired yet highly-orchestrated multisystem route of resistance to a selective molecularly-targeted agent and suggests strategies for early detection and effective intervention.
Collapse
Affiliation(s)
- Fabiola Cecchi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karen Rex
- Amgen, Inc., Thousand Oaks, CA 91320, USA
| | | | - Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young H. Lee
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Burkett
- Molecular Cytogenetics Core Facility, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | - Donald P. Bottaro
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Dong R, Cameron D, Bedo J, Papenfuss AT. svaRetro and svaNUMT: modular packages for annotating retrotransposed transcripts and nuclear integration of mitochondrial DNA in genome sequencing data. GIGABYTE 2022; 2022:gigabyte70. [PMID: 36824522 PMCID: PMC9694029 DOI: 10.46471/gigabyte.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Nuclear integration of mitochondrial genomes and retrocopied transcript insertion are biologically important but often-overlooked aspects of structural variant (SV) annotation. While tools for their detection exist, these typically rely on reanalysis of primary data using specialised detectors rather than leveraging calls from general purpose structural variant callers. Such reanalysis potentially leads to additional computational expense and does not take advantage of advances in general purpose structural variant calling. Here, we present svaRetro and svaNUMT; R packages that provide functions for annotating novel genomic events, such as nonreference retrocopied transcripts and nuclear integration of mitochondrial DNA. The packages were developed to work within the Bioconductor framework. We evaluate the performance of these packages to detect events using simulations and public benchmarking datasets, and annotate processed transcripts in a public structural variant database. svaRetro and svaNUMT provide modular, SV-caller agnostic tools for downstream annotation of structural variant calls.
Collapse
Affiliation(s)
- Ruining Dong
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, VIC 3010, Australia
| | - Daniel Cameron
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, VIC 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Justin Bedo
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- School of Computing and Information Systems, University of Melbourne, VIC 3010, Australia
| | - Anthony T. Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, VIC 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
13
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|
14
|
Nsengimana B, Khan FA, Awan UA, Wang D, Fang N, Wei W, Zhang W, Ji S. Pseudogenes and Liquid Phase Separation in Epigenetic Expression. Front Oncol 2022; 12:912282. [PMID: 35875144 PMCID: PMC9305658 DOI: 10.3389/fonc.2022.912282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudogenes have been considered as non-functional genes. However, peptides and long non-coding RNAs produced by pseudogenes are expressed in different tumors. Moreover, the dysregulation of pseudogenes is associated with cancer, and their expressions are higher in tumors compared to normal tissues. Recent studies show that pseudogenes can influence the liquid phase condensates formation. Liquid phase separation involves regulating different epigenetic stages, including transcription, chromatin organization, 3D DNA structure, splicing, and post-transcription modifications like m6A. Several membrane-less organelles, formed through the liquid phase separate, are also involved in the epigenetic regulation, and their defects are associated with cancer development. However, the association between pseudogenes and liquid phase separation remains unrevealed. The current study sought to investigate the relationship between pseudogenes and liquid phase separation in cancer development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Usman Ayub Awan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, Pakistan
| | - Dandan Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Na Fang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Wenqiang Wei, ; Weijuan Zhang, ; Shaoping Ji,
| |
Collapse
|
15
|
Cristiano L. The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes Dis 2022; 9:941-958. [PMID: 35685457 PMCID: PMC9170609 DOI: 10.1016/j.gendis.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Luigi Cristiano
- R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy
| |
Collapse
|
16
|
Cosenza MR, Rodriguez-Martin B, Korbel JO. Structural Variation in Cancer: Role, Prevalence, and Mechanisms. Annu Rev Genomics Hum Genet 2022; 23:123-152. [DOI: 10.1146/annurev-genom-120121-101149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic rearrangements resulting in genomic structural variation drive malignant phenotypes by altering the expression or function of cancer genes. Pan-cancer studies have revealed that structural variants (SVs) are the predominant class of driver mutation in most cancer types, but because they are difficult to discover, they remain understudied when compared with point mutations. This review provides an overview of the current knowledge of somatic SVs, discussing their primary roles, prevalence in different contexts, and mutational mechanisms. SVs arise throughout the life history of cancer, and 55% of driver mutations uncovered by the Pan-Cancer Analysis of Whole Genomes project represent SVs. Leveraging the convergence of cell biology and genomics, we propose a mechanistic classification of somatic SVs, from simple to highly complex DNA rearrangement classes. The actions of DNA repair and DNA replication processes together with mitotic errors result in a rich spectrum of SV formation processes, with cascading effects mediating extensive structural diversity after an initiating DNA lesion has formed. Thanks to new sequencing technologies, including the sequencing of single-cell genomes, open questions about the molecular triggers and the biomolecules involved in SV formation as well as their mutational rates can now be addressed. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | | | - Jan O. Korbel
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
18
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
19
|
Abrahamsson S, Eiengård F, Rohlin A, Dávila López M. PΨFinder: a practical tool for the identification and visualization of novel pseudogenes in DNA sequencing data. BMC Bioinformatics 2022; 23:59. [PMID: 35114952 PMCID: PMC8812246 DOI: 10.1186/s12859-022-04583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Processed pseudogenes (PΨgs) are disabled gene copies that are transcribed and may affect expression of paralogous genes. Moreover, their insertion in the genome can disrupt the structure or the regulatory region of a gene, affecting its expression level. These events have been identified as occurring mutations during cancer development, thus being able to identify PΨgs and their location will improve their impact on diagnostic testing, not only in cancer but also in inherited disorders. RESULTS We have implemented PΨFinder (P-psy-finder), a tool that identifies PΨgs, annotates known ones and predicts their insertion site(s) in the genome. The tool screens alignment files and provides user-friendly summary reports and visualizations. To demonstrate its applicability, we scanned 218 DNA samples from patients screened for hereditary colorectal cancer. We detected 423 PΨgs distributed in 96% of the samples, comprising 7 different parent genes. Among these, we confirmed the well-known insertion site of the SMAD4-PΨg within the last intron of the SCAI gene in one sample. While for the ubiquitous CBX3-PΨg, present in 82.6% of the samples, we found it reversed inserted in the second intron of the C15ORF57 gene. CONCLUSIONS PΨFinder is a tool that can automatically identify novel PΨgs from DNA sequencing data and determine their location in the genome with high sensitivity (95.92%). It generates high quality figures and tables that facilitate the interpretation of the results and can guide the experimental validation. PΨFinder is a complementary analysis to any mutational screening in the identification of disease-causing mutations within cancer and other diseases.
Collapse
Affiliation(s)
- Sanna Abrahamsson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 115, 405 30, Gothenburg, Sweden
| | - Frida Eiengård
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Unit of Genetic Analysis and Bioinformatics, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcela Dávila López
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 115, 405 30, Gothenburg, Sweden.
| |
Collapse
|
20
|
Wu C, Song W, Wang Z, Wang B. Functions of lncRNA DUXAP8 in non-small cell lung cancer. Mol Biol Rep 2022; 49:2531-2542. [PMID: 35031926 DOI: 10.1007/s11033-021-07066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) poses a serious threat to public health due to its significant morbidity and mortality rates. The processes of NSCLC formation and development are quite complex and involve numerous regulatory biomolecules. Long non-coding RNAs (lncRNAs) have attracted attention since they have been found to play critical roles in the tumorigenesis of various human malignancies. Recently, double homeobox A pseudogene 8 (DUXAP8) was identified as an oncogenic lncRNA that is overexpressed in different tumor types. In NSCLC, high expression of DUXAP8 is associated with poor prognosis in patients. The regulatory mechanism underlying the oncogenic effects of DUXAP8 can be divided into transcriptional level and post-transcriptional level. DUXAP8 promotes proliferation, epithelial-mesenchymal transition, and aerobic glycolysis in NSCLC cells. Moreover, DUXAP8 shows potential for the diagnosis and treatment of NSCLC. Herein, we review the molecular mechanisms underlying the DUXAP8-mediated phenotypes of NSCLC as well as its potential clinical applications.
Collapse
Affiliation(s)
- Cui Wu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Wu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Zhongnan Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| |
Collapse
|
21
|
Stasiak M, Kolenda T, Kozłowska-Masłoń J, Sobocińska J, Poter P, Guglas K, Paszkowska A, Bliźniak R, Teresiak A, Kazimierczak U, Lamperska K. The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules? Life (Basel) 2021; 11:life11121354. [PMID: 34947885 PMCID: PMC8705536 DOI: 10.3390/life11121354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudogenes were once considered as “junk DNA”, due to loss of their functions as a result of the accumulation of mutations, such as frameshift and presence of premature stop-codons and relocation of genes to inactive heterochromatin regions of the genome. Pseudogenes are divided into two large groups, processed and unprocessed, according to their primary structure and origin. Only 10% of all pseudogenes are transcribed into RNAs and participate in the regulation of parental gene expression at both transcriptional and translational levels through senseRNA (sRNA) and antisense RNA (asRNA). In this review, about 150 pseudogenes in the different types of cancers were analyzed. Part of these pseudogenes seem to be useful in molecular diagnostics and can be detected in various types of biological material including tissue as well as biological fluids (liquid biopsy) using different detection methods. The number of pseudogenes, as well as their function in the human genome, is still unknown. However, thanks to the development of various technologies and bioinformatic tools, it was revealed so far that pseudogenes are involved in the development and progression of certain diseases, especially in cancer.
