1
|
Recinto SJ, Kazanova A, Liu L, Cordeiro B, Premachandran S, Bessaiah H, Allot A, Afanasiev E, Mukherjee S, Pei J, MacDonald A, Yaqubi M, McBride HM, Matheoud D, Trudeau LE, Gruenheid S, Stratton JA. PINK1 deficiency rewires early immune responses in a mouse model of Parkinson's disease triggered by intestinal infection. NPJ Parkinsons Dis 2025; 11:133. [PMID: 40404738 PMCID: PMC12098848 DOI: 10.1038/s41531-025-00945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/18/2025] [Indexed: 05/24/2025] Open
Abstract
Parkinson's disease is characterized by a period of non-motor symptoms, including gastrointestinal dysfunction, preceding motor deficits by several years to decades. This long prodrome is suggestive of peripheral immunity involvement in the initiation of disease. We previously developed a model system in PINK1 KO mice displaying PD-like motor symptoms at late stages following intestinal infections. Herein, we map the initiating immune events at the site of infection in this model. Using single-cell RNAseq, we demonstrate that peripheral myeloid cells are the earliest highly dysregulated immune cell type followed by an aberrant T cell response shortly after. We also demonstrate an increased propensity for antigen presentation and that activated myeloid cells acquire a proinflammatory profile capable of inducing cytotoxic T cell responses. Together, our study provides the first evidence that PINK1 is a key regulator of immune functions in the gut underlying early PD-related disease mechanisms.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alexandra Kazanova
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Lin Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Brendan Cordeiro
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Hicham Bessaiah
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Elia Afanasiev
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jessica Pei
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Diana Matheoud
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
2
|
Zhu Y, Cao M, Tang Y, Liu Y, Wang H, Qi J, Huang C, Yan C, Liu X, Jiang S, Luo Y, Wang S, Zhou B, Xu H, Lu YY, Wang L. Inhibition of PINK1 senses ROS signaling to facilitate neuroblastoma cell pyroptosis. Autophagy 2025:1-20. [PMID: 40160153 DOI: 10.1080/15548627.2025.2487037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Mitochondria serve as the primary source of intracellular reactive oxygen species (ROS), which play a critical role in orchestrating cell death pathways such as pyroptosis in various types of cancers. PINK1-mediated mitophagy effectively removes damaged mitochondria and reduces detrimental ROS levels, thereby promoting cell survival. However, the regulation of pyroptosis by PINK1 and ROS in neuroblastoma remains unclear. In this study, we demonstrate that inhibition or deficiency of PINK1 sensitizes ROS signaling and promotes pyroptosis in neuroblastoma cells via the BAX-caspase-GSDME signaling pathway. Specifically, inhibition of PINK1 by AC220 or knockout of PINK1 impairs mitophagy and enhances ROS production, leading to oxidation and oligomerization of TOMM20, followed by mitochondrial recruitment and activation of BAX. Activated BAX facilitates the release of CYCS (cytochrome c, somatic) from the mitochondria into the cytosol, activating CASP3 (caspase 3). Subsequently, activated CASP3 cleaves and activates GSDME, inducing pyroptosis. Furthermore, inhibition or deficiency of PINK1 potentiates the anti-tumor effects of the clinical ROS-inducing drug ethacrynic acid (EA) to inhibit neuroblastoma progression in vivo. Therefore, our study provides a promising intervention strategy for neuroblastoma through the induction of pyroptosis.Abbreviation: AC220, quizartinib; ANOVA, analysis of variance; ANXA5, annexin A5; BAX, BCL2 associated X, apoptosis regulator; BAK1, BCL2 antagonist/killer 1; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; CS, citrate synthase; CSC, cancer stem cell; CYCS, cytochrome c, somatic; DTT, dithiothreitol; DNA, deoxyribonucleic acid; EA, ethacrynic acid; Fer-1, ferroptosis inhibitor ferrostatin-1; FLT3, fms related tyrosine kinase 3; GSDMD, gasdermin D; GSDME, gasdermin E; kDa, kilodalton; LDH, lactate dehydrogenase; MFN1, mitofusin 1; MFN2, mitofusin 2; mito, mitochondria; mito-ROS, mitochondrial ROS; mtKeima, mitochondria-targeted monomeric keima-red; ml, microliter; MT-CO2, mitochondrially encoded cytochrome c oxidase II; NAC, antioxidant N-acetyl-L-cysteine; Nec-1, necroptosis inhibitor necrostatin-1; OMA1, OMA1 zinc metallopeptidase; OMM, outer mitochondrial membrane; PARP, poly(ADP-ribose) polymerase; PBS, phosphate-buffered saline; PI, propidium iodide; PINK1, PTEN induced kinase 1; PRKN/Parkin, parkin RBR E3 ubiquitin protein ligase; Q-VD, Q-VD-OPH; ROS, reactive oxygen species; sg, single guide; sh, short hairpin; STS, staurosporine; TOMM20, translocase of outer mitochondrial membrane 20; TIMM23, translocase of inner mitochondrial membrane 23; μm, micrometer; μM, micromolar.
Collapse
Affiliation(s)
- Yuyuan Zhu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Min Cao
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Yancheng Tang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Yifan Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Haiji Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Jiaqi Qi
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Cainian Huang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Chenghao Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Xu Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Sijia Jiang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Yufei Luo
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Zhou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying-Ying Lu
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yatsen University, Shenzhen, Guangdong, China
| | - Liming Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Chen L, Wang C, Qin L, Zhang H. Parkinson's disease and glucose metabolism impairment. Transl Neurodegener 2025; 14:10. [PMID: 39962629 PMCID: PMC11831814 DOI: 10.1186/s40035-025-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. PD patients exhibit varying degrees of abnormal glucose metabolism throughout disease stages. Abnormal glucose metabolism is closely linked to the PD pathogenesis and progression. Key glucose metabolism processes involved in PD include glucose transport, glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, the pentose phosphate pathway, and gluconeogenesis. Recent studies suggest that glucose metabolism is a potential therapeutic target for PD. In this review, we explore the connection between PD and abnormal glucose metabolism, focusing on the underlying pathophysiological mechanisms. We also summarize potential therapeutic drugs related to glucose metabolism based on results from current cellular and animal model studies.
Collapse
Affiliation(s)
- Liangjing Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunyu Wang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lixia Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Hainan Zhang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
4
|
Behera BP, Mishra SR, Patra S, Mahapatra KK, Bhol CS, Panigrahi DP, Praharaj PP, Klionsky DJ, Bhutia SK. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00004-8. [PMID: 39880721 DOI: 10.1016/j.cytogfr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Aberrations emerging in mitochondrial homeostasis are restrained by mitophagy to control mitochondrial integrity, bioenergetics signaling, metabolism, oxidative stress, and apoptosis. The mitophagy-accompanied mitochondrial processes that occur in a dysregulated condition act as drivers for cancer occurrence. In addition, the enigmatic nature of mitophagy in cancer cells modulates the cellular proteome, creating challenges for therapeutic interventions. Several reports found the role of cellular signaling pathways in cancer to modulate mitophagy to mitigate stress, immune checkpoints, energy demand, and cell death. Thus, targeting mitophagy to hinder oncogenic intracellular signaling by promoting apoptosis, in hindsight, might have an edge against cancer. This review highlights the receptors and adaptors, and the involvement of many proteins in mitophagy and their role in oncogenesis. It also provides insight into using mitophagy as a potential target for therapeutic intervention in various cancer types.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
5
|
Mao Q, Zhang X, Yang J, Kong Q, Cheng H, Yu W, Cao X, Li Y, Li C, Liu L, Ding Z. HSPA12A acts as a scaffolding protein to inhibit cardiac fibroblast activation and cardiac fibrosis. J Adv Res 2025; 67:217-229. [PMID: 38219869 PMCID: PMC11725103 DOI: 10.1016/j.jare.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION Cardiac fibrosis is the main driver for adverse remodeling and progressive functional decline in nearly all types of heart disease including myocardial infarction (MI). The activation of cardiac fibroblasts (CF) into myofibroblasts is responsible for cardiac fibrosis. Unfortunately, no ideal approach for controlling CF activation currently exists. OBJECTIVES This study investigated the role of Heat shock protein A12A (HSPA12A), an atypical member of the HSP70 family, in CF activation and MI-induced cardiac fibrosis. METHODS Primary CF and Hspa12a knockout mice were used in the experiments. CF activation was indicated by the upregulation of myofibroblast characters including alpha-Smooth muscle actin (αSMA), Collagen, and Fibronectin. Cardiac fibrosis was illustrated by Masson's trichrome and picrosirius staining. Cardiac function was examined using echocardiography. Glycolytic activity was indicated by levels of extracellular lactate and the related protein expression. Protein stability was examined following cycloheximide and MG132 treatment. Protein-protein interaction was examined by immunoprecipitation-immunoblotting analysis. RESULTS HSPA12A displayed a high expression level in quiescent CF but showed a decreased expression in activated CF, while ablation of HSPA12A in mice promoted CF activation and cardiac fibrosis following MI. HSPA12A overexpression inhibited the activation of primary CF through inhibiting glycolysis, while HSPA12A knockdown showed the opposite effects. Moreover, HSPA12A upregulated the protein expression of transcription factor p53, by which mediated the HSPA12A-induced inhibition of glycolysis and CF activation. Mechanistically, this action of HSPA12A was achieved by acting as a scaffolding protein to bind p53 and ubiquitin specific protease 10 (USP10), thereby promoting the USP10-mediated p53 protein stability and the p53-medicated glycolysis inhibition. CONCLUSION The present study provided clear evidence that HSPA12A is a novel endogenous inhibitor of CF activation and cardiac fibrosis. Targeting HSPA12A in CF could represent a promising strategy for the management of cardiac fibrosis in patients.
