1
|
Iida H, Kawai-Takaishi M, Miyagawa Y, Takegami Y, Uezumi A, Honda T, Imagama S, Hosoyama T. PDZRN3 regulates adipogenesis of mesenchymal progenitors in muscle. Regen Ther 2025; 28:473-480. [PMID: 39980718 PMCID: PMC11840944 DOI: 10.1016/j.reth.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Intramuscular adipose tissue (IMAT) is frequently formed in certain pathological conditions, such as biological aging, and ectopic fat accumulation leads to muscle weakness and a subsequent decline in physical function. Although mesenchymal progenitors (MPs) are present in postnatal skeletal muscle and are the cells from which IMAT originates, the molecular mechanism by which MPs contribute to IMAT formation has not been completely elucidated. Recently, we found that PDZ domain-containing ring finger 3 (PDZRN3), an E3-ubiquitin ligase, was highly expressed in MPs. In this study, we aimed to clarify the functions of PDZRN3 in MPs and the roles of PDZRN3 in IMAT formation using in vitro and in vivo experiments. Methods Primary mouse MPs isolated from hindlimb muscles were applied to adipogenic differentiation conditions, and expression fluctuation of PDZRN3 was verified with adipogenic differentiation and Wnt signaling markers. The role of PDZRN3 on MP's adipogenesis was evaluated in vitro by gene knock-down experiments. To evaluate the contribution of PDZRN3 to IMAT formation in vivo, tamoxifen-inducible MP-specific Pdzrn3 knockout (Pdzrn3 MPcKO) mice were developed. Results PDZRN3 was more expressed in MPs than in muscle stem cells, and its expression profile of PDZRN3 fluctuated with the adipogenic differentiation of MPs. Our results revealed that PDZRN3 suppressed the adipogenesis of MPs in vitro through the activation of Wnt signaling and that a decrease in PDZRN3 accelerated adipogenesis. Indeed, IMAT significantly increased in the denervated muscles of Pdzrn3 MPcKO mice. Conclusions Our findings suggest that PDZRN3 is a key molecule in regulating IMAT formation. Since ectopic fat accumulation is frequently found in the skeletal muscles of older adults and also muscular dystrophy patients, PDZRN3 and its related pathways may represent a novel therapeutic target for these muscle pathologies.
Collapse
Affiliation(s)
- Hiroki Iida
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Minako Kawai-Takaishi
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshihiro Miyagawa
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yasuhiko Takegami
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Department of Chemistry, Kurume University Graduate School of Medicine, Kurume, Fukuoka, Japan
| | - Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tohru Hosoyama
- Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
2
|
Ma Y, Grootaert MOJ, Sewduth RN. Cardiotoxicity of Chemotherapy: A Multi-OMIC Perspective. J Xenobiot 2025; 15:9. [PMID: 39846541 PMCID: PMC11755476 DOI: 10.3390/jox15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Chemotherapy-induced cardiotoxicity is a critical issue in cardio-oncology, as cancer treatments often lead to severe cardiovascular complications. Approximately 10% of cancer patients succumb to cardiovascular problems, with lung cancer patients frequently experiencing arrhythmias, cardiac failure, tamponade, and cardiac metastasis. The cardiotoxic effects of anti-cancer treatments manifest at both cellular and tissue levels, causing deformation of cardiomyocytes, leading to contractility issues and fibrosis. Repeated irradiation and chemotherapy increase the risk of valvular, pericardial, or myocardial diseases. Multi-OMICs analyses reveal that targeting specific pathways as well as specific protein modifications, such as ubiquitination and phosphorylation, could offer potential therapeutic alternatives to current treatments, including Angiotensin converting enzymes (ACE) inhibitors and beta-blockers that mitigate symptoms but do not prevent cardiomyocyte death, highlighting the need for more effective therapies to manage cardiovascular defects in cancer survivors. This review explores the xenobiotic nature of chemotherapy agents and their impact on cardiovascular health, aiming to identify novel biomarkers and therapeutic targets to mitigate cardiotoxicity.
Collapse
Affiliation(s)
- Yan Ma
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium;
| | - Mandy O. J. Grootaert
- Faculty of Medicine and Dentistry, UC Louvain, Avenue Hippocrate 55, 1200 Woluwe-Saint-Lambert, Belgium;
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Raj N. Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium;
| |
Collapse
|
3
|
Ostrand LM, Rempel LA, Keel BN, Snelling WM, Schmidt TB, Psota ET, Mote BE, Rohrer GA. Genomic analysis of mobility measures on 5-month-old gilts associated with structural soundness. J Anim Sci 2025; 103:skaf001. [PMID: 39774702 PMCID: PMC11912832 DOI: 10.1093/jas/skaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Sow lameness results in premature culling, causing economic loss and well-being issues. A study, utilizing a pressure-sensing mat (GAIT4) and video monitoring system (NUtrack), was conducted to identify objective measurements on gilts that are predictive of future lameness. Gilts (N = 3,656) were categorized to describe their lifetime soundness: SOUND, retained for breeding with no detected mobility issues; LAME_SOW, retained for breeding and detected lame as a sow; CULL_STR, not retained due to poor leg structure; LAME_GILT, not retained due to visible signs of lameness; and CULL, not retained due to reasons other than leg structure. The GAIT4 system creates a series of measurements for each hoof and a lameness score (GLS) while NUtrack records animal movement and posture durations each day. To determine if measurements from the GAIT4 and NUtrack systems were associated with lifetime soundness, mixed model analyses were conducted in R including fixed effects of breed of sire, contemporary group and lifetime soundness score, and random effect of animal. A second mixed model was run without lifetime soundness score and estimates of animal effects were then used to conduct ssGBLUP analyses using three generations of pedigree and genotypes from ~50k SNP on > 60% of phenotyped animals. Genomic heritabilities were estimated, SNP effects were back-solved and significance was based on Bonferroni-corrected permutation tests. GAIT4 traits indicative of lameness (LAME_GILT and CULL_STR vs. SOUND; P < 0.05) were the standard deviation of GLS, average stride length, and average stance time, while significant NUtrack measurements were eating, standing, lateral lying, total lying, speed, distance, and rotations. In addition, rotations differed (P < 0.05) between SOUND vs. LAME_SOW and distance tended to be different (P < 0.10). Estimates of heritability for predictive NUtrack traits were ~0.3 and GAIT4 traits were ~0.2. There were 382 significant SNP effects in 47 genomic regions, four regions on chromosomes 1, 4, 11, and 14 accounted for over 60% of the associations. Genome-level imputed genotypes linked several regions with possible causative genes. Objective measurements from the GAIT4 and NUtrack systems at 5 mo of age were heritable, able to detect unsound animals, and were associated with lifetime soundness.
Collapse
Affiliation(s)
- Lexi M Ostrand
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Lea A Rempel
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| | - Brittney N Keel
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| | - Warren M Snelling
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| | - Ty B Schmidt
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Eric T Psota
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Benny E Mote
- Department of Animal Sciences, University of Nebraska, Lincoln, NE 68588
| | - Gary A Rohrer
- U.S. Meat Animal Research Center (USMARC), USDA-Agricultural Research Service, Clay Center, NE 68933
| |
Collapse
|
4
|
Cook SR, Hugen S, Hayward JJ, Famula TR, Belanger JM, McNiel E, Fieten H, Oberbauer AM, Leegwater PA, Ostrander EA, Mandigers PJ, Evans JM. Genomic analyses identify 15 susceptibility loci and reveal HDAC2, SOX2-OT, and IGF2BP2 in a naturally-occurring canine model of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.604426. [PMID: 39372775 PMCID: PMC11451740 DOI: 10.1101/2024.08.14.604426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Gastric cancer (GC) is the fifth most common human cancer worldwide, but the genetic etiology is largely unknown. We performed a Bayesian genome-wide association study and selection analyses in a naturally-occurring canine model of GC, the Belgian Tervuren and Sheepdog breeds, to elucidate underlying genetic risk factors. We identified 15 loci with over 90% predictive accuracy for the GC phenotype. Variant filtering revealed germline putative regulatory variants for the EPAS1 (HIF2A) and PTEN genes and a coding variant in CD101. Although closely related to Tervuren and Sheepdogs, Belgian Malinois rarely develop GC. Across-breed analyses uncovered protective haplotypes under selection in Malinois at SOX2-OT and IGF2BP2. Among Tervuren and Sheepdogs, HDAC2 putative regulatory variants were present at comparatively high frequency and were associated with GC. Here, we describe a complex genetic architecture governing GC in a dog model, including genes such as PDZRN3, that have not been associated with human GC.
Collapse
Affiliation(s)
- Shawna R. Cook
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sanne Hugen
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Elizabeth McNiel
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, USA
| | - Hille Fieten
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Peter A.J. Leegwater
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Paul J.J. Mandigers
- Expertisecentre of Genetics, Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacquelyn M. Evans
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Katsura Y, Shigenobu S, Satta Y. Adaptive Evolution and Functional Differentiation of Testis-Expressed Genes in Theria. Animals (Basel) 2024; 14:2316. [PMID: 39199849 PMCID: PMC11350913 DOI: 10.3390/ani14162316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Gene expression patterns differ in different tissues, and the expression pattern of genes in the mammalian testis is known to be extremely variable in different species. To clarify how the testis transcriptomic pattern has evolved in particular species, we examined the evolution of the adult testis transcriptome in Theria using 10 species: two marsupials (opossum and Tasmanian devil), six eutherian (placental) mammals (human, chimpanzee, bonobo, gorilla, rhesus macaque, and mouse), and two outgroup species (platypus and chicken). We show that 22 testis-expressed genes are marsupial-specific, suggesting their acquisition in the stem lineage of marsupials after the divergence from eutherians. Despite the time length of the eutherian stem lineage being similar to that of the marsupial lineage, acquisition of testis-expressed genes was not found in the stem lineage of eutherians; rather, their expression patterns differed by species, suggesting rapid gene evolution in the eutherian ancestors. Fifteen testis-expressed genes are therian-specific, and for three of these genes, the evolutionary tempo is markedly faster in eutherians than in marsupials. Our phylogenetic analysis of Rho GTPase-activating protein 28 (ARHGAP28) suggests the adaptive evolution of this gene in the eutherians, probably together with the expression pattern differentiation.