Collapse
Affiliation(s)
- Maciej Stasiak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Tomasz Kolenda
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Correspondence: or (T.K.); or (K.L.)
| | - Joanna Kozłowska-Masłoń
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Joanna Sobocińska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Paulina Poter
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Greater Poland Cancer Center, Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland
| | - Kacper Guglas
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki and Wigury, 02-091 Warsaw, Poland
| | - Anna Paszkowska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Renata Bliźniak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Anna Teresiak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Katarzyna Lamperska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Correspondence: or (T.K.); or (K.L.)
| |
Collapse
|
22
|
Feliciello I, Procino A. mRNA vaccines: Why and how they should be modified. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2021. [DOI: 10.4081/jbr.2021.10072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has stimulated the production of different therapeutic approaches for the resolution of coronavirus infections. On one hand, nanobiomolecules have been proposed as bait material for viruses,1,2 on the other hand unconventional messenger RNA vaccines have been produced like SARS-CoV-2 mRNA vaccines (BioNTech/Pfizer BNT162b2 and Moderna mRNA-1273). [...]
Collapse
|
23
|
Wang A, Hai R. Noncoding RNAs Serve as the Deadliest Universal Regulators of all Cancers. Cancer Genomics Proteomics 2021; 18:43-52. [PMID: 33419895 DOI: 10.21873/cgp.20240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
Numerous cancer drivers have been identified, but they are specific to a given cancer type and condition; universal cancer drivers and universal cancer mechanisms still remain largely unclear. Here, we identified the deadliest universal drivers for all cancers via developing algorithms to analyze massive RNAseqs and clinical data from The Cancer Genome Atlas (TCGA). In general, noncoding RNAs primarily serve as the most important inducers and suppressors for all types of cancers. In particular, pseudogenes are primary inducers, and specifically the antisense RNA RP11-335K5.2 serves as the most universal cancerous driver, independently of the cancer type and condition. Therefore, noncoding RNAs, instead of proteins as conventionally thought, primarily drive cancer, which establishes a novel field for future cancer research and therapy.
Collapse
Affiliation(s)
- Anyou Wang
- The Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, U.S.A.;
| | - Rong Hai
- The Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA, U.S.A.,Department of Microbiology and Plant Pathology, University of California at Riverside, Riverside, CA, U.S.A
| |
Collapse
|
24
|
Pseudogenes: Four Decades of Discovery. Methods Mol Biol 2021. [PMID: 34165705 DOI: 10.1007/978-1-0716-1503-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
A pseudogene is defined as a genomic DNA sequence that looks like a mutated or truncated version of a known functional gene. Nearly four decades since their first discovery it has been estimated that between ~12,000 and ~20,000 pseudogenes exist in the human genome. Early efforts to characterize functions for pseudogenes were unsuccessful, thus they were considered functionless relics of evolutionary selection, junk DNA or genetic fossils. Remarkably, an increasing number of pseudogenes have been reported to be expressed as RNA transcripts above and beyond levels considered accidental or spurious transcription. There is emerging evidence that some expressed pseudogene transcripts have biological functions and should be defined as a subclass of functional long noncoding RNAs (lncRNA). In this introductory chapter, I briefly summarize the history and the current knowledge of pseudogenes, and highlight the emerging functions of some pseudogenes in human biology and disease. This second iteration of Pseudogenes in Methods in Molecular Biology highlights new methodological approaches to investigate this intriguing family of lncRNAs and the extent of their biological function.
Collapse
|
25
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|
26
|
Mathsyaraja H, Catchpole J, Freie B, Eastwood E, Babaeva E, Geuenich M, Cheng PF, Ayers J, Yu M, Wu N, Moorthi S, Poudel KR, Koehne A, Grady W, Houghton AM, Berger AH, Shiio Y, MacPherson D, Eisenman RN. Loss of MGA repression mediated by an atypical polycomb complex promotes tumor progression and invasiveness. eLife 2021; 10:e64212. [PMID: 34236315 PMCID: PMC8266391 DOI: 10.7554/elife.64212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
MGA, a transcription factor and member of the MYC network, is mutated or deleted in a broad spectrum of malignancies. As a critical test of a tumor suppressive role, we inactivated Mga in two mouse models of non-small cell lung cancer using a CRISPR-based approach. MGA loss significantly accelerated tumor growth in both models and led to de-repression of non-canonical Polycomb ncPRC1.6 targets, including genes involved in metastasis and meiosis. Moreover, MGA deletion in human lung adenocarcinoma lines augmented invasive capabilities. We further show that MGA-MAX, E2F6, and L3MBTL2 co-occupy thousands of promoters and that MGA stabilizes these ncPRC1.6 subunits. Lastly, we report that MGA loss also induces a pro-growth effect in human colon organoids. Our studies establish MGA as a bona fide tumor suppressor in vivo and suggest a tumor suppressive mechanism in adenocarcinomas resulting from widespread transcriptional attenuation of MYC and E2F target genes mediated by MGA-MAX associated with a non-canonical Polycomb complex.
Collapse
Affiliation(s)
- Haritha Mathsyaraja
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Jonathen Catchpole
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Emily Eastwood
- Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Ekaterina Babaeva
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Michael Geuenich
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Pei Feng Cheng
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Jessica Ayers
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nan Wu
- Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sitapriya Moorthi
- Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Kumud R Poudel
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Amanda Koehne
- Comparative Pathology, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - William Grady
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Medicine, University of Washington School of MedicineSeattleUnited States
| | - A McGarry Houghton
- Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Alice H Berger
- Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Yuzuru Shiio
- Greehey Children's Cancer Research Institute, The University of Texas Health Science CenterSan AntonioUnited States
| | - David MacPherson
- Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
27
|
Santoliquido BM, Frenquelli M, Contadini C, Bestetti S, Gaviraghi M, Barbieri E, De Antoni A, Albarello L, Amabile A, Gardini A, Lombardo A, Doglioni C, Provero P, Soddu S, Cittaro D, Tonon G. Deletion of a pseudogene within a fragile site triggers the oncogenic expression of the mitotic CCSER1 gene. Life Sci Alliance 2021; 4:4/8/e202101019. [PMID: 34187875 PMCID: PMC8321653 DOI: 10.26508/lsa.202101019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
The oncogenic role of common fragile sites (CFS), focal and pervasive gaps in the cancer genome arising from replicative stress, remains controversial. Exploiting the TCGA dataset, we found that in most CFS the genes residing within the associated focal deletions are down-regulated, including proteins involved in tumour immune recognition. In a subset of CFS, however, the residing genes are surprisingly overexpressed. Within the most frequent CFS in this group, FRA4F, which is deleted in up to 18% of cancer cases and harbours the CCSER1 gene, we identified a region which includes an intronic, antisense pseudogene, TMSB4XP8. TMSB4XP8 focal ablation or transcriptional silencing elicits the overexpression of CCSER1, through a cis-acting mechanism. CCSER1 overexpression increases proliferation and triggers centrosome amplifications, multinuclearity, and aberrant mitoses. Accordingly, FRA4F is associated in patient samples to mitotic genes deregulation and genomic instability. As a result, cells overexpressing CCSER1 become sensitive to the treatment with aurora kinase inhibitors. Our findings point to a novel tumourigenic mechanism where focal deletions increase the expression of a new class of "dormant" oncogenes.
Collapse
Affiliation(s)
- Benedetta M Santoliquido
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Contadini
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Bestetti
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, Philadelphia, PA, USA
| | - Anna De Antoni
- DNA Metabolism Laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Amabile
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, Philadelphia, PA, USA
| | - Angelo Lombardo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy.,Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Provero
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Neurosciences "Rita Levi Montalcini," University of Torino, Turin, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Davide Cittaro
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy .,Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
28
|
Liu J. Giant cells: Linking McClintock's heredity to early embryogenesis and tumor origin throughout millennia of evolution on Earth. Semin Cancer Biol 2021; 81:176-192. [PMID: 34116161 DOI: 10.1016/j.semcancer.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
The "life code" theory postulates that egg cells, which are giant, are the first cells in reproduction and that damaged or aged giant somatic cells are the first cells in tumorigenesis. However, the hereditary basis for giant cells remains undefined. Here I propose that stress-induced genomic reorganization proposed by Nobel Laureate Barbara McClintock may represent the underlying heredity for giant cells, referred to as McClintock's heredity. Increase in cell size may serve as a response to environmental stress via switching proliferative mitosis to intranuclear replication for reproduction. Intranuclear replication activates McClintock's heredity to reset the genome following fertilization for reproduction or restructures the somatic genome for neoplastic transformation via formation of polyploid giant cancer cells (PGCCs). The genome-based McClintock heredity functions together with gene-based Mendel's heredity to regulate the genomic stability at two different stages of life cycle or tumorigenesis. Thus, giant cells link McClintock's heredity to both early embryogenesis and tumor origin. Cycling change in cell size together with ploidy number switch may represent the most fundamental mechanism on how both germ and soma for coping with environmental stresses for the survival across the tree of life which evolved over millions of years on Earth.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
29
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
30
|
Feng X, Li H. Higher Rates of Processed Pseudogene Acquisition in Humans and Three Great Apes Revealed by Long-Read Assemblies. Mol Biol Evol 2021; 38:2958-2966. [PMID: 33681998 DOI: 10.1093/molbev/msab062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
LINE-1-mediated retrotransposition of protein-coding mRNAs is an active process in modern humans for both germline and somatic genomes. Prior works that surveyed human data mostly relied on detecting discordant mappings of paired-end short reads, or exon junctions contained in short reads. Moreover, there have been few genome-wide comparisons between gene retrocopies in great apes and humans. In this study, we introduced a more sensitive and accurate method to identify processed pseudogenes. Our method utilizes long-read assemblies, and more importantly, is able to provide full-length retrocopy sequences as well as flanking regions which are missed by short-read based methods. From 22 human individuals, we pinpointed 40 processed pseudogenes that are not present in the human reference genome GRCh38 and identified 17 pseudogenes that are in GRCh38 but absent from some input individuals. This represents a significantly higher discovery rate than previous reports (39 pseudogenes not in the reference genome out of 939 individuals). We also provided an overview of lineage-specific retrocopies in chimpanzee, gorilla, and orangutan genomes.