Collapse
Affiliation(s)
- Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinna Yang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital with Wannan Medical College, Wuhu, China
| | - Wansu Yu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
6
|
Li S, Liu Y, Lu S, Xu J, Liu X, Yang D, Yang Y, Hou L, Li N. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress. Mol Cell Biochem 2025; 480:139-157. [PMID: 38625515 DOI: 10.1007/s11010-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanbing Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiayi Xu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Tanvir A, Jo J, Park SM. Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson's Disease. Cells 2024; 13:1876. [PMID: 39594624 PMCID: PMC11592965 DOI: 10.3390/cells13221876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glucose metabolism is essential for the maintenance and function of the central nervous system. Although the brain constitutes only 2% of the body weight, it consumes approximately 20% of the body's total energy, predominantly derived from glucose. This high energy demand of the brain underscores its reliance on glucose to fuel various functions, including neuronal activity, synaptic transmission, and the maintenance of ion gradients necessary for nerve impulse transmission. Increasing evidence shows that many neurodegenerative diseases, including Parkinson's disease (PD), are associated with abnormalities in glucose metabolism. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, accompanied by the accumulation of α-synuclein protein aggregates. These pathological features are exacerbated by mitochondrial dysfunction, oxidative stress, and neuroinflammation, all of which are influenced by glucose metabolism disruptions. Emerging evidence suggests that targeting glucose metabolism could offer therapeutic benefits for PD. Several antidiabetic drugs have shown promise in animal models and clinical trials for mitigating the symptoms and progression of PD. This review explores the current understanding of the association between PD and glucose metabolism, emphasizing the potential of antidiabetic medications as a novel therapeutic approach. By improving glucose uptake and utilization, enhancing mitochondrial function, and reducing neuroinflammation, these drugs could address key pathophysiological mechanisms in PD, offering hope for more effective management of this debilitating disease.
Collapse
Affiliation(s)
- Ahmed Tanvir
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
8
|
Flores-Ponce X, Velasco I. Dopaminergic neuron metabolism: relevance for understanding Parkinson's disease. Metabolomics 2024; 20:116. [PMID: 39397188 PMCID: PMC11471710 DOI: 10.1007/s11306-024-02181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Dopaminergic neurons from the substantia nigra pars compacta (SNc) have a higher susceptibility to aging-related degeneration, compared to midbrain dopaminergic cells present in the ventral tegmental area (VTA); the death of dopamine neurons in the SNc results in Parkinson´s disease (PD). In addition to increased loss by aging, dopaminergic neurons from the SNc are more prone to cell death when exposed to genetic or environmental factors, that either interfere with mitochondrial function, or cause an increase of oxidative stress. The oxidation of dopamine is a contributing source of reactive oxygen species (ROS), but this production is not enough to explain the differences in susceptibility to degeneration between SNc and VTA neurons. AIM OF REVIEW In this review we aim to highlight the intrinsic differences between SNc and VTA dopamine neurons, in terms of gene expression, calcium oscillations, bioenergetics, and ROS responses. Also, to describe the changes in the pentose phosphate pathway and the induction of apoptosis in SNc neurons during aging, as related to the development of PD. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent work showed that neurons from the SNc possess intrinsic characteristics that result in metabolic differences, related to their intricate morphology, that render them more susceptible to degeneration. In particular, these neurons have an elevated basal energy metabolism, that is required to fulfill the demands of the constant firing of action potentials, but at the same time, is associated to higher ROS production, compared to VTA cells. Finally, we discuss how mutations related to PD affect metabolic pathways, and the related mechanisms, as revealed by metabolomics.
Collapse
Affiliation(s)
- Xóchitl Flores-Ponce
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.
| |
Collapse
|
9
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
10
|
Mihajlović K, Ceddia G, Malod-Dognin N, Novak G, Kyriakis D, Skupin A, Pržulj N. Multi-omics integration of scRNA-seq time series data predicts new intervention points for Parkinson's disease. Sci Rep 2024; 14:10983. [PMID: 38744869 PMCID: PMC11094121 DOI: 10.1038/s41598-024-61844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder without a cure. The onset of PD symptoms corresponds to 50% loss of midbrain dopaminergic (mDA) neurons, limiting early-stage understanding of PD. To shed light on early PD development, we study time series scRNA-seq datasets of mDA neurons obtained from patient-derived induced pluripotent stem cell differentiation. We develop a new data integration method based on Non-negative Matrix Tri-Factorization that integrates these datasets with molecular interaction networks, producing condition-specific "gene embeddings". By mining these embeddings, we predict 193 PD-related genes that are largely supported (49.7%) in the literature and are specific to the investigated PINK1 mutation. Enrichment analysis in Kyoto Encyclopedia of Genes and Genomes pathways highlights 10 PD-related molecular mechanisms perturbed during early PD development. Finally, investigating the top 20 prioritized genes reveals 12 previously unrecognized genes associated with PD that represent interesting drug targets.
Collapse
Affiliation(s)
| | - Gaia Ceddia
- Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain
| | | | - Gabriela Novak
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
- University of California San Diego, La Jolla, CA, 92093, USA
| | - Nataša Pržulj
- Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain.
- Department of Computer Science, University College London, WC1E 6BT, London, UK.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
11
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
13
|
Jang JS, Hong SJ, Mo S, Kim MK, Kim YG, Lee Y, Kim HH. PINK1 restrains periodontitis-induced bone loss by preventing osteoclast mitophagy impairment. Redox Biol 2024; 69:103023. [PMID: 38181706 PMCID: PMC10789640 DOI: 10.1016/j.redox.2023.103023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
The oral colonization of periodontal pathogens onto gingival tissues establishes hypoxic microenvironment, often disrupting periodontal homeostasis in conjunction with oxidative stress. The association between reactive oxygen species (ROS) and osteolytic periodontitis have been suggested by recent studies. PTEN-induced kinase 1 (PINK1), a mitochondrial serine/threonine kinase, is an essential protein for mitochondrial quality control as it protects cells from oxidative stress by promoting degradation of damaged mitochondria through mitophagy. However, the pathophysiological roles of PINK1 in osteoclast-mediated bone loss have not been explored. Here we aimed to determine whether PINK1 plays a role in the regulation of osteoclastogenesis and alveolar bone resorption associated with periodontitis. C57BL/6 wild type (WT) and Pink1 knockout (KO) mice were subjected to ligature-induced periodontitis (LIP), and alveolar bones were evaluated by μCT-analysis and tartrate-resistant acid phosphatase (TRAP) staining. The μCT-analysis showed that bone volume fraction and travecular thickness were lower in Pink1 KO compared to WT mice. The number of TRAP-positive osteoclasts was markedly increased in the periodontal tissues of Pink1 KO mice with LIP. The genetic silencing or deletion of Pink1 promoted excessive osteoclast differentiation and bone resorption in vitro, as respectively indicated by TRAP staining and resorption pits on dentin slices. PINK1 deficiency led to mitochondrial instabilities as indicated by confocal microscopy of mitochondrial ROS, mitochondrial oxygen consumption rate (OCR) analysis, and transmission electron microscopy (TEM). Consequently, a significant increase in Ca2+-nuclear factor of activated T cells 1 (NFATc1) signaling was also found. On the other hand, restoration of mitophagy and autophagy by spermidine (SPD) treatment and the resolution of oxidative stress by N-acetyl-l-cysteine (NAC) treatment protected PINK1 deficiency-induced excessive generation of osteoclasts. Taken together, our findings demonstrate that PINK1 is essential for maintaining mitochondrial homeostasis during osteoclast differentiation. Therefore, targeting PINK1 may provide a novel therapeutic strategy for severe periodontitis with fulminant osteolysis.
Collapse
Affiliation(s)
- Ji Sun Jang
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seo Jin Hong
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Shenzheng Mo
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
14
|
Santiago JA, Karthikeyan M, Lackey M, Villavicencio D, Potashkin JA. Diabetes: a tipping point in neurodegenerative diseases. Trends Mol Med 2023; 29:1029-1044. [PMID: 37827904 PMCID: PMC10844978 DOI: 10.1016/j.molmed.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
Diabetes is associated with an increased risk and progression of Alzheimer's (AD) and Parkinson's (PD) diseases. Conversely, diabetes may confer neuroprotection against amyotrophic lateral sclerosis (ALS). It has been posited that perturbations in glucose and insulin regulation, cholesterol metabolism, and mitochondrial bioenergetics defects may underlie the molecular underpinnings of diabetes effects on the brain. Nevertheless, the precise molecular mechanisms remain elusive. Here, we discuss the evidence from molecular, epidemiological, and clinical studies investigating the impact of diabetes on neurodegeneration and highlight shared dysregulated pathways between these complex comorbidities. We also discuss promising antidiabetic drugs, molecular diagnostics currently in clinical trials, and outstanding questions and challenges for future pursuit.