Collapse
Affiliation(s)
- Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki 444-0867, Japan;
| | - Yoko Satta
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan;
| |
Collapse
|
6
|
Peysson A, Zariohi N, Gendrel M, Chambert-Loir A, Frébault N, Cheynet E, Andrini O, Boulin T. Wnt-Ror-Dvl signalling and the dystrophin complex organize planar-polarized membrane compartments in C. elegans muscles. Nat Commun 2024; 15:4935. [PMID: 38858388 PMCID: PMC11164867 DOI: 10.1038/s41467-024-49154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.
Collapse
Affiliation(s)
- Alice Peysson
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noura Zariohi
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Marie Gendrel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Amandine Chambert-Loir
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Noémie Frébault
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Elise Cheynet
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Olga Andrini
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France
| | - Thomas Boulin
- Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U1314, MeLiS, Lyon, 69008, France.
| |
Collapse
|
7
|
Huang R, Kratka CE, Pea J, McCann C, Nelson J, Bryan JP, Zhou LT, Russo DD, Zaniker EJ, Gandhi AH, Shalek AK, Cleary B, Farhi SL, Duncan FE, Goods BA. Single-cell and spatiotemporal profile of ovulation in the mouse ovary. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594719. [PMID: 38826447 PMCID: PMC11142086 DOI: 10.1101/2024.05.20.594719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ovulation is a spatiotemporally coordinated process that involves several tightly controlled events, including oocyte meiotic maturation, cumulus expansion, follicle wall rupture and repair, and ovarian stroma remodeling. To date, no studies have detailed the precise window of ovulation at single-cell resolution. Here, we performed parallel single-cell RNA-seq and spatial transcriptomics on paired mouse ovaries across an ovulation time course to map the spatiotemporal profile of ovarian cell types. We show that major ovarian cell types exhibit time-dependent transcriptional states enriched for distinct functions and have specific localization profiles within the ovary. We also identified gene markers for ovulation-dependent cell states and validated these using orthogonal methods. Finally, we performed cell-cell interaction analyses to identify ligand-receptor pairs that may drive ovulation, revealing previously unappreciated interactions. Taken together, our data provides a rich and comprehensive resource of murine ovulation that can be mined for discovery by the scientific community.
Collapse
|
8
|
Sharma V, Sharma P, Singh TG. Wnt signalling pathways as mediators of neuroprotective mechanisms: therapeutic implications in stroke. Mol Biol Rep 2024; 51:247. [PMID: 38300425 DOI: 10.1007/s11033-023-09202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
A stroke is a complicated neurological illness that occurs when there is a disruption in the blood flow to the brain. This disruption results in the damage of neurons, which then leads to functional abnormalities. The Wnt signalling pathway, which is already well-known for its important function in development and tissue homeostasis, has recently been recognised as a critical factor in the pathophysiology of stroke. Recent studies have shown the Wnt pathway's roles in stroke-related events. The complex-interactions between the Wnt pathway and stroke emphasising the pathway's contributions to neuro-protection and synaptic plasticity. The Wnt pathway's influence on neuro-genesis and synaptic plasticity underscores its potential for driving stroke recovery and rehabilitation strategies. The current review discusses about the Wnt signalling pathway in brain pathophysiology and stroke with special emphasis on the various pathways involved in the positive and negative modulation of Wnt pathway namely Phosphoinositide 3-kinase (PI3-K), Glycogen synthase kinase-3β (GSK-3β), Mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
9
|
Tao T, Xu N, Li J, Zhao M, Li X, Huang L. Conditional loss of Ube3d in the retinal pigment epithelium accelerates age-associated alterations in the retina of mice. J Pathol 2023; 261:442-454. [PMID: 37772657 DOI: 10.1002/path.6201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Several studies have suggested a correlation between the ubiquitin-proteasome system (UPS) and age-related macular degeneration (AMD), with its phenotypic severity ranging from mild visual impairment to blindness, but the mechanism for UPS dysfunction contributing to disease progression is unclear. In this study, we investigated the role of ubiquitin protein ligase E3D (UBE3D) in aging and degeneration in mouse retina. Conditional knockout of Ube3d in the retinal pigment epithelium (RPE) of mice led to progressive and irregular fundus lesions, attenuation of the retinal vascular system, and age-associated deterioration of rod and cone responses. Simultaneously, RPE-specific Ube3d knockout mice also presented morphological changes similar to the histopathological characteristics of human AMD, in which a defective UPS led to RPE abnormalities such as phagocytosis or degradation of metabolites, the interaction with photoreceptor outer segment, and the transport of nutrients or waste products with choroidal capillaries via Bruch's membrane. Moreover, conditional loss of Ube3d resulted in aberrant molecular characterizations associated with the autophagy-lysosomal pathway, oxidative stress damage, and cell-cycle regulation, which are implicated in AMD pathology. Thus, our findings strengthen and expand the impact of UPS dysfunction on retinal pathophysiology during aging, indicating that genetic Ube3d deficiency in the RPE could lead to the abnormal formation of pigment deposits and secondary fundus alterations. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tianchang Tao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
- Department of Ophthalmology, Xiamen Eye Center of Xiamen University, Xiamen, PR China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, PR China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, PR China
- College of Optometry, Peking University Health Science Center, Beijing, PR China
| |
Collapse
|
10
|
Ivanisevic T, Sewduth RN. Multi-Omics Integration for the Design of Novel Therapies and the Identification of Novel Biomarkers. Proteomes 2023; 11:34. [PMID: 37873876 PMCID: PMC10594525 DOI: 10.3390/proteomes11040034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
Multi-omics is a cutting-edge approach that combines data from different biomolecular levels, such as DNA, RNA, proteins, metabolites, and epigenetic marks, to obtain a holistic view of how living systems work and interact. Multi-omics has been used for various purposes in biomedical research, such as identifying new diseases, discovering new drugs, personalizing treatments, and optimizing therapies. This review summarizes the latest progress and challenges of multi-omics for designing new treatments for human diseases, focusing on how to integrate and analyze multiple proteome data and examples of how to use multi-proteomics data to identify new drug targets. We also discussed the future directions and opportunities of multi-omics for developing innovative and effective therapies by deciphering proteome complexity.
Collapse
Affiliation(s)
| | - Raj N. Sewduth
- VIB-KU Leuven Center for Cancer Biology (VIB), 3000 Leuven, Belgium;
| |
Collapse
|
11
|
Díaz-Coránguez M, González-González L, Wang A, Liu X, Antonetti DA. Disheveled-1 Interacts with Claudin-5 and Contributes to Norrin-Induced Endothelial Barrier Restoration. Cells 2023; 12:2402. [PMID: 37830616 PMCID: PMC10571979 DOI: 10.3390/cells12192402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Previous studies have revealed that norrin can reverse vascular endothelial-growth-factor (VEGF)-induced permeability in a β-catenin-dependent pathway. Here, we have explored the contribution of disheveled-1 (DVL1) in norrin-induced blood-retinal barrier (BRB) restoration. We provide evidence that in addition to canonical signaling, DVL1 promotes tight junction (TJ) stabilization through a novel, non-canonical signaling pathway involving direct claudin-5 (CLDN5) binding. Immunofluorescence staining of rat retinal cross-sections showed enriched expression of DVL1 and 3 at endothelial capillaries and co-localization with CLDN5 and ZO-1 at the TJ complex in primary bovine retinal endothelial cells (BRECs). Barrier properties of BRECs were determined via measurements of trans-endothelial electrical resistance (TEER) or permeability to 70 kDa RITC-dextran. These studies demonstrated that norrin restoration of barrier properties after VEGF treatment required DVL1 as an siRNA knockdown of Dvl1 but not Dvl2 or Dvl3, reduced basal barrier properties and ablated norrin-induced barrier restoration. However, loss of Dvl1 did not decrease β-catenin signaling activity as measured by Axin2 mRNA expression, suggesting the contribution of a non-canonical pathway. DVL and TJ protein interactions were analyzed via co-immunoprecipitation of endogenous protein in BRECs, which demonstrated that DVL1 interacts with both CLDN5 and ZO-1, while DVL3 interacts only with ZO-1. These interactions were most abundant after inducing BRB restoration by treating BRECs with VEGF and norrin. DVL has previously been shown to form intramolecular bindings between the C-terminal PDZ-binding motif (PDZ-BM) with an internal PDZ domain. Co-transfection of HEK293 cells with DVL1 and CLDN5 or relevant mutants revealed that DVL1 interacts with CLDN5 through the DVL PDZ domain binding, CLDN5 PDZ-BM, in competition with DVL1 PDZ-BM, since DVL/CLDN5 interaction increases with deletion of the DVL1 PDZ-BM and decreases by co-expressing the C-terminal fragment of DVL1 containing the PDZ-BM or through deletion of CLDN5 PDZ-BM. In BREC cells, transfection of the C-terminal fragment of DVL1 downregulates the expression of CLDN5 but does not affect the expression of other proteins of the TJs, including ZO-1, occludin, CLDN1 or VE-cadherin. Blocking DVL1/CLDN5 interaction increased basal permeability and prevented norrin induction of barrier properties after VEGF. Combined with previous data, these results demonstrate that norrin signals through both a canonical β-catenin pathway and a non-canonical signaling pathway by which DVL1 directly binds to CLDN5 to promote barrier properties.
