1
|
Zhao J, Zhou M, Yang C, Liu YW, Yang T, Sun B, Li B, Zheng J, Dai S, Yang Z, Wang X. S100A9 as a potential novel target for experimental autoimmune cystitis and interstitial cystitis/bladder pain syndrome. Biomark Res 2025; 13:72. [PMID: 40346703 PMCID: PMC12065242 DOI: 10.1186/s40364-025-00763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory disease of the bladder for which no effective therapy is currently available. Understanding the pathogenesis of IC/BPS and identifying effective intervention targets are of great clinical importance for its effective treatment. Our work focuses on elucidating the key targets and underlying mechanisms of IC/BPS. METHODS We established an experimental autoimmune cystitis (EAC) mouse model and generated gene knockout mice to elucidate key mediators triggering chronic inflammatory damage in IC/BPS through using single-cell RNA sequencing, proteomic sequencing, and molecular biology experiments. RESULTS Our study revealed that the infiltration and activation of macrophages, T cells, and mast cells exacerbated inflammatory bladder damage in both IC/BPS and EAC mice. Notably, cell-cell communication among bladder immune cells was significantly enhanced in EAC mice. Macrophages, as the main cell types altered in EAC mice, received and transmitted the most intensity signalling. Mechanistically, macrophages synthesized and secreted S100A9, which in turn facilitated macrophage polarization and promoted the production of pro-inflammatory cytokines. S100A9 emerged as an important pro-inflammatory and pathogenic molecule in IC/BPS and EAC. Further analysis demonstrated that S100A9 activation enhanced the inflammatory response and exacerbated bladder tissue damage in IC/BPS patients and EAC mice via TLR4/NF-κB and TLR4/p38 signalling pathways. Importantly, inhibition of S100A9 with paquinimod, as well as genetic knockout of S100A9, significantly attenuated the pathological process. CONCLUSIONS S100A9 is an important pro-inflammatory and pathogenic molecule in IC/BPS and EAC. Targeting S100A9-initiated signalling pathways may offer a novel therapeutic strategy for IC/BPS.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China.
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China
- Department of Central Laboratory, Qianjiang Hospital, Chongqing University, Chongqing, RP, 409000, China
| | - Chengfei Yang
- Department of Thoracic Surgery, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ji Zheng
- Department of Urology, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China
| | - Shuangshuang Dai
- Department of Biochemistry and Molecular Biology, Army Military Medical University, Chongqing, 400038, PR China.
| | - Zhenxing Yang
- Department of Blood Transfusion, Irradiation Biology Laboratory, Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, PR China.
| | - Xiangwei Wang
- Department of Urology, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
| |
Collapse
|
2
|
da Silva AM, de Amorim Ferreira M, Schran RG, Lückemeyer DD, Prudente AS, Ferreira J. Investigation of the participation of the TRPV1 receptor in the irritant effect of dithranol in mice. Eur J Pharmacol 2025; 994:177291. [PMID: 39870229 DOI: 10.1016/j.ejphar.2025.177291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
Dithranol is one of the most effective topical medications for treating plaque psoriasis. However, its clinical use is limited by irritative adverse reactions to the skin, such as oedema, erythema, and pruritus, caused by poorly understood mechanisms. Because TRPV1 activation mediates skin irritation caused by several drugs, we conducted blind and randomised experiments in male and female C57BL/6 mice to elucidate the role of TRPV1 in dithranol-induced irritation. Dithranol (0.01%-0.5%) or vehicle was applied topically to the right ear of the animals. Oedema, erythema, and pruritus were monitored from 2 h to 6 days after application. Treatment with 0.5% dithranol caused oedema and erythema, but not pruritus, starting at 6 h, reaching its highest point at 1 day, and persisting up to 6 days after treatment, mainly in male mice. The 0.1% dose induced erythema but not oedema. Interestingly, topical application of 1% capsaicin was shown to defunctionalise TRPV1-positive fibres and did not influence early irritation caused by dithranol (2 h-2 days). However, it increased the late phase of irritation (5-6 days). Similarly, salicylate did not reduce the early irritation caused by dithranol but also increased the late phase. Antagonism by SB366791 and 4-tert-butylcyclohexanol did not alter skin irritation. Our results suggest that, contrary to our initial hypothesis, TRPV1 appears to act protectively against skin irritation caused by dithranol, particularly in the late stage.
Collapse
Affiliation(s)
- Ana Merian da Silva
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil
| | - Marcella de Amorim Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil
| | - Roberta Giusti Schran
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil
| | - Debora Denardin Lückemeyer
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil; Pain Research Center, Department of Anesthesiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Arthur Silveira Prudente
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil; Pain Research Center, Department of Anesthesiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88037-000, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Raeisi H, Azimirad M, Schiopu A, Zarnani AH, Asadzadeh Aghdaei H, Abdemohamadi E, Zali MR, Yadegar A. Development of novel neutralizing single-chain fragment variable antibodies against S100A8. Sci Rep 2025; 15:12618. [PMID: 40221535 PMCID: PMC11993743 DOI: 10.1038/s41598-025-96211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
S100A8 plays a critical role in the pathogenesis of several inflammatory diseases and multiple types of cancer. Therefore, targeting the S100A8 function may alleviate the pathogenic process in various diseases. Here, specific single-chain variable fragment (scFv) antibodies targeting recombinant S100A8 (rS100A8) were selected by phage display technique and characterized using cDNA sequencing, immunoassay tests, and molecular docking. The neutralizing activity of scFvs was examined by a cell viability assay in rS100A8-treated macrophages. Furthermore, the modulatory effects of scFvs on the expression of inflammatory markers and apoptosis-related genes in macrophages and human colorectal carcinoma HT-29 cells treated with rS100A8 or dextran sulfate sodium (DSS) were assessed by RT-qPCR and flow cytometry. Based on our results, four scFvs were identified to be capable of detecting rS100A8 in the immunoassay tests. Among the selected scFvs, two clones (SA8-E6 and SA8-E12), alone or in combination, exhibited the highest blocking activity on rS100A8 and potently inhibited S100A8-induced cytotoxicity in macrophages. The use of a SA8-E6 and SA8-E12 (SA8-E6-12) cocktail inhibited the upregulation of TLR4 and RAGE, as well as inflammation and apoptosis-related genes in macrophages and HT-29 cells stimulated with rS100A8. Additionally, SA8-E6-12 exerted a significant inhibitory effect on inflammation and apoptosis induced by the S100A8/A9 complex in DSS-stimulated macrophages. We also demonstrated by molecular docking that the interaction of S100A8 with SA8-E6-12 was mainly restricted to the binding domain involved in the connection of S100A8 to TLR4. Further studies are required to explore the efficacy of these anti-S100A8 scFvs as potential therapeutic agents using in vivo models of S100A8-driven inflammatory diseases.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Abdemohamadi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Shi G, Cao Y, Xu J, Chen B, Zhang X, Zhu Y, Liu L, Liu X, Zhang L, Zhou Y, Li S, Yang G, Liu X, Chen F, Chen X, Zhang J, Zhang S. Inhibition of S100A8/A9 ameliorates neuroinflammation by blocking NET formation following traumatic brain injury. Redox Biol 2025; 81:103532. [PMID: 39929053 PMCID: PMC11849670 DOI: 10.1016/j.redox.2025.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Traumatic brain injury (TBI) triggers a robust inflammatory response that is closely linked to worsened clinical outcomes. S100A8/A9, also known as calprotectin or myeloid-related protein-8/14 (MRP8/14), is an alarmin primarily secreted by activated neutrophils with potent pro-inflammatory property. In this study, we explored the roles of S100A8/A9 in modulating neuroinflammation and influencing TBI outcomes, delving into the underlying mechanisms. S100A8/A9-enriched neutrophils were present in the injured brain tissue of TBI patients, and elevated plasma levels of S100A8/A9 were correlated with poorer neurological function. Furthermore, using a TBI mouse model, we demonstrated that treatment with the selective S100A8/A9 inhibitor Paquinimod significantly mitigated neuroinflammation and neuronal death, thereby improving the prognosis of TBI mice. Mechanistically, we found that S100A8/A9, in conjunction with neutrophil activation and infiltration into the brain, enhances reactive oxygen species (ROS) production within neutrophils, accelerating PAD4-mediated neutrophil extracellular trap (NET) formation, which in turn exacerbates neuroinflammation. These findings suggest that S100A8/A9 amplifies neuroinflammatory responses by promoting NET formation in neutrophils. Inhibition of S100A8/A9 effectively attenuated NET-mediated neuroinflammation; however, when PAD4 was overexpressed in the brain using adenovirus, leading to an increased formation of NET in the brain, the anti-inflammatory effects of S100A8/A9 inhibition were markedly diminished. Further experiments with PAD4 knockout mice confirmed that the reduction of NETs could substantially alleviate S100A8/A9-driven neuroinflammation. Finally, we established that the suppression of NET formation by S100A8/A9 inhibition is primarily mediated through the AMPK/Nrf2/HO-1 signaling pathway. These findings underscore the critical pathological role of S100A8/A9 in TBI and emphasize the need for further exploration of S100A8/A9 inhibitor Paquinimod as a potential therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Guihong Shi
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Yiyao Cao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Bo Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Xu Zhang
- School of Medicine, Nankai University, Tianjin, 300052, China
| | - Yanlin Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Xilei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Luyuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Xiao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, China.
| |
Collapse
|
5
|
Ye Y, Yang Q, Wei J, Shen C, Wang H, Zhuang R, Cao Y, Ding Y, Xu H, Xiang S, Mei H, Li Z, Ren X, Zhang C, Xiao J, Zheng S, Li T, Zeng R, Liu H, Lin H, Shang-Guan W, Li M, Jin S, Wang Q. RvD1 improves resident alveolar macrophage self-renewal via the ALX/MAPK14/S100A8/A9 pathway in acute respiratory distress syndrome. J Adv Res 2025; 67:289-299. [PMID: 38237770 PMCID: PMC11725153 DOI: 10.1016/j.jare.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a pulmonary inflammatory process primarily caused by sepsis. The resolution of inflammation is an active process involving the endogenous biosynthesis of specialized pro-resolving mediators, including resolvin D1 (RvD1). Resident alveolar macrophages (RAMs) maintain pulmonary homeostasis and play a key role in the resolution phase. However, the role of RAMs in promoting the resolution of inflammation by RvD1 is unclear. OBJECTIVES Here, we investigated the mechanisms of RvD1 on regulating RAMs to promote the resolution of ARDS. METHODS Mice were administered lipopolysaccharide and/or Escherichia coli via aerosol inhalation to establish a self-limited ARDS model. Then, RvD1 was administered at the peak inflammatory response. RAMs self-renewal was measured by flow cytometry, RAM phagocytosis was measured by two-photon fluorescence imaging. In addition, plasma was collected from intensive care unit patients on days 0-2, 3-5, and 6-9 to measure RvD1 and S100A8/A9 levels using triple quadrupole/linear ion trap mass spectrometry. RESULTS RAMs were found to play a pivotal role in resolving inflammation during ARDS, and RvD1 enhanced RAM proliferation and phagocytosis, which was abrogated by a lipoxin A4 receptor (ALX, RvD1 receptor) inhibitor. Both primary RAMs transfected with rS100A8/A9 and/or S100A8/A9 siRNA and S100A9-/- mice (also deficient in S100A8 function) showed higher turnover and phagocytic function, indicating that RvD1 exerted its effects on RAMs by inhibiting S100A8/A9 production in the resolution phase. RvD1 reduced S100A8/A9 and its upstream MAPK14 levels in vivo and in vitro. Finally, in the patients, RvD1 levels were lower, but S100A8/A9 levels were higher. CONCLUSIONS We propose that RvD1 improved RAM self-renewal and phagocytosis via the ALX/MAPK14/S100A8/A9 signaling pathway. Plasma RvD1 and S100A8/A9 levels were negatively correlated, and associated with the outcome of sepsis-induced ARDS.