Collapse
Affiliation(s)
| | | | | | | | - Judith A Potashkin
- Center for Neurodegenerative Diseases and Therapeutics, Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
15
|
Dong L, Gao L. JMJD3 and SNAI2 synergistically protect against Parkinson's disease by mediating the YAP/HIF1α signaling pathway in a mouse model. Hum Mol Genet 2023; 32:3040-3052. [PMID: 37453035 DOI: 10.1093/hmg/ddad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
This study aimed to characterize the functional relevance and mechanistic basis of the histone demethylase Jumonji domain-containing protein-3 (JMJD3) in preserving dopaminergic neuron survival in Parkinson's disease (PD). Mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced lesions and MN9D dopaminergic neuronal cell lines exposed to 6-OHDA, respectively, were used to simulate in vivo and in vitro PD-like environments. PD-related genes with differential expressions were identified using RNA sequencing of hippocampal tissues collected from MPTP-lesioned mice. A specific lentiviral shRNA vector was used to investigate the effects of JMJD3 on neuron activities in vitro and PD-like phenotypes in vivo. JMJD3 was found to up-regulate the expression of Snail family transcriptional repressor 2 (SNAI2) through the inhibition of H3 on lysine 27 (H3K27me3) enrichment in the SNAI2 promoter region. As a result, the viability of 6-OHDA-exposed MN9D cells was stimulated, and cell apoptosis was diminished. Knockdown of SNAI2 decreased the expression of yes-associated protein (YAP) and HIF1α while also reducing the viability of 6-OHDA-exposed MN9D cells and increasing cell apoptosis. The in vivo experiments demonstrated that JMJD3 activated the SNAI2/YAP/HIF1α signaling pathway, inhibiting PD-like phenotypes in MPTP-lesioned mice. Thus, the findings provide evidence that JMJD3 inhibits the enrichment of H3K27me3 at the SNAI2 promoter, leading to the upregulation of SNAI2 expression and activation of the YAP/HIF1α signaling pathway, ultimately exerting a protective effect on PD mice. This finding suggests that targeting the JMJD3-SNAI2 pathway could be a promising therapeutic strategy for PD. Further in-depth studies are needed to elucidate the underlying mechanisms and identify potential downstream targets of this pathway.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
16
|
Cesur MF, Basile A, Patil KR, Çakır T. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease. Life Sci Alliance 2023; 6:e202201695. [PMID: 37236669 PMCID: PMC10215973 DOI: 10.26508/lsa.202201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tunahan Çakır
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
17
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
18
|
Cross-talk between energy and redox metabolism in astrocyte-neuron functional cooperation. Essays Biochem 2023; 67:17-26. [PMID: 36805653 PMCID: PMC10011404 DOI: 10.1042/ebc20220075] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Astrocytes show unique anatomical, morphological, and metabolic features to take up substrates from the blood and metabolize them for local delivery to active synapses to sustain neuron function. In the present review, we specifically focus on key molecular aspects of energy and redox metabolism that facilitate this astrocyte-neuronal coupling in a controlled manner. Basal glycolysis is co-ordinated by the anaphase-promoting complex/cyclosome (APC/C)-Cdh1, a ubiquitin ligase that targets the proglycolytic enzyme 6-phosphofructokinase-2,6-bisphosphastate-3 (PFKFB3) for degradation. APC/C-Cdh1 activity is more robust in neurons than in astrocytes, which determine that PFKFB3 abundance and glycolytic rate are weaker in neurons. The low PFKFB3 activity in neurons facilitates glucose-6-phosphate oxidation via the pentose-phosphate pathway, which promotes antioxidant protection. Conversely, the high PFKFB3 activity in astrocytes allows the production and release of glycolytic lactate, which is taken up by neurons that use it as an oxidizable substrate. Importantly, the mitochondrial respiratory chain is tighter assembled in neurons than in astrocytes, thus the bioenergetic efficiency of mitochondria is higher in neurons. Because of this, the production of reactive oxygen species (mROS) by mitochondrial complex I is very low in neurons and very high in astrocytes. Such a naturally occurring high abundance of mROS in astrocytes physiologically determines a specific transcriptional fingerprint that contributes to sustaining cognitive performance. We conclude that the energy and redox metabolism of astrocytes must complementarily match that of neurons to regulate brain function and animal welfare.
Collapse
|
19
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
20
|
Si Z, Shen Z, Luan F, Yan J. PINK1 regulates apoptosis of osteosarcoma as the target gene of cisplatin. J Orthop Surg Res 2023; 18:132. [PMID: 36823640 PMCID: PMC9948348 DOI: 10.1186/s13018-023-03615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Osteosarcoma is a common primary bone malignancy prevalent among adolescents and young adults. PTEN-induced kinase 1 (PINK1) regulates Parkinson's disease, but its role in cancers is unknown. OBJECTIVE This study was designed to analyze the mechanism by which PINK1 affects osteosarcoma using bioinformatics and cell experiments. MATERIALS AND METHODS The gene expression profiles were downloaded from the TARGET database. Several online databases were used to analyze the expression and protein‒protein interaction networks. CCK-8 cell viability assays and cisplatin treatment were used to assess cell activity with or without cisplatin treatment. Acridine orange/ethidium bromide (AO/EB) fluorescence staining was used to calculate the percentage of apoptotic cells. RESULTS Through bioinformatics analysis, we found that high expression of PINK1 was associated with poor prognosis in patients with osteosarcoma, and PINK1 inhibited apoptosis and promoted proliferation pathways. Next, we found that both PINK1 mRNA and protein levels were upregulated in osteosarcoma tissues. Additionally, we found that PTEN was reduced, while FOXO3a was markedly increased in osteosarcoma, suggesting that FOXO3a and not PTEN induced the overexpression of PINK1. CCK-8 and clonogenic assays showed that the knockdown of PINK1 decreased the growth of U2OS osteosarcoma cells. Ki67 immunofluorescence staining revealed that reduced cell proliferation in U2OS cells resulted in the depletion of PINK1. In addition, our AO/EB staining results indicated that the knockdown of PINK1 resulted in an increase in apoptotic cells and increased the levels of cleaved caspase-3. Furthermore, our experiments revealed that cisplatin promotes OS cell apoptosis by downregulating PINK1. CONCLUSION Collectively, our findings demonstrate that PINK1 is crucially involved in osteosarcoma and suggests that it can promote the apoptosis of OS cells as the downstream target gene of cisplatin.
Collapse
Affiliation(s)
- Zhenxing Si
- grid.412596.d0000 0004 1797 9737Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Shen
- grid.412463.60000 0004 1762 6325Department of Orthopedic Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001 Heilongjiang China
| | - Feiyu Luan
- grid.412596.d0000 0004 1797 9737Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedic Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
21
|
Travaglio M, Michopoulos F, Yu Y, Popovic R, Foster E, Coen M, Martins LM. Increased cysteine metabolism in PINK1 models of Parkinson's disease. Dis Model Mech 2023; 16:286748. [PMID: 36695500 PMCID: PMC9903142 DOI: 10.1242/dmm.049727] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD), an age-dependent neurodegenerative disease, is characterised by the selective loss of dopaminergic neurons in the substantia nigra (SN). Mitochondrial dysfunction is a hallmark of PD, and mutations in PINK1, a gene necessary for mitochondrial fitness, cause PD. Drosophila melanogaster flies with pink1 mutations exhibit mitochondrial defects and dopaminergic cell loss and are used as a PD model. To gain an integrated view of the cellular changes caused by defects in the PINK1 pathway of mitochondrial quality control, we combined metabolomics and transcriptomics analysis in pink1-mutant flies with human induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) with a PINK1 mutation. We observed alterations in cysteine metabolism in both the fly and human PD models. Mitochondrial dysfunction in the NPCs resulted in changes in several metabolites that are linked to cysteine synthesis and increased glutathione levels. We conclude that alterations in cysteine metabolism may compensate for increased oxidative stress in PD, revealing a unifying mechanism of early-stage PD pathology that may be targeted for drug development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marco Travaglio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK,Oncology Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Rebeka Popovic
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Edmund Foster
- Neuroscience Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Muireann Coen
- Oncology Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK,Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK,Author for correspondence ()
| |
Collapse
|
22
|
López-Grueso MJ, Padilla CA, Bárcena JA, Requejo-Aguilar R. Deficiency of Parkinson's Related Protein DJ-1 Alters Cdk5 Signalling and Induces Neuronal Death by Aberrant Cell Cycle Re-entry. Cell Mol Neurobiol 2023; 43:757-769. [PMID: 35182267 PMCID: PMC9958167 DOI: 10.1007/s10571-022-01206-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
DJ-1 is a multifunctional protein involved in Parkinson disease (PD) that can act as antioxidant, molecular chaperone, protease, glyoxalase, and transcriptional regulator. However, the exact mechanism by which DJ-1 dysfunction contributes to development of Parkinson's disease remains elusive. Here, using a comparative proteomic analysis between wild-type cortical neurons and neurons lacking DJ-1 (data available via ProteomeXchange, identifier PXD029351), we show that this protein is involved in cell cycle checkpoints disruption. We detect increased amount of p-tau and α-synuclein proteins, altered phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) signalling pathways, and deregulation of cyclin-dependent kinase 5 (Cdk5). Cdk5 is normally involved in dendritic growth, axon formation, and the establishment of synapses, but can also contribute to cell cycle progression in pathological conditions. In addition, we observed a decrease in proteasomal activity, probably due to tau phosphorylation that can also lead to activation of mitogenic signalling pathways. Taken together, our findings indicate, for the first time, that aborted cell cycle re-entry could be at the onset of DJ-1-associated PD. Therefore, new approaches targeting cell cycle re-entry can be envisaged to improve current therapeutic strategies.
Collapse
Affiliation(s)
- María José López-Grueso
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - Carmen Alicia Padilla
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - José Antonio Bárcena
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14071, Córdoba, Spain. .,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain.
| |
Collapse
|
23
|
Abstract
Background: Mitochondrial Na+ has been discovered as a new second messenger regulating inner mitochondrial membrane (IMM) fluidity and reactive oxygen species (ROS) production by complex III (CIII). However, the roles of mitochondrial Na+ in mitochondrial redox signaling go beyond what was initially expected. Significance: In this review, we systematize the current knowledge on mitochondrial Na+ homeostasis and its implications on different modes of ROS production by mitochondria. Na+ behaves as a positive modulator of forward mitochondrial ROS production either by complex III (CIII) or by decreasing antioxidant capacity of mitochondria and as a potential negative modulator of reverse electron transfer (RET) by complex I (CI). Such duality depends on the bioenergetic status, cation and redox contexts, and can either lead to potential adaptations or cell death. Future Directions: Direct Na+ interaction with phospholipids, proven in the IMM, allows us to hypothesize its potential role in the existence and function of lipid rafts in other biological membranes regarding redox homeostasis, as well as the potential role of other monovalent cations in membrane biology. Thus, we provide the reader an update on the emerging field of mitochondrial Na+ homeostasis and its relationship with mitochondrial redox signaling. Antioxid. Redox Signal. 37, 290-300.
Collapse
Affiliation(s)
| | - José Antonio Enríquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III CNIC, Madrid, Spain.,Centro de Investigaciones Biomédicas en Red de Fragilidad y Envejecimiento Saludable-CIBERFES, Madrid. Spain
| |
Collapse
|
24
|
Gonçalves DF, Duarte T, Foletto JVP, Senger LR, Vargas Brabosa N, Soares FAA, Dalla Corte CL. Mitochondrial function and cellular energy maintenance during aging in a Drosophila melanogaster model of Parkinson Disease. Mitochondrion 2022; 65:166-175. [PMID: 35787469 DOI: 10.1016/j.mito.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by movement disorders as well as loss of dopaminergic neurons. Moreover, genes affecting mitochondrial function, such as SNCA, Parkin, PINK1, DJ-1 and LRRK2, were demonstrated to be associated with PD and other neurodegenerative disease. Additionally, mitochondrial dysfunction and cellular energy imbalance are common markers found in PD. In this study, we used the pink1 null mutants of Drosophila melanogaster as a Parkinson's disease model to investigate how the energetic pathways and mitochondrial functions change during aging in a PD model. In our study, the loss of the pink1 gene decreased the survival percent and the decreased climbing index during aging in pink1-/- flies. Furthermore, there was an impairment in mitochondrial function demonstrated by a decrease in OXPHOS CI&CII-Linked and ETS CI&CII-Linked in pink1-/- flies at 3, 15 and 30 days of life. Interestingly, OXPHOS CII-Linked and ETS CII-Linked presented decreases only at 15 days of life in pink1-/- flies. Moreover, there was an increase in peroxide (H2O2) levels in pink1-/- flies at 15 and 30 days of life. Loss of the pink1 gene also decreased the activity of citrate synthase (CS) and increased the activity of lactate dehydrogenase (LDH) in pink1-/- flies head. Our results demonstrate a metabolic shift in ATP production in pink1-/- flies, which changed from oxidative to glycolytic pathways from 15 days of age, and is apparently more pronounced in the central nervous system.
Collapse
Affiliation(s)
- Débora F Gonçalves
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Tâmie Duarte
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - João V P Foletto
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Leahn R Senger
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Nilda Vargas Brabosa
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Félix A A Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Cristiane L Dalla Corte
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
25
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
26
|
Lopez-Fabuel I, Garcia-Macia M, Buondelmonte C, Burmistrova O, Bonora N, Alonso-Batan P, Morant-Ferrando B, Vicente-Gutierrez C, Jimenez-Blasco D, Quintana-Cabrera R, Fernandez E, Llop J, Ramos-Cabrer P, Sharaireh A, Guevara-Ferrer M, Fitzpatrick L, Thompton CD, McKay TR, Storch S, Medina DL, Mole SE, Fedichev PO, Almeida A, Bolaños JP. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nat Commun 2022; 13:536. [PMID: 35087090 PMCID: PMC8795187 DOI: 10.1038/s41467-022-28191-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Costantina Buondelmonte
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Nicolo Bonora
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Paula Alonso-Batan
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Brenda Morant-Ferrando
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carlos Vicente-Gutierrez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ruben Quintana-Cabrera
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Aseel Sharaireh
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Marta Guevara-Ferrer
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Lorna Fitzpatrick
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | | | - Tristan R McKay
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Stephan Storch
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), High Content Screening Facility, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138, Naples, Italy
| | - Sara E Mole
- MRC Laboratory for Molecular Biology and GOS Institute of Child Health, University College London, London, UK
| | | | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
27
|
Parkinson's disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite. Proc Natl Acad Sci U S A 2022; 119:2111338119. [PMID: 35046029 PMCID: PMC8795555 DOI: 10.1073/pnas.2111338119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive compounds cause cellular damage that is suspected to contribute to aging and neurodegenerative diseases. Oxidative stress and environmental factors likely contribute to this. Here we report that an enzyme mutated in Parkinson’s disease can prevent damage of metabolites and proteins caused by a metabolite from the central pathway of sugar metabolism. Inactivation of this enzyme in model systems, ranging from flies to human cells, leads to the accumulation of a wide range of damaged metabolites and proteins. Thus, this enzyme represents a highly conserved strategy to prevent damage in cells that metabolize sugars. Overall, we discovered a fundamental link between carbohydrate metabolism and a type of cellular damage that might contribute to the development of Parkinson’s disease. Cells are continuously exposed to potentially dangerous compounds. Progressive accumulation of damage is suspected to contribute to neurodegenerative diseases and aging, but the molecular identity of the damage remains largely unknown. Here we report that PARK7, an enzyme mutated in hereditary Parkinson’s disease, prevents damage of proteins and metabolites caused by a metabolite of glycolysis. We found that the glycolytic metabolite 1,3-bisphosphoglycerate (1,3-BPG) spontaneously forms a novel reactive intermediate that avidly reacts with amino groups. PARK7 acts by destroying this intermediate, thereby preventing the formation of proteins and metabolites with glycerate and phosphoglycerate modifications on amino groups. As a consequence, inactivation of PARK7 (or its orthologs) in human cell lines, mouse brain, and Drosophila melanogaster leads to the accumulation of these damaged compounds, most of which have not been described before. Our work demonstrates that PARK7 function represents a highly conserved strategy to prevent damage in cells that metabolize carbohydrates. This represents a fundamental link between metabolism and a type of cellular damage that might contribute to the development of Parkinson’s disease.
Collapse
|
28
|
Docherty CK, Strembitska A, Baker CP, Schmidt FF, Reay K, Mercer JR. Inducing Energetic Switching Using Klotho Improves Vascular Smooth Muscle Cell Phenotype. Int J Mol Sci 2021; 23:ijms23010217. [PMID: 35008643 PMCID: PMC8745077 DOI: 10.3390/ijms23010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
The cardiovascular disease of atherosclerosis is characterised by aged vascular smooth muscle cells and compromised cell survival. Analysis of human and murine plaques highlights markers of DNA damage such as p53, Ataxia telangiectasia mutated (ATM), and defects in mitochondrial oxidative metabolism as significant observations. The antiageing protein Klotho could prolong VSMC survival in the atherosclerotic plaque and delay the consequences of plaque rupture by improving VSMC phenotype to delay heart attacks and stroke. Comparing wild-type VSMCs from an ApoE model of atherosclerosis with a flox'd Pink1 knockout of inducible mitochondrial dysfunction we show WT Pink1 is essential for normal cell viability, while Klotho mediates energetic switching which may preserve cell survival. METHODS Wild-type ApoE VSMCs were screened to identify potential drug candidates that could improve longevity without inducing cytotoxicity. The central regulator of cell metabolism AMP Kinase was used as a readout of energy homeostasis. Functional energetic switching between oxidative and glycolytic metabolism was assessed using XF24 technology. Live cell imaging was then used as a functional readout for the WT drug response, compared with Pink1 (phosphatase-and-tensin-homolog (PTEN)-induced kinase-1) knockout cells. RESULTS Candidate drugs were assessed to induce pACC, pAMPK, and pLKB1 before selecting Klotho for its improved ability to perform energetic switching. Klotho mediated an inverse dose-dependent effect and was able to switch between oxidative and glycolytic metabolism. Klotho mediated improved glycolytic energetics in wild-type cells which were not present in Pink1 knockout cells that model mitochondrial dysfunction. Klotho improved WT cell survival and migration, increasing proliferation and decreasing necrosis independent of effects on apoptosis. CONCLUSIONS Klotho plays an important role in VSMC energetics which requires Pink1 to mediate energetic switching between oxidative and glycolytic metabolism. Klotho improved VSMC phenotype and, if targeted to the plaque early in the disease, could be a useful strategy to delay the effects of plaque ageing and improve VSMC survival.
Collapse
|
29
|
Chen XY, Wang JQ, Cheng SJ, Wang Y, Deng MY, Yu T, Wang HY, Zhou WJ. Diazoxide Post-conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes. Front Cardiovasc Med 2021; 8:711465. [PMID: 34938777 PMCID: PMC8687117 DOI: 10.3389/fcvm.2021.711465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Previous studies have shown that diazoxide can protect against myocardial ischemia-reperfusion injury (MIRI). The intranuclear hypoxia-inducible factor-1 (HIF-1)/hypoxia-response element (HRE) pathway has been shown to withstand cellular damage caused by MIRI. It remains unclear whether diazoxide post-conditioning is correlated with the HIF-1/HRE pathway in protective effect on cardiomyocytes. Methods: An isolated cardiomyocyte model of hypoxia-reoxygenation injury was established. Prior to reoxygenation, cardiomyocytes underwent post-conditioning treatment by diazoxide, and 5-hydroxydecanoate (5-HD), N-(2-mercaptopropionyl)-glycine (MPG), or dimethyloxallyl glycine (DMOG) followed by diazoxide. At the end of reoxygenation, ultrastructural morphology; mitochondrial membrane potential; interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS), and HIF-1α levels; and downstream gene mRNA and protein levels were analyzed to elucidate the protective mechanism of diazoxide post-conditioning. Results: Diazoxide post-conditioning enabled activation of the HIF-1/HRE pathway to induce myocardial protection. When the mitoKATP channel was inhibited and ROS cleared, the diazoxide effect was eliminated. DMOG was able to reverse the effect of ROS absence to restore the diazoxide effect. MitoKATP and ROS in the early reoxygenation phase were key to activation of the HIF-1/HRE pathway. Conclusion: Diazoxide post-conditioning promotes opening of the mitoKATP channel to generate a moderate ROS level that activates the HIF-1/HRE pathway and subsequently induces myocardial protection.
Collapse
Affiliation(s)
- Xi-Yuan Chen
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Department of Anesthesiology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jia-Qi Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Si-Jing Cheng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yan Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Meng-Yuan Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Hai-Ying Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Wen-Jing Zhou
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
30
|
Lizama BN, Otero PA, Chu CT. PINK1: Multiple mechanisms of neuroprotection. INTERNATIONAL REVIEW OF MOVEMENT DISORDERS 2021; 2:193-219. [PMID: 36035617 PMCID: PMC9416918 DOI: 10.1016/bs.irmvd.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Britney N. Lizama
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - P. Anthony Otero
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Charleen T. Chu
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases and Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Docherty CK, Bresciani J, Carswell A, Chanderseka A, Friel E, Stasi M, Mercer JR. An Inducible and Vascular Smooth Muscle Cell-Specific Pink1 Knockout Induces Mitochondrial Energetic Dysfunction during Atherogenesis. Int J Mol Sci 2021; 22:ijms22189993. [PMID: 34576157 PMCID: PMC8467198 DOI: 10.3390/ijms22189993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
DNA damage and mitochondrial dysfunction are defining characteristics of aged vascular smooth muscle cells (VSMCs) found in atherosclerosis. Pink1 kinase regulates mitochondrial homeostasis and recycles dysfunctional organelles critical for maintaining energetic homeostasis. Here, we generated a new vascular-specific Pink1 knockout and assessed its effect on VSMC-dependent atherogenesis in vivo and VSMC energetic metabolism in vitro. A smooth muscle cell-specific and MHC-Cre-inducible flox'd Pink1f/f kinase knockout was made on a ROSA26+/0 and ApoE-/- C57Blk6/J background. Mice were high fat fed for 10 weeks and vasculature assessed for physiological and pathogical changes. Mitochondrial respiratory activity was then assessed in wild-type and knockout animals vessels and isolated cells for their reliance on oxidative and glycolytic metabolism. During atherogenesis, we find that Pink1 knockout affects development of plaque quality rather than plaque quantity by decreasing VSMC and extracellular matrix components, collagen and elastin. Pink1 protein is important in the wild-type VSMC response to metabolic stress and induced a compensatory increase in hexokinase II, which catalyses the first irreversible step in glycolysis. Pink1 appears to play an important role in VSMC energetics during atherogenesis but may also provide insight into the understanding of mitochondrial energetics in other diseases where the regulation of energetic switching between oxidative and glycolytic metabolism is found to be important.
Collapse
|
32
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
33
|
Yin K, Lee J, Liu Z, Kim H, Martin DR, Wu D, Liu M, Xue X. Mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming via p53 activation and reducing acetyl-CoA production. Cell Death Differ 2021; 28:2421-2435. [PMID: 33723373 PMCID: PMC8329176 DOI: 10.1038/s41418-021-00760-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths in the US. Understanding the mechanisms of CRC progression is essential to improve treatment. Mitochondria is the powerhouse for healthy cells. However, in tumor cells, less energy is produced by the mitochondria and metabolic reprogramming is an early hallmark of cancer. The metabolic differences between normal and cancer cells are being interrogated to uncover new therapeutic approaches. Mitochondria targeting PTEN-induced kinase 1 (PINK1) is a key regulator of mitophagy, the selective elimination of damaged mitochondria by autophagy. Defective mitophagy is increasingly associated with various diseases including CRC. However, a significant gap exists in our understanding of how PINK1-dependent mitophagy participates in the metabolic regulation of CRC. By mining Oncomine, we found that PINK1 expression was downregulated in human CRC tissues compared to normal colons. Moreover, disruption of PINK1 increased colon tumorigenesis in two colitis-associated CRC mouse models, suggesting that PINK1 functions as a tumor suppressor in CRC. PINK1 overexpression in murine colon tumor cells promoted mitophagy, decreased glycolysis and increased mitochondrial respiration potentially via activation of p53 signaling pathways. In contrast, PINK1 deletion decreased apoptosis, increased glycolysis, and reduced mitochondrial respiration and p53 signaling. Interestingly, PINK1 overexpression in vivo increased apoptotic cell death and suppressed colon tumor xenograft growth. Metabolomic analysis revealed that acetyl-CoA was significantly reduced in tumors with PINK1 overexpression, which was partly due to activation of the HIF-1α-pyruvate dehydrogenase (PDH) kinase 1 (PDHK1)-PDHE1α axis. Strikingly, treating mice with acetate increased acetyl-CoA levels and rescued PINK1-suppressed tumor growth. Importantly, PINK1 disruption simultaneously increased xenografted tumor growth and acetyl-CoA production. In conclusion, mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming and reducing acetyl-CoA production.
Collapse
Affiliation(s)
- Kunlun Yin
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Jordan Lee
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Zhaoli Liu
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Hyeoncheol Kim
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - David R. Martin
- grid.266832.b0000 0001 2188 8502Department of Pathology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Dandan Wu
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Meilian Liu
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| | - Xiang Xue
- grid.266832.b0000 0001 2188 8502Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
34
|
Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. Hypoxia Signaling in Parkinson's Disease: There Is Use in Asking "What HIF?". BIOLOGY 2021; 10:723. [PMID: 34439955 PMCID: PMC8389254 DOI: 10.3390/biology10080723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Hypoxia is a condition characterized by insufficient tissue oxygenation, which results in impaired oxidative energy production. A reduction in cellular oxygen levels induces the stabilization of hypoxia inducible factor α (HIF-1α), master regulator of the molecular response to hypoxia, involved in maintaining cellular homeostasis and driving hypoxic adaptation through the control of gene expression. Due to its high energy requirement, the brain is particularly vulnerable to oxygen shortage. Thus, hypoxic injury can cause significant metabolic changes in neural cell populations, which are associated with neurodegeneration. Recent evidence suggests that regulating HIF-1α may ameliorate the cellular damage in neurodegenerative diseases. Indeed, the hypoxia/HIF-1α signaling pathway has been associated to several processes linked to Parkinson's disease (PD) including gene mutations, risk factors and molecular pathways such as mitochondrial dysfunction, oxidative stress and protein degradation impairment. This review will explore the impact of hypoxia and HIF-1α signaling on these specific molecular pathways that influence PD development and will evaluate different novel neuroprotective strategies involving HIF-1α stabilization.
Collapse
Affiliation(s)
- Laura Lestón Pinilla
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Aslihan Ugun-Klusek
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Luigi A. De Girolamo
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
35
|
Xu C, Dai Y, Bai J, Ren B, Xu J, Gao F, Wang L, Zhang W, Wang R. 17β-oestradiol alleviates endoplasmic reticulum stress injury induced by chronic cerebral hypoperfusion through the Haemoglobin/HIF 1α signalling pathway in ovariectomized rats. Neurochem Int 2021; 148:105119. [PMID: 34224805 DOI: 10.1016/j.neuint.2021.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum stress (ERS) is known to be an essential target in protecting against ischaemic brain injury. In this study, using a vascular dementia (VaD) animal model induced by bilateral common carotid artery occlusion (BCCAO), we evaluated the effect and mechanism of 17β-oestradiol (E2) against VaD by inhibiting ERS at the early stage (14 d, 21 d, 28 d) and late stage (3 m) after BCCAO in the hippocampal CA1 region of ovariectomized rats. The results showed that the activation of the PERK-eIF2α-ATF4-CHOP axis, a typical ERS pathway, was significantly increased at the early and late stages after BCCAO. JNK (c-Jun N-terminal kinase)-cJun, a pro-death pathway, also displayed the same pattern as the ERS axis. E2 treatment profoundly suppressed the impairments caused by BCCAO. Further mechanistic studies revealed that cerebral blood flow (CBF) was sharply decreased at 14 d and returned to the normal level at 21 d after BCCAO. E2 could not change CBF, while it unexpectedly enhanced the ability to carry oxygen. This is evidenced by the fact that the protein expression of haemoglobin α/β (Hα/β), an oxygen carrier, robustly increased at BCCAO 21 d and 3 m after E2 treatment. The oxygen carrier increased strongly after 21 d and 3 m of BCCAO treated with E2. Moreover, E2 correspondingly enhanced the protein expression of hypoxia-inducible factor 1α (HIF 1α) in both the early and late stage after BCCAO in the hippocampal CA1 region. Finally, E2 administration markedly decreased the activities of caspase-8, caspase-3, and caspase-12 and increased the number of NeuN-positive cells. These findings suggest that E2 serves as a neuroprotectant to alleviate VaD by suppressing ERS injury involving the haemoglobin/HIF 1α signalling pathway.
Collapse
Affiliation(s)
- Chao Xu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Yongxin Dai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Bo Ren
- School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Jing Xu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Lu Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Wenli Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; School Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
36
|
Lizama BN, Chu CT. Neuronal autophagy and mitophagy in Parkinson's disease. Mol Aspects Med 2021; 82:100972. [PMID: 34130867 DOI: 10.1016/j.mam.2021.100972] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is the process by which cells can selectively or non-selectively remove damaged proteins and organelles. As the cell's main means of sequestering damaged mitochondria for removal, mitophagy is central to cellular function and survival. Research on autophagy and mitochondrial quality control has increased exponentially in relation to the pathogenesis of numerous disease conditions, from cancer and immune diseases to chronic neurodegenerative diseases like Parkinson's disease (PD). Understanding how components of the autophagic/mitophagic machinery are affected during disease, as well as the contextual relationship of autophagy with determining neuronal health and function, is essential to the goal of designing therapies for human disease. In this review, we will summarize key signaling molecules that consign damaged mitochondria for autophagic degradation, describe the relationship of genes linked to PD to autophagy/mitophagy dysfunction, and discuss additional roles of both mitochondrial and cytosolic pools of PTEN-induced kinase 1 (PINK1) in mitochondrial homeostasis, dendritic morphogenesis and inflammation.
Collapse
Affiliation(s)
- Britney N Lizama
- Dept of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Charleen T Chu
- Dept of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases and Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
37
|
Dai K, Radin DP, Leonardi D. Deciphering the dual role and prognostic potential of PINK1 across cancer types. Neural Regen Res 2021; 16:659-665. [PMID: 33063717 PMCID: PMC8067949 DOI: 10.4103/1673-5374.295314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/04/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Metabolic rewiring and deregulation of the cell cycle are hallmarks shared by many cancers. Concerted mutations in key tumor suppressor genes, such as PTEN, and oncogenes predispose cancer cells for marked utilization of resources to fuel accelerated cell proliferation and chemotherapeutic resistance. Mounting research has demonstrated that PTEN-induced putative kinase 1 (PINK1) acts as a pivotal regulator of mitochondrial homeostasis in several cancer types, a function that also extends to the regulation of tumor cell proliferative capacity. In addition, involvement of PINK1 in modulating inflammatory responses has been highlighted by recent studies, further expounding PINK1's multifunctional nature. This review discusses the oncogenic roles of PINK1 in multiple tumor cell types, with an emphasis on maintenance of mitochondrial homeostasis, while also evaluating literature suggesting a dual oncolytic mechanism based on PINK1's modulation of the Warburg effect. From a clinical standpoint, its expression may also dictate the response to genotoxic stressors commonly used to treat multiple malignancies. By detailing the evidence suggesting that PINK1 possesses distinct prognostic value in the clinical setting and reviewing the duality of PINK1 function in a context-dependent manner, we present avenues for future studies of this dynamic protein.
Collapse
Affiliation(s)
- Katherine Dai
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Daniel P. Radin
- Department of Pharmacology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | | |
Collapse
|
38
|
Generation of Reactive Oxygen Species by Mitochondria. Antioxidants (Basel) 2021; 10:antiox10030415. [PMID: 33803273 PMCID: PMC8001687 DOI: 10.3390/antiox10030415] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are series of chemical products originated from one or several electron reductions of oxygen. ROS are involved in physiology and disease and can also be both cause and consequence of many biological scenarios. Mitochondria are the main source of ROS in the cell and, particularly, the enzymes in the electron transport chain are the major contributors to this phenomenon. Here, we comprehensively review the modes by which ROS are produced by mitochondria at a molecular level of detail, discuss recent advances in the field involving signalling and disease, and the involvement of supercomplexes in these mechanisms. Given the importance of mitochondrial ROS, we also provide a schematic guide aimed to help in deciphering the mechanisms involved in their production in a variety of physiological and pathological settings.
Collapse
|
39
|
Patoli D, Mignotte F, Deckert V, Dusuel A, Dumont A, Rieu A, Jalil A, Van Dongen K, Bourgeois T, Gautier T, Magnani C, Le Guern N, Mandard S, Bastin J, Djouadi F, Schaeffer C, Guillaumot N, Narce M, Nguyen M, Guy J, Dargent A, Quenot JP, Rialland M, Masson D, Auwerx J, Lagrost L, Thomas C. Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. J Clin Invest 2021; 130:5858-5874. [PMID: 32759503 DOI: 10.1172/jci130996] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis, but its contribution to macrophage functions and host defense remains to be delineated. Here, we showed that lipopolysaccharide (LPS) in combination with IFN-γ inhibited PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11. In addition, we demonstrated that the inhibition of mitophagy triggered classical macrophage activation in a mitochondrial ROS-dependent manner. In a murine model of polymicrobial infection (cecal ligature and puncture), adoptive transfer of Pink1-deficient bone marrow or pharmacological inhibition of mitophagy promoted macrophage activation, which favored bactericidal clearance and led to a better survival rate. Reciprocally, mitochondrial uncouplers that promote mitophagy reversed LPS/IFN-γ-mediated activation of macrophages and led to immunoparalysis with impaired bacterial clearance and lowered survival. In critically ill patients, we showed that mitophagy was inhibited in blood monocytes of patients with sepsis as compared with nonseptic patients. Overall, this work demonstrates that the inhibition of mitophagy is a physiological mechanism that contributes to the activation of myeloid cells and improves the outcome of sepsis.
Collapse
Affiliation(s)
- Danish Patoli
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Franck Mignotte
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Valérie Deckert
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Alois Dusuel
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Adélie Dumont
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Aurélie Rieu
- UBFC, UMR PAM A 02.102, AgroSup Dijon/ Université de Bourgogne, Dijon, France
| | - Antoine Jalil
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Kevin Van Dongen
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Thibaut Bourgeois
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Thomas Gautier
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Charlène Magnani
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Naig Le Guern
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Stéphane Mandard
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM, Université Sorbonne-Paris-Cité, Paris, France
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM, Université Sorbonne-Paris-Cité, Paris, France
| | | | - Nina Guillaumot
- Université de Strasbourg, CNRS, UMR 7178, LSMBO, Strasbourg, France
| | - Michel Narce
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France.,Department of Anesthesiology and Intensive Care
| | | | - Auguste Dargent
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France.,Department of Intensive Care, University Hospital François Mitterrand, Dijon, France
| | - Jean-Pierre Quenot
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France.,Department of Intensive Care, University Hospital François Mitterrand, Dijon, France.,Clinical Epidemiology, INSERM CIC 1432 and University of Burgundy, Dijon, France
| | - Mickaël Rialland
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| | - David Masson
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France.,Clinical Biochemistry Department, University Hospital François Mitterrand, Dijon, France
| | - Johan Auwerx
- Laboratory for Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Lagrost
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France.,Clinical Biochemistry Department, University Hospital François Mitterrand, Dijon, France
| | - Charles Thomas
- Université de Bourgogne Franche-Comté (UBFC), UMR 1231, INSERM/AgroSup Dijon/Université de Bourgogne, Dijon, France.,LipSTIC LabEx, Dijon, France
| |
Collapse
|
40
|
Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral Glycolysis in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E8924. [PMID: 33255513 PMCID: PMC7727792 DOI: 10.3390/ijms21238924] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a group of nervous system conditions characterised pathologically by the abnormal deposition of protein throughout the brain and spinal cord. One common pathophysiological change seen in all neurodegenerative disease is a change to the metabolic function of nervous system and peripheral cells. Glycolysis is the conversion of glucose to pyruvate or lactate which results in the generation of ATP and has been shown to be abnormal in peripheral cells in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Changes to the glycolytic pathway are seen early in neurodegenerative disease and highlight how in multiple neurodegenerative conditions pathology is not always confined to the nervous system. In this paper, we review the abnormalities described in glycolysis in the three most common neurodegenerative diseases. We show that in all three diseases glycolytic changes are seen in fibroblasts, and red blood cells, and that liver, kidney, muscle and white blood cells have abnormal glycolysis in certain diseases. We highlight there is potential for peripheral glycolysis to be developed into multiple types of disease biomarker, but large-scale bio sampling and deciphering how glycolysis is inherently altered in neurodegenerative disease in multiple patients' needs to be accomplished first to meet this aim.
Collapse
Affiliation(s)
- Simon M. Bell
- Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield S10 2HQ, UK; (T.B.); (J.L.); (D.J.B.); (S.P.A.); (H.M.)
| | | | | | | | | | | |
Collapse
|
41
|
Bus C, Zizmare L, Feldkaemper M, Geisler S, Zarani M, Schaedler A, Klose F, Admard J, Mageean CJ, Arena G, Fallier-Becker P, Ugun-Klusek A, Maruszczak KK, Kapolou K, Schmid B, Rapaport D, Ueffing M, Casadei N, Krüger R, Gasser T, Vogt Weisenhorn DM, Kahle PJ, Trautwein C, Gloeckner CJ, Fitzgerald JC. Human Dopaminergic Neurons Lacking PINK1 Exhibit Disrupted Dopamine Metabolism Related to Vitamin B6 Co-Factors. iScience 2020; 23:101797. [PMID: 33299968 PMCID: PMC7702004 DOI: 10.1016/j.isci.2020.101797] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/07/2020] [Accepted: 11/10/2020] [Indexed: 01/17/2023] Open
Abstract
PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme mAconitase, accumulation of NAD+, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease. PINK1 KO hDANs do not undergo ionophore-induced mitophagy yet CI remains active PINK1 KO impacts the TCA cycle via mAconitase leading to depletion of key amino acids PINK1 KO silences PNPO, which provides essential biological co-factors Dopamine pools and neurotransmitter uptake are reduced by PINK1 loss of function
Collapse
Affiliation(s)
- Christine Bus
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany.,DZNE - German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Marita Feldkaemper
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Sven Geisler
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany
| | - Maria Zarani
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany
| | - Anna Schaedler
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Core Facility for Medical Bioanalytics, University of Tübingen, Center for Ophthalmology, Institute for Ophthalmic Research, Tübingen, Germany
| | - Jakob Admard
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Germany
| | - Craig J Mageean
- DZNE - German Center for Neurodegenerative Diseases, Tübingen, Germany.,Core Facility for Medical Bioanalytics, University of Tübingen, Center for Ophthalmology, Institute for Ophthalmic Research, Tübingen, Germany
| | - Giuseppe Arena
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Aslihan Ugun-Klusek
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Klaudia K Maruszczak
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Konstantina Kapolou
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Benjamin Schmid
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.,Core Facility for Medical Bioanalytics, University of Tübingen, Center for Ophthalmology, Institute for Ophthalmic Research, Tübingen, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Germany
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany.,DZNE - German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Daniela M Vogt Weisenhorn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Munich-Neuherberg, Germany
| | - Philipp J Kahle
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany.,DZNE - German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Christian J Gloeckner
- DZNE - German Center for Neurodegenerative Diseases, Tübingen, Germany.,Core Facility for Medical Bioanalytics, University of Tübingen, Center for Ophthalmology, Institute for Ophthalmic Research, Tübingen, Germany
| | - Julia C Fitzgerald
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Strasse 27, 72076, Tübingen, Germany
| |
Collapse
|
42
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells 2020; 9:cells9102229. [PMID: 33023155 PMCID: PMC7650593 DOI: 10.3390/cells9102229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson’s disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently Nthl1-Ppat-Bdh2, but also mitochondrial Glrx5-Nfu1-Bola1, cytosolic Aco1-Abce1-Tyw5, and nuclear Dna2-Elp3-Pold1-Prim2. Incidentally, upregulated Pink1-Prkn levels explained mitophagy induction, the downregulated expression of Slc25a28 suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor Abce1 and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging.
Collapse
|
44
|
Solana-Manrique C, Sanz FJ, Ripollés E, Bañó MC, Torres J, Muñoz-Soriano V, Paricio N. Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency. Free Radic Biol Med 2020; 158:137-148. [PMID: 32726690 DOI: 10.1016/j.freeradbiomed.2020.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative debilitating disorder characterized by progressive disturbances in motor, autonomic and psychiatric functions. One of the genes involved in familial forms of the disease is DJ-1, whose mutations cause early-onset PD. Besides, it has been shown that an over-oxidized and inactive form of the DJ-1 protein is found in brains of sporadic PD patients. Interestingly, the DJ-1 protein plays an important role in cellular defense against oxidative stress and also participates in mitochondrial homeostasis. Valuable insights into potential PD pathogenic mechanisms involving DJ-1 have been obtained from studies in cell and animal PD models based on DJ-1 deficiency such as Drosophila. Flies mutant for the DJ-1β gene, the Drosophila ortholog of human DJ-1, exhibited disease-related phenotypes such as motor defects, increased reactive oxygen species production and high levels of protein carbonylation. In the present study, we demonstrate that DJ-1β mutants also show a significant increase in the activity of several regulatory glycolytic enzymes. Similar results were obtained in DJ-1-deficient SH-SY5Y neuroblastoma cells, thus suggesting that loss of DJ-1 function leads to an increase in the glycolytic rate. In such a scenario, an enhancement of the glycolytic pathway could be a protective mechanism to decrease ROS production by restoring ATP levels, which are decreased due to mitochondrial dysfunction. Our results also show that meclizine and dimethyl fumarate, two FDA-approved compounds with different clinical applications, are able to attenuate PD-related phenotypes in both models. Moreover, we found that they may exert their beneficial effect by increasing glycolysis through the activation of key glycolytic enzymes. Taken together, these results are consistent with the idea that increasing glycolysis could be a potential disease-modifying strategy for PD, as recently suggested. Besides, they also support further evaluation and potential repurposing of meclizine and dimethyl fumarate as modulators of energy metabolism for neuroprotection in PD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Edna Ripollés
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - M Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain; Departamento de Bioquímica y Biología Molecular, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
| | - Josema Torres
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
45
|
Sarraf SA, Sideris DP, Giagtzoglou N, Ni L, Kankel MW, Sen A, Bochicchio LE, Huang CH, Nussenzweig SC, Worley SH, Morton PD, Artavanis-Tsakonas S, Youle RJ, Pickrell AM. PINK1/Parkin Influences Cell Cycle by Sequestering TBK1 at Damaged Mitochondria, Inhibiting Mitosis. Cell Rep 2020; 29:225-235.e5. [PMID: 31577952 PMCID: PMC6880866 DOI: 10.1016/j.celrep.2019.08.085] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
PINK1 and Parkin are established mediators of mitophagy, the selective removal of damaged mitochondria by autophagy. PINK1 and Parkin have been proposed to act as tumor suppressors, as loss-of-function mutations are correlated with enhanced tumorigenesis. However, it is unclear how PINK1 and Parkin act in coordination during mitophagy to influence the cell cycle. Here we show that PINK1 and Parkin genetically interact with proteins involved in cell cycle regulation, and loss of PINK1 and Parkin accelerates cell growth. PINK1- and Parkin-mediated activation of TBK1 at the mitochondria during mitophagy leads to a block in mitosis due to the sequestration of TBK1 from its physiological role at centrosomes during mitosis. Our study supports a diverse role for the far-reaching, regulatory effects of mitochondrial quality control in cellular homeostasis and demonstrates that the PINK1/Parkin pathway genetically interacts with the cell cycle, providing a framework for understanding the molecular basis linking PINK1 and Parkin to mitosis. Sarraf et al. use mouse and fly genetics to discover that PINK1 and Parkin influence cell cycle progression. Mitophagy and mitosis independently activate TBK1 at damaged mitochondria and centrosomes, respectively, influencing whether the cell will address mitochondrial quality control or progress with proliferation.
Collapse
Affiliation(s)
- Shireen A Sarraf
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Dionisia P Sideris
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | - Lina Ni
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mark W Kankel
- Neuromuscular & Movement Disorders, Biogen, Inc., Cambridge, MA 02142, USA
| | - Anindya Sen
- Pathway Discovery Laboratory, Biogen, Inc., Cambridge, MA 02142, USA
| | - Lauren E Bochicchio
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA
| | - Chiu-Hui Huang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Samuel C Nussenzweig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Stuart H Worley
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Spyros Artavanis-Tsakonas
- Pathway Discovery Laboratory, Biogen, Inc., Cambridge, MA 02142, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Alicia M Pickrell
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
46
|
Yang X, Zhang R, Nakahira K, Gu Z. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy. Annu Rev Nutr 2020; 39:201-226. [PMID: 31433742 DOI: 10.1146/annurev-nutr-082018-124643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A wide spectrum of human diseases, including cancer, neurodegenerative diseases, and metabolic disorders, have been shown to be associated with mitochondrial dysfunction through multiple molecular mechanisms. Mitochondria are particularly susceptible to nutrient deficiencies, and nutritional intervention is an essential way to maintain mitochondrial homeostasis. Recent advances in genetic manipulation and next-generation sequencing reveal the crucial roles of mitochondrial DNA (mtDNA) in various pathophysiological conditions. Mitophagy, a term coined to describe autophagy that targets dysfunctional mitochondria, has emerged as an important cellular process to maintain mitochondrial homeostasis and has been shown to be regulated by various nutrients and nutritional stresses. Given the high prevalence of mtDNA mutations in humans and their impact on mitochondrial function, it is important to investigate the mechanisms that regulate mtDNA mutation. Here, we discuss mitochondrial genetics and mtDNA mutations and their implications for human diseases. We also examine the role of mitophagy as a therapeutic target, highlighting how nutrients may eliminate mtDNA mutations through mitophagy.
Collapse
Affiliation(s)
- Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Ruoyu Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
47
|
Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Front Neurosci 2020; 14:679. [PMID: 32760239 PMCID: PMC7373761 DOI: 10.3389/fnins.2020.00679] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial function for neurogenesis, and how both processes are correlated and may contribute to the pathogenesis of ALS; we have focused primarily on preclinical data from animal models of ALS, since to date no studies have evaluated this link using human samples. As there is currently no cure and no effective therapy to counteract ALS, we have also discussed how improving neurogenic function by epigenetic modulation could benefit ALS. In support of this hypothesis, changes in histone deacetylation can alter mitochondrial function, which in turn might ameliorate cellular proliferation as well as neuronal differentiation and migration. We propose that modulation of epigenetics, mitochondrial function, and neurogenesis might provide new hope for ALS patients, and studies exploring these new territories are warranted in the near future.
Collapse
Affiliation(s)
| | - Elisandra Henriques
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Amanda Siena
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Clélia Rejane Antonio Bertoncini
- CEDEME, Center of Development of Experimental Models for Medicine and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, Faculty of Medicine, University of Victoria and Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| |
Collapse
|
48
|
Granat L, Hunt RJ, Bateman JM. Mitochondrial retrograde signalling in neurological disease. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190415. [PMID: 32362256 DOI: 10.1098/rstb.2019.0415] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuronal mitochondrial dysfunction causes primary mitochondrial diseases and likely contributes to neurodegenerative diseases including Parkinson's and Alzheimer's disease. Mitochondrial dysfunction has also been documented in neurodevelopmental disorders such as tuberous sclerosis complex and autism spectrum disorder. Only symptomatic treatments exist for neurodevelopmental disorders, while neurodegenerative diseases are largely untreatable. Altered mitochondrial function activates mitochondrial retrograde signalling pathways, which enable signalling to the nucleus to reprogramme nuclear gene expression. In this review, we discuss the role of mitochondrial retrograde signalling in neurological diseases. We summarize how mitochondrial dysfunction contributes to neurodegenerative disease and neurodevelopmental disorders. Mitochondrial signalling mechanisms that have relevance to neurological disease are discussed. We then describe studies documenting retrograde signalling pathways in neurons and glia, and in animal models of neuronal mitochondrial dysfunction and neurological disease. Finally, we suggest how specific retrograde signalling pathways can be targeted to develop novel treatments for neurological diseases. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Rachel J Hunt
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
49
|
Zhang X, Sun Y, Song D, Diao Y. κ-opioid receptor agonists may alleviate intestinal damage in cardiopulmonary bypass rats by inhibiting the NF-κB/HIF-1α pathway. Exp Ther Med 2020; 20:325-334. [PMID: 32509012 PMCID: PMC7271736 DOI: 10.3892/etm.2020.8685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
The aims of the present study were to investigate the protective effect of a κ-opioid receptor (KOR) agonist on intestinal barrier dysfunction in rats during cardiopulmonary bypass (CPB), as well as to examine the role of NF-κB and the transcription factor hypoxia-inducible factor-1α (HIF-1α) signaling pathway in the regulatory mechanism. A total of 50 rats were randomly divided into five groups, with 10 rats in each group: Sham surgery group (group Sham), CPB surgery group (group CPB), KOR agonist + CPB (group K), KOR agonist + specific KOR antagonist + CBP (group NK) and KOR agonist + NF-κB pathway specific inhibitor + CPB (group NF). Intestinal microcirculation was evaluated to determine intestinal barrier dysfunction in rats following CPB surgery. Hematoxylin and eosin (H&E) staining was used to observe intestinal tissue injury in the rats. ELISA was used to detect the inflammatory factors interleukin (IL)-1β, IL-6, IL10 and tumor necrosis factor-α, and the oxidative stress factors superoxidase dismutase, malondialdehyde and nitric oxide in serum. In addition, ELISA was used to investigate the serum levels of the intestinal damage markers D-lactic acid, diamine oxidase and intestinal fatty acid-binding protein. Western blotting was used to investigate the protein expression levels of tight junction proteins zonula occludens-1 and claudin-1. Furthermore, immunohistochemistry was used to examine intestinal injuries and western blotting was used to detect expression levels of NF-κB/HIF-1α signaling pathway-related proteins. H&E staining results suggested that the KOR agonist alleviated intestinal damage in the CPB model rats. This effect was reversed by the addition of a KOR antagonist. Further investigation of inflammatory and oxidative stress factors using ELISA revealed that the KOR agonist reduced the inflammatory and oxidative stress responses in the intestinal tissues of the CPB model rats. The ELISA results of intestinal damage markers and western blotting results of tight junction protein expression suggested that KOR agonist treatment may alleviate intestinal injury in CPB model rats. In addition, the western blotting and immunohistochemistry results suggested that KOR agonists may decrease the expression levels of NF-κB, p65 and HIF-1α in CPB. Collectively, the present results suggested that KOR agonists are able to ameliorate the intestinal barrier dysfunction in rats undergoing CPB by inhibiting the expression levels of NF-κB/HIF-1α signaling pathway-related proteins.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Postgraduate Training Base of The General Hospital of Northern Theater Command, Jinzhou Medical University, Jinzhou, Liaoning 121013, P.R. China.,Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yingjie Sun
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Dandan Song
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yugang Diao
- Department of Anesthesia, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
50
|
Liu L, Liao X, Wu H, Li Y, Zhu Y, Chen Q. Mitophagy and Its Contribution to Metabolic and Aging-Associated Disorders. Antioxid Redox Signal 2020; 32:906-927. [PMID: 31969001 DOI: 10.1089/ars.2019.8013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Mitochondria are the cellular powerhouses for ATP synthesis through oxidative phosphorylation, and the centers for fatty acid β-oxidation, metabolite synthesis, reactive oxygen species production, innate immunity, and apoptosis. To fulfill these critical functions, mitochondrial quality and homeostasis must be well maintained. Abnormal mitochondrial quality contributes to aging and age-related disorders, such as metabolic syndrome, cancers, and neurodegenerative diseases. Recent Advances: Mitophagy is a cellular process that selectively removes damaged or superfluous mitochondria by autolysosomal degradation and is regarded as one of the major mechanisms responsible for mitochondrial quality control. Critical Issues: To date, distinct mitophagy pathways have been discovered, including receptor-mediated mitophagy and ubiquitin-dependent mitophagy. Emerging knowledge of these pathways shows that they play important roles in sensing mitochondrial stress and signaling for metabolic adaptations. Future Directions: Here, we provide a review on the molecular mechanisms for mitophagy and its interplay with cellular metabolism, with a particular focus on its role in metabolic and age-related disorders.
Collapse
Affiliation(s)
- Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xudong Liao
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Wu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|