Collapse
Affiliation(s)
- Mónica Díaz-Coránguez
- Department of Pharmacobiology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Laura González-González
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - Amy Wang
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; (L.G.-G.); (A.W.); (X.L.)
| |
Collapse
|
12
|
Alemany-Navarro M, Tubío-Fungueiriño M, Diz-de Almeida S, Cruz R, Lombroso A, Real E, Soria V, Bertolín S, Fernández-Prieto M, Alonso P, Menchón JM, Carracedo A, Segalàs C. The genomics of visuospatial neurocognition in obsessive-compulsive disorder: A preliminary GWAS. J Affect Disord 2023; 333:365-376. [PMID: 37094658 DOI: 10.1016/j.jad.2023.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND The study of Obsessive-Compulsive Disorder (OCD) genomics has primarily been tackled by Genome-wide association studies (GWAS), which have encountered troubles in identifying replicable single nucleotide polymorphisms (SNPs). Endophenotypes have emerged as a promising avenue of study in trying to elucidate the genomic bases of complex traits such as OCD. METHODS We analyzed the association of SNPs across the whole genome with the construction of visuospatial information and executive performance through four neurocognitive variables assessed by the Rey-Osterrieth Complex Figure Test (ROCFT) in a sample of 133 OCD probands. Analyses were performed at SNP- and gene-level. RESULTS No SNP reached genome-wide significance, although there was one SNP almost reaching significant association with copy organization (rs60360940; P = 9.98E-08). Suggestive signals were found for the four variables at both SNP- (P < 1E-05) and gene-levels (P < 1E-04). Most of the suggestive signals pointed to genes and genomic regions previously associated with neurological function and neuropsychological traits. LIMITATIONS Our main limitations were the sample size, which was limited to identify associated signals at a genome-wide level, and the composition of the sample, more representative of rather severe OCD cases than a population-based OCD sample with a broad severity spectrum. CONCLUSIONS Our results suggest that studying neurocognitive variables in GWAS would be more informative on the genetic basis of OCD than the classical case/control GWAS, facilitating the genetic characterization of OCD and its different clinical profiles, the development of individualized treatment approaches, and the improvement of prognosis and treatment response.
Collapse
Affiliation(s)
- M Alemany-Navarro
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; IBIS (Universidad de Sevilla, HUVR, Junta de Andalucia, CSIC) Sevilla, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain.
| | - M Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - S Diz-de Almeida
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - R Cruz
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - A Lombroso
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - E Real
- Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - V Soria
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - S Bertolín
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain
| | - P Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - J M Menchón
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - C Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Bellvitge Campus, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| |
Collapse
|
13
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
14
|
Integrated Analysis of Gene Expression and Methylation Data to Identify Potential Biomarkers Related to Atherosclerosis Onset. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5493051. [PMID: 35915606 PMCID: PMC9338736 DOI: 10.1155/2022/5493051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Atherosclerosis is a kind of chronic inflammatory cardiovascular disease. Epigenetic regulation plays a crucial role in atherosclerosis. Our study was aimed at finding potential biomarkers associated with the occurrence of atherosclerosis. Two datasets were downloaded from the Gene Expression Omnibus (GEO) database. The epigenome-wide association study (EWAS) analysis was performed on methylation data using CpGassoc package. The differential expression analysis was conducted on mRNA data using limma package. The GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional enrichment was done in clusterProfiler package. Finally, the logistic regression model was constructed using generalized linear model (glm) function. Between atherosclerotic vs. nonatherosclerotic samples, totally 4980 cytosine-phosphate-guanine (CpG) sites (annotated to 2860 genes) and 132 differentially expressed genes (DEGs) related to atherosclerosis were identified. The annotated 2860 genes and 132 DEGs were significantly enriched in 9 and 4 KEGG pathways and 289 and 132 GO terms, respectively. After cross-analysis, 6 crucial CpG sites were screened to build the model, including cg01187920, cg03422911, cg08018825, cg10967350, cg14473924, and cg25313204. The diagnostic model could reliably separate the atherosclerosis samples from nonatherosclerotic samples. In conclusion, the 6 CpG sites are probably potential diagnostic biomarkers for atherosclerosis, including cg01187920, cg03422911, cg08018825, cg10967350, cg14473924, and cg25313204.
Collapse
|
15
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
16
|
Abelanet A, Camoin M, Rubin S, Bougaran P, Delobel V, Pernot M, Forfar I, Guilbeau-Frugier C, Galès C, Bats ML, Renault MA, Dufourcq P, Couffinhal T, Duplàa C. Increased Capillary Permeability in Heart Induces Diastolic Dysfunction Independently of Inflammation, Fibrosis, or Cardiomyocyte Dysfunction. Arterioscler Thromb Vasc Biol 2022; 42:745-763. [PMID: 35510550 DOI: 10.1161/atvbaha.121.317319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. METHODS The ubiquitine ligase Pdzrn3, expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which Pdzrn3 is overexpressed in EC (iEC-Pdzrn3) in adults was developed. RESULTS EC-specific Pdzrn3 expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC-Pdzrn3 mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC-Pdzrn3 mice, reminiscent of heart failure with preserved ejection fraction features. CONCLUSIONS An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism.
Collapse
Affiliation(s)
- Alice Abelanet
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Marion Camoin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Sebastien Rubin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Pauline Bougaran
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Valentin Delobel
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Mathieu Pernot
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Isabelle Forfar
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Céline Galès
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Marie Lise Bats
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Marie-Ange Renault
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Pascale Dufourcq
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Cécile Duplàa
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| |
Collapse
|
17
|
Rubin S, Bougaran P, Martin S, Abelanet A, Delobel V, Pernot M, Jeanningros S, Bats ML, Combe C, Dufourcq P, Debette S, Couffinhal T, Duplàa C. PHACTR-1 (Phosphatase and Actin Regulator 1) Deficiency in Either Endothelial or Smooth Muscle Cells Does Not Predispose Mice to Nonatherosclerotic Arteriopathies in 3 Transgenic Mice. Arterioscler Thromb Vasc Biol 2022; 42:597-609. [PMID: 35387477 DOI: 10.1161/atvbaha.122.317431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genome-wide association studies have revealed robust associations of common genetic polymorphisms in an intron of the PHACTR-1 (phosphatase and actin regulator 1) gene (chr6p24), with cervical artery dissection, spontaneous coronary artery dissection, and fibromuscular dysplasia. The aim was to assess its role in the pathogenesis of cervical artery dissection or fibromuscular dysplasia. METHODS Using various tissue-specific Cre-driver mouse lines, Phactr1 was deleted either in endothelial cells using 2 tissue-specific Cre-driver (PDGFB [platelet-derived growth factor B]-CreERT2 mice and Tie2 [tyrosine kinase with immunoglobulin and EGF homology domains]-Cre) and smooth muscle cells (smooth muscle actin-CreERT2) with a third tissue-specific Cre-driver. RESULTS To test the efficacy of the Phactr1 deletion after cre-induction, we confirmed first, a decrease in Phactr1 transcription and Phactr1 expression in endothelial cell and smooth muscle cell isolated from Phactr1iPDGFB and Phactr1iSMA mice. Irrespective to the tissue or the duration of the deletion, mice did not spontaneously display pathological phenotype or vascular impairment: mouse survival, growth, blood pressure, large vessel morphology, or actin organization were not different in knockout mice than their comparatives littermates. Challenging vascular function and repair either by angiotensin II-induced hypertension or limb ischemia did not lead to vascular morphology or function impairment in Phactr1-deleted mice. Similarly, there were no more consequences of Phactr1 deletion during embryogenesis in endothelial cells. CONCLUSIONS Loss of PHACTR-1 function in the cells involved in vascular physiology does not appear to induce a pathological vascular phenotype. The in vivo effect of the intronic variation described in genome-wide association studies is unlikely to involve downregulation in PHACTR-1 expression.
Collapse
Affiliation(s)
- Sébastien Rubin
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.).,Service de Néphrologie, Transplantation, Dialyse et Aphérèses (S.R., C.C.), Hôpital Pellegrin, CHU de Bordeaux, France
| | - Pauline Bougaran
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Soizic Martin
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Alice Abelanet
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Valentin Delobel
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Mathieu Pernot
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Sylvie Jeanningros
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Marie-Lise Bats
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.).,Service de Biochimie (M.-L.B.), Hôpital Pellegrin, CHU de Bordeaux, France
| | - Christian Combe
- Service de Néphrologie, Transplantation, Dialyse et Aphérèses (S.R., C.C.), Hôpital Pellegrin, CHU de Bordeaux, France.,University of Bordeaux, Unité INSERM 1026, Université de Bordeaux, France (C.C.)
| | - Pascale Dufourcq
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, France (S.D.).,Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, France (S.D.)
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.).,Service des Maladies Cardiaques et Vasculaires, Hôpital Haut-Léveque CHU de Bordeaux, Pessac, France (T.C.)
| | - Cécile Duplàa
- University of Bordeaux, INSERM, Biologie des Maladies Cardiovasculaires, U1034, Pessac, France (S.R., P.B., S.M., A.A., V.D., M.P., S.J., M.-L.B., P.D., T.C., C.D.)
| |
Collapse
|
18
|
Gueniot F, Rubin S, Bougaran P, Abelanet A, Morel JL, Bontempi B, Proust C, Dufourcq P, Couffinhal T, Duplàa C. Targeting Pdzrn3 maintains adult blood-brain barrier and central nervous system homeostasis. J Cereb Blood Flow Metab 2022; 42:613-629. [PMID: 34644209 PMCID: PMC9051145 DOI: 10.1177/0271678x211048981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood brain barrier (BBB) disruption is a critical component of the pathophysiology of cognitive impairment of vascular etiology (VCI) and associated with Alzheimer's disease (AD). The Wnt pathway plays a crucial role in BBB maintenance, but there is limited data on its role in cognitive pathologies. The E3 ubiquitin ligase PDZRN3 is a regulator of the Wnt pathway. In a murine model of VCI, overexpressing Pdzrn3 in endothelial cell (EC) exacerbated BBB hyperpermeability and accelerated cognitive decline. We extended these observations, in both VCI and AD models, showing that EC-specific depletion of Pdzrn3, reinforced the BBB, with a decrease in vascular permeability and a subsequent spare in cognitive decline. We found that in cerebral vessels, Pdzrn3 depletion protects against AD-induced Wnt target gene alterations and enhances endothelial tight junctional proteins. Our results provide evidence that Wnt signaling could be a molecular link regulating BBB integrity and cognitive decline under VCI and AD pathologies.