Collapse
Affiliation(s)
- Yang Ye
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Qian Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Jinling Wei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Chenxi Shen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Haixing Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Rong Zhuang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Yuan Cao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Yajun Ding
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Haoran Xu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Shuyang Xiang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Hongxia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Zhongwang Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Xiya Ren
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chen Zhang
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ji Xiao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Shengxing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Ting Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Ruifeng Zeng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Huacheng Liu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Han Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Wangning Shang-Guan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China.
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China.
| |
Collapse
|
6
|
Napoli M, Immler R, Rohwedder I, Lupperger V, Pfabe J, Gonzalez Pisfil M, Yevtushenko A, Vogl T, Roth J, Salvermoser M, Dietzel S, Slak Rupnik M, Marr C, Walzog B, Sperandio M, Pruenster M. Cytosolic S100A8/A9 promotes Ca 2+ supply at LFA-1 adhesion clusters during neutrophil recruitment. eLife 2024; 13:RP96810. [PMID: 39699020 DOI: 10.7554/elife.96810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions. Mechanistically, genetic deletion of S100A9 in mice caused dysregulated Ca2+ signatures in activated neutrophils resulting in reduced Ca2+ availability at the formed LFA-1/F-actin clusters with defective β2 integrin outside-in signaling during post-arrest modifications. Consequently, we observed impaired cytoskeletal rearrangement, cell polarization, and spreading, as well as cell protrusion formation in S100a9-/- compared to wildtype (WT) neutrophils, making S100a9-/- cells more susceptible to detach under flow, thereby preventing efficient neutrophil recruitment and extravasation into inflamed tissue.
Collapse
Affiliation(s)
- Matteo Napoli
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Roland Immler
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Ina Rohwedder
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Valerio Lupperger
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Pfabe
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mariano Gonzalez Pisfil
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Anna Yevtushenko
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Melanie Salvermoser
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Steffen Dietzel
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Walzog
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Monika Pruenster
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| |
Collapse
|
7
|
Yun HS, Kim EJ, Kim BG, Jeong HJ. Convenient production of a novel recombinant antibody against periodontitis biomarker S100A8. Prep Biochem Biotechnol 2024; 55:535-540. [PMID: 39564736 DOI: 10.1080/10826068.2024.2430615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
S100A8 serves as a biomarker for periodontitis and is involved in inflammatory processes, making its detection highly important. In this study, we produced recombinant 5A11 (r5A11) through mammalian cell culture. By employing a three-step process of transfection, suspension cell culture, and purification, we conveniently produced r5A11 with high yield and purity. The limit of detection for the r5A11-based immunoassay was 1.7 ± 0.2 × 10-1 ng/mL, which was higher than that of the commercially available anti-S100A8 antibody. These findings suggest the potential use of this novel antibody in various research applications and practical approaches for simple and sensitive S100A8 detection.
Collapse
Affiliation(s)
- Hui-Seon Yun
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Eun-Jung Kim
- R&D Center, EGC Therapeutics, Inc, Seoul, South Korea
| | - Byung-Gee Kim
- R&D Center, EGC Therapeutics, Inc, Seoul, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| |
Collapse
|
8
|
Lim RR, Thomas A, Ramasubramanian A, Chaurasia SS. Retinal microglia-derived S100A9 incite NLRP3 inflammasome in a Western diet fed Ossabaw pig retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621160. [PMID: 39554084 PMCID: PMC11565851 DOI: 10.1101/2024.10.30.621160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purpose We established S100A9 as a myeloid-derived damage-associated molecular pattern (DAMPs) protein associated with increasing severity of diabetic retinopathy (DR) in type 2 diabetic subjects. The present study investigates the retinal localization, expression, and mechanisms of action for S100A9 in the young obese Ossabaw pig retina. Methods Retinae from Ossabaw pigs fed a Western diet for 10 weeks were evaluated for S100 and inflammatory mediator expression using quantitative PCR and Western blot. Double immunohistochemistry was performed to identify the cellular sources of S100A9 in the pig retina. Primary pig retinal microglial cells (pMicroglia) were examined for S100A9 production. S100A9-induced responses were also investigated, and inhibitor studies elucidated the mechanism of action via the NLRP3 inflammasome. A specific inhibitor, Paquinimod (ABR-215757), was administered in vitro to assess the rescue of S100A9-induced NLRP3 inflammasome activation in pMicroglia. Results The expression of the S100 family in the obese Ossabaw pig retina showed a significant elevation of S100A9, consistent with increased levels of circulating S100A9. Moreover, the retina had elevated levels of inflammatory mediators IL-6, IL-8, MCP-1, IL-1β and NLRP3. Retinal microglia in obese Ossabaw were activated and accompanied by an increased expression of intracellular S100A9. pMicroglia isolated from pig retina transformed from ramified to amoeboid state when activated with LPS and produced high S100A9 transcript and protein levels. The S100A9 protein, in turn, further activated pMicroglia by heightened production of S100A9 transcripts and secretion of pro-inflammatory IL-1β protein. Inhibition of TLR4 with TAK242 and NLRP3 with MCC950 attenuated the production of IL-1β during S100A9 stimulus. Finally, pre-treatment with Paquinimod successfully reduced S100A9-driven increases of glycosylated-TLR4, NLRP3, ASC, Caspase-1, and IL-1β production. Conclusion We demonstrated that microglial-derived S100A9 perpetuates pro-inflammatory responses via the NLRP3 inflammasome in the retina of young Western-diet-fed Ossabaw pigs exhibiting diabetic retinopathy.
Collapse
|
9
|
Li CM, Sun T, Yang MJ, Yang Z, Li Q, Shi JL, Zhang C, Jin JF. Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice. World J Hepatol 2024; 16:1188-1198. [PMID: 39474574 PMCID: PMC11514617 DOI: 10.4254/wjh.v16.i10.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.
AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.
METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury. C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment. We detected the effects of C2-FH on liver function, inflammatory response and complement activation. Additionally, RNA-sequencing (RNA-Seq) analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.
RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity, aspartate aminotransferase activity and lactate dehydrogenase, and reduced liver tissue necrosis caused by APAP. Moreover, it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury. RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.
CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
Collapse
Affiliation(s)
- Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Mou-Jie Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zhi Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Li CM, Sun T, Yang MJ, Yang Z, Li Q, Shi JL, Zhang C, Jin JF. Complement activation targeted inhibitor C2-FH ameliorates acetaminophen-induced liver injury in mice. World J Hepatol 2024; 16:1368-1378. [DOI: 10.4254/wjh.v16.i10.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen (APAP). However, the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.
AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.
METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury. C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment. We detected the effects of C2-FH on liver function, inflammatory response and complement activation. Additionally, RNA-sequencing (RNA-Seq) analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.
RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity, aspartate aminotransferase activity and lactate dehydrogenase, and reduced liver tissue necrosis caused by APAP. Moreover, it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury. RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.
CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
Collapse
Affiliation(s)
- Chun-Mei Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Tian Sun
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Mou-Jie Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Zhi Yang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Qing Li
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jia-Lin Shi
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Chong Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| | - Jun-Fei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- China-United States Lipids in Health and Disease Research Center, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
Kneuer JM, Grajek IA, Winkler M, Erbe S, Meinecke T, Weiss R, Garfias-Veitl T, Sheikh BN, König AC, Möbius-Winkler MN, Kogel A, Kresoja KP, Rosch S, Kokot KE, Filipova V, Gaul S, Thiele H, Lurz P, von Haehling S, Speer T, Laufs U, Boeckel JN. Novel Long Noncoding RNA HEAT4 Affects Monocyte Subtypes, Reducing Inflammation and Promoting Vascular Healing. Circulation 2024; 150:1101-1120. [PMID: 39005211 PMCID: PMC11444369 DOI: 10.1161/circulationaha.124.069315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Activation of the immune system contributes to cardiovascular diseases. The role of human-specific long noncoding RNAs in cardioimmunology is poorly understood. METHODS Single-cell sequencing in peripheral blood mononuclear cells revealed a novel human-specific long noncoding RNA called HEAT4 (heart failure-associated transcript 4). HEAT4 expression was assessed in several in vitro and ex vivo models of immune cell activation, as well as in the blood of patients with heart failure (HF), acute myocardial infarction, or cardiogenic shock. The transcriptional regulation of HEAT4 was verified through cytokine treatment and single-cell sequencing. Loss-of-function and gain-of-function studies and multiple RNA-protein interaction assays uncovered a mechanistic role of HEAT4 in the monocyte anti-inflammatory gene program. HEAT4 expression and function was characterized in a vascular injury model in NOD.CB17-Prkdc scid/Rj mice. RESULTS HEAT4 expression was increased in the blood of patients with HF, acute myocardial infarction, or cardiogenic shock. HEAT4 levels distinguished patients with HF from people without HF and predicted all-cause mortality in a cohort of patients with HF over 7 years of follow-up. Monocytes, particularly anti-inflammatory CD16+ monocytes, which are increased in patients with HF, are the primary source of HEAT4 expression in the blood. HEAT4 is transcriptionally activated by treatment with anti-inflammatory interleukin-10. HEAT4 activates anti-inflammatory and inhibits proinflammatory gene expression. Increased HEAT4 levels result in a shift toward more CD16+ monocytes. HEAT4 binds to S100A9, causing a monocyte subtype switch, thereby reducing inflammation. As a result, HEAT4 improves endothelial barrier integrity during inflammation and promotes vascular healing after injury in mice. CONCLUSIONS These results characterize a novel endogenous anti-inflammatory pathway that involves the conversion of monocyte subtypes into anti-inflammatory CD16+ monocytes. The data identify a novel function for the class of long noncoding RNAs by preventing protein secretion and suggest long noncoding RNAs as potential targets for interventions in the field of cardioimmunology.