Collapse
Affiliation(s)
- Xiaowen Feng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Abstract
Competing endogenous RNAs (ceRNAs) containing microRNA response elements can competitively interact with microRNA via miRNA response elements, which can combine non-coding RNAs with protein-coding RNAs through complex ceRNA networks. CeRNAs include non-coding RNAs (long non-coding RNAs, circular RNAs, and transcribed pseudogenes) and protein-coding RNAs (mRNAs). Molecular interactions in ceRNA networks can coordinate many biological processes; however, they may also lead to ceRNA network imbalance and thus contribute to cancer occurrence when disturbed. Recent studies indicate that many dysregulated RNAs derived from lung cancer may function as ceRNAs to regulate multitudinous biological functions for lung cancer, including tumor cell proliferation, apoptosis, growth, invasion, migration, and metastasis. This study therefore reviewed the research progress in the field of non-coding and protein-coding RNAs as ceRNAs in lung cancer, and highlighted validated ceRNAs involved in biological lung cancer functions. Furthermore, the roles of ceRNAs as novel prognostic and diagnostic biomarkers were also discussed. Interpreting the involvement of ceRNAs networks in lung cancer will provide new insight into cancer pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Meilian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
32
|
Qi Y, Wang X, Li W, Chen D, Meng H, An S. Pseudogenes in Cardiovascular Disease. Front Mol Biosci 2021; 7:622540. [PMID: 33644114 PMCID: PMC7902774 DOI: 10.3389/fmolb.2020.622540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular disease is the main disease that affects human life span. In recent years, the disease has been increasingly addressed at the molecular levels, for example, pseudogenes are now known to be involved in the pathogenesis and development of cardiovascular diseases. Pseudogenes are non-coding homologs of protein-coding genes and were once called “junk gene.” Since they are highly homologous to their functional parental genes, it is somewhat difficult to distinguish them. With the development of sequencing technology and bioinformatics, pseudogenes have become readily identifiable. Recent studies indicate that pseudogenes are closely related to cardiovascular diseases. This review provides an overview of pseudogenes and their roles in the pathogenesis of cardiovascular diseases. This new knowledge adds to our understanding of cardiovascular disease at the molecular level and will help develop new biomarkers and therapeutic approaches designed to prevent and treat the disease.
Collapse
Affiliation(s)
- Yanyan Qi
- Department of Cardiology, Anesthesiology and Emergency Medicine, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Songtao An
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Cancer, Retrogenes, and Evolution. Life (Basel) 2021; 11:life11010072. [PMID: 33478113 PMCID: PMC7835786 DOI: 10.3390/life11010072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the knowledge about retrogenes in the context of cancer and evolution. The retroposition, in which the processed mRNA from parental genes undergoes reverse transcription and the resulting cDNA is integrated back into the genome, results in additional copies of existing genes. Despite the initial misconception, retroposition-derived copies can become functional, and due to their role in the molecular evolution of genomes, they have been named the “seeds of evolution”. It is convincing that retrogenes, as important elements involved in the evolution of species, also take part in the evolution of neoplastic tumors at the cell and species levels. The occurrence of specific “resistance mechanisms” to neoplastic transformation in some species has been noted. This phenomenon has been related to additional gene copies, including retrogenes. In addition, the role of retrogenes in the evolution of tumors has been described. Retrogene expression correlates with the occurrence of specific cancer subtypes, their stages, and their response to therapy. Phylogenetic insights into retrogenes show that most cancer-related retrocopies arose in the lineage of primates, and the number of identified cancer-related retrogenes demonstrates that these duplicates are quite important players in human carcinogenesis.
Collapse
|
34
|
Bok I, Karreth FA. Strategies to Study the Functions of Pseudogenes in Mouse Models of Cancer. Methods Mol Biol 2021; 2324:287-304. [PMID: 34165722 DOI: 10.1007/978-1-0716-1503-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aberrant expression of pseudogenes has been observed in many cancer types. Deregulated pseudogenes engage in a multitude of biological processes at the DNA, RNA, and protein levels and eventually facilitate disease progression. To investigate pseudogene functions in cancer, cell lines and cell line transplantation models have been widely used. However, cancer biology is best studied in the context of an intact organism. Here, we present various strategies to investigate pseudogenes in genetically engineered mouse models and discuss advantages and disadvantages of the different approaches.
Collapse
Affiliation(s)
- Ilah Bok
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
35
|
Abstract
Pseudogenes are commonly labeled as "junk DNA" given their perceived nonfunctional status. However, the advent of large-scale genomics projects prompted a revisit of pseudogene biology, highlighting their key functional and regulatory roles in numerous diseases, including cancers. Integrative analyses of cancer data have shown that pseudogenes can be transcribed and even translated, and that pseudogenic DNA, RNA, and proteins can interfere with the activity and function of key protein coding genes, acting as regulators of oncogenes and tumor suppressors. Capitalizing on the available clinical research, we are able to get an insight into the spread and variety of pseudogene biomarker and therapeutic potential. In this chapter, we describe pseudogenes that fulfill their role as diagnostic or prognostic biomarkers, both as unique elements and in collaboration with other genes or pseudogenes. We also report that the majority of prognostic pseudogenes are overexpressed and exert an oncogenic role in colorectal, liver, lung, and gastric cancers. Finally, we highlight a number of pseudogenes that can establish future therapeutic avenues.
Collapse
|
36
|
Kaeser G, Chun J. Brain cell somatic gene recombination and its phylogenetic foundations. J Biol Chem 2020; 295:12786-12795. [PMID: 32699111 PMCID: PMC7476723 DOI: 10.1074/jbc.rev120.009192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
A new form of somatic gene recombination (SGR) has been identified in the human brain that affects the Alzheimer's disease gene, amyloid precursor protein (APP). SGR occurs when a gene sequence is cut and recombined within a single cell's genomic DNA, generally independent of DNA replication and the cell cycle. The newly identified brain SGR produces genomic complementary DNAs (gencDNAs) lacking introns, which integrate into locations distinct from germline loci. This brief review will present an overview of likely related recombination mechanisms and genomic cDNA-like sequences that implicate evolutionary origins for brain SGR. Similarities and differences exist between brain SGR and VDJ recombination in the immune system, the first identified SGR form that now has a well-defined enzymatic machinery. Both require gene transcription, but brain SGR uses an RNA intermediate and reverse transcriptase (RT) activity, which are characteristics shared with endogenous retrotransposons. The identified gencDNAs have similarities to other cDNA-like sequences existing throughout phylogeny, including intron-less genes and inactive germline processed pseudogenes, with likely overlapping biosynthetic processes. gencDNAs arise somatically in an individual to produce multiple copies; can be functional; appear most frequently within postmitotic cells; have diverse sequences; change with age; and can change with disease state. Normally occurring brain SGR may represent a mechanism for gene optimization and long-term cellular memory, whereas its dysregulation could underlie multiple brain disorders and, potentially, other diseases like cancer. The involvement of RT activity implicates already Food and Drug Administration-approved RT inhibitors as possible near-term interventions for managing SGR-associated diseases and suggest next-generation therapeutics targeting SGR elements.