Collapse
Affiliation(s)
- Florian Gueniot
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Sebastien Rubin
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pauline Bougaran
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Alice Abelanet
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | | | | | - Carole Proust
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pascale Dufourcq
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service de Biochimie clinique, CHU de Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service des Maladies cardiaques et vasculaires, CHU de Bordeaux, Bordeaux, France
| | - Cecile Duplàa
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| |
Collapse
|
19
|
Li Q, Zhong J, Yang S, Liang Y. Lower expression of PDZRN3 induces endometrial carcinoma progression via the activation of canonical Wnt signaling. Oncol Lett 2022; 23:98. [PMID: 35154429 DOI: 10.3892/ol.2022.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Qiuhong Li
- Department of Obstetrics and Gynecology, Shanghai Yangpu District Shidong Hospital, Shanghai 2000438, P.R. China
| | - Jie Zhong
- Department of Obstetrics and Gynecology, Shanghai Yangpu District Shidong Hospital, Shanghai 2000438, P.R. China
| | - Shangjie Yang
- Department of Obstetrics and Gynecology, Yangpu Hospital Affiliated to Tongji University, Shanghai 200090, P.R. China
| | - Yanping Liang
- Department of Obstetrics and Gynecology, Shanghai Yangpu District Shidong Hospital, Shanghai 2000438, P.R. China
| |
Collapse
|
20
|
Decrease of Pdzrn3 is required for heart maturation and protects against heart failure. Sci Rep 2022; 12:8. [PMID: 34996942 PMCID: PMC8742099 DOI: 10.1038/s41598-021-03795-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023] Open
Abstract
Heart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 (Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure.
Collapse
|
21
|
Serum Glycoproteomics and Identification of Potential Mechanisms Underlying Alzheimer’s Disease. Behav Neurol 2021; 2021:1434076. [PMID: 34931130 PMCID: PMC8684523 DOI: 10.1155/2021/1434076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives. This study compares glycoproteomes in Thai Alzheimer’s disease (AD) patients with those of cognitively normal individuals. Methods. Study participants included outpatients with clinically diagnosed AD (
) and healthy controls without cognitive impairment (
). Blood samples were collected from all participants for biochemical analysis and for
(APOE) genotyping by real-time TaqMan PCR assays. Comparative serum glycoproteomic profiling by liquid chromatography-tandem mass spectrometry was then performed to identify differentially abundant proteins with functional relevance. Results. Statistical differences in age, educational level, and APOE ɛ3/ɛ4 and ɛ4/ɛ4 haplotype frequencies were found between the AD and control groups. The frequency of the APOE ɛ4 allele was significantly higher in the AD group than in the control group. In total, 871 glycoproteins were identified, including 266 and 259 unique proteins in control and AD groups, respectively. There were 49 and 297 upregulated and downregulated glycoproteins, respectively, in AD samples compared with the controls. Unique AD glycoproteins were associated with numerous pathways, including Alzheimer’s disease-presenilin pathway (16.6%), inflammation pathway mediated by chemokine and cytokine signaling (9.2%), Wnt signaling pathway (8.2%), and apoptosis signaling pathway (6.7%). Conclusion. Functions and pathways associated with protein-protein interactions were identified in AD. Significant changes in these proteins can indicate the molecular mechanisms involved in the pathogenesis of AD, and they have the potential to serve as AD biomarkers. Such findings could allow us to better understand AD pathology.
Collapse
|
22
|
Sharma M, Castro-Piedras I, Rasha F, Ramachandran S, Sennoune SR, Furr K, Almodovar S, Ganapathy V, Grisham MB, Rahman RL, Pruitt K. Dishevelled-1 DIX and PDZ domain lysine residues regulate oncogenic Wnt signaling. Oncotarget 2021; 12:2234-2251. [PMID: 34733415 PMCID: PMC8555683 DOI: 10.18632/oncotarget.28089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
DVL proteins are central mediators of the Wnt pathway and relay complex input signals into different branches of the Wnt signaling network. However, molecular mechanism(s) that regulate DVL-mediated relay of Wnt signals still remains unclear. Here, for the first time, we elucidate the functional significance of three DVL-1 lysines (K/Lys) which are subject to post-translational acetylation. We demonstrate that K34 Lys residue in the DIX domain regulates subcellular localization of β-catenin, thereby influencing downstream Wnt target gene expression. Additionally, we show that K69 (DIX domain) and K285 (PDZ domain) regulate binding of DVL-1 to Wnt target gene promoters and modulate expression of Wnt target genes including CMYC, OCT4, NANOG, and CCND1, in cell line models and xenograft tumors. Finally, we report that conserved DVL-1 lysines modulate various oncogenic functions such as cell migration, proliferation, cell-cycle progression, 3D-spheroid formation and in-vivo tumor growth in breast cancer models. Collectively, these findings highlight the importance of DVL-1 domain-specific lysines which were recently shown to be acetylated and characterize their influence on Wnt signaling. These site-specific modifications may be subject to regulation by therapeutics already in clinical use (lysine deacetylase inhibitors such as Panobinostat and Vorinostat) or may possibly have prognostic utility in translational efforts that seek to modulate dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sabarish Ramachandran
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Souad R. Sennoune
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kathryn Furr
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Matthew B. Grisham
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
23
|
Bellchambers HM, Ware SM. Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects. Hum Mol Genet 2021; 30:2402-2415. [PMID: 34274973 DOI: 10.1093/hmg/ddab195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Loss of function of ZIC3 causes heterotaxy (OMIM #306955), a disorder characterized by organ laterality defects including complex heart defects. Studies using Zic3 mutant mice have demonstrated that loss of Zic3 causes heterotaxy due to defects in establishment of left-right (LR) signaling, but the mechanistic basis for these defects remains unknown. Here, we demonstrate Zic3 null mice undergo cilia positioning defects at the embryonic node consistent with impaired planar cell polarity (PCP). Cell-based assays demonstrate that ZIC3 must enter the nucleus to regulate PCP and identify multiple critical ZIC3 domains required for regulation of PCP signaling. Furthermore, we show that Zic3 displays a genetic interaction with the PCP membrane protein Vangl2 and the PCP effector genes Rac1 and Daam1 resulting in increased frequency and severity of neural tube and heart defects. Gene and protein expression analyses indicate that Zic3 null embryos display disrupted expression of PCP components and reduced phosphorylation of the core PCP protein DVL2 at the time of LR axis determination. These results demonstrate that ZIC3 interacts with PCP signaling during early development, identifying a novel role for this transcription factor, and adding additional evidence about the importance of PCP function for normal LR patterning and subsequent heart development.
Collapse
Affiliation(s)
| | - Stephanie M Ware
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics.,Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
24
|
Taylor LW, French JE, Robbins ZG, Nylander-French LA. Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters. Front Genet 2021; 12:700636. [PMID: 34335698 PMCID: PMC8318037 DOI: 10.3389/fgene.2021.700636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Isocyanates are respiratory and skin sensitizers that are one of the main causes of occupational asthma globally. Genetic and epigenetic markers are associated with isocyanate-induced asthma and, before asthma develops, we have shown that genetic polymorphisms are associated with variation in plasma and urine biomarker levels in exposed workers. Inter-individual epigenetic variance may also have a significant role in the observed biomarker variability following isocyanate exposure. Therefore, we determined the percent methylation for CpG islands from DNA extracted from mononuclear blood cells of 24 male spray-painters exposed to 1,6-hexamethylene diisocyanate (HDI) monomer and HDI isocyanurate. Spray-painters' personal inhalation and skin exposure to these compounds and the respective biomarker levels of 1,6-diaminohexane (HDA) and trisaminohexyl isocyanurate (TAHI) in their plasma and urine were measured during three repeated industrial hygiene monitoring visits. We controlled for inhalation exposure, skin exposure, age, smoking status, and ethnicity as covariates and performed an epigenome-wide association study (EWAS) using likelihood-ratio statistical modeling. We identified 38 CpG markers associated with differences in isocyanate biomarker levels (Bonferroni < 0.05). Annotations for these markers included 18 genes: ALG1, ANKRD11, C16orf89, CHD7, COL27A, FUZ, FZD9, HMGN1, KRT6A, LEPR, MAPK10, MED25, NOSIP, PKD1, SNX19, UNC13A, UROS, and ZFHX3. We explored the functions of the genes that have been published in the literature and used GeneMANIA to investigate gene ontologies and predicted protein-interaction networks. The protein functions of the predicted networks include keratinocyte migration, cell-cell adhesions, calcium transport, neurotransmitter release, nitric oxide production, and apoptosis regulation. Many of the protein pathway functions overlap with previous findings on genetic markers associated with variability both in isocyanate biomarker levels and asthma susceptibility, which suggests there are overlapping protein pathways that contribute to both isocyanate toxicokinetics and toxicodynamics. These predicted protein networks can inform future research on the mechanism of allergic airway sensitization by isocyanates and aid in the development of mitigation strategies to better protect worker health.
Collapse
Affiliation(s)
- Laura W. Taylor
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John E. French
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary G. Robbins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
25
|
Proteomic analysis identifies the E3 ubiquitin ligase Pdzrn3 as a regulatory target of Wnt5a-Ror signaling. Proc Natl Acad Sci U S A 2021; 118:2104944118. [PMID: 34135125 DOI: 10.1073/pnas.2104944118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al, Development 119, 97-111 (1993); I. Oishi et al, Genes Cells 8, 645-654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a β-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.
Collapse
|
26
|
Feng D, Wang J, Yang W, Li J, Lin X, Zha F, Wang X, Ma L, Choi NT, Mii Y, Takada S, Huen MSY, Guo Y, Zhang L, Gao B. Regulation of Wnt/PCP signaling through p97/VCP-KBTBD7-mediated Vangl ubiquitination and endoplasmic reticulum-associated degradation. SCIENCE ADVANCES 2021; 7:7/20/eabg2099. [PMID: 33990333 PMCID: PMC8121430 DOI: 10.1126/sciadv.abg2099] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
The four-pass transmembrane proteins Vangl1 and Vangl2 are dedicated core components of Wnt/planar cell polarity (Wnt/PCP) signaling that critically regulate polarized cell behaviors in many morphological and physiological processes. Here, we found that the abundance of Vangl proteins is tightly controlled by the ubiquitin-proteasome system through endoplasmic reticulum-associated degradation (ERAD). The key ERAD component p97/VCP directly binds to Vangl at a highly conserved VCP-interacting motif and recruits the E3 ligase KBTBD7 via its UBA-UBX adaptors to promote Vangl ubiquitination and ERAD. We found that Wnt5a/CK1 prevents Vangl ubiquitination and ERAD by inducing Vangl phosphorylation, which facilitates Vangl export from the ER to the plasma membrane. We also provide in vivo evidence that KBTBD7 regulates convergent extension during zebrafish gastrulation and functions as a tumor suppressor in breast cancer by promoting Vangl degradation. Our findings reveal a previously unknown regulatory mechanism of Wnt/PCP signaling through the p97/VCP-KBTBD7-mediated ERAD pathway.
Collapse
Affiliation(s)
- Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jingyu Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fangzi Zha
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Luyao Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nga Ting Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
27
|
Hong J, Won M, Ro H. The Molecular and Pathophysiological Functions of Members of the LNX/PDZRN E3 Ubiquitin Ligase Family. Molecules 2020; 25:E5938. [PMID: 33333989 PMCID: PMC7765395 DOI: 10.3390/molecules25245938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
The ligand of Numb protein-X (LNX) family, also known as the PDZRN family, is composed of four discrete RING-type E3 ubiquitin ligases (LNX1, LNX2, LNX3, and LNX4), and LNX5 which may not act as an E3 ubiquitin ligase owing to the lack of the RING domain. As the name implies, LNX1 and LNX2 were initially studied for exerting E3 ubiquitin ligase activity on their substrate Numb protein, whose stability was negatively regulated by LNX1 and LNX2 via the ubiquitin-proteasome pathway. LNX proteins may have versatile molecular, cellular, and developmental functions, considering the fact that besides these proteins, none of the E3 ubiquitin ligases have multiple PDZ (PSD95, DLGA, ZO-1) domains, which are regarded as important protein-interacting modules. Thus far, various proteins have been isolated as LNX-interacting proteins. Evidence from studies performed over the last two decades have suggested that members of the LNX family play various pathophysiological roles primarily by modulating the function of substrate proteins involved in several different intracellular or intercellular signaling cascades. As the binding partners of RING-type E3s, a large number of substrates of LNX proteins undergo degradation through ubiquitin-proteasome system (UPS) dependent or lysosomal pathways, potentially altering key signaling pathways. In this review, we highlight recent and relevant findings on the molecular and cellular functions of the members of the LNX family and discuss the role of the erroneous regulation of these proteins in disease progression.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| | - Minho Won
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 30 Yeongudanji-ro, Cheongwon-gu, Cheongju 28116, Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea;
| |
Collapse
|
28
|
Menet R, Lecordier S, ElAli A. Wnt Pathway: An Emerging Player in Vascular and Traumatic Mediated Brain Injuries. Front Physiol 2020; 11:565667. [PMID: 33071819 PMCID: PMC7530281 DOI: 10.3389/fphys.2020.565667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Wnt pathway, which comprises the canonical and non-canonical pathways, is an evolutionarily conserved mechanism that regulates crucial biological aspects throughout the development and adulthood. Emergence and patterning of the nervous and vascular systems are intimately coordinated, a process in which Wnt pathway plays particularly important roles. In the brain, Wnt ligands activate a cell-specific surface receptor complex to induce intracellular signaling cascades regulating neurogenesis, synaptogenesis, neuronal plasticity, synaptic plasticity, angiogenesis, vascular stabilization, and inflammation. The Wnt pathway is tightly regulated in the adult brain to maintain neurovascular functions. Historically, research in neuroscience has emphasized essentially on investigating the pathway in neurodegenerative disorders. Nonetheless, emerging findings have demonstrated that the pathway is deregulated in vascular- and traumatic-mediated brain injuries. These findings are suggesting that the pathway constitutes a promising target for the development of novel therapeutic protective and restorative interventions. Yet, targeting a complex multifunctional signal transduction pathway remains a major challenge. The review aims to summarize the current knowledge regarding the implication of Wnt pathway in the pathobiology of ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI). Furthermore, the review will present the strategies used so far to manipulate the pathway for therapeutic purposes as to highlight potential future directions.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
29
|
Identification and Functional Annotation of Genes Related to Horses' Performance: From GWAS to Post-GWAS. Animals (Basel) 2020; 10:ani10071173. [PMID: 32664293 PMCID: PMC7401650 DOI: 10.3390/ani10071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary It is assumed that the athletic performance of horses is influenced by a large number of genes; however, to date, not many genomic studies have been performed to identify candidate genes. In this study we performed a systematic review of genome-wide association studies followed by functional analyses aiming to identify the most candidate genes for horse performance. We were successful in identifying 669 candidate genes, from which we built biological process networks. Regulatory elements (transcription factors, TFs) of these genes were identified and used to build a gene–TF network. Genes and TFs presented in this study are suggested to play a role in the studied traits through biological processes related with exercise performance, for example, positive regulation of glucose metabolism, regulation of vascular endothelial growth factor production, skeletal system development, cellular response to fatty acids and cellular response to lipids. In general, this study may provide insights into the genetic architecture underlying horse performance in different breeds around the world. Abstract Integration of genomic data with gene network analysis can be a relevant strategy for unraveling genetic mechanisms. It can be used to explore shared biological processes between genes, as well as highlighting transcription factors (TFs) related to phenotypes of interest. Unlike other species, gene–TF network analyses have not yet been well applied to horse traits. We aimed to (1) identify candidate genes associated with horse performance via systematic review, and (2) build biological processes and gene–TF networks from the identified genes aiming to highlight the most candidate genes for horse performance. Our systematic review considered peer-reviewed articles using 20 combinations of keywords. Nine articles were selected and placed into groups for functional analysis via gene networks. A total of 669 candidate genes were identified. From that, gene networks of biological processes from each group were constructed, highlighting processes associated with horse performance (e.g., regulation of systemic arterial blood pressure by vasopressin and regulation of actin polymerization and depolymerization). Transcription factors associated with candidate genes were also identified. Based on their biological processes and evidence from the literature, we identified the main TFs related to horse performance traits, which allowed us to construct a gene–TF network highlighting TFs and the most candidate genes for horse performance.
Collapse
|
30
|
Sewduth R, Pandolfi S, Steklov M, Sheryazdanova A, Zhao P, Criem N, Baietti M, Lechat B, Quarck R, Impens F, Sablina A. The Noonan Syndrome Gene Lztr1 Controls Cardiovascular Function by Regulating Vesicular Trafficking. Circ Res 2020; 126:1379-1393. [PMID: 32175818 PMCID: PMC8575076 DOI: 10.1161/circresaha.119.315730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Noonan syndrome (NS) is one of the most frequent genetic disorders. Bleeding problems are among the most common, yet poorly defined complications associated with NS. A lack of consensus on the management of bleeding complications in patients with NS indicates an urgent need for new therapeutic approaches. OBJECTIVE Bleeding disorders have recently been described in patients with NS harboring mutations of LZTR1 (leucine zipper-like transcription regulator 1), an adaptor for CUL3 (CULLIN3) ubiquitin ligase complex. Here, we assessed the pathobiology of LZTR1-mediated bleeding disorders. METHODS AND RESULTS Whole-body and vascular specific knockout of Lztr1 results in perinatal lethality due to cardiovascular dysfunction. Lztr1 deletion in blood vessels of adult mice leads to abnormal vascular leakage. We found that defective adherent and tight junctions in Lztr1-depleted endothelial cells are caused by dysregulation of vesicular trafficking. LZTR1 affects the dynamics of fusion and fission of recycling endosomes by controlling ubiquitination of the ESCRT-III (endosomal sorting complex required for transport III) component CHMP1B (charged multivesicular protein 1B), whereas NS-associated LZTR1 mutations diminish CHMP1B ubiquitination. LZTR1-mediated dysregulation of CHMP1B ubiquitination triggers endosomal accumulation and subsequent activation of VEGFR2 (vascular endothelial growth factor receptor 2) and decreases blood levels of soluble VEGFR2 in Lztr1 haploinsufficient mice. Inhibition of VEGFR2 activity by cediranib rescues vascular abnormalities observed in Lztr1 knockout mice Conclusions: Lztr1 deletion phenotypically overlaps with bleeding diathesis observed in patients with NS. ELISA screening of soluble VEGFR2 in the blood of LZTR1-mutated patients with NS may predict both the severity of NS phenotypes and potential responders to anti-VEGF therapy. VEGFR inhibitors could be beneficial for the treatment of bleeding disorders in patients with NS.
Collapse
Affiliation(s)
- R. Sewduth
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - S. Pandolfi
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - M. Steklov
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - A. Sheryazdanova
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - P. Zhao
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - N. Criem
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - M.F. Baietti
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - B. Lechat
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - R. Quarck
- University Hospitals and Department of Chronic Diseases, Metabolism & Ageing (CHROMETA), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - F. Impens
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, B-9000 Ghent, Belgium
- VIB Proteomics Core, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - A.A. Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Honda T, Inui M. PDZRN3 protects against apoptosis in myoblasts by maintaining cyclin A2 expression. Sci Rep 2020; 10:1140. [PMID: 31980707 PMCID: PMC6981127 DOI: 10.1038/s41598-020-58116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/07/2020] [Indexed: 11/28/2022] Open
Abstract
PDZRN3 is a PDZ domain-containing RING-finger family protein that functions in various developmental processes. We previously showed that expression of PDZRN3 is induced together with that of MyoD during the early phase of skeletal muscle regeneration in vivo. We here show that PDZRN3 suppresses apoptosis and promotes proliferation in myoblasts in a manner dependent on cyclin A2. Depletion of PDZRN3 in mouse C2C12 myoblasts by RNA interference reduced the proportion of Ki-67-positive cells and the level of Akt phosphorylation, implicating PDZRN3 in regulation of both cell proliferation and apoptosis. Exposure of C2C12 cells as well as of C3H10T1/2 mesenchymal stem cells and NIH-3T3 fibroblasts to various inducers of apoptosis including serum deprivation resulted in a greater increase in the amount of cleaved caspase-3 in PDZRN3-depleted cells than in control cells. The abundance of cyclin A2 was reduced in PDZRN3-depleted C2C12 myoblasts, as was that of Mre11, which contributes to the repair of DNA damage. Overexpression of cyclin A2 restored the expression of Mre11 and Ki-67 as well as attenuated caspase-3 cleavage in PDZRN3-depleted cells deprived of serum. These results indicate that PDZRN3 suppresses apoptosis and promotes proliferation in myoblasts and other cell types by maintaining cyclin A2 expression.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
- YIC Rehabilitation College, 4-11-1 Nishiube-Minami, Ube, Yamaguchi, 759-0208, Japan.
| |
Collapse
|
32
|
Kanduc D. The comparative biochemistry of viruses and humans: an evolutionary path towards autoimmunity. Biol Chem 2019; 400:629-638. [PMID: 30504522 DOI: 10.1515/hsz-2018-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 11/15/2022]
Abstract
Analyses of the peptide sharing between five common human viruses (Borna disease virus, influenza A virus, measles virus, mumps virus and rubella virus) and the human proteome highlight a massive viral vs. human peptide overlap that is mathematically unexpected. Evolutionarily, the data underscore a strict relationship between viruses and the origin of eukaryotic cells. Indeed, according to the viral eukaryogenesis hypothesis and in light of the endosymbiotic theory, the first eukaryotic cell (our lineage) originated as a consortium consisting of an archaeal ancestor of the eukaryotic cytoplasm, a bacterial ancestor of the mitochondria and a viral ancestor of the nucleus. From a pathologic point of view, the peptide sequence similarity between viruses and humans may provide a molecular platform for autoimmune crossreactions during immune responses following viral infections/immunizations.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, I-70124 Bari, Italy
| |
Collapse
|
33
|
Bats ML, Bougaran P, Peghaire C, Gueniot F, Abelanet A, Chan H, Séguy C, Jeanningros S, Jaspard-Vinassa B, Couffinhal T, Duplàa C, Dufourcq P. Therapies targeting Frizzled-7/β-catenin pathway prevent the development of pathological angiogenesis in an ischemic retinopathy model. FASEB J 2019; 34:1288-1303. [PMID: 31914666 DOI: 10.1096/fj.201901886r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Retinopathies remain major causes of visual impairment in diabetic patients and premature infants. Introduction of anti-angiogenic drugs targeting vascular endothelial growth factor (VEGF) has transformed therapy for these proliferative retinopathies. However, limitations associated with anti-VEGF medications require to unravel new pathways of vessel growth to identify potential drug targets. Here, we investigated the role of Wnt/Frizzled-7 (Fzd7) pathway in a mouse model of oxygen-induced retinopathy (OIR). Using transgenic mice, which enabled endothelium-specific and time-specific Fzd7 deletion, we demonstrated that Fzd7 controls both vaso-obliteration and neovascular phases (NV). Deletion of Fzd7 at P12, after the ischemic phase of OIR, prevented formation of aberrant neovessels into the vitreous by suppressing proliferation of endothelial cells (EC) in tufts. Next we validated in vitro two Frd7 blocking strategies: a monoclonal antibody (mAbFzd7) against Fzd7 and a soluble Fzd7 receptor (CRD). In vivo a single intravitreal microinjection of mAbFzd7 or CRD significantly attenuated retinal neovascularization (NV) in mice with OIR. Molecular analysis revealed that Fzd7 may act through the activation of Wnt/β-catenin and Jagged1 expression to control EC proliferation in extra-retinal neovessels. We identified Fzd7/β-catenin signaling as new regulator of pathological retinal NV. Fzd7 appears to be a potent pharmacological target to prevent or treat aberrant angiogenesis of ischemic retinopathies.
Collapse
Affiliation(s)
- Marie-Lise Bats
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service de Biochimie clinique, CHU de Bordeaux, Bordeaux, France
| | - Pauline Bougaran
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Claire Peghaire
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,NHLI-Vascular Science, Imperial College London, London, UK
| | - Florian Gueniot
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Alice Abelanet
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Hélène Chan
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France
| | - Camille Séguy
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France
| | | | - Béatrice Jaspard-Vinassa
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Thierry Couffinhal
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service des Maladies cardiaques et vasculaires, CHU de Bordeaux, Bordeaux, France
| | - Cécile Duplàa
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pascale Dufourcq
- Biology of Cardiovascular Diseases, Inserm U1034, Pessac, France.,Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| |
Collapse
|
34
|
Honda T, Inui M. PDZRN3 regulates differentiation of myoblasts into myotubes through transcriptional and posttranslational control of Id2. J Cell Physiol 2018; 234:2963-2972. [PMID: 30066954 DOI: 10.1002/jcp.27113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
PDZRN3 (also known as LNX3) is a member of the PDZ domain-containing RING finger protein family. We previously showed that PDZRN3 is essential for differentiation of myoblasts into myotubes and that depletion of PDZRN3 inhibits such differentiation downstream of the upregulation of myogenin, a basic helix-loop-helix (bHLH) transcription factor required for completion of the differentiation process. However, the mechanism by which PDZRN3 controls this process has remained unclear. Myogenin is rendered active during the late stage of myogenic differentiation by the downregulation of Id2, a negative regulator of bHLH transcription factors. We now show that depletion of PDZRN3 inhibits the differentiation of C2C12 cells by inducing the upregulation of Id2 and thereby delaying its downregulation. Knockdown of Id2 by RNA interference restores the differentiation of PDZRN3-depleted cells. Luciferase reporter assays revealed that a putative binding site for STAT5b in the Id2 gene promoter is required for the upregulation of Id2 expression by PDZRN3 depletion. In addition, the amount of phosphorylated Id2 was reduced and that of the nonphosphorylated protein concomitantly increased in PDZRN3-depleted cells, with the inhibitory effect of Id2 on bHLH transcription factors having previously been shown to be attenuated by phosphorylation of Id2 catalyzed by the complex of Cdk2 with cyclin A2 or E1. Indeed, the expression of cyclin A2, but not that of cyclin E1, was reduced in PDZRN3-depleted cells. Our results thus indicate that PDZRN3 plays a key role in the differentiation of myoblasts into myotubes by regulating Id2 at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Takeshi Honda
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Makoto Inui
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
35
|
Baizabal JM, Mistry M, García MT, Gómez N, Olukoya O, Tran D, Johnson MB, Walsh CA, Harwell CC. The Epigenetic State of PRDM16-Regulated Enhancers in Radial Glia Controls Cortical Neuron Position. Neuron 2018; 98:945-962.e8. [PMID: 29779941 PMCID: PMC6667181 DOI: 10.1016/j.neuron.2018.04.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/14/2018] [Accepted: 04/24/2018] [Indexed: 01/09/2023]
Abstract
The epigenetic landscape is dynamically remodeled during neurogenesis. However, it is not understood how chromatin modifications in neural stem cells instruct the formation of complex structures in the brain. We report that the histone methyltransferase PRDM16 is required in radial glia to regulate lineage-autonomous and stage-specific gene expression programs that control number and position of upper layer cortical projection neurons. PRDM16 regulates the epigenetic state of transcriptional enhancers to activate genes involved in intermediate progenitor cell production and repress genes involved in cell migration. The histone methyltransferase domain of PRDM16 is necessary in radial glia to promote cortical neuron migration through transcriptional silencing. We show that repression of the gene encoding the E3 ubiquitin ligase PDZRN3 by PRDM16 determines the position of upper layer neurons. These findings provide insights into how epigenetic control of transcriptional enhancers in radial glial determines the organization of the mammalian cerebral cortex.
Collapse
Affiliation(s)
| | - Meeta Mistry
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nicolás Gómez
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Olubusola Olukoya
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Tran
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew B Johnson
- Division of Genetics and Genomics, Manton Center for Orphan Disease and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
37
|
VanderVorst K, Hatakeyama J, Berg A, Lee H, Carraway KL. Cellular and molecular mechanisms underlying planar cell polarity pathway contributions to cancer malignancy. Semin Cell Dev Biol 2017; 81:78-87. [PMID: 29107170 DOI: 10.1016/j.semcdb.2017.09.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/20/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
While the mutational activation of oncogenes drives tumor initiation and growth by promoting cellular transformation and proliferation, increasing evidence suggests that the subsequent re-engagement of largely dormant developmental pathways contributes to cellular phenotypes associated with the malignancy of solid tumors. Genetic studies from a variety of model organisms have defined many of the components that maintain epithelial planar cell polarity (PCP), or cellular polarity in the axis orthogonal to the apical-basal axis. These same components comprise an arm of non-canonical Wnt signaling that mediates cell motility events such as convergent extension movements essential to proper development. In this review, we summarize the increasing evidence that the Wnt/PCP signaling pathway plays active roles in promoting the proliferative and migratory properties of tumor cells, emphasizing the importance of subcellular localization of PCP components and protein-protein interactions in regulating cellullar properties associated with malignancy. Specifically, we discuss the increased expression of Wnt/PCP pathway components in cancer and the functional consequences of aberrant pathway activation, focusing on Wnt ligands, Frizzled (Fzd) receptors, the tetraspanin-like proteins Vangl1 and Vangl2, and the Prickle1 (Pk1) scaffold protein. In addition, we discuss negative regulation of the Wnt/PCP pathway, with particular emphasis on the Nrdp1 E3 ubiquitin ligase. We hypothesize that engagement of the Wnt/PCP pathway after tumor initiation drives malignancy by promoting cellular proliferation and invasiveness, and that the ability of Wnt/PCP signaling to supplant oncogene addiction may contribute to tumor resistance to oncogenic pathway-directed therapeutic agents.
Collapse
Affiliation(s)
- Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Anastasia Berg
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Hyun Lee
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, United States.
| |
Collapse
|
38
|
Abstract
The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors.
Collapse
Affiliation(s)
- Crystal F Davey
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, B2-159, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
39
|
Wald JH, Hatakeyama J, Printsev I, Cuevas A, Fry WH, Saldana MJ, Vorst KV, Rowson-Hodel A, Angelastro JM, Sweeney C, Carraway KL. Suppression of planar cell polarity signaling and migration in glioblastoma by Nrdp1-mediated Dvl polyubiquitination. Oncogene 2017; 36:5158-5167. [PMID: 28481871 PMCID: PMC5589482 DOI: 10.1038/onc.2017.126] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/15/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022]
Abstract
The lethality of the aggressive brain tumor glioblastoma multiforme (GBM) results in part from its strong propensity to invade surrounding normal brain tissue. Although oncogenic drivers such as epidermal growth factor receptor activation and Phosphatase and Tensin homolog inactivation are thought to promote the motility and invasiveness of GBM cells via phosphatidylinostitol 3-kinase activation, other unexplored mechanisms may also contribute to malignancy. Here we demonstrate that several components of the planar cell polarity (PCP) arm of non-canonical Wnt signaling including VANGL1, VANGL2 and FZD7 are transcriptionally upregulated in glioma and correlate with poorer patient outcome. Knockdown of the core PCP pathway component VANGL1 suppresses the motility of GBM cell lines, pointing to an important mechanistic role for this pathway in glioblastoma malignancy. We further observe that restoration of Nrdp1, a RING finger type E3 ubiquitin ligase whose suppression in GBM also correlates with poor prognosis, reduces GBM cell migration and invasiveness by suppressing PCP signaling. Our observations indicate that Nrdp1 physically interacts with the Vangl1 and Vangl2 proteins to mediate the K63-linked polyubiquitination of the Dishevelled, Egl-10 and Pleckstrin (DEP) domain of the Wnt pathway protein Dishevelled (Dvl). Ubiquitination hinders Dvl binding to phosphatidic acid, an interaction necessary for efficient Dvl recruitment to the plasma membrane upon Wnt stimulation of Fzd receptor and for the propagation of downstream signals. We conclude that the PCP pathway contributes significantly to the motility and hence the invasiveness of GBM cells, and that Nrdp1 acts as a negative regulator of PCP signaling by inhibiting Dvl through a novel polyubiquitination mechanism. We propose that the upregulation of core PCP components, together with the loss of the key negative regulator Nrdp1, act coordinately to promote GBM invasiveness and malignancy.
Collapse
Affiliation(s)
- Jessica H. Wald
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jason Hatakeyama
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Antonio Cuevas
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - William H.D. Fry
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Matthew J. Saldana
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey Vander Vorst
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ashley Rowson-Hodel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M. Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
40
|
Markovič R, Peltan J, Gosak M, Horvat D, Žalik B, Seguy B, Chauvel R, Malandain G, Couffinhal T, Duplàa C, Marhl M, Roux E. Planar cell polarity genes frizzled4 and frizzled6 exert patterning influence on arterial vessel morphogenesis. PLoS One 2017; 12:e0171033. [PMID: 28253274 PMCID: PMC5333836 DOI: 10.1371/journal.pone.0171033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/14/2017] [Indexed: 11/19/2022] Open
Abstract
Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/planar cell polarity, Frizzled4 and Frizzled6, affect vascular network morphogenesis. Experiments were performed on frizzled4 (Fzd4-/-) and frizzled6 (Fzd6-/-) deleted mice and littermate controls (WT) perfused with a contrast medium after euthanasia and exsanguination. The kidneys were scanned with a high-resolution (16 μm) microCT imaging system, followed by 3D reconstruction of the arterial vasculature. Computational treatment includes decomposition of 3D networks based on Diameter-Defined Strahler Order (DDSO). We have calculated quantitative (i) Global scale parameters, such as the volume of the vasculature and its fractal dimension (ii) Structural parameters depending on the DDSO hierarchical levels such as hierarchical ordering, diameter, length and branching angles of the vessel segments, and (iii) Functional parameters such as estimated resistance to blood flow alongside the vascular tree and average density of terminal arterioles. In normal kidneys, fractal dimension was 2.07±0.11 (n = 7), and was significantly lower in Fzd4-/- (1.71±0.04; n = 4), and Fzd6-/- (1.54±0.09; n = 3) kidneys. The DDSO number was 5 in WT and Fzd4-/-, and only 4 in Fzd6-/-. Scaling characteristics such as diameter and length of vessel segments were altered in mutants, whereas bifurcation angles were not different from WT. Fzd4 and Fzd6 deletion increased vessel resistance, calculated using the Hagen-Poiseuille equation, for each DDSO, and decreased the density and the homogeneity of the distal vessel segments. Our results show that our methodology is suitable for 3D quantitative characterization of vascular networks, and that Fzd4 and Fzd6 genes have a deep patterning effect on arterial vessel morphogenesis that may determine its functional efficiency.
Collapse
Affiliation(s)
- Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Julien Peltan
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marko Gosak
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Denis Horvat
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Borut Žalik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Benjamin Seguy
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Remi Chauvel
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | | - Thierry Couffinhal
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Cécile Duplàa
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
| | - Marko Marhl
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Etienne Roux
- INSERM, Biology of Cardiovascular Diseases U1034, Pessac, France
- Université de Bordeaux, Biology of Cardiovascular Diseases U1034, Pessac, France
- * E-mail:
| |
Collapse
|
41
|
Sewduth RN, Kovacic H, Jaspard-Vinassa B, Jecko V, Wavasseur T, Fritsch N, Pernot M, Jeaningros S, Roux E, Dufourcq P, Couffinhal T, Duplàa C. PDZRN3 destabilizes endothelial cell-cell junctions through a PKCζ-containing polarity complex to increase vascular permeability. Sci Signal 2017; 10:10/464/eaag3209. [DOI: 10.1126/scisignal.aag3209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Ben-Avraham D, Karasik D, Verghese J, Lunetta KL, Smith JA, Eicher JD, Vered R, Deelen J, Arnold AM, Buchman AS, Tanaka T, Faul JD, Nethander M, Fornage M, Adams HH, Matteini AM, Callisaya ML, Smith AV, Yu L, De Jager PL, Evans DA, Gudnason V, Hofman A, Pattie A, Corley J, Launer LJ, Knopman DS, Parimi N, Turner ST, Bandinelli S, Beekman M, Gutman D, Sharvit L, Mooijaart SP, Liewald DC, Houwing-Duistermaat JJ, Ohlsson C, Moed M, Verlinden VJ, Mellström D, van der Geest JN, Karlsson M, Hernandez D, McWhirter R, Liu Y, Thomson R, Tranah GJ, Uitterlinden AG, Weir DR, Zhao W, Starr JM, Johnson AD, Ikram MA, Bennett DA, Cummings SR, Deary IJ, Harris TB, Kardia SLR, Mosley TH, Srikanth VK, Windham BG, Newman AB, Walston JD, Davies G, Evans DS, Slagboom EP, Ferrucci L, Kiel DP, Murabito JM, Atzmon G. The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY) 2017; 9:209-246. [PMID: 28077804 PMCID: PMC5310665 DOI: 10.18632/aging.101151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/26/2016] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Joe Verghese
- Integrated Divisions of Cognitive & Motor Aging (Neurology) and Geriatrics (Medicine), Montefiore-Einstein Center for the Aging Brain, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kathryn L. Lunetta
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John D. Eicher
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - Rotem Vered
- Psychology Department, University of Haifa, Haifa, Israel
| | - Joris Deelen
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Köln, Germany
| | - Alice M. Arnold
- Department of Biostatistics, University of Washington, Seattle, WA 98115, USA
| | - Aron S. Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Maria Nethander
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Fornage
- The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Amy M. Matteini
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Michele L. Callisaya
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Albert V. Smith
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Philip L. De Jager
- Broad Institute of Harvard and MIT, Cambridge, Harvard Medical School, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Denis A. Evans
- Rush Institute for Healthy Aging and Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Neeta Parimi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Stephen T. Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Danielle Gutman
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Simon P. Mooijaart
- Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherland
| | - David C. Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Jeanine J. Houwing-Duistermaat
- Genetical Statistics, Leiden University Medical Center, Leiden, Netherland. Department of Statistics, University of Leeds, Leeds, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matthijs Moed
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Rebekah McWhirter
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Russell Thomson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney, Australia
| | - Gregory J. Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, and Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Andrew D. Johnson
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Ian J. Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H. Mosley
- University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Velandai K. Srikanth
- Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Ann B. Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeremy D. Walston
- Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Eline P. Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA
| | - Douglas P. Kiel
- Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
- Broad Institute of Harvard and MIT, Boston, MA 02131, USA
| | - Joanne M. Murabito
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Gil Atzmon
- Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| |
Collapse
|
43
|
Thanmalagan RR, Naorem LD, Venkatesan A. Expression Data Analysis for the Identification of Potential Biomarker of Pregnancy Associated Breast Cancer. Pathol Oncol Res 2016; 23:537-544. [PMID: 27832451 DOI: 10.1007/s12253-016-0133-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Breast cancer affects every 1 of 3000 pregnant women or in the first post-partum year is referred as Pregnancy Associated Breast Cancer (PABC) in mid 30s. Even-though rare disease, classified under hormone receptor negative status which metastasis quickly to other parts by extra cellular matrix degradation. Hence it is important to find an optimal treatment option for a PABC patient. Also additional care should be taken to choose the drug; in order to avoid fetal malformation and post-partum stage side-effects. The adaptation of target based therapy in the clinical practice may help to substitute the mastectomy treatment. Recent studies suggested that certain altered Post Translational Modifications (PTMs) may be an indicative of breast cancer progression; an attempt is made to consider the over represented PTM as a parameter for gene selection. The public dataset of PABC from GEO were examined to select Differentially Expressed Genes (DEG). The corresponding PTMs for DEG were collected and association between them was found using data mining technique. Usually clustering algorithm has been applied for the study of gene expression with drawback of clustering of gene products based on specified features. But association rule mining method overcome this shortcoming and determines the useful and in depth relationships. From the association, genes were selected to study the interactions and pathways. These studies emphasis that the genes KLF12, FEN1 MUC1 and SP110, can be chosen as target, which control cancer development, without any harm to pregnancy as well as fetal developmental process.
Collapse
Affiliation(s)
| | | | - Amouda Venkatesan
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
44
|
Sewduth R, Santoro MM. "Decoding" Angiogenesis: New Facets Controlling Endothelial Cell Behavior. Front Physiol 2016; 7:306. [PMID: 27493632 PMCID: PMC4954849 DOI: 10.3389/fphys.2016.00306] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a unique and crucial biological process occurring during both development and adulthood. A better understanding of the mechanisms that regulates such process is mandatory to intervene in pathophysiological conditions. Here we highlight some recent argument on new players that are critical in endothelial cells, by summarizing novel discoveries that regulate notorious vascular pathways such as Vascular Endothelial Growth Factor (VEGF), Notch and Planar Cell Polarity (PCP), and by discussing more recent findings that put metabolism, redox signaling and hemodynamic forces as novel unforeseen facets in angiogenesis. These new aspects, that critically regulate angiogenesis and vascular homeostasis in health and diseased, represent unforeseen new ground to develop anti-angiogenic therapies.
Collapse
Affiliation(s)
- Raj Sewduth
- Laboratory of Endothelial Molecular Biology, Department of Oncology, Vesalius Research Center, VIB, KU Leuven Leuven, Belgium
| | - Massimo M Santoro
- Laboratory of Endothelial Molecular Biology, Department of Oncology, Vesalius Research Center, VIB, KU LeuvenLeuven, Belgium; Department of Molecular Biotechnology and Health Sciences, University of TurinTorino, Italy
| |
Collapse
|
45
|
Abstract
The Wnt signaling pathways play pivotal roles in carcinogenesis. Modulation of the cell-surface abundance of Wnt receptors is emerging as an important mechanism for regulating sensitivity to Wnt ligands. Endocytosis and degradation of the Wnt receptors Frizzled (Fzd) and lipoprotein-related protein 6 (LRP6) are regulated by the E3 ubiquitin ligases zinc and ring finger 3 (ZNRF3) and ring finger protein 43 (RNF43), which are disrupted in cancer. In a genome-wide small interfering RNA screen, we identified the deubiquitylase ubiquitin-specific protease 6 (USP6) as a potent activator of Wnt signaling. USP6 enhances Wnt signaling by deubiquitylating Fzds, thereby increasing their cell-surface abundance. Chromosomal translocations in nodular fasciitis result in USP6 overexpression, leading to transcriptional activation of the Wnt/β-catenin pathway. Inhibition of Wnt signaling using Dickkopf-1 (DKK1) or a Porcupine (PORCN) inhibitor significantly decreased the growth of USP6-driven xenograft tumors, indicating that Wnt signaling is a key target of USP6 during tumorigenesis. Our study defines an additional route to ectopic Wnt pathway activation in human disease, and identifies a potential approach to modulate Wnt signaling for therapeutic benefit.
Collapse
|
46
|
Guillabert-Gourgues A, Jaspard-Vinassa B, Bats ML, Sewduth RN, Franzl N, Peghaire C, Jeanningros S, Moreau C, Roux E, Larrieu-Lahargue F, Dufourcq P, Couffinhal T, Duplàa C. Kif26b controls endothelial cell polarity through the Dishevelled/Daam1-dependent planar cell polarity-signaling pathway. Mol Biol Cell 2016; 27:941-53. [PMID: 26792835 PMCID: PMC4791138 DOI: 10.1091/mbc.e14-08-1332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/13/2016] [Indexed: 11/11/2022] Open
Abstract
Angiogenesis involves the coordinated growth and migration of endothelial cells (ECs) toward a proangiogenic signal. The Wnt planar cell polarity (PCP) pathway, through the recruitment of Dishevelled (Dvl) and Dvl-associated activator of morphogenesis (Daam1), has been proposed to regulate cell actin cytoskeleton and microtubule (MT) reorganization for oriented cell migration. Here we report that Kif26b--a kinesin--and Daam1 cooperatively regulate initiation of EC sprouting and directional migration via MT reorganization. First, we find that Kif26b is recruited within the Dvl3/Daam1 complex. Using a three-dimensional in vitro angiogenesis assay, we show that Kif26b and Daam1 depletion impairs tip cell polarization and destabilizes extended vascular processes. Kif26b depletion specifically alters EC directional migration and mislocalized MT organizing center (MTOC)/Golgi and myosin IIB cell rear enrichment. Therefore the cell fails to establish a proper front-rear polarity. Of interest, Kif26b ectopic expression rescues the siDaam1 polarization defect phenotype. Finally, we show that Kif26b functions in MT stabilization, which is indispensable for asymmetrical cell structure reorganization. These data demonstrate that Kif26b, together with Dvl3/Daam1, initiates cell polarity through the control of PCP signaling pathway-dependent activation.
Collapse
Affiliation(s)
| | - Beatrice Jaspard-Vinassa
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | - Marie-Lise Bats
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | - Raj N Sewduth
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Nathalie Franzl
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Claire Peghaire
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Sylvie Jeanningros
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Catherine Moreau
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France
| | - Etienne Roux
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | | | - Pascale Dufourcq
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| | - Thierry Couffinhal
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France Service des Maladies Cardiaques et Vasculaires, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France
| | - Cecile Duplàa
- Adaptation Cardiovasculaire à l'Ischémie, INSERM, U1034, F-33600 Pessac, France Adaptation Cardiovasculaire à l'Ischémie, U1034, Université de Bordeaux, F-33600 Pessac, France
| |
Collapse
|
47
|
Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc Natl Acad Sci U S A 2015; 113:206-11. [PMID: 26699485 DOI: 10.1073/pnas.1508249112] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With aging, significant changes in circadian rhythms occur, including a shift in phase toward a "morning" chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here, we used a previously described time-of-death analysis to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex [Brodmann's area 11 (BA11) and BA47]. Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ∼ 10% of detected transcripts (P < 0.05). Using a metaanalysis across the two brain areas, we identified a core set of 235 genes (q < 0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than 1,000 genes (1,186 in BA11; 1,591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time (to our knowledge) significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep, and mood in later life.
Collapse
|
48
|
Chai G, Goffinet AM, Tissir F. Celsr3 and Fzd3 in axon guidance. Int J Biochem Cell Biol 2015; 64:11-4. [PMID: 25813877 DOI: 10.1016/j.biocel.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
The assembly of functional neuronal circuits depends on the correct wiring of axons and dendrites. To reach their targets, axons are guided by a variety of extracellular guidance cues, including Netrins, Ephrins, Semaphorins and Slits. Corresponding receptors in the growth cone, the dynamic structure at the tip of the growing axon, sense and integrate these positional signals, and activate downstream effectors to regulate cytoskeletal organization. In addition to the four canonical families of axon guidance cues mentioned above, some proteins that regulate planar cell polarity were recently found to be critical for axon guidance. The seven-transmembrane domain receptors Celsr3 and Fzd3, in particular, control the development of most longitudinal tracts in the central nervous system, and axon navigation in the peripheral, sympathetic and enteric nervous systems. Despite their unequivocally important role, however, underlying molecular mechanisms remain elusive. We do not know which extracellular ligands they recognize, whether they have co-receptors in the growth cone, and what their downstream effectors are. Here, we review some recent advances and discuss future trends in this emerging field.
Collapse
Affiliation(s)
- Guoliang Chai
- Institute of Neuroscience, Université catholique de Louvain, 73 Avenue Mounier, B1.73.16, Brussels 1200, Belgium
| | - Andre M Goffinet
- Institute of Neuroscience, Université catholique de Louvain, 73 Avenue Mounier, B1.73.16, Brussels 1200, Belgium.
| | - Fadel Tissir
- Institute of Neuroscience, Université catholique de Louvain, 73 Avenue Mounier, B1.73.16, Brussels 1200, Belgium.
| |
Collapse
|