Collapse
Affiliation(s)
- Jasmin M. Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Ignacy A. Grajek
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Melanie Winkler
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Stephan Erbe
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Tim Meinecke
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Ronald Weiss
- Institute of Clinical Immunology, University of Leipzig, Germany (R.W.)
| | - Tania Garfias-Veitl
- Department of Cardiology and Pneumology, University Medical Center of Göttingen (UMG), Germany (T.G.-V., S.v.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (T.G.-V., S.v.H.)
| | - Bilal N. Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany (B.N.S.)
| | - Ann-Christine König
- German Research Center for Environmental Health (GmbH), Metabolomics and Proteomics Core, Helmholtz Zentrum München, Germany (A.-C.K.)
| | - Maximilian N. Möbius-Winkler
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Karl-Patrik Kresoja
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Sebastian Rosch
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Karoline E. Kokot
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Vanina Filipova
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Holger Thiele
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
| | - Philipp Lurz
- Department of Cardiology, Heart Center at University of Leipzig, Germany (K.-P.K., S.R., H.T., P.L.)
- Department of Cardiology, Universitätsmedizin Johannes Gutenberg-University, Mainz, Germany (K.-P.K., S.R., P.L.)
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center of Göttingen (UMG), Germany (T.G.-V., S.v.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany (T.G.-V., S.v.H.)
| | - Thimoteus Speer
- Medizinische Klinik 4: Nephrologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany (T.S.)
- Else Kroener-Fresenius Center for Nephrological Research, Goethe University, Frankfurt, Germany (T.S.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., U.L., J.-N.B.)
- Central German Heart Alliance (J.M.K., I.A.G., M.W., S.E., T.M., M.N.M.-W., A.K., K.E.K., V.F., S.G., H.T., U.L., J.-N.B.)
| |
Collapse
|
12
|
Leri M, Sun D, Svedružic ŽM, Šulskis D, Smirnovas V, Stefani M, Morozova-Roche L, Bucciantini M. Pro-inflammatory protein S100A9 targeted by a natural molecule to prevent neurodegeneration onset. Int J Biol Macromol 2024; 276:133838. [PMID: 39002917 DOI: 10.1016/j.ijbiomac.2024.133838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Accumulation of the pro-inflammatory protein S100A9 has been implicated in neuroinflammatory cascades in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). S100A9 co-aggregates with other proteins such as α-synuclein in PD and Aβ in AD, contributing to amyloid plaque formation and neurotoxicity. The amyloidogenic nature of this protein and its role in chronic neuroinflammation suggest that it may play a key role in the pathophysiology of these diseases. Research into molecules targeting S100A9 could be a potential therapeutic strategy to prevent its amyloidogenic self-assembly and to attenuate the neuroinflammatory response in affected brain tissue. This work suggests that bioactive natural molecules, such as those found in the Mediterranean diet, may have the potential to alleviate neuroinflammation associated with the accumulation of proteins such as S100A9 in neurodegenerative diseases. A major component of extra virgin olive oil (EVOO), hydroxytyrosol (HT), with its ability to interact with and modulate S100A9 amyloid self-assembly and expression, offers a compelling approach for the development of novel and effective interventions for the prevention and treatment of ND. The findings highlight the importance of exploring natural compounds, such as HT, as potential therapeutic options for these complex and challenging neurological conditions.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Dan Sun
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden; State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, 710127 Xi'an, China
| | - Željko M Svedružic
- Department of Biotechnology, University of Rijeka, HR-51000 Rijeka, Croatia
| | - Darius Šulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | | | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
13
|
Brzezinski M, Martin L, Simpson K, Lu K, Gan N, Huang C, Garcia K, Liu Z, Xu W. Photodegradation enhances the toxic effect of anthracene on skin. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134386. [PMID: 38663297 DOI: 10.1016/j.jhazmat.2024.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
Anthracene, a polycyclic aromatic hydrocarbon (PAH), is a widespread environmental pollutant that poses potential risks to human health. Exposure to anthracene can result in various adverse health effects, including skin-related disorders. Photo exposure sufficiently removes the anthracene from the environment but also generates more degradation products which can be more toxic. The goal of this study was to assess the change in anthracene dermotoxicity caused by photodegradation and understand the mechanism of this change. In the present study, over 99.99% of anthracene was degraded within 24 h of sunlight exposure, while producing many intermediate products including 9,10-anthraquinone and phthalic acid. The anthracene products with different durations of photo exposure were applied to 2D and 3D human keratinocyte cultures. Although the non-degraded anthracene significantly delayed the cell migration, the cell viability and differentiation decreased dramatically in the presence of the photodegraded anthracene. Anthracene photodegradation products also altered the expression patterns of a number of inflammation-related genes in comparison to the control cells. Among these genes, il1a, il1b, il8, cxcl2, s100a9, and mmp1 were upregulated whereas the tlr4 and mmp3 were downregulated by the photodegraded anthracene. Topical deliveries of the photodegraded and non-degraded anthracene to the dorsal skin of hairless mice showed more toxic effects by the photodegraded anthracene. The 4-hour photodegradation products of anthracene thickened the epidermal layer, increased the dermal cellularity, and induced the upregulation of inflammatory markers, il1a, il1b, s100a9, and mmp1. In addition, it also prevented the production of a gap junction protein, Connexin-43. All the evidence suggested that photodegradation enhanced the toxicities of anthracene to the skin. The 4-hour photodegradation products of anthracene led to clinical signs similar to acute inflammatory skin diseases, such as atopic and contact dermatitis, eczema, and psoriasis. Therefore, the potential risk of skin irritation by anthracene should be also considered when an individual is exposed to PAHs, especially in environments with strong sunlight.
Collapse
Affiliation(s)
- Molly Brzezinski
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kayla Simpson
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kaijun Lu
- University of Texas at Austin Marine Science Institute 750 Channel View Drive Port Aransas, TX 78373, USA
| | - Nin Gan
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Chi Huang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kaitlin Garcia
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Zhanfei Liu
- University of Texas at Austin Marine Science Institute 750 Channel View Drive Port Aransas, TX 78373, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA.
| |
Collapse
|
14
|
Wang X, Shi G, Xu S, Sun Y, Qiu H, Wang Q, Han X, Zhang Q, Zhang T, Hu HY. Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging. Adv Healthc Mater 2024; 13:e2304223. [PMID: 38407490 DOI: 10.1002/adhm.202304223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuansheng Sun
- Flourescence Products, ISS, Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | - Hailin Qiu
- Department of Fluorescence Test Technology, Orient KOJI Ltd., Tianjin, 300122, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
15
|
Baronaitė I, Šulskis D, Kopu̅stas A, Tutkus M, Smirnovas V. Formation of Calprotectin Inhibits Amyloid Aggregation of S100A8 and S100A9 Proteins. ACS Chem Neurosci 2024; 15:1915-1925. [PMID: 38634811 PMCID: PMC11066842 DOI: 10.1021/acschemneuro.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of β-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.
Collapse
Affiliation(s)
- Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurimas Kopu̅stas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
16
|
Duan J, Zhao Q, He Z, Tang S, Duan J, Xing W. Current understanding of macrophages in intracranial aneurysm: relevant etiological manifestations, signaling modulation and therapeutic strategies. Front Immunol 2024; 14:1320098. [PMID: 38259443 PMCID: PMC10800944 DOI: 10.3389/fimmu.2023.1320098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Macrophages activation and inflammatory response play crucial roles in intracranial aneurysm (IA) formation and progression. The outcome of ruptured IA is considerably poor, and the mechanisms that trigger IA progression and rupture remain to be clarified, thereby developing effective therapy to prevent subarachnoid hemorrhage (SAH) become difficult. Recently, climbing evidences have been expanding our understanding of the macrophages relevant IA pathogenesis, such as immune cells population, inflammatory activation, intra-/inter-cellular signaling transductions and drug administration responses. Crosstalk between macrophages disorder, inflammation and cellular signaling transduction aggravates the devastating consequences of IA. Illustrating the pros and cons mechanisms of macrophages in IA progression are expected to achieve more efficient treatment interventions. In this review, we summarized the current advanced knowledge of macrophages activation, infiltration, polarization and inflammatory responses in IA occurrence and development, as well as the most relevant NF-κB, signal transducer and activator of transcription 1 (STAT1) and Toll-Like Receptor 4 (TLR4) regulatory signaling modulation. The understanding of macrophages regulatory mechanisms is important for IA patients' clinical outcomes. Gaining insight into the macrophages regulation potentially contributes to more precise IA interventions and will also greatly facilitate the development of novel medical therapy.
Collapse
Affiliation(s)
- Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Qijie Zhao
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zeyuan He
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Shuang Tang
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Jia Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
17
|
Pruenster M, Immler R, Roth J, Kuchler T, Bromberger T, Napoli M, Nussbaumer K, Rohwedder I, Wackerbarth LM, Piantoni C, Hennis K, Fink D, Kallabis S, Schroll T, Masgrau-Alsina S, Budke A, Liu W, Vestweber D, Wahl-Schott C, Roth J, Meissner F, Moser M, Vogl T, Hornung V, Broz P, Sperandio M. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat Immunol 2023; 24:2021-2031. [PMID: 37903858 PMCID: PMC10681899 DOI: 10.1038/s41590-023-01656-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/18/2023] [Indexed: 11/01/2023]
Abstract
S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton's tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel KV1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.
Collapse
Affiliation(s)
- Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jonas Roth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tim Kuchler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Matteo Napoli
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Katrin Nussbaumer
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lou Martha Wackerbarth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Chiara Piantoni
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Konstantin Hennis
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Fink
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Kallabis
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Agnes Budke
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Wang Liu
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, Münster, Münster, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Felix Meissner
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
18
|
Moradimotlagh A, Chen S, Koohbor S, Moon KM, Foster LJ, Reiner N, Nandan D. Leishmania infection upregulates and engages host macrophage Argonaute 1, and system-wide proteomics reveals Argonaute 1-dependent host response. Front Immunol 2023; 14:1287539. [PMID: 38098491 PMCID: PMC10720368 DOI: 10.3389/fimmu.2023.1287539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Leishmania donovani, an intracellular protozoan parasite, is the causative agent of visceral leishmaniasis, the most severe form of leishmaniasis in humans. It is becoming increasingly clear that several intracellular pathogens target host cell RNA interference (RNAi) pathways to promote their survival. Complexes of Argonaute proteins with small RNAs are core components of the RNAi. In this study, we investigated the potential role of host macrophage Argonautes in Leishmania pathogenesis. Using Western blot analysis of Leishmania donovani-infected macrophages, we show here that Leishmania infection selectively increased the abundance of host Argonaute 1 (Ago1). This increased abundance of Ago1 in infected cells also resulted in higher levels of Ago1 in active Ago-complexes, suggesting the preferred use of Ago1 in RNAi in Leishmania-infected cells. This analysis used a short trinucleotide repeat containing 6 (TNRC6)/glycine-tryptophan repeat protein (GW182) protein-derived peptide fused to Glutathione S-transferase as an affinity matrix to capture mature Ago-small RNAs complexes from the cytosol of non-infected and Leishmania-infected cells. Furthermore, Ago1 silencing significantly reduced intracellular survival of Leishmania, demonstrating that Ago1 is essential for Leishmania pathogenesis. To investigate the role of host Ago1 in Leishmania pathogenesis, a quantitative whole proteome approach was employed, which showed that expression of several previously reported Leishmania pathogenesis-related proteins was dependent on the level of macrophage Ago1. Together, these findings identify Ago1 as the preferred Argonaute of RNAi machinery in infected cells and a novel and essential virulence factor by proxy that promotes Leishmania survival.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stella Chen
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sara Koohbor
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Neil Reiner
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Devki Nandan
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Lama P, Tiwari J, Mutreja P, Chauhan S, Harding IJ, Dolan T, Adams MA, Maitre CL. Cell clusters in intervertebral disc degeneration: an attempted repair mechanism aborted via apoptosis. Anat Cell Biol 2023; 56:382-393. [PMID: 37503630 PMCID: PMC10520859 DOI: 10.5115/acb.23.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cell clusters are a histological hallmark feature of intervertebral disc degeneration. Clusters arise from cell proliferation, are associated with replicative senescence, and remain metabolically, but their precise role in various stages of disc degeneration remain obscure. The aim of this study was therefore to investigate small, medium, and large size cell-clusters. For this purpose, human disc samples were collected from 55 subjects, aged 37-72 years, 21 patients had disc herniation, 10 had degenerated non-herniated discs, and 9 had degenerative scoliosis with spinal curvature <45°. 15 non-degenerated control discs were from cadavers. Clusters and matrix changes were investigated with histology, immunohistochemistry, and Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Data obtained were analyzed with spearman rank correlation and ANOVA. Results revealed, small and medium-sized clusters were positive for cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in control and slightly degenerated human discs, while large cell clusters were typically more abundant in severely degenerated and herniated discs. Large clusters associated with matrix fissures, proteoglycan loss, matrix metalloproteinase-1 (MMP-1), and Caspase-3. Spatial association findings were reconfirmed with SDS-PAGE that showed presence to these target markers based on its molecular weight. Controls, slightly degenerated discs showed smaller clusters, less proteoglycan loss, MMP-1, and Caspase-3. In conclusion, cell clusters in the early stages of degeneration could be indicative of repair, however sustained loading increases large cell clusters especially around microscopic fissures that accelerates inflammatory catabolism and alters cellular metabolism, thus attempted repair process initiated by cell clusters fails and is aborted at least in part via apoptosis.
Collapse
Affiliation(s)
- Polly Lama
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Jerina Tiwari
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Pulkit Mutreja
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Sukirti Chauhan
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Ian J Harding
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | - Trish Dolan
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | - Michael A Adams
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Disease-modifying antirheumatic drugs (DMARDs) have dramatically improved patient outcomes in juvenile idiopathic arthritis (JIA). However, these medications may also result in physical, psychologic, and economic burden, which must be balanced with risk of flare off treatment. Although some children remain in remission after medication discontinuation, evidence is sparse for if, when, and how medications should be de-escalated once achieving clinically inactive disease (CID). We review the data on medication discontinuation and the role of serologic and imaging biomarkers in JIA. RECENT FINDINGS The literature uniformly supports early biologic DMARD initiation, although the optimal timing and strategy for medication withdrawal in patients with sustained CID remains unclear. In this review, we present the current data on flare frequency and time to flare, clinical factors associated with flare, and recapture data for each JIA category. We also summarize the current knowledge on the role of imaging and serologic biomarkers in guiding these treatment decisions. SUMMARY JIA is a heterogenous disease for which prospective clinical trials are needed to address the question of when, how, and in whom to withdraw medication. Research investigating the roles of serologic and imaging biomarkers may help improve the ability to ascertain which children can successfully de-escalate medications.
Collapse
Affiliation(s)
- Dori Abel
- Division of Rheumatology, Children’s Hospital of Philadelphia
- PolicyLab, Children’s Hospital of Philadelphia
| | - Pamela F. Weiss
- Division of Rheumatology, Children’s Hospital of Philadelphia
- Clinical Futures, Children’s Hospital of Philadelphia
- Departments of Pediatrics and Epidemiology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
21
|
Steiner ST, Maisuls I, Junker A, Fritz G, Faust A, Strassert CA. Concerning the photophysics of fluorophores towards tailored bioimaging compounds: a case study involving S100A9 inflammation markers. Photochem Photobiol Sci 2023; 22:2093-2104. [PMID: 37303026 DOI: 10.1007/s43630-023-00432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
A full understanding concerning the photophysical properties of a fluorescent label is crucial for a reliable and predictable performance in biolabelling applications. This holds true not only for the choice of a fluorophore in general, but also for the correct interpretation of data, considering the complexity of biological environments. In the frame of a case study involving inflammation imaging, we report the photophysical characterization of four fluorescent S100A9-targeting compounds in terms of UV-vis absorption and photoluminescence spectroscopy, fluorescence quantum yields (ΦF) and excited state lifetimes (τ) as well as the evaluation of the radiative and non-radiative rate constants (kr and knr, respectively). The probes were synthesized based on a 2-amino benzimidazole-based lead structure in combination with commercially available dyes, covering a broad color range from green (6-FAM) over orange (BODIPY-TMR) to red (BODIPY-TR) and near-infrared (Cy5.5) emission. The effect of conjugation with the targeting structure was addressed by comparison of the probes with their corresponding dye-azide precursors. Additionally, the 6-FAM and Cy5.5 probes were measured in the presence of murine S100A9 to determine whether protein binding influences their photophysical properties. An interesting rise in ΦF upon binding of 6-FAM-SST177 to murine S100A9 enabled the determination of its dissociation equilibrium constant, reaching up to KD = 324 nM. This result gives an outlook for potential applications of our compounds in S100A9 inflammation imaging and fluorescence assay developments. With respect to the other dyes, this study demonstrates how diverse microenvironmental factors can severely impair their performance while rendering them poor performers in biological media, showing that a preliminary photophysical screening is key to assess the suitability of a particular luminophore.
Collapse
Affiliation(s)
- Simon T Steiner
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany
- Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149, Münster, Germany
| | - Anna Junker
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Günter Fritz
- Cellular Microbiology, Institute of Biology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149, Münster, Germany.
- Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149, Münster, Germany.
| |
Collapse
|
22
|
Arai K, Kubota A, Iwasaki T, Sonoda A, Sakane J. S100A8 and S100A9 are associated with endometrial shedding during menstruation. Med Mol Morphol 2023; 56:194-205. [PMID: 37085626 DOI: 10.1007/s00795-023-00355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Matrix metalloproteinases (MMPs) and their major source, endometrial stromal cells (ESCs), play important roles in menstruation. However, other mechanisms in endometrial shedding may be unexplored. This study focused on four proteins: S100A8 and S100A9 (alarmins) are binding partners and induce MMPs, MMP-3 cycle-dependently plays a key role in the proteolytic cascade, and CD147, which has S100A9 as its ligand, induces MMPs. Immunostaining for these proteins was performed on 118 resected specimens. The percentage and location of each positive reaction in ESCs were measured and compared using Image J. The influence of leukocytes on S100A8 or S100A9 immunopositivity was also examined. From the premenstrual phase, S100A8 and MMP-3 began to have overlapping expressions in ESCs of the superficial layer, and ESC detachment was found within these sites. S100A9 was expressed from the late secretory phase and CD147 already from earlier. Later, the expression sites of S100A9 and CD147 included those of S100A8. Before menstruation, S100A8 or S100A9 expression was not affected by leukocytes. These results suggest that the local formation of S100A8/S100A9 complex, which occurs specifically in ESCs upon progesterone withdrawal, induces the local expression of MMP-3 and serves as a switch to the lysis phase.
Collapse
Affiliation(s)
- Kazumori Arai
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan.
| | - Aki Kubota
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Tomohiro Iwasaki
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Akihiro Sonoda
- Department of Clinical Research, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| | - Junichi Sakane
- Department of Pathology, Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka, 420-0881, Japan
| |
Collapse
|
23
|
Wang J, Lu L, Zheng S, Wang D, Jin L, Zhang Q, Li M, Zhang Z. DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301058. [PMID: 37515382 PMCID: PMC10520690 DOI: 10.1002/advs.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Deciphering variations in chromosome conformations based on bulk three-dimensional (3D) genomic data from heterogenous tissues is a key to understanding cell-type specific genome architecture and dynamics. Surprisingly, computational deconvolution methods for high-throughput chromosome conformation capture (Hi-C) data remain very rare in the literature. Here, a deep convolutional neural network (CNN), deconvolve bulk Hi-C data (deCOOC) that remarkably outperformed all the state-of-the-art tools in the deconvolution task is developed. Interestingly, it is noticed that the chromatin accessibility or the Hi-C contact frequency alone is insufficient to explain the power of deCOOC, suggesting the existence of a latent embedded layer of information pertaining to the cell type specific 3D genome architecture. By applying deCOOC to in-house-generated bulk Hi-C data from visceral and subcutaneous adipose tissues, it is found that the characteristic chromatin features of M2 cells in the two anatomical loci are distinctively bound to different physiological functionalities. Taken together, deCOOC is both a reliable Hi-C data deconvolution method and a powerful tool for functional extraction of 3D genome architecture.
Collapse
Affiliation(s)
- Junmei Wang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- School of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Lu Lu
- Livestock and Poultry Multiomics Key Laboratory of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
- Animal Breeding and Genetics Key Laboratory of Sichuan ProvinceInstitute of Animal Genetics and BreedingSichuan Agricultural UniversityChengdu611130China
| | - Shiqi Zheng
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- School of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- School of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
- Sars‐Fang Centre & MOE Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdao266100China
| | - Long Jin
- Livestock and Poultry Multiomics Key Laboratory of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
- Animal Breeding and Genetics Key Laboratory of Sichuan ProvinceInstitute of Animal Genetics and BreedingSichuan Agricultural UniversityChengdu611130China
| | - Qing Zhang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
| | - Mingzhou Li
- Livestock and Poultry Multiomics Key Laboratory of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
- Animal Breeding and Genetics Key Laboratory of Sichuan ProvinceInstitute of Animal Genetics and BreedingSichuan Agricultural UniversityChengdu611130China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and InformationBeijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- School of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
24
|
von Wulffen M, Luehrmann V, Robeck S, Russo A, Fischer-Riepe L, van den Bosch M, van Lent P, Loser K, Gabrilovich DI, Hermann S, Roth J, Vogl T. S100A8/A9-alarmin promotes local myeloid-derived suppressor cell activation restricting severe autoimmune arthritis. Cell Rep 2023; 42:113006. [PMID: 37610870 DOI: 10.1016/j.celrep.2023.113006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Immune-suppressive effects of myeloid-derived suppressor cells (MDSCs) are well characterized during anti-tumor immunity. The complex mechanisms promoting MDSC development and their regulatory effects during autoimmune diseases are less understood. We demonstrate that the endogenous alarmin S100A8/A9 reprograms myeloid cells to a T cell suppressing phenotype during autoimmune arthritis. Treatment of myeloid precursors with S100-alarmins during differentiation induces MDSCs in a Toll-like receptor 4-dependent manner. Consequently, knockout of S100A8/A9 aggravates disease activity in collagen-induced arthritis due to a deficit of MDSCs in local lymph nodes, which could be corrected by adoptive transfer of S100-induced MDSCs. Blockade of MDSC function in vivo aggravates disease severity in arthritis. Therapeutic application of S100A8 induces MDSCs in vivo and suppresses the inflammatory phenotype of S100A9ko mice. Accordingly, the interplay of T cell-mediated autoimmunity with a defective innate immune regulation is crucial for autoimmune arthritis, which should be considered for future innovative therapeutic options.
Collapse
Affiliation(s)
- Meike von Wulffen
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | | | - Stefanie Robeck
- Institute of Immunology, University of Münster, Münster, Germany
| | - Antonella Russo
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Martijn van den Bosch
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter van Lent
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karin Loser
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | | | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany.
| |
Collapse
|
25
|
Anil S, Malaiappan S, George AK, Joseph B. Calprotectin, S100A8, and S100A9: Potential Biomarkers of Periodontal Inflammation: A Scoping Review. WORLD JOURNAL OF DENTISTRY 2023; 14:559-567. [DOI: 10.5005/jp-journals-10015-2244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
|
26
|
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14:1191645. [PMID: 37346040 PMCID: PMC10279876 DOI: 10.3389/fimmu.2023.1191645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. The histopathological features of psoriasis include excessive proliferation of keratinocytes and infiltration of immune cells. The S100 proteins are a group of EF-hand Ca2+-binding proteins, including S100A2, -A7, -A8/A9, -A12, -A15, which expression levels are markedly upregulated in psoriatic skin. These proteins exert numerous functions such as serving as intracellular Ca2+ sensors, transduction of Ca2+ signaling, response to extracellular stimuli, energy metabolism, and regulating cell proliferation and apoptosis. Evidence shows a crucial role of S100 proteins in the development and progress of inflammatory diseases, including psoriasis. S100 proteins can possibly be used as potential therapeutic target and diagnostic biomarkers. This review focuses on the pathogenic role of S100 proteins in psoriasis.
Collapse
Affiliation(s)
- Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
- State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Center Hospital, Taiyuan, China
| |
Collapse
|
27
|
Kim JP, Yun H, Kim EJ, Kim YG, Lee CS, Ko BJ, Kim BG, Jeong HJ. Generation of a novel monoclonal antibody against inflammatory biomarker S100A8 using hybridoma technology. Biotechnol Lett 2023; 45:589-600. [PMID: 36971774 DOI: 10.1007/s10529-023-03364-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES S100A8 is highly expressed in several inflammatory and oncological conditions. To address the current lack of a reliable and sensitive detection method for S100A8, we generated a monoclonal antibody with a high binding affinity to human S100A8 to enable early disease diagnosis. RESULTS A soluble recombinant S100A8 protein with a high yield and purity was produced using Escherichia coli. Next, mice were immunized with recombinant S100A8 to obtain anti-human S100A8 monoclonal antibodies using hybridoma technology. Lastly, the high binding activity of the antibody was confirmed and its sequence was identified. CONCLUSIONS This method, including the production of antigens and antibodies, will be useful for the generation of hybridoma cell lines that produce anti-S100A8 monoclonal antibodies. Moreover, the sequence information of the antibody can be used to develop a recombinant antibody for use in various research and clinical applications.
Collapse
Affiliation(s)
- Jong-Pyo Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Hanool Yun
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Eun-Jung Kim
- BioMAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, 02844, Republic of Korea
| | - Byung-Gee Kim
- BioMAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea.
| |
Collapse
|
28
|
Hu L, Liu X, Zheng Q, Chen W, Xu H, Li H, Luo J, Yang R, Mao X, Wang S, Chen T, Lee LP, Liu F. Interaction network of extracellular vesicles building universal analysis via eye tears: iNEBULA. SCIENCE ADVANCES 2023; 9:eadg1137. [PMID: 36921051 PMCID: PMC10017052 DOI: 10.1126/sciadv.adg1137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Discovering the secrets of diseases from tear extracellular vesicles (EVs) is well-recognized and appreciated. However, a precise understanding of the interaction network between EV populations and their biogenesis from our body requires more in-depth and systematic analysis. Here, we report the biological profiles of different-size tear EV subsets from healthy individuals and the origins of EV proteins. We have identified about 1800 proteins and revealed the preferential differences in the biogenesis among distinct subsets. We observe that eye-related proteins that maintain retinal homeostasis and regulate inflammation are preferentially enriched in medium-size EVs (100 to 200 nm) fractions. Using universal analysis in combination with the Human Protein Atlas consensus dataset, we found the genesis of tear EV proteins with 37 tissues and 79 cell types. The proteins related to retinal neuronal cells, glial cells, and blood and immune cells are selectively enriched among EV subsets. Our studies in heterogeneous tear EVs provide building blocks for future transformative precision molecular diagnostics and therapeutics.
Collapse
Affiliation(s)
- Liang Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoling Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qiaolan Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wuhe Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hengrui Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaxin Luo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xulong Mao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Siyao Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Tucan Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Fei Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
29
|
Neutrophil Extracellular Traps in Airway Diseases: Pathological Roles and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24055034. [PMID: 36902466 PMCID: PMC10003347 DOI: 10.3390/ijms24055034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Neutrophils are important effector cells of the innate immune response that fight pathogens by phagocytosis and degranulation. Neutrophil extracellular traps (NETs) are released into the extracellular space to defend against invading pathogens. Although NETs play a defensive role against pathogens, excessive NETs can contribute to the pathogenesis of airway diseases. NETs are known to be directly cytotoxic to the lung epithelium and endothelium, highly involved in acute lung injury, and implicated in disease severity and exacerbation. This review describes the role of NET formation in airway diseases, including chronic rhinosinusitis, and suggests that targeting NETs could be a therapeutic strategy for airway diseases.
Collapse
|
30
|
Rath E, Palma Medina LM, Jahagirdar S, Mosevoll KA, Damås JK, Madsen MB, Svensson M, Hyldegaard O, Martins Dos Santos VAP, Saccenti E, Norrby-Teglund A, Skrede S, Bruun T. Systemic immune activation profiles in streptococcal necrotizing soft tissue infections: A prospective multicenter study. Clin Immunol 2023; 249:109276. [PMID: 36871764 DOI: 10.1016/j.clim.2023.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE Early stages with streptococcal necrotizing soft tissue infections (NSTIs) are often difficult to discern from cellulitis. Increased insight into inflammatory responses in streptococcal disease may guide correct interventions and discovery of novel diagnostic targets. METHODS Plasma levels of 37 mediators, leucocytes and CRP from 102 patients with β-hemolytic streptococcal NSTI derived from a prospective Scandinavian multicentre study were compared to those of 23 cases of streptococcal cellulitis. Hierarchical cluster analyses were also performed. RESULTS Differences in mediator levels between NSTI and cellulitis cases were revealed, in particular for IL-1β, TNFα and CXCL8 (AUC >0.90). Across streptococcal NSTI etiologies, eight biomarkers separated cases with septic shock from those without, and four mediators predicted a severe outcome. CONCLUSION Several inflammatory mediators and wider profiles were identified as potential biomarkers of NSTI. Associations of biomarker levels to type of infection and outcomes may be utilized to improve patient care and outcomes.
Collapse
Affiliation(s)
- Eivind Rath
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Laura M Palma Medina
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Sanjeevan Jahagirdar
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Knut A Mosevoll
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Norway
| | - Jan K Damås
- Department of Infectious Diseases, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin B Madsen
- Department of Intensive Care, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Ole Hyldegaard
- Department of Anaesthesia- and Surgery, Head and Orthopaedic centre, Hyperbaric Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands; LifeGlimmer GmbH, Berlin, Germany
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Norway
| | - Trond Bruun
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Norway
| |
Collapse
|
31
|
Limmer A, Engler A, Kattner S, Gregorius J, Pattberg KT, Schulz R, Schwab J, Roth J, Vogl T, Krawczyk A, Witzke O, Zelinskyy G, Dittmer U, Brenner T, Berger MM. Patients with SARS-CoV-2-Induced Viral Sepsis Simultaneously Show Immune Activation, Impaired Immune Function and a Procoagulatory Disease State. Vaccines (Basel) 2023; 11:vaccines11020435. [PMID: 36851312 PMCID: PMC9960366 DOI: 10.3390/vaccines11020435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND It is widely accepted that SARS-CoV-2 causes a dysregulation of immune and coagulation processes. In severely affected patients, viral sepsis may result in life endangering multiple organ dysfunction. Furthermore, most therapies for COVID-19 patients target either the immune system or coagulation processes. As the exact mechanism causing SARS-CoV-2-induced morbidity and mortality was unknown, we started an in-depth analysis of immunologic and coagulation processes. METHODS 127 COVID-19 patients were treated at the University Hospital Essen, Germany, between May 2020 and February 2022. Patients were divided according to their maximum COVID-19 WHO ordinal severity score (WHO 0-10) into hospitalized patients with a non-severe course of disease (WHO 4-5, n = 52) and those with a severe course of disease (WHO 6-10, n = 75). Non-infected individuals served as healthy controls (WHO 0, n = 42). Blood was analyzed with respect to cell numbers, clotting factors, as well as pro- and anti-inflammatory mediators in plasma. As functional parameters, phagocytosis and inflammatory responses to LPS and antigen-specific stimulation were determined in monocytes, granulocytes, and T cells using flow cytometry. FINDINGS In the present study, immune and coagulation systems were analyzed simultaneously. Interestingly, many severe COVID-19 patients showed an upregulation of pro-inflammatory mediators and at the same time clear signs of immunosuppression. Furthermore, severe COVID-19 patients not only exhibited a disturbed immune system, but in addition showed a pronounced pro-coagulation phenotype with impaired fibrinolysis. Therefore, our study adds another puzzle piece to the already complex picture of COVID-19 pathology implying that therapies in COVID-19 must be individualized. CONCLUSION Despite years of research, COVID-19 has not been understood completely and still no therapies exist, fitting all requirements and phases of COVID-19 disease. This observation is highly reminiscent to sepsis. Research in sepsis has been going on for decades, while the disease is still not completely understood and therapies fitting all patients are lacking as well. In both septic and COVID-19 patients, immune activation can be accompanied by immune paralysis, complicating therapeutic intervention. Accordingly, therapies that lower immune activation may cause detrimental effects in patients, who are immune paralyzed by viral infections or sepsis. We therefore suggest individualizing therapies and to broaden the spectrum of immunological parameters analyzed before therapy. Only if the immune status of a patient is understood, can a therapeutic intervention be successful.
Collapse
Affiliation(s)
- Andreas Limmer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Correspondence:
| | - Andrea Engler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Simone Kattner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jonas Gregorius
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kevin Thomas Pattberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rebecca Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jansje Schwab
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
32
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
33
|
Hu X, Wu M, Ma T, Zhang Y, Zou C, Wang R, Zhang Y, Ren Y, Li Q, Liu H, Li H, Wang T, Sun X, Yang Y, Tang M, Li X, Li J, Gao X, Li T, Zhou X. Single-cell transcriptomics reveals distinct cell response between acute and chronic pulmonary infection of Pseudomonas aeruginosa. MedComm (Beijing) 2022; 3:e193. [PMID: 36514779 PMCID: PMC9732387 DOI: 10.1002/mco2.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the changes in the immune microenvironment during pulmonary bacterial acute and chronic infections is limited. The dissection of immune system may provide a basis for effective therapeutic strategies against bacterial infection. Here, we describe a single immune cell atlas of mouse lungs after acute and chronic Pseudomonas aeruginosa infection using single-cell transcriptomics, multiplex immunohistochemistry, and flow cytometry. Our single-cell transcriptomic analysis revealed large-scale comprehensive changes in immune cell composition and high variation in cell-cell interactions after acute and chronic P. aeruginosa infection. Bacterial infection reprograms the genetic architecture of immune cell populations. We identified specific immune cell types, including Cxcl2+ B cells and interstitial macrophages, in response to acute and chronic infection, such as their proportions, distribution, and functional status. Importantly, the patterns of immune cell response are drastically different between acute and chronic infection models. The distinct molecular signatures highlight the importance of the highly dynamic cell-cell interaction process in different pathological conditions, which has not been completely revealed previously. These findings provide a comprehensive and unbiased immune cellular landscape for respiratory pathogenesis in mice, enabling further understanding of immunologic mechanisms in infection and inflammatory diseases.
Collapse
Affiliation(s)
- Xueli Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Mingbo Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Teng Ma
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yige Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Chaoyu Zou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Ruihuan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yongxin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yuan Ren
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Qianqian Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Heyue Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Taolin Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xiaolong Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Miao Tang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Xuefeng Li
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jing Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiang Gao
- Department of Neurosurgery and Institute of NeurosurgeryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Taiwen Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
34
|
Andrade-Talavera Y, Chen G, Pansieri J, Arroyo-García LE, Toleikis Z, Smirnovas V, Johansson J, Morozova-Roche L, Fisahn A. S100A9 amyloid growth and S100A9 fibril-induced impairment of gamma oscillations in area CA3 of mouse hippocampus ex vivo is prevented by Bri2 BRICHOS. Prog Neurobiol 2022; 219:102366. [PMID: 36273719 DOI: 10.1016/j.pneurobio.2022.102366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The pro-inflammatory and highly amyloidogenic protein S100A9 is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases leading to cognitive impairment. Molecular chaperone activity of Bri2 BRICHOS has been demonstrated against a range of amyloidogenic polypeptides. Using a combination of thioflavin T fluorescence kinetic assay, atomic force microscopy and immuno electron microscopy we show here that recombinant Bri2 BRICHOS effectively inhibits S100A9 amyloid growth by capping amyloid fibrils. Using ex-vivo neuronal network electrophysiology in mouse brain slices we also show that both native S100A9 and amyloids of S100A9 disrupt cognition-relevant gamma oscillation power and rhythmicity in hippocampal area CA3 in a time- and protein conformation-dependent manner. Both effects were associated with Toll-like receptor 4 (TLR4) activation and were not observed upon TLR4 blockade. Importantly, S100A9 that had co-aggregated with Bri2 BRICHOS did not elicit degradation of gamma oscillations. Taken together, this work provides insights on the potential influence of S100A9 on cognitive dysfunction in Alzheimer's disease (AD) via gamma oscillation impairment from experimentally-induced gamma oscillations, and further highlights Bri2 BRICHOS as a chaperone against detrimental effects of amyloid self-assembly.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet, 17164 Solna, Sweden.
| | - Gefei Chen
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Luis Enrique Arroyo-García
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet, 17164 Solna, Sweden
| | - Zigmantas Toleikis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden.
| | | | - André Fisahn
- Neuronal Oscillations Laboratory, Center for Alzheimer Research, Departments of NVS and KBH, Karolinska Institutet, 17164 Solna, Sweden.
| |
Collapse
|
35
|
Russo A, Schürmann H, Brandt M, Scholz K, Matos ALL, Grill D, Revenstorff J, Rembrink M, von Wulffen M, Fischer‐Riepe L, Hanley PJ, Häcker H, Prünster M, Sánchez‐Madrid F, Hermann S, Klotz L, Gerke V, Betz T, Vogl T, Roth J. Alarming and Calming: Opposing Roles of S100A8/S100A9 Dimers and Tetramers on Monocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201505. [PMID: 36310133 PMCID: PMC9798971 DOI: 10.1002/advs.202201505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/30/2022] [Indexed: 05/16/2023]
Abstract
Mechanisms keeping leukocytes distant of local inflammatory processes in a resting state despite systemic release of inflammatory triggers are a pivotal requirement for avoidance of overwhelming inflammation but are ill defined. Dimers of the alarmin S100A8/S100A9 activate Toll-like receptor-4 (TLR4) but extracellular calcium concentrations induce S100A8/S100A9-tetramers preventing TLR4-binding and limiting their inflammatory activity. So far, only antimicrobial functions of released S100A8/S100A9-tetramers (calprotectin) are described. It is demonstrated that extracellular S100A8/S100A9 tetramers significantly dampen monocyte dynamics as adhesion, migration, and traction force generation in vitro and immigration of monocytes in a cutaneous granuloma model and inflammatory activity in a model of irritant contact dermatitis in vivo. Interestingly, these effects are not mediated by the well-known binding of S100A8/S100A9-dimers to TLR-4 but specifically mediated by S100A8/S100A9-tetramer interaction with CD69. Thus, the quaternary structure of these S100-proteins determines distinct and even antagonistic effects mediated by different receptors. As S100A8/S100A9 are released primarily as dimers and subsequently associate to tetramers in the high extracellular calcium milieu, the same molecules promote inflammation locally (S100-dimer/TLR4) but simultaneously protect the wider environment from overwhelming inflammation (S100-tetramer/CD69).
Collapse
Affiliation(s)
- Antonella Russo
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
| | - Hendrik Schürmann
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Matthias Brandt
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Katja Scholz
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
| | - Anna Livia L. Matos
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - David Grill
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | | | | | | | | | - Peter J. Hanley
- Faculty of MedicineHMU Health and Medical University Potsdam14471PotsdamGermany
| | - Hans Häcker
- Department of PathologyDivision of Microbiology and ImmunologyUniversity of UtahSalt Lake CityUT84112USA
| | - Monika Prünster
- BioMedical CenterWalter‐Brendel‐Centre for Experimental MedicineLudwig‐Maximilians‐UniversityPlanegg‐Martinsried82152MunichGermany
| | - Francisco Sánchez‐Madrid
- Immunology ServiceHospital de la PrincesaUniversidad Autónoma de MadridInstituto Investigación Sanitaria PrincesaMadrid28006Spain
- Department of Vascular Biology and InflammationCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI)University of Münster48149MünsterGermany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational NeurologyUniversity Hospital Muenster48149MuensterGermany
| | - Volker Gerke
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Medical BiochemistryCentre of Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
| | - Timo Betz
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
- Institute of Cell BiologyCentre for Molecular Biology of InflammationZMBEUniversity of Münster48149MünsterGermany
- Third Institute of Physics– BiophysicsGeorg August University Göttingen37077GöttingenGermany
| | - Thomas Vogl
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
| | - Johannes Roth
- Institute of ImmunologyUniversity of Münster48149MünsterGermany
- Cells in Motion Interfaculty CentreUniversity of Münster48149MünsterGermany
| |
Collapse
|
36
|
Liu Q, Lei X, Cao Z, Zhang J, Yan L, Fu J, Tong Q, Qin W, Shao Y, Liu C, Liu Z, Wang Z, Chu Y, Xu G, Liu S, Wen X, Yamamoto H, Mori M, Liang XM, Xu X. TRPM8 deficiency attenuates liver fibrosis through S100A9-HNF4α signaling. Cell Biosci 2022; 12:58. [PMID: 35525986 PMCID: PMC9080211 DOI: 10.1186/s13578-022-00789-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background Liver fibrosis represent a major global health care burden. Data emerging from recent advances suggest TRPM8, a member of the transient receptor potential (TRP) family of ion channels, plays an essential role in various chronic inflammatory diseases. However, its role in liver fibrosis remains unknown. Herein, we assessed the potential effect of TRPM8 in liver fibrosis. Methods The effect of TRPM8 was evaluated using specimens obtained from classic murine models of liver fibrosis, namely wild-type (WT) and TRPM8−/− (KO) fibrotic mice after carbon tetrachloride (CCl4) or bile duct ligation (BDL) treatment. The role of TRPM8 was systematically evaluated using specimens obtained from the aforementioned animal models after various in vivo and in vitro experiments. Results Clinicopathological analysis showed that TRPM8 expression was upregulated in tissue samples from cirrhosis patients and fibrotic mice. TRPM8 deficiency not only attenuated inflammation and fibrosis progression in mice but also helped to alleviate symptoms of cholangiopathies. Moreover, reduction in S100A9 and increase in HNF4α expressions were observed in liver of CCl4- and BDL- treated TRPM8−/− mice. A strong regulatory linkage between S100A9 and HNF4α was also noticed in L02 cells that underwent siRNA-mediated S100A9 knockdown and S100A9 overexpressing plasmid transfection. Lastly, the alleviative effect of a selective TRPM8 antagonist was confirmed in vivo. Conclusions These findings suggest TRPM8 deficiency may exert protective effects against inflammation, cholangiopathies, and fibrosis through S100A9-HNF4α signaling. M8-B might be a promising therapeutic candidate for liver fibrosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00789-4.
Collapse
|
37
|
Van Linthout S, Volk HD. Immuno-cardio-oncology: Killing two birds with one stone? Front Immunol 2022; 13:1018772. [PMID: 36466820 PMCID: PMC9714344 DOI: 10.3389/fimmu.2022.1018772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 07/28/2023] Open
Abstract
Inflammation and a dysregulated immune system are common denominators of cancer and cardiovascular disease (CVD). Immuno-cardio-oncology addresses the interconnected immunological aspect in both cancer and CVD and the integration of immunotherapies and anti-inflammatory therapies in both distinct disease entities. Building on prominent examples of convergent inflammation (IL-1ß biology) and immune disbalance (CD20 cells) in cancer and CVD/heart failure, the review tackles both the roadblocks and opportunities of repurposed use of IL-1ß drugs and anti-CD20 antibodies in both fields, and discusses the use of advanced therapies e.g. chimeric antigen receptor (CAR) T cells, that can address the raising burden of both cancer and CVD. Finally, it is discussed how inspired by precision medicine in oncology, the use of biomarker-driven patient stratification is needed to better guide anti-inflammatory/immunomodulatory therapeutic interventions in cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Institute of Medical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
38
|
Zhou Y, Bréchard S. Neutrophil Extracellular Vesicles: A Delicate Balance between Pro-Inflammatory Responses and Anti-Inflammatory Therapies. Cells 2022; 11:cells11203318. [PMID: 36291183 PMCID: PMC9600967 DOI: 10.3390/cells11203318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are released in the extracellular environment during cell activation or apoptosis. Working as signal transducers, EVs are important mediators of intercellular communication through the convoying of proteins, nucleic acids, lipids, and metabolites. Neutrophil extracellular vesicles (nEVs) contain molecules acting as key modulators of inflammation and immune responses. Due to their potential as therapeutic tools, studies about nEVs have been increasing in recent years. However, our knowledge about nEVs is still in its infancy. In this review, we summarize the current understanding of the role of nEVs in the framework of neutrophil inflammation functions and disease development. The therapeutic potential of nEVs as clinical treatment strategies is deeply discussed. Moreover, the promising research landscape of nEVs in the near future is also examined.
Collapse
|
39
|
Wu E, Zhu J, Ma Z, Tuo B, Terai S, Mizuno K, Li T, Liu X. Gastric alarmin release: A warning signal in the development of gastric mucosal diseases. Front Immunol 2022; 13:1008047. [PMID: 36275647 PMCID: PMC9583272 DOI: 10.3389/fimmu.2022.1008047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alarmins exist outside cells and are early warning signals to the immune system; as such, alarmin receptors are widely distributed on various immune cells. Alarmins, proinflammatory molecular patterns associated with tissue damage, are usually released into the extracellular space, where they induce immune responses and participate in the damage and repair processes of mucosal diseases.In the stomach, gastric alarmin release has been shown to be involved in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and wound healing; moreover, this release causes damage and results in the development of gastric mucosal diseases, including various types of gastritis, ulcers, and gastric cancer. Therefore, it is necessary to understand the role of alarmins in gastric mucosal diseases. This review focuses on the contribution of alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new perspective on the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Mizuno
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
40
|
Austermann J, Roth J, Barczyk-Kahlert K. The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells 2022; 11:cells11121979. [PMID: 35741108 PMCID: PMC9222172 DOI: 10.3390/cells11121979] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Monocytes and macrophages are central players of the innate immune response and play a pivotal role in the regulation of inflammation. Thereby, they actively participate in all phases of the immune response, from initiating inflammation and triggering the adaptive immune response, through to the clearance of cell debris and resolution of inflammation. In this review, we described the mechanisms of monocyte and macrophage adaptation to rapidly changing microenvironmental conditions and discussed different forms of macrophage polarization depending on the environmental cues or pathophysiological condition. Therefore, special focus was placed on the tight regulation of the pro- and anti-inflammatory immune response, and the diverse functions of S100A8/S100A9 proteins and the scavenger receptor CD163 were highlighted, respectively. We paid special attention to the function of pro- and anti-inflammatory macrophages under pathological conditions.
Collapse
|
41
|
Shiu J, Zhang L, Lentsch G, Flesher JL, Jin S, Polleys CM, Jo SJ, Mizzoni C, Mobasher P, Kwan J, Rius-Diaz F, Tromberg BJ, Georgakoudi I, Nie Q, Balu M, Ganesan AK. Multimodal analyses of vitiligo skin identifies tissue characteristics of stable disease. JCI Insight 2022; 7:154585. [PMID: 35653192 PMCID: PMC9310536 DOI: 10.1172/jci.insight.154585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Vitiligo is an autoimmune skin disease characterized by the destruction of melanocytes by autoreactive CD8+ T cells. Melanocyte destruction in active vitiligo is mediated by CD8+ T cells, but the persistence of white patches in stable disease is poorly understood. The interaction between immune cells, melanocytes, and keratinocytes in situ in human skin has been difficult to study due to the lack of proper tools. We combine noninvasive multiphoton microscopy (MPM) imaging and single-cell RNA-Seq (scRNA-Seq) to identify subpopulations of keratinocytes in stable vitiligo patients. We show that, compared with nonlesional skin, some keratinocyte subpopulations are enriched in lesional vitiligo skin and shift their energy utilization toward oxidative phosphorylation. Systematic investigation of cell-to-cell communication networks show that this small population of keratinocyte secrete CXCL9 and CXCL10 to potentially drive vitiligo persistence. Pseudotemporal dynamics analyses predict an alternative differentiation trajectory that generates this new population of keratinocytes in vitiligo skin. Further MPM imaging of patients undergoing punch grafting treatment showed that keratinocytes favoring oxidative phosphorylation persist in nonresponders but normalize in responders. In summary, we couple advanced imaging with transcriptomics and bioinformatics to discover cell-to-cell communication networks and keratinocyte cell states that can perpetuate inflammation and prevent repigmentation.
Collapse
Affiliation(s)
- Jessica Shiu
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Lihua Zhang
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Jessica L Flesher
- Department of Dermatology, Massachusetts General Hospital, Boston, United States of America
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Christopher M Polleys
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Pezhman Mobasher
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Jasmine Kwan
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Francisca Rius-Diaz
- Department of Preventive Medicine and Public Health, University of Malaga, Malaga, Spain
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Mihaela Balu
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| |
Collapse
|
42
|
Yao J, Zhang J, Wang J, Lai Q, Yuan W, Liu Z, Cheng S, Feng Y, Jiang Z, Shi Y, Jiang S, Tu W. Transcriptome Profiling Unveils a Critical Role of IL-17 Signaling-Mediated Inflammation in Radiation-Induced Esophageal Injury in Rats. Dose Response 2022; 20:15593258221104609. [PMID: 35677348 PMCID: PMC9168911 DOI: 10.1177/15593258221104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Elucidation of the molecular mechanisms involving the initiation and progression
of radiation-induced esophageal injury (RIEI) is important for prevention and
treatment. Despite ongoing advances, the underlying mechanisms controlling RIEI
remain largely unknown. In the present study, RNA-seq was performed to
characterize mRNA profiles of the irradiated rat esophagus exposed to 0, 25, or
35 Gy irradiation. Bioinformatics analyses including dose-dependent
differentially expressed genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of
Gene and Genome (KEGG) pathway, protein-protein interaction (PPI) network, and
immune infiltration were performed. 134 DEGs were screened out with a
dose-dependent manner (35 Gy > 25 Gy > control, or 35 Gy < 25 Gy <
control). GO and KEGG analyses showed that the most significant mechanism was
IL-17 signaling-mediated inflammatory response. 5 hub genes, Ccl11, Cxcl3,
Il17a, S100a8, and S100a9, were identified through the intersection of the DEGs
involved in inflammatory response, IL-17 pathway, and PPI network. Additionally,
immune infiltration analysis showed the activation of macrophages, monocytes, T
cells, NKT cells, and neutrophils, among which macrophages, monocytes, and
neutrophils might be the main sources of S100a8 and S100a9. Thus, these findings
further our understanding on the molecular biology of RIEI and may help develop
more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jia Yao
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinkang Zhang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jinlong Wang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Qian Lai
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Weijun Yuan
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Zhongyu Liu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuanghua Cheng
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yahui Feng
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Zhiqiang Jiang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yuhong Shi
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Sheng Jiang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Wenling Tu
- Department of Nuclear Medicine, the Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
43
|
Helfen A, Rieß J, Fehler O, Stölting M, An Z, Kocman V, Schnepel A, Geyer C, Gerwing M, Masthoff M, Vogl T, Höltke C, Roth J, Ng T, Wildgruber M, Eisenblätter M. In vivo imaging of microenvironmental and anti-PD-L1-mediated dynamics in cancer using S100A8/S100A9 as an imaging biomarker. Neoplasia 2022; 28:100792. [PMID: 35367789 PMCID: PMC8983428 DOI: 10.1016/j.neo.2022.100792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE As a promotor of tumor invasion and tumor microenvironment (TME) formation, the protein complex S100A8/S100A9 is associated with poor prognosis. Our aim was to further evaluate its origin and regulatory effects, and to establish an imaging biomarker for TME activity. METHODS S100A9-/-cells (ko) were created from syngeneic murine breast cancer 4T1 (high malignancy) and 67NR (low malignancy) wildtype (wt) cell lines and implanted into either female BALB/c wildtype or S100A9-/- mice (n = 10 each). Anti-S100A9-Cy5.5-targeted fluorescence reflectance imaging was performed at 0 h and 24 h after injection. Potential early changes of S100A9-presence under immune checkpoint inhibition (anti-PD-L1, n = 7 vs. rat IgG2b as isotype control, n = 3) were evaluated. RESULTS In S100A9-/-mice contrast-to-noise-ratios were significantly reduced for wt and S100A9-/-tumors. No significant differences were detected for 4T1 ko and 67NR ko cells as compared to wildtype cells. Under anti-PD-L1 treatment S100A9 presence significantly decreased compared with the control group. CONCLUSION Our results confirm a secretion of S100A8/S100A9 by the TME, while tumor cells do not apparently release the protein. Under immune checkpoint inhibition S100A9-imaging reports an early decrease of TME activity. Therefore, S100A9-specific imaging may serve as an imaging biomarker for TME formation and activity.
Collapse
Affiliation(s)
- Anne Helfen
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany.
| | - Jan Rieß
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Miriam Stölting
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Zhengwen An
- The CRUK City of London Cancer Centre, SE1 9RT London, UK
| | - Vanessa Kocman
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Annika Schnepel
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Christiane Geyer
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Mirjam Gerwing
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Max Masthoff
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Carsten Höltke
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, D-48149 Muenster, Germany
| | - Tony Ng
- The CRUK City of London Cancer Centre, SE1 9RT London, UK; UCL Cancer Institute, University College London, SE1 9RT London, UK; School of Cancer and Pharmaceutical Sciences, King´s College London, SE1 9RT London, UK
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany; Department for Radiology, LMU Munich, D-81377 Munich, Germany
| | - Michel Eisenblätter
- Department of Radiology, University Hospital Muenster, University of Muenster, D-48149 Muenster, Germany; Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, D-79106 Freiburg, Germany
| |
Collapse
|
44
|
Jauch-Speer SL, Herrera-Rivero M, Ludwig N, Véras De Carvalho BC, Martens L, Wolf J, Imam Chasan A, Witten A, Markus B, Schieffer B, Vogl T, Rossaint J, Stoll M, Roth J, Fehler O. C/EBPδ-induced epigenetic changes control the dynamic gene transcription of S100a8 and S100a9. eLife 2022; 11:75594. [PMID: 35543413 PMCID: PMC9122501 DOI: 10.7554/elife.75594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout (KO)-based screening approach in immortalized murine monocytes, we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterized by S100a8 and S100a9 overexpression.
Collapse
Affiliation(s)
| | | | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | - Leonie Martens
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jonas Wolf
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Anika Witten
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Birgit Markus
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Clinic for Cardiology, Angiology and Internal Intensive Medicine, University Hospital Marburg, Marburg, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Olesja Fehler
- Institute of Immunology, University of Münster, Münster, Germany
| |
Collapse
|
45
|
Kim R, An M, Lee H, Mehta A, Heo YJ, Kim KM, Lee SY, Moon J, Kim ST, Min BH, Kim TJ, Rha SY, Kang WK, Park WY, Klempner SJ, Lee J. Early Tumor-Immune Microenvironmental Remodeling and Response to First-Line Fluoropyrimidine and Platinum Chemotherapy in Advanced Gastric Cancer. Cancer Discov 2022; 12:984-1001. [PMID: 34933901 PMCID: PMC9387589 DOI: 10.1158/2159-8290.cd-21-0888] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/17/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Chemotherapy is ubiquitous in first-line treatment of advanced gastric cancer, yet responses are heterogeneous, and little is known about mediators of chemotherapy response. To move forward, an understanding of the effects of standard chemotherapy on the tumor-immune microenvironment (TME) is needed. Coupling whole-exome sequencing, bulk RNA and single-cell transcriptomics from paired pretreatment and on-treatment samples in treatment-naïve patients with HER2-positive and HER2-negative gastric cancer, we define features associated with response to platinum-based chemotherapy. Response was associated with on-treatment TME remodeling including natural killer (NK) cell recruitment, decreased tumor-associated macrophages, M1-macrophage repolarization, and increased effector T-cell infiltration. Among chemotherapy nonresponders, we observed low/absent PD-L1 expression or modulation, on-treatment increases in Wnt signaling, B-cell infiltration, and LAG3-expressing T cells coupled to an exodus of dendritic cells. We did not observe significant genomic changes in early on-treatment sampling. We provide a map of on-treatment TME modulation with standard chemotherapy and nominate candidate future approaches. SIGNIFICANCE Using paired pretreatment and on-treatment samples during standard first-line chemotherapy, we identify chemotherapy-induced NK-cell infiltration, macrophage repolarization, and increased antigen presentation among responders. Increased LAG3 expression and decreased dendritic cell abundance were seen in nonresponders, emphasizing remodeling of the TME during chemotherapy response and resistance. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Ryul Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minae An
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyuk Lee
- Department of Gastroenterology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Arnav Mehta
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - You Jeong Heo
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Song-Yi Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Hoon Min
- Department of Gastroenterology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Jun Kim
- Department of Gastroenterology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Young Rha
- Department of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Geninus Inc., Seoul, Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
- Corresponding Authors: Samuel J. Klempner, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114. Phone: 617-724-4000; Fax: 617-726-0452; E-mail: ; Woong-Yang Park, Department of Health Sciences and Technology, SAIHST, Samsung Medical Center Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. Phone: 82-2-2148-9810; Fax: 82-2-2148-9819; E-mail: ; and Jeeyun Lee, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea. Phone: 82-2-3410-1779; Fax: 82-2-3410-1754; E-mail:
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Corresponding Authors: Samuel J. Klempner, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114. Phone: 617-724-4000; Fax: 617-726-0452; E-mail: ; Woong-Yang Park, Department of Health Sciences and Technology, SAIHST, Samsung Medical Center Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. Phone: 82-2-2148-9810; Fax: 82-2-2148-9819; E-mail: ; and Jeeyun Lee, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea. Phone: 82-2-3410-1779; Fax: 82-2-3410-1754; E-mail:
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
- Corresponding Authors: Samuel J. Klempner, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114. Phone: 617-724-4000; Fax: 617-726-0452; E-mail: ; Woong-Yang Park, Department of Health Sciences and Technology, SAIHST, Samsung Medical Center Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. Phone: 82-2-2148-9810; Fax: 82-2-2148-9819; E-mail: ; and Jeeyun Lee, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea. Phone: 82-2-3410-1779; Fax: 82-2-3410-1754; E-mail:
| |
Collapse
|
46
|
Tanigawa K, Tsukamoto S, Koma YI, Kitamura Y, Urakami S, Shimizu M, Fujikawa M, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. S100A8/A9 Induced by Interaction with Macrophages in Esophageal Squamous Cell Carcinoma Promotes the Migration and Invasion of Cancer Cells via Akt and p38 MAPK Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:536-552. [PMID: 34954212 DOI: 10.1016/j.ajpath.2021.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages are associated with more malignant phenotypes of esophageal squamous cell carcinoma (ESCC) cells. Previously, an indirect co-culture assay of ESCC cells and macrophages was used to identify several factors associated with ESCC progression. Herein, a direct co-culture assay of ESCC cells and macrophages was established, which more closely simulated the actual cancer microenvironment. Direct co-cultured ESCC cells had significantly increased migration and invasion abilities, and phosphorylation levels of Akt and p38 mitogen-activated protein kinase (MAPK) compared with monocultured ESCC cells. According to a cDNA microarray analysis between monocultured and co-cultured ESCC cells, both the expression and release of S100 calcium binding protein A8 and A9 (S100A8 and S100A9), which commonly exist and function as a heterodimer (herein, S100A8/A9), were significantly enhanced in co-cultured ESCC cells. The addition of recombinant human S100A8/A9 protein induced migration and invasion of ESCC cells via Akt and p38 MAPK signaling. Both S100A8 and S100A9 silencing suppressed migration, invasion, and phosphorylation of Akt and p38 MAPK in co-cultured ESCC cells. Moreover, ESCC patients with high S100A8/A9 expression exhibited significantly shorter disease-free survival (P = 0.005) and cause-specific survival (P = 0.038). These results suggest that S100A8/A9 expression and release in ESCC cells are enhanced by direct co-culture with macrophages and that S100A8/A9 promotes ESCC progression via Akt and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Kohei Tanigawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yu Kitamura
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaki Shimizu
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masataka Fujikawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
47
|
Zhu X, Huang H, Zhao L. PAMPs and DAMPs as the Bridge Between Periodontitis and Atherosclerosis: The Potential Therapeutic Targets. Front Cell Dev Biol 2022; 10:856118. [PMID: 35281098 PMCID: PMC8915442 DOI: 10.3389/fcell.2022.856118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic artery disease characterized by plaque formation and vascular inflammation, eventually leading to myocardial infarction and stroke. Innate immunity plays an irreplaceable role in the vascular inflammatory response triggered by chronic infection. Periodontitis is a common chronic disorder that involves oral microbe-related inflammatory bone loss and local destruction of the periodontal ligament and is a risk factor for atherosclerosis. Periodontal pathogens contain numerous pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide, CpG DNA, and Peptidoglycan, that initiate the inflammatory response of the innate immunity depending on the recognition of pattern-recognition receptors (PRRs) of host cells. The immune-inflammatory response and destruction of the periodontal tissue will produce a large number of damage-associated molecular patterns (DAMPs) such as neutrophil extracellular traps (NETs), high mobility group box 1 (HMGB1), alarmins (S100 protein), and which can further affect the progression of atherosclerosis. Molecular patterns have recently become the therapeutic targets for inflammatory disease, including blocking the interaction between molecular patterns and PRRs and controlling the related signal transduction pathway. This review summarized the research progress of some representative PAMPs and DAMPs as the molecular pathological mechanism bridging periodontitis and atherosclerosis. We also discussed possible ways to prevent serious cardiovascular events in patients with periodontitis and atherosclerosis by targeting molecular patterns.
Collapse
Affiliation(s)
- Xuanzhi Zhu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| |
Collapse
|
48
|
Inhibition of CtBP-Regulated Proinflammatory Gene Transcription Attenuates Psoriatic Skin Inflammation. J Invest Dermatol 2022; 142:390-401. [PMID: 34293351 PMCID: PMC8770725 DOI: 10.1016/j.jid.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.
Collapse
|
49
|
Time-Resolved Gene Expression Analysis Monitors the Regulation of Inflammatory Mediators and Attenuation of Adaptive Immune Response by Vitamin D. Int J Mol Sci 2022; 23:ijms23020911. [PMID: 35055093 PMCID: PMC8776203 DOI: 10.3390/ijms23020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) belong to the innate and adaptive immune system and are highly sensitive and responsive to changes in their systemic environment. In this study, we focused on the time course of transcriptional changes in freshly isolated human PBMCs 4, 8, 24 and 48 h after onset of stimulation with the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Taking all four time points together, 662 target genes were identified and segregated either by time of differential gene expression into 179 primary and 483 secondary targets or by driver of expression change into 293 direct and 369 indirect targets. The latter classification revealed that more than 50% of target genes were primarily driven by the cells' response to ex vivo exposure than by the nuclear hormone and largely explained its down-regulatory effect. Functional analysis indicated vitamin D's role in the suppression of the inflammatory and adaptive immune response by down-regulating ten major histocompatibility complex class II genes, five alarmins of the S100 calcium binding protein A family and by affecting six chemokines of the C-X-C motif ligand family. Taken together, studying time-resolved responses allows to better contextualize the effects of vitamin D on the immune system.
Collapse
|
50
|
Use of MRP8/14 in clinical practice as a predictor of outcome after methotrexate withdrawal in patients with juvenile idiopathic arthritis. Clin Rheumatol 2022; 41:2825-2830. [PMID: 35486225 PMCID: PMC9474586 DOI: 10.1007/s10067-022-06165-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
Abstract
The objective of this study was to determine the effectiveness of MRP8/14 as a predictor of disease flare in patients with juvenile idiopathic arthritis (JIA) following the withdrawal of methotrexate (MTX) in a routine clinical setting. All MRP8/14 tests performed at a single centre in a 27-month period were considered for analysis. Patients were assessed against criteria for inactive disease and subsequent disease flare. Decisions on whether or not to stop treatment were recorded. MRP8/14 results were assessed in conjunction with clinical information. Clinicians were also surveyed to investigate if MRP8/14 influenced their decision to discontinue MTX where this was available at that time point. One hundred four cases met the inclusion criteria during the study period. Although there was no significant difference in flares between patients with an elevated or low MRP8/14 value, in those who stopped MTX (n = 22), no patients with a low MRP8/14 (≤ 4000 ng/ml) result flared (follow-up time 12 months). Clinicians reported that for patients with clinically inactive disease and an elevated MRP8/14 result (> 4000 ng/ml), none would advise withdrawal of MTX. Low MRP8/14 was interpreted favourably when considering stopping MTX treatment in patients with JIA. Implementation of MRP8/14 testing has changed clinical practice at this centre. However, the observation that some patients in our cohort who had an elevated MRP8/14 value did not flare after stopping MTX for non-disease-related reasons highlights the need for further biomarkers to predict the risk of flare off medication in JIA and aid clinicians in treatment decisions. Key Points • First study of serum MRP8/14 measurement in clinical practice to inform treatment decisions in patients with JIA. • No patients with a low MRP8/14 test result went on to suffer a disease flare in 12 months of follow follow-up. • Further biomarkers are needed to predict the risk of flare off medication in JIA and treatment decisions.
Collapse
|