Collapse
Affiliation(s)
- Gwendolyn Kaeser
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jerold Chun
- Degenerative Disease Program at the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
37
|
APP gene copy number changes reflect exogenous contamination. Nature 2020; 584:E20-E28. [PMID: 32814883 DOI: 10.1038/s41586-020-2522-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
|
38
|
Alves LQ, Ruivo R, Fonseca MM, Lopes-Marques M, Ribeiro P, Castro L. PseudoChecker: an integrated online platform for gene inactivation inference. Nucleic Acids Res 2020; 48:W321-W331. [PMID: 32449938 PMCID: PMC7319564 DOI: 10.1093/nar/gkaa408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/21/2023] Open
Abstract
The rapid expansion of high-quality genome assemblies, exemplified by ongoing initiatives such as the Genome-10K and i5k, demands novel automated methods to approach comparative genomics. Of these, the study of inactivating mutations in the coding region of genes, or pseudogenization, as a source of evolutionary novelty is mostly overlooked. Thus, to address such evolutionary/genomic events, a systematic, accurate and computationally automated approach is required. Here, we present PseudoChecker, the first integrated online platform for gene inactivation inference. Unlike the few existing methods, our comparative genomics-based approach displays full automation, a built-in graphical user interface and a novel index, PseudoIndex, for an empirical evaluation of the gene coding status. As a multi-platform online service, PseudoChecker simplifies access and usability, allowing a fast identification of disruptive mutations. An analysis of 30 genes previously reported to be eroded in mammals, and 30 viable genes from the same lineages, demonstrated that PseudoChecker was able to correctly infer 97% of loss events and 95% of functional genes, confirming its reliability. PseudoChecker is freely available, without login required, at http://pseudochecker.ciimar.up.pt.
Collapse
Affiliation(s)
- Luís Q Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Miguel M Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Pedro Ribeiro
- CRACS & INESC-TEC Department of Computer Science, FCUP, Porto, 4169-007, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
- Department of Biology, FCUP, Porto, 4169-007, Portugal
| |
Collapse
|
39
|
Burns KH. Our Conflict with Transposable Elements and Its Implications for Human Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:51-70. [PMID: 31977294 DOI: 10.1146/annurev-pathmechdis-012419-032633] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our genome is a historic record of successive invasions of mobile genetic elements. Like other eukaryotes, we have evolved mechanisms to limit their propagation and minimize the functional impact of new insertions. Although these mechanisms are vitally important, they are imperfect, and a handful of retroelement families remain active in modern humans. This review introduces the intrinsic functions of transposons, the tactics employed in their restraint, and the relevance of this conflict to human pathology. The most straightforward examples of disease-causing transposable elements are germline insertions that disrupt a gene and result in a monogenic disease allele. More enigmatic are the abnormal patterns of transposable element expression in disease states. Changes in transposon regulation and cellular responses to their expression have implicated these sequences in diseases as diverse as cancer, autoimmunity, and neurodegeneration. Distinguishing their epiphenomenal from their pathogenic effects may provide wholly new perspectives on our understanding of disease.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
40
|
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, Santamarina M, Ju YS, Temes J, Garcia-Souto D, Detering H, Li Y, Rodriguez-Castro J, Dueso-Barroso A, Bruzos AL, Dentro SC, Blanco MG, Contino G, Ardeljan D, Tojo M, Roberts ND, Zumalave S, Edwards PA, Weischenfeldt J, Puiggròs M, Chong Z, Chen K, Lee EA, Wala JA, Raine KM, Butler A, Waszak SM, Navarro FCP, Schumacher SE, Monlong J, Maura F, Bolli N, Bourque G, Gerstein M, Park PJ, Wedge DC, Beroukhim R, Torrents D, Korbel JO, Martincorena I, Fitzgerald RC, Van Loo P, Kazazian HH, Burns KH, Campbell PJ, Tubio JMC. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020; 52:306-319. [PMID: 32024998 PMCID: PMC7058536 DOI: 10.1038/s41588-019-0562-0] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Martin
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva G Alvarez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jorge Zamora
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jonas Demeulemeester
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Martin Santamarina
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Javier Temes
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Harald Detering
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Galicia Sur Health Research Institute, Vigo, Spain
| | - Yilong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dueso-Barroso
- Faculty of Science and Technology, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Alicia L Bruzos
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Stefan C Dentro
- The Francis Crick Institute, London, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford Big Data Institute, University of Oxford, Oxford, UK
| | - Miguel G Blanco
- DNA Repair and Genome Integrity, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gianmarco Contino
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Daniel Ardeljan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Marta Tojo
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Nicola D Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sonia Zumalave
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paul A Edwards
- University of Cambridge, Cambridge, UK
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joachim Weischenfeldt
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Finsen Laboratory and Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Zechen Chong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genetics and Informatics Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, USA
| | - Ken Chen
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremiah A Wala
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keiran M Raine
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Adam Butler
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Fabio C P Navarro
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Steven E Schumacher
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Francesco Maura
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Niccolo Bolli
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Guillaume Bourque
- Canadian Center for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - David C Wedge
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Rameen Beroukhim
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Torrents
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Peter Van Loo
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Jose M C Tubio
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain.
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
41
|
Aaltonen LA, Abascal F, Abeshouse A, Aburatani H, Adams DJ, Agrawal N, Ahn KS, Ahn SM, Aikata H, Akbani R, Akdemir KC, Al-Ahmadie H, Al-Sedairy ST, Al-Shahrour F, Alawi M, Albert M, Aldape K, Alexandrov LB, Ally A, Alsop K, Alvarez EG, Amary F, Amin SB, Aminou B, Ammerpohl O, Anderson MJ, Ang Y, Antonello D, Anur P, Aparicio S, Appelbaum EL, Arai Y, Aretz A, Arihiro K, Ariizumi SI, Armenia J, Arnould L, Asa S, Assenov Y, Atwal G, Aukema S, Auman JT, Aure MRR, Awadalla P, Aymerich M, Bader GD, Baez-Ortega A, Bailey MH, Bailey PJ, Balasundaram M, Balu S, Bandopadhayay P, Banks RE, Barbi S, Barbour AP, Barenboim J, Barnholtz-Sloan J, Barr H, Barrera E, Bartlett J, Bartolome J, Bassi C, Bathe OF, Baumhoer D, Bavi P, Baylin SB, Bazant W, Beardsmore D, Beck TA, Behjati S, Behren A, Niu B, Bell C, Beltran S, Benz C, Berchuck A, Bergmann AK, Bergstrom EN, Berman BP, Berney DM, Bernhart SH, Beroukhim R, Berrios M, Bersani S, Bertl J, Betancourt M, Bhandari V, Bhosle SG, Biankin AV, Bieg M, Bigner D, Binder H, Birney E, Birrer M, Biswas NK, Bjerkehagen B, Bodenheimer T, Boice L, Bonizzato G, De Bono JS, et alAaltonen LA, Abascal F, Abeshouse A, Aburatani H, Adams DJ, Agrawal N, Ahn KS, Ahn SM, Aikata H, Akbani R, Akdemir KC, Al-Ahmadie H, Al-Sedairy ST, Al-Shahrour F, Alawi M, Albert M, Aldape K, Alexandrov LB, Ally A, Alsop K, Alvarez EG, Amary F, Amin SB, Aminou B, Ammerpohl O, Anderson MJ, Ang Y, Antonello D, Anur P, Aparicio S, Appelbaum EL, Arai Y, Aretz A, Arihiro K, Ariizumi SI, Armenia J, Arnould L, Asa S, Assenov Y, Atwal G, Aukema S, Auman JT, Aure MRR, Awadalla P, Aymerich M, Bader GD, Baez-Ortega A, Bailey MH, Bailey PJ, Balasundaram M, Balu S, Bandopadhayay P, Banks RE, Barbi S, Barbour AP, Barenboim J, Barnholtz-Sloan J, Barr H, Barrera E, Bartlett J, Bartolome J, Bassi C, Bathe OF, Baumhoer D, Bavi P, Baylin SB, Bazant W, Beardsmore D, Beck TA, Behjati S, Behren A, Niu B, Bell C, Beltran S, Benz C, Berchuck A, Bergmann AK, Bergstrom EN, Berman BP, Berney DM, Bernhart SH, Beroukhim R, Berrios M, Bersani S, Bertl J, Betancourt M, Bhandari V, Bhosle SG, Biankin AV, Bieg M, Bigner D, Binder H, Birney E, Birrer M, Biswas NK, Bjerkehagen B, Bodenheimer T, Boice L, Bonizzato G, De Bono JS, Boot A, Bootwalla MS, Borg A, Borkhardt A, Boroevich KA, Borozan I, Borst C, Bosenberg M, Bosio M, Boultwood J, Bourque G, Boutros PC, Bova GS, Bowen DT, Bowlby R, Bowtell DDL, Boyault S, Boyce R, Boyd J, Brazma A, Brennan P, Brewer DS, Brinkman AB, Bristow RG, Broaddus RR, Brock JE, Brock M, Broeks A, Brooks AN, Brooks D, Brors B, Brunak S, Bruxner TJC, Bruzos AL, Buchanan A, Buchhalter I, Buchholz C, Bullman S, Burke H, Burkhardt B, Burns KH, Busanovich J, Bustamante CD, Butler AP, Butte AJ, Byrne NJ, Børresen-Dale AL, Caesar-Johnson SJ, Cafferkey A, Cahill D, Calabrese C, Caldas C, Calvo F, Camacho N, Campbell PJ, Campo E, Cantù C, Cao S, Carey TE, Carlevaro-Fita J, Carlsen R, Cataldo I, Cazzola M, Cebon J, Cerfolio R, Chadwick DE, Chakravarty D, Chalmers D, Chan CWY, Chan K, Chan-Seng-Yue M, Chandan VS, Chang DK, Chanock SJ, Chantrill LA, Chateigner A, Chatterjee N, Chayama K, Chen HW, Chen J, Chen K, Chen Y, Chen Z, Cherniack AD, Chien J, Chiew YE, Chin SF, Cho J, Cho S, Choi JK, Choi W, Chomienne C, Chong Z, Choo SP, Chou A, Christ AN, Christie EL, Chuah E, Cibulskis C, Cibulskis K, Cingarlini S, Clapham P, Claviez A, Cleary S, Cloonan N, Cmero M, Collins CC, Connor AA, Cooke SL, Cooper CS, Cope L, Corbo V, Cordes MG, Cordner SM, Cortés-Ciriano I, Covington K, Cowin PA, Craft B, Craft D, Creighton CJ, Cun Y, Curley E, Cutcutache I, Czajka K, Czerniak B, Dagg RA, Danilova L, Davi MV, Davidson NR, Davies H, Davis IJ, Davis-Dusenbery BN, Dawson KJ, De La Vega FM, De Paoli-Iseppi R, Defreitas T, Tos APD, Delaneau O, Demchok JA, Demeulemeester J, Demidov GM, Demircioğlu D, Dennis NM, Denroche RE, Dentro SC, Desai N, Deshpande V, Deshwar AG, Desmedt C, Deu-Pons J, Dhalla N, Dhani NC, Dhingra P, Dhir R, DiBiase A, Diamanti K, Ding L, Ding S, Dinh HQ, Dirix L, Doddapaneni H, Donmez N, Dow MT, Drapkin R, Drechsel O, Drews RM, Serge S, Dudderidge T, Dueso-Barroso A, Dunford AJ, Dunn M, Dursi LJ, Duthie FR, Dutton-Regester K, Eagles J, Easton DF, Edmonds S, Edwards PA, Edwards SE, Eeles RA, Ehinger A, Eils J, Eils R, El-Naggar A, Eldridge M, Ellrott K, Erkek S, Escaramis G, Espiritu SMG, Estivill X, Etemadmoghadam D, Eyfjord JE, Faltas BM, Fan D, Fan Y, Faquin WC, Farcas C, Fassan M, Fatima A, Favero F, Fayzullaev N, Felau I, Fereday S, Ferguson ML, Ferretti V, Feuerbach L, Field MA, Fink JL, Finocchiaro G, Fisher C, Fittall MW, Fitzgerald A, Fitzgerald RC, Flanagan AM, Fleshner NE, Flicek P, Foekens JA, Fong KM, Fonseca NA, Foster CS, Fox NS, Fraser M, Frazer S, Frenkel-Morgenstern M, Friedman W, Frigola J, Fronick CC, Fujimoto A, Fujita M, Fukayama M, Fulton LA, Fulton RS, Furuta M, Futreal PA, Füllgrabe A, Gabriel SB, Gallinger S, Gambacorti-Passerini C, Gao J, Gao S, Garraway L, Garred Ø, Garrison E, Garsed DW, Gehlenborg N, Gelpi JLL, George J, Gerhard DS, Gerhauser C, Gershenwald JE, Gerstein M, Gerstung M, Getz G, Ghori M, Ghossein R, Giama NH, Gibbs RA, Gibson B, Gill AJ, Gill P, Giri DD, Glodzik D, Gnanapragasam VJ, Goebler ME, Goldman MJ, Gomez C, Gonzalez S, Gonzalez-Perez A, Gordenin DA, Gossage J, Gotoh K, Govindan R, Grabau D, Graham JS, Grant RC, Green AR, Green E, Greger L, Grehan N, Grimaldi S, Grimmond SM, Grossman RL, Grundhoff A, Gundem G, Guo Q, Gupta M, Gupta S, Gut IG, Gut M, Göke J, Ha G, Haake A, Haan D, Haas S, Haase K, Haber JE, Habermann N, Hach F, Haider S, Hama N, Hamdy FC, Hamilton A, Hamilton MP, Han L, Hanna GB, Hansmann M, Haradhvala NJ, Harismendy O, Harliwong I, Harmanci AO, Harrington E, Hasegawa T, Haussler D, Hawkins S, Hayami S, Hayashi S, Hayes DN, Hayes SJ, Hayward NK, Hazell S, He Y, Heath AP, Heath SC, Hedley D, Hegde AM, Heiman DI, Heinold MC, Heins Z, Heisler LE, Hellstrom-Lindberg E, Helmy M, Heo SG, Hepperla AJ, Heredia-Genestar JM, Herrmann C, Hersey P, Hess JM, Hilmarsdottir H, Hinton J, Hirano S, Hiraoka N, Hoadley KA, Hobolth A, Hodzic E, Hoell JI, Hoffmann S, Hofmann O, Holbrook A, Holik AZ, Hollingsworth MA, Holmes O, Holt RA, Hong C, Hong EP, Hong JH, Hooijer GK, Hornshøj H, Hosoda F, Hou Y, Hovestadt V, Howat W, Hoyle AP, Hruban RH, Hu J, Hu T, Hua X, Huang KL, Huang M, Huang MN, Huang V, Huang Y, Huber W, Hudson TJ, Hummel M, Hung JA, Huntsman D, Hupp TR, Huse J, Huska MR, Hutter B, Hutter CM, Hübschmann D, Iacobuzio-Donahue CA, Imbusch CD, Imielinski M, Imoto S, Isaacs WB, Isaev K, Ishikawa S, Iskar M, Islam SMA, Ittmann M, Ivkovic S, Izarzugaza JMG, Jacquemier J, Jakrot V, Jamieson NB, Jang GH, Jang SJ, Jayaseelan JC, Jayasinghe R, Jefferys SR, Jegalian K, Jennings JL, Jeon SH, Jerman L, Ji Y, Jiao W, Johansson PA, Johns AL, Johns J, Johnson R, Johnson TA, Jolly C, Joly Y, Jonasson JG, Jones CD, Jones DR, Jones DTW, Jones N, Jones SJM, Jonkers J, Ju YS, Juhl H, Jung J, Juul M, Juul RI, Juul S, Jäger N, Kabbe R, Kahles A, Kahraman A, Kaiser VB, Kakavand H, Kalimuthu S, von Kalle C, Kang KJ, Karaszi K, Karlan B, Karlić R, Karsch D, Kasaian K, Kassahn KS, Katai H, Kato M, Katoh H, Kawakami Y, Kay JD, Kazakoff SH, Kazanov MD, Keays M, Kebebew E, Kefford RF, Kellis M, Kench JG, Kennedy CJ, Kerssemakers JNA, Khoo D, Khoo V, Khuntikeo N, Khurana E, Kilpinen H, Kim HK, Kim HL, Kim HY, Kim H, Kim J, Kim J, Kim JK, Kim Y, King TA, Klapper W, Kleinheinz K, Klimczak LJ, Knappskog S, Kneba M, Knoppers BM, Koh Y, Komorowski J, Komura D, Komura M, Kong G, Kool M, Korbel JO, Korchina V, Korshunov A, Koscher M, Koster R, Kote-Jarai Z, Koures A, Kovacevic M, Kremeyer B, Kretzmer H, Kreuz M, Krishnamurthy S, Kube D, Kumar K, Kumar P, Kumar S, Kumar Y, Kundra R, Kübler K, Küppers R, Lagergren J, Lai PH, Laird PW, Lakhani SR, Lalansingh CM, Lalonde E, Lamaze FC, Lambert A, Lander E, Landgraf P, Landoni L, Langerød A, Lanzós A, Larsimont D, Larsson E, Lathrop M, Lau LMS, Lawerenz C, Lawlor RT, Lawrence MS, Lazar AJ, Lazic AM, Le X, Lee D, Lee D, Lee EA, Lee HJ, Lee JJK, Lee JY, Lee J, Lee MTM, Lee-Six H, Lehmann KV, Lehrach H, Lenze D, Leonard CR, Leongamornlert DA, Leshchiner I, Letourneau L, Letunic I, Levine DA, Lewis L, Ley T, Li C, Li CH, Li HI, Li J, Li L, Li S, Li S, Li X, Li X, Li X, Li Y, Liang H, Liang SB, Lichter P, Lin P, Lin Z, Linehan WM, Lingjærde OC, Liu D, Liu EM, Liu FFF, Liu F, Liu J, Liu X, Livingstone J, Livitz D, Livni N, Lochovsky L, Loeffler M, Long GV, Lopez-Guillermo A, Lou S, Louis DN, Lovat LB, Lu Y, Lu YJ, Lu Y, Luchini C, Lungu I, Luo X, Luxton HJ, Lynch AG, Lype L, López C, López-Otín C, Ma EZ, Ma Y, MacGrogan G, MacRae S, Macintyre G, Madsen T, Maejima K, Mafficini A, Maglinte DT, Maitra A, Majumder PP, Malcovati L, Malikic S, Malleo G, Mann GJ, Mantovani-Löffler L, Marchal K, Marchegiani G, Mardis ER, Margolin AA, Marin MG, Markowetz F, Markowski J, Marks J, Marques-Bonet T, Marra MA, Marsden L, Martens JWM, Martin S, Martin-Subero JI, Martincorena I, Martinez-Fundichely A, Maruvka YE, Mashl RJ, Massie CE, Matthew TJ, Matthews L, Mayer E, Mayes S, Mayo M, Mbabaali F, McCune K, McDermott U, McGillivray PD, McLellan MD, McPherson JD, McPherson JR, McPherson TA, Meier SR, Meng A, Meng S, Menzies A, Merrett ND, Merson S, Meyerson M, Meyerson W, Mieczkowski PA, Mihaiescu GL, Mijalkovic S, Mikkelsen T, Milella M, Mileshkin L, Miller CA, Miller DK, Miller JK, Mills GB, Milovanovic A, Minner S, Miotto M, Arnau GM, Mirabello L, Mitchell C, Mitchell TJ, Miyano S, Miyoshi N, Mizuno S, Molnár-Gábor F, Moore MJ, Moore RA, Morganella S, Morris QD, Morrison C, Mose LE, Moser CD, Muiños F, Mularoni L, Mungall AJ, Mungall K, Musgrove EA, Mustonen V, Mutch D, Muyas F, Muzny DM, Muñoz A, Myers J, Myklebost O, Möller P, Nagae G, Nagrial AM, Nahal-Bose HK, Nakagama H, Nakagawa H, Nakamura H, Nakamura T, Nakano K, Nandi T, Nangalia J, Nastic M, Navarro A, Navarro FCP, Neal DE, Nettekoven G, Newell F, Newhouse SJ, Newton Y, Ng AWT, Ng A, Nicholson J, Nicol D, Nie Y, Nielsen GP, Nielsen MM, Nik-Zainal S, Noble MS, Nones K, Northcott PA, Notta F, O’Connor BD, O’Donnell P, O’Donovan M, O’Meara S, O’Neill BP, O’Neill JR, Ocana D, Ochoa A, Oesper L, Ogden C, Ohdan H, Ohi K, Ohno-Machado L, Oien KA, Ojesina AI, Ojima H, Okusaka T, Omberg L, Ong CK, Ossowski S, Ott G, Ouellette BFF, P’ng C, Paczkowska M, Paiella S, Pairojkul C, Pajic M, Pan-Hammarström Q, Papaemmanuil E, Papatheodorou I, Paramasivam N, Park JW, Park JW, Park K, Park K, Park PJ, Parker JS, Parsons SL, Pass H, Pasternack D, Pastore A, Patch AM, Pauporté I, Pea A, Pearson JV, Pedamallu CS, Pedersen JS, Pederzoli P, Peifer M, Pennell NA, Perou CM, Perry MD, Petersen GM, Peto M, Petrelli N, Petryszak R, Pfister SM, Phillips M, Pich O, Pickett HA, Pihl TD, Pillay N, Pinder S, Pinese M, Pinho AV, Pitkänen E, Pivot X, Piñeiro-Yáñez E, Planko L, Plass C, Polak P, Pons T, Popescu I, Potapova O, Prasad A, Preston SR, Prinz M, Pritchard AL, Prokopec SD, Provenzano E, Puente XS, Puig S, Puiggròs M, Pulido-Tamayo S, Pupo GM, Purdie CA, Quinn MC, Rabionet R, Rader JS, Radlwimmer B, Radovic P, Raeder B, Raine KM, Ramakrishna M, Ramakrishnan K, Ramalingam S, Raphael BJ, Rathmell WK, Rausch T, Reifenberger G, Reimand J, Reis-Filho J, Reuter V, Reyes-Salazar I, Reyna MA, Reynolds SM, Rheinbay E, Riazalhosseini Y, Richardson AL, Richter J, Ringel M, Ringnér M, Rino Y, Rippe K, Roach J, Roberts LR, Roberts ND, Roberts SA, Robertson AG, Robertson AJ, Rodriguez JB, Rodriguez-Martin B, Rodríguez-González FG, Roehrl MHA, Rohde M, Rokutan H, Romieu G, Rooman I, Roques T, Rosebrock D, Rosenberg M, Rosenstiel PC, Rosenwald A, Rowe EW, Royo R, Rozen SG, Rubanova Y, Rubin MA, Rubio-Perez C, Rudneva VA, Rusev BC, Ruzzenente A, Rätsch G, Sabarinathan R, Sabelnykova VY, Sadeghi S, Sahinalp SC, Saini N, Saito-Adachi M, Saksena G, Salcedo A, Salgado R, Salichos L, Sallari R, Saller C, Salvia R, Sam M, Samra JS, Sanchez-Vega F, Sander C, Sanders G, Sarin R, Sarrafi I, Sasaki-Oku A, Sauer T, Sauter G, Saw RPM, Scardoni M, Scarlett CJ, Scarpa A, Scelo G, Schadendorf D, Schein JE, Schilhabel MB, Schlesner M, Schlomm T, Schmidt HK, Schramm SJ, Schreiber S, Schultz N, Schumacher SE, Schwarz RF, Scolyer RA, Scott D, Scully R, Seethala R, Segre AV, Selander I, Semple CA, Senbabaoglu Y, Sengupta S, Sereni E, Serra S, Sgroi DC, Shackleton M, Shah NC, Shahabi S, Shang CA, Shang P, Shapira O, Shelton T, Shen C, Shen H, Shepherd R, Shi R, Shi Y, Shiah YJ, Shibata T, Shih J, Shimizu E, Shimizu K, Shin SJ, Shiraishi Y, Shmaya T, Shmulevich I, Shorser SI, Short C, Shrestha R, Shringarpure SS, Shriver C, Shuai S, Sidiropoulos N, Siebert R, Sieuwerts AM, Sieverling L, Signoretti S, Sikora KO, Simbolo M, Simon R, Simons JV, Simpson JT, Simpson PT, Singer S, Sinnott-Armstrong N, Sipahimalani P, Skelly TJ, Smid M, Smith J, Smith-McCune K, Socci ND, Sofia HJ, Soloway MG, Song L, Sood AK, Sothi S, Sotiriou C, Soulette CM, Span PN, Spellman PT, Sperandio N, Spillane AJ, Spiro O, Spring J, Staaf J, Stadler PF, Staib P, Stark SG, Stebbings L, Stefánsson ÓA, Stegle O, Stein LD, Stenhouse A, Stewart C, Stilgenbauer S, Stobbe MD, Stratton MR, Stretch JR, Struck AJ, Stuart JM, Stunnenberg HG, Su H, Su X, Sun RX, Sungalee S, Susak H, Suzuki A, Sweep F, Szczepanowski M, Sültmann H, Yugawa T, Tam A, Tamborero D, Tan BKT, Tan D, Tan P, Tanaka H, Taniguchi H, Tanskanen TJ, Tarabichi M, Tarnuzzer R, Tarpey P, Taschuk ML, Tatsuno K, Tavaré S, Taylor DF, Taylor-Weiner A, Teague JW, Teh BT, Tembe V, Temes J, Thai K, Thayer SP, Thiessen N, Thomas G, Thomas S, Thompson A, Thompson AM, Thompson JFF, Thompson RH, Thorne H, Thorne LB, Thorogood A, Tiao G, Tijanic N, Timms LE, Tirabosco R, Tojo M, Tommasi S, Toon CW, Toprak UH, Torrents D, Tortora G, Tost J, Totoki Y, Townend D, Traficante N, Treilleux I, Trotta JR, Trümper LHP, Tsao M, Tsunoda T, Tubio JMC, Tucker O, Turkington R, Turner DJ, Tutt A, Ueno M, Ueno NT, Umbricht C, Umer HM, Underwood TJ, Urban L, Urushidate T, Ushiku T, Uusküla-Reimand L, Valencia A, Van Den Berg DJ, Van Laere S, Van Loo P, Van Meir EG, Van den Eynden GG, Van der Kwast T, Vasudev N, Vazquez M, Vedururu R, Veluvolu U, Vembu S, Verbeke LPC, Vermeulen P, Verrill C, Viari A, Vicente D, Vicentini C, VijayRaghavan K, Viksna J, Vilain RE, Villasante I, Vincent-Salomon A, Visakorpi T, Voet D, Vyas P, Vázquez-García I, Waddell NM, Waddell N, Wadelius C, Wadi L, Wagener R, Wala JA, Wang J, Wang J, Wang L, Wang Q, Wang W, Wang Y, Wang Z, Waring PM, Warnatz HJ, Warrell J, Warren AY, Waszak SM, Wedge DC, Weichenhan D, Weinberger P, Weinstein JN, Weischenfeldt J, Weisenberger DJ, Welch I, Wendl MC, Werner J, Whalley JP, Wheeler DA, Whitaker HC, Wigle D, Wilkerson MD, Williams A, Wilmott JS, Wilson GW, Wilson JM, Wilson RK, Winterhoff B, Wintersinger JA, Wiznerowicz M, Wolf S, Wong BH, Wong T, Wong W, Woo Y, Wood S, Wouters BG, Wright AJ, Wright DW, Wright MH, Wu CL, Wu DY, Wu G, Wu J, Wu K, Wu Y, Wu Z, Xi L, Xia T, Xiang Q, Xiao X, Xing R, Xiong H, Xu Q, Xu Y, Xue H, Yachida S, Yakneen S, Yamaguchi R, Yamaguchi TN, Yamamoto M, Yamamoto S, Yamaue H, Yang F, Yang H, Yang JY, Yang L, Yang L, Yang S, Yang TP, Yang Y, Yao X, Yaspo ML, Yates L, Yau C, Ye C, Ye K, Yellapantula VD, Yoon CJ, Yoon SS, Yousif F, Yu J, Yu K, Yu W, Yu Y, Yuan K, Yuan Y, Yuen D, Yung CK, Zaikova O, Zamora J, Zapatka M, Zenklusen JC, Zenz T, Zeps N, Zhang CZ, Zhang F, Zhang H, Zhang H, Zhang H, Zhang J, Zhang J, Zhang J, Zhang X, Zhang X, Zhang Y, Zhang Z, Zhao Z, Zheng L, Zheng X, Zhou W, Zhou Y, Zhu B, Zhu H, Zhu J, Zhu S, Zou L, Zou X, deFazio A, van As N, van Deurzen CHM, van de Vijver MJ, van’t Veer L, von Mering C. Pan-cancer analysis of whole genomes. Nature 2020; 578:82-93. [PMID: 32025007 PMCID: PMC7025898 DOI: 10.1038/s41586-020-1969-6] [Show More Authors] [Citation(s) in RCA: 1834] [Impact Index Per Article: 366.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1-3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10-18.
Collapse
|
42
|
Chen X, Wan L, Wang W, Xi WJ, Yang AG, Wang T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020; 10:1479-1499. [PMID: 32042317 PMCID: PMC6993246 DOI: 10.7150/thno.40659] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudogenes were initially regarded as "nonfunctional" genomic elements that did not have protein-coding abilities due to several endogenous inactivating mutations. Although pseudogenes are widely expressed in prokaryotes and eukaryotes, for decades, they have been largely ignored and classified as gene "junk" or "relics". With the widespread availability of high-throughput sequencing analysis, especially omics technologies, knowledge concerning pseudogenes has substantially increased. Pseudogenes are evolutionarily conserved and derive primarily from a mutation or retrotransposon, conferring the pseudogene with a "gene repository" role to store and expand genetic information. In contrast to previous notions, pseudogenes have a variety of functions at the DNA, RNA and protein levels for broadly participating in gene regulation to influence the development and progression of certain diseases, especially cancer. Indeed, some pseudogenes have been proven to encode proteins, strongly contradicting their "trash" identification, and have been confirmed to have tissue-specific and disease subtype-specific expression, indicating their own value in disease diagnosis. Moreover, pseudogenes have been correlated with the life expectancy of patients and exhibit great potential for future use in disease treatment, suggesting that they are promising biomarkers and therapeutic targets for clinical applications. In this review, we summarize the natural properties, functions, disease involvement and clinical value of pseudogenes. Although our knowledge of pseudogenes remains nascent, this field deserves more attention and deeper exploration.
Collapse
|
43
|
Johnson TS, Li S, Franz E, Huang Z, Dan Li S, Campbell MJ, Huang K, Zhang Y. PseudoFuN: Deriving functional potentials of pseudogenes from integrative relationships with genes and microRNAs across 32 cancers. Gigascience 2019; 8:5480571. [PMID: 31029062 PMCID: PMC6486473 DOI: 10.1093/gigascience/giz046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Long thought “relics” of evolution, not until recently have pseudogenes been of medical interest regarding regulation in cancer. Often, these regulatory roles are a direct by-product of their close sequence homology to protein-coding genes. Novel pseudogene-gene (PGG) functional associations can be identified through the integration of biomedical data, such as sequence homology, functional pathways, gene expression, pseudogene expression, and microRNA expression. However, not all of the information has been integrated, and almost all previous pseudogene studies relied on 1:1 pseudogene–parent gene relationships without leveraging other homologous genes/pseudogenes. Results We produce PGG families that expand beyond the current 1:1 paradigm. First, we construct expansive PGG databases by (i) CUDAlign graphics processing unit (GPU) accelerated local alignment of all pseudogenes to gene families (totaling 1.6 billion individual local alignments and >40,000 GPU hours) and (ii) BLAST-based assignment of pseudogenes to gene families. Second, we create an open-source web application (PseudoFuN [Pseudogene Functional Networks]) to search for integrative functional relationships of sequence homology, microRNA expression, gene expression, pseudogene expression, and gene ontology. We produce four “flavors” of CUDAlign-based databases (>462,000,000 PGG pairwise alignments and 133,770 PGG families) that can be queried and downloaded using PseudoFuN. These databases are consistent with previous 1:1 PGG annotation and also are much more powerful including millions of de novo PGG associations. For example, we find multiple known (e.g., miR-20a-PTEN-PTENP1) and novel (e.g., miR-375-SOX15-PPP4R1L) microRNA-gene-pseudogene associations in prostate cancer. PseudoFuN provides a “one stop shop” for identifying and visualizing thousands of potential regulatory relationships related to pseudogenes in The Cancer Genome Atlas cancers. Conclusions Thousands of new PGG associations can be explored in the context of microRNA-gene-pseudogene co-expression and differential expression with a simple-to-use online tool by bioinformaticians and oncologists alike.
Collapse
Affiliation(s)
- Travis S Johnson
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA.,Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Sihong Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA
| | - Eric Franz
- Ohio Supercomputer Center, 1224 Kinnear Road, Columbus, OH 43212, USA
| | - Zhi Huang
- School of Electrical and Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN 47907, USA.,Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Shuyu Dan Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 500 West 12 th Avenue, Columbus, OH 43210, USA
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, 545 Barnhill Drive, Indianapolis, IN 46202, USA.,Regenstrief Institute, Indiana University, 1101 West 10 th Street, Indianapolis, IN 46262, USA
| | - Yan Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 1800 Cannon Drive, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center (OSUCCC - James), 460 West 10 th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS One 2019; 14:e0221476. [PMID: 31490960 PMCID: PMC6730898 DOI: 10.1371/journal.pone.0221476] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background Liver Hepatocellular Carcinoma (LIHC) is one of the major cancers worldwide, responsible for millions of premature deaths every year. Prediction of clinical staging is vital to implement optimal therapeutic strategy and prognostic prediction in cancer patients. However, to date, no method has been developed for predicting the stage of LIHC from the genomic profile of samples. Methods The Cancer Genome Atlas (TCGA) dataset of 173 early stage (stage-I), 177 late stage (stage-II, Stage-III and stage-IV) and 50 adjacent normal tissue samples for 60,483 RNA transcripts and 485,577 methylation CpG sites, was extensively analyzed to identify the key transcriptomic expression and methylation-based features using different feature selection techniques. Further, different classification models were developed based on selected key features to categorize different classes of samples implementing different machine learning algorithms. Results In the current study, in silico models have been developed for classifying LIHC patients in the early vs. late stage and cancerous vs. normal samples using RNA expression and DNA methylation data. TCGA datasets were extensively analyzed to identify differentially expressed RNA transcripts and methylated CpG sites that can discriminate early vs. late stages and cancer vs. normal samples of LIHC with high precision. Naive Bayes model developed using 51 features that combine 21 CpG methylation sites and 30 RNA transcripts achieved maximum MCC (Matthew’s correlation coefficient) 0.58 with an accuracy of 78.87% on the validation dataset in discrimination of early and late stage. Additionally, the prediction models developed based on 5 RNA transcripts and 5 CpG sites classify LIHC and normal samples with an accuracy of 96–98% and AUC (Area Under the Receiver Operating Characteristic curve) 0.99. Besides, multiclass models also developed for classifying samples in the normal, early and late stage of cancer and achieved an accuracy of 76.54% and AUC of 0.86. Conclusion Our study reveals stage prediction of LIHC samples with high accuracy based on the genomics and epigenomics profiling is a challenging task in comparison to the classification of cancerous and normal samples. Comprehensive analysis, differentially expressed RNA transcripts, methylated CpG sites in LIHC samples and prediction models are available from CancerLSP (http://webs.iiitd.edu.in/raghava/cancerlsp/).
Collapse
|
45
|
Bim LV, Navarro FCP, Valente FOF, Lima-Junior JV, Delcelo R, Dias-da-Silva MR, Maciel RMB, Galante PAF, Cerutti JM. Retroposed copies of RET gene: a somatically acquired event in medullary thyroid carcinoma. BMC Med Genomics 2019; 12:104. [PMID: 31288802 PMCID: PMC6617568 DOI: 10.1186/s12920-019-0552-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Different pathogenic germline mutations in the RET oncogene are identified in MEN 2, a hereditary syndrome characterized by medullary thyroid carcinoma (MTC) and other endocrine tumors. Although genetic predisposition is recognized, not all RET mutation carriers will develop the disease during their lifetime or, likewise, RET mutation carriers belonging to the same family may present clinical heterogeneity. It has been suggested that a single germline mutation might not be sufficient for development of MEN 2-associated tumors and a somatic bi-allelic alteration might be required. Here we investigated the presence of somatic second hit mutation in the RET gene in MTC. METHODS We integrated Multiplex Ligation-dependent Probe Amplification (MLPA) and whole exome sequencing (WES) to search for copy number alteration (CNA) in the RET gene in MTC samples and medullary thyroid cell lines (TT and MZ-CR-1). We next found reads spanning exon-exon boundaries on RET, an indicative of retrocopy. We subsequently searched for RET retrocopies in the human reference genome (GRCh37) and in the 1000 Genomes Project data, by looking for reads reporting joined exons in the RET locus or distinct genomic regions. To determine RET retrocopy specificity and recurrence, DNA isolated from sporadic and MEN 2-associated MTC (n = 37), peripheral blood (n = 3) and papillary thyroid carcinomas with RET fusion (n = 10) samples were tested using PCR-sequencing methodology. RESULTS Through MLPA we have found evidence of CNA in the RET gene in MTC samples and MTC cell lines. WES analysis reinforced the presence of the CNA and hinted for a retroposed copy of RET not found in the human reference genome and 1.000 Genomes Project. Extended analysis confirmed the presence of a somatic MTC-related retrocopy of RET in both sporadic and hereditary tumors. We further unveiled a recurrent (28%) novel point mutation (p.G548 V) found exclusively in the retrocopy of RET. The mutation was also found in cDNA of mutated samples, suggesting it might be functional. CONCLUSION We here report a somatic specific RET retroposed copy in MTC samples and cell lines. Our results support the idea that generation of retrocopies in somatic cells is likely to contribute to MTC genesis and progression.
Collapse
Affiliation(s)
- Larissa V Bim
- Laboratório As Bases Genéticas dos Tumores da Tiroide, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fábio C P Navarro
- Centro de Oncologia Molecular, Hospital Sírio-libanês, São Paulo, SP, Brazil.,Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávia O F Valente
- Laboratório de Endocrinologia Molecular e Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José V Lima-Junior
- Laboratório As Bases Genéticas dos Tumores da Tiroide, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rosana Delcelo
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Magnus R Dias-da-Silva
- Laboratório de Endocrinologia Molecular e Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rui M B Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-libanês, São Paulo, SP, Brazil
| | - Janete M Cerutti
- Laboratório As Bases Genéticas dos Tumores da Tiroide, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
46
|
Pseudogene RACGAP1P activates RACGAP1/Rho/ERK signalling axis as a competing endogenous RNA to promote hepatocellular carcinoma early recurrence. Cell Death Dis 2019; 10:426. [PMID: 31160556 PMCID: PMC6546712 DOI: 10.1038/s41419-019-1666-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023]
Abstract
Accumulating evidence has indicated crucial roles for pseudogenes in human cancers. However, the roles played by pseudogenes in the pathogenesis of HCC, particularly HCC early recurrence, still incompletely elucidated. Herein, we identify a novel early recurrence related pseudogene RACGAP1P which was significantly upregulated in HCC and was associated with larger tumour size, advanced clinical stage, abnormal AFP level and shorter survival time. In vitro and in vivo experiments have shown that RACGAP1P is a prerequisite for the development of malignant characteristics of HCC cells, including cell growth and migration. Mechanistic investigations indicated that RACGAP1P elicits its oncogenic activity as a ceRNA to sequestrate miR-15-5p from its endogenous target RACGAP1, thereby leading to the upregulation of RACGAP1 and the activation of RhoA/ERK signalling. These results may provide new insights into the functional crosstalk of the pseudogene/miRNA/parent-gene genetic network during HCC early relapse and may contribute to improving the clinical intervention for this subset of HCC patients.
Collapse
|
47
|
The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers (Basel) 2019; 11:cancers11050605. [PMID: 31052265 PMCID: PMC6563001 DOI: 10.3390/cancers11050605] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the most prevalent and deadliest cancer worldwide. A significant part of lung cancer studies is dedicated to the expression alterations of non-coding RNAs. The non-coding RNAs are transcripts that cannot be translated into proteins. While the study of microRNAs and siRNAs in lung cancer received a lot of attention over the last decade, highly efficient therapeutic option or the diagnostic methods based on non-coding RNAs are still lacking. Because of this, it is of utmost importance to direct future research on lung cancer towards analyzing other RNA types for which the currently available data indicates that are essential at modulating lung tumorigenesis. Through our review of studies on this subject, we identify the following non-coding RNAs as tumor suppressors: ts-46, ts-47, ts-101, ts-53, ts-3676, ts-4521 (tRNA fragments), SNORD116-26, HBII-420, SNORD15A, SNORA42 (snoRNAs), piRNA-like-163, piR-35127, the piR-46545 (piRNAs), CHIAP2, LOC100420907, RPL13AP17 (pseudogenes), and uc.454 (T-UCR). We also found non-coding RNAs with tumor-promoting function: tRF-Leu-CAG, tRNA-Leu, tRNA-Val (tRNA fragments), circ-RAD23B, circRNA 100146, circPVT1, circFGFR3, circ_0004015, circPUM1, circFLI1, circABCB10, circHIPK3 (circRNAs), SNORA42, SNORA3, SNORD46, SNORA21, SNORD28, SNORA47, SNORD66, SNORA68, SNORA78 (snoRNAs), piR-65, piR-34871, piR-52200, piR651 (piRNAs), hY4 5’ fragments (YRNAs), FAM83A-AS1, WRAP53, NKX2-1-AS1 (NATs), DUXAP8, SFTA1P (pseudogene transcripts), uc.338, uc.339 (T-UCRs), and hTERC.
Collapse
|
48
|
Kovalenko TF, Patrushev LI. Pseudogenes as Functionally Significant Elements of the Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:1332-1349. [PMID: 30482145 DOI: 10.1134/s0006297918110044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as "junk DNA" that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.
Collapse
Affiliation(s)
- T F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
49
|
Kassiotis G, Stoye JP. Making a virtue of necessity: the pleiotropic role of human endogenous retroviruses in cancer. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0277. [PMID: 28893944 PMCID: PMC5597744 DOI: 10.1098/rstb.2016.0277] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/18/2022] Open
Abstract
Like all other mammals, humans harbour an astonishing number of endogenous retroviruses (ERVs), as well as other retroelements, embedded in their genome. These remnants of ancestral germline infection with distinct exogenous retroviruses display various degrees of open reading frame integrity and replication capability. Modern day exogenous retroviruses, as well as the infectious predecessors of ERVs, are demonstrably oncogenic. Further, replication-competent ERVs continue to cause cancers in many other species of mammal. Moreover, human cancers are characterized by transcriptional activation of human endogenous retroviruses (HERVs). These observations conspire to incriminate HERVs as causative agents of human cancer. However, exhaustive investigation of cancer genomes suggests that HERVs have entirely lost the ability for re-infection and thus the potential for insertional mutagenic activity. Although there may be non-insertional mechanisms by which HERVs contribute to cancer development, recent evidence also uncovers potent anti-tumour activities exerted by HERV replication intermediates or protein products. On balance, it appears that HERVs, despite their oncogenic past, now represent potential targets for immune-mediated anti-tumour mechanisms. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK .,Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Jonathan P Stoye
- Retrovirus-Host Interactions, The Francis Crick Institute, London, UK .,Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
50
|
Johnson TS, Li S, Kho JR, Huang K, Zhang Y. Network analysis of pseudogene-gene relationships: from pseudogene evolution to their functional potentials. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:536-547. [PMID: 29218912 PMCID: PMC5744670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudogenes are fossil relatives of genes. Pseudogenes have long been thought of as "junk DNAs", since they do not code proteins in normal tissues. Although most of the human pseudogenes do not have noticeable functions, ∼20% of them exhibit transcriptional activity. There has been evidence showing that some pseudogenes adopted functions as lncRNAs and work as regulators of gene expression. Furthermore, pseudogenes can even be "reactivated" in some conditions, such as cancer initiation. Some pseudogenes are transcribed in specific cancer types, and some are even translated into proteins as observed in several cancer cell lines. All the above have shown that pseudogenes could have functional roles or potentials in the genome. Evaluating the relationships between pseudogenes and their gene counterparts could help us reveal the evolutionary path of pseudogenes and associate pseudogenes with functional potentials. It also provides an insight into the regulatory networks involving pseudogenes with transcriptional and even translational activities.In this study, we develop a novel approach integrating graph analysis, sequence alignment and functional analysis to evaluate pseudogene-gene relationships, and apply it to human gene homologs and pseudogenes. We generated a comprehensive set of 445 pseudogene-gene (PGG) families from the original 3,281 gene families (13.56%). Of these 438 (98.4% PGG, 13.3% total) were non-trivial (containing more than one pseudogene). Each PGG family contains multiple genes and pseudogenes with high sequence similarity. For each family, we generate a sequence alignment network and phylogenetic trees recapitulating the evolutionary paths. We find evidence supporting the evolution history of olfactory family (both genes and pseudogenes) in human, which also supports the validity of our analysis method. Next, we evaluate these networks in respect to the gene ontology from which we identify functions enriched in these pseudogene-gene families and infer functional impact of pseudogenes involved in the networks. This demonstrates the application of our PGG network database in the study of pseudogene function in disease context.
Collapse
Affiliation(s)
- Travis S Johnson
- Dept. Biomedical Informatics, Ohio State University, 5000 HITS, 410 W. 10th St. Indianapolis, Indiana, 46202, USA,
| | | | | | | | | |
Collapse
|