1
|
Ahmed M, Fischer S, Robert KL, Lange KI, Stuck MW, Best S, Johnson CA, Pazour GJ, Blacque OE, Nandadasa S. Two functional forms of the Meckel-Gruber syndrome protein TMEM67 generated by proteolytic cleavage by ADAMTS9 mediate Wnt signaling and ciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611229. [PMID: 39282264 PMCID: PMC11398388 DOI: 10.1101/2024.09.04.611229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
TMEM67 mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known. We identify a novel cleavage motif in the extracellular domain of TMEM67 cleaved by the extracellular matrix metalloproteinase ADAMTS9. This cleavage regulates the abundance of two functional forms: A C-terminal portion which localizes to the ciliary transition zone regulating ciliogenesis, and a non-cleaved form which regulates Wnt signaling. By characterizing three TMEM67 ciliopathy patient variants within the cleavage motif utilizing mammalian cell culture and C. elegans, we show the cleavage motif is essential for cilia structure and function, highlighting its clinical significance. We generated a novel non-cleavable TMEM67 mouse model which develop severe ciliopathies phenocopying Tmem67 -/- mice, but in contrast, undergo normal Wnt signaling, substantiating the existence of two functional forms of TMEM67.
Collapse
Affiliation(s)
- Manu Ahmed
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sydney Fischer
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karyn L. Robert
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen I. Lange
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael W. Stuck
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Colin A. Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, The University of Leeds, Leeds, UK
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Oliver E. Blacque
- School of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sumeda Nandadasa
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
2
|
Cicchetti R, Basconi M, Litterio G, Mascitti M, Tamborino F, Orsini A, Digiacomo A, Ferro M, Schips L, Marchioni M. Advances in Molecular Mechanisms of Kidney Disease: Integrating Renal Tumorigenesis of Hereditary Cancer Syndrome. Int J Mol Sci 2024; 25:9060. [PMID: 39201746 PMCID: PMC11355026 DOI: 10.3390/ijms25169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Renal cell carcinoma (RCC) comprises various histologically distinct subtypes, each characterized by specific genetic alterations, necessitating individualized management and treatment strategies for each subtype. An exhaustive search of the PubMed database was conducted without any filters or restrictions. Inclusion criteria encompassed original English articles focusing on molecular mechanisms of kidney cancer. On the other hand, all non-original articles and articles published in any language other than English were excluded. Hereditary kidney cancer represents 5-8% of all kidney cancer cases and is associated with syndromes such as von Hippel-Lindau syndrome, Birt-Hogg-Dubè syndrome, succinate dehydrogenase-deficient renal cell cancer syndrome, tuberous sclerosis complex, hereditary papillary renal cell carcinoma, fumarate hydratase deficiency syndrome, BAP1 tumor predisposition syndrome, and other uncommon hereditary cancer syndromes. These conditions are characterized by distinct genetic mutations and related extra-renal symptoms. The majority of renal cell carcinoma predispositions stem from loss-of-function mutations in tumor suppressor genes. These mutations promote malignant advancement through the somatic inactivation of the remaining allele. This review aims to elucidate the main molecular mechanisms underlying the pathophysiology of major syndromes associated with renal cell carcinoma. By providing a comprehensive overview, it aims to facilitate early diagnosis and to highlight the principal therapeutic options available.
Collapse
Affiliation(s)
- Rossella Cicchetti
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Martina Basconi
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Giulio Litterio
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Marco Mascitti
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Flavia Tamborino
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Angelo Orsini
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Alessio Digiacomo
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Luigi Schips
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Michele Marchioni
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| |
Collapse
|
3
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EF, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. EMBO Rep 2024; 25:3040-3063. [PMID: 38849673 PMCID: PMC11239879 DOI: 10.1038/s44319-024-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K Rezi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mariam G Aslanyan
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaurav D Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Mohamed Chamlali
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | - Kleo B Pauly
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Fa Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Copenhagen, Denmark
| | | | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Agborbesong E, Li X. The Immune Checkpoint Protein PD-L1 Regulates Ciliogenesis and Hedgehog Signaling. Cells 2024; 13:1003. [PMID: 38920633 PMCID: PMC11201989 DOI: 10.3390/cells13121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The primary cilium, an antenna-like sensory organelle that protrudes from the surface of most eukaryotic cell types, has become a signaling hub of growing interest given that defects in its structure and/or function are associated with human diseases and syndromes, known as ciliopathies. With the continuously expanding role of primary cilia in health and diseases, identifying new players in ciliogenesis will lead to a better understanding of the function of this organelle. It has been shown that the primary cilium shares similarities with the immune synapse, a highly organized structure at the interface between an antigen-presenting or target cell and a lymphocyte. Studies have demonstrated a role for known cilia regulators in immune synapse formation. However, whether immune synapse regulators modulate ciliogenesis remains elusive. Here, we find that programmed death ligand 1 (PD-L1), an immune checkpoint protein and regulator of immune synapse formation, plays a role in the regulation of ciliogenesis. We found that PD-L1 is enriched at the centrosome/basal body and Golgi apparatus of ciliated cells and depleting PD-L1 enhanced ciliogenesis and increased the accumulation of ciliary membrane trafficking proteins Rab8a, BBS5, and sensory receptor protein PC-2. Moreover, PD-L1 formed a complex with BBS5 and PC-2. In addition, we found that depletion of PD-L1 resulted in the ciliary accumulation of Gli3 and the downregulation of Gli1. Our results suggest that PD-L1 is a new player in ciliogenesis, contributing to PC-2-mediated sensory signaling and the Hh signaling cascade.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, R, 200 1st Street, SW, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, R, 200 1st Street, SW, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Zhang C, Rehman M, Tian X, Pei SLC, Gu J, Bell TA, Dong K, Tham MS, Cai Y, Wei Z, Behrens F, Jetten AM, Zhao H, Lek M, Somlo S. Glis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease. Nat Commun 2024; 15:3698. [PMID: 38693102 PMCID: PMC11063051 DOI: 10.1038/s41467-024-48025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Michael Rehman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Xin Tian
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Steven Lim Cho Pei
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | | | - Ke Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ming Shen Tham
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yiqiang Cai
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zemeng Wei
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Felix Behrens
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EFA, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566524. [PMID: 37987012 PMCID: PMC10659422 DOI: 10.1101/2023.11.10.566524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K. Rezi
- Department of Biology, University of Copenhagen, Denmark
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | | | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Denmark
| | - Kleo B. Pauly
- Department of Biology, University of Copenhagen, Denmark
| | | | - Eduardo F. A. Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Denmark
| | | | | | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H. Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R. Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
7
|
Yeo S, Jang J, Jung HJ, Lee H, Choe Y. Primary cilia-mediated regulation of microglial secretion in Alzheimer's disease. Front Mol Biosci 2023; 10:1250335. [PMID: 37942288 PMCID: PMC10627801 DOI: 10.3389/fmolb.2023.1250335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder manifested by a gradual decline in cognitive function due to the accumulation of extracellular amyloid plaques, disruptions in neuronal substance transport, and the degeneration of neurons. In affected neurons, incomplete clearance of toxic proteins by neighboring microglia leads to irreversible brain inflammation, for which cellular signaling is poorly understood. Through single-cell transcriptomic analysis, we discovered distinct regional differences in the ability of microglia to clear damaged neurites. Specifically, microglia in the septal region of wild type mice exhibited a transcriptomic signature resembling disease-associated microglia (DAM). These lateral septum (LS)-enriched microglia were associated with dense axonal bundles originating from the hippocampus. Further transcriptomic and proteomic approaches revealed that primary cilia, small hair-like structures found on cells, played a role in the regulation of microglial secretory function. Notably, primary cilia were transiently observed in microglia, and their presence was significantly reduced in microglia from AD mice. We observed significant changes in the secretion and proteomic profiles of the secretome after inhibiting the primary cilia gene intraflagellar transport particle 88 (Ift88) in microglia. Intriguingly, inhibiting primary cilia in the septal microglia of AD mice resulted in the expansion of extracellular amyloid plaques and damage to adjacent neurites. These results indicate that DAM-like microglia are present in the LS, a critical target region for hippocampal nerve bundles, and that the primary ciliary signaling system regulates microglial secretion, affecting extracellular proteostasis. Age-related primary ciliopathy probably contributes to the selective sensitivity of microglia, thereby exacerbating AD. Targeting the primary ciliary signaling system could therefore be a viable strategy for modulating neuroimmune responses in AD treatments.
Collapse
Affiliation(s)
- Seungeun Yeo
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busan, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
8
|
Walker RV, Yao Q, Xu H, Maranto A, Swaney KF, Ramachandran S, Li R, Cassina L, Polster BM, Outeda P, Boletta A, Watnick T, Qian F. Fibrocystin/Polyductin releases a C-terminal fragment that translocates into mitochondria and suppresses cystogenesis. Nat Commun 2023; 14:6513. [PMID: 37845212 PMCID: PMC10579373 DOI: 10.1038/s41467-023-42196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.
Collapse
Affiliation(s)
- Rebecca V Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore
| | - Laura Cassina
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Yanda MK, Ciobanu C, Guggino WB, Cebotaru L. CFTR and PC2, partners in the primary cilia in autosomal dominant polycystic kidney disease. Am J Physiol Cell Physiol 2023; 325:C682-C693. [PMID: 37519231 PMCID: PMC10635646 DOI: 10.1152/ajpcell.00197.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Defects in the primary cilium are associated with autosomal dominant polycystic kidney disease (ADPKD). We used a combination of animal models, Western blotting, and confocal microscopy and discovered that CFTR and polycystin 2 (PC2) are both colocalized to the cilium in normal kidneys, with the levels of both being decreased in cystic epithelia. Cilia were longer in CFTR-null mice and in cystic cells in our ADPKD animal models. We examined septin 2, known to play a role in cilia length, to act as a diffusion barrier and to serve as an enhancer of proliferation. We found that septin 2 protein levels were upregulated and colocalized strongly with CFTR in cystic cells. Application of VX-809, the CFTR corrector, restored CFTR and PC2 toward normal in the cilia, decreased the protein levels of septin 2, and drastically reduced septin 2 colocalization with CFTR. Our data suggest that CFTR is present in the cilia and plays a role there, perhaps through its conductance of Cl-. We also postulate that septin 2 is important for localizing CFTR to the apical membrane in cystic epithelia.NEW & NOTEWORTHY CFTR is present in the primary cilia together with polycystin 2 (PC2). Ablation of CFTR makes cilia longer suggesting that CFTR plays a role there, perhaps through its conductance of Cl.
Collapse
Affiliation(s)
- Murali K Yanda
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Cristian Ciobanu
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - William B Guggino
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liudmila Cebotaru
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
10
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Lin CC, Menezes LF, Qiu J, Pearson E, Zhou F, Ishimoto Y, Anderson DE, Germino GG. In vivo Polycystin-1 interactome using a novel Pkd1 knock-in mouse model. PLoS One 2023; 18:e0289778. [PMID: 37540694 PMCID: PMC10403143 DOI: 10.1371/journal.pone.0289778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
PKD1 is the most commonly mutated gene causing autosomal dominant polycystic kidney disease (ADPKD). It encodes Polycystin-1 (PC1), a putative membrane protein that undergoes a set of incompletely characterized post-transcriptional cleavage steps and has been reported to localize in multiple subcellular locations, including the primary cilium and mitochondria. However, direct visualization of PC1 and detailed characterization of its binding partners remain challenging. We now report a new mouse model with HA epitopes and eGFP knocked-in frame into the endogenous mouse Pkd1 gene by CRISPR/Cas9. Using this model, we sought to visualize endogenous PC1-eGFP and performed affinity-purification mass spectrometry (AP-MS) and network analyses. We show that the modified Pkd1 allele is fully functional but the eGFP-tagged protein cannot be detected without signal amplification by secondary antibodies. Using nanobody-coupled beads and large quantities of tissue, AP-MS identified an in vivo PC1 interactome, which is enriched for mitochondrial proteins and components of metabolic pathways. These studies suggest this mouse model and interactome data will be useful to understand PC1 function, but that new methods and brighter tags will be required to track endogenous PC1.
Collapse
Affiliation(s)
- Cheng-Chao Lin
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Luis F. Menezes
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jiahe Qiu
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elisabeth Pearson
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fang Zhou
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yu Ishimoto
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - D. Eric Anderson
- Advanced Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gregory G. Germino
- Polycystic Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Qiu J, Germino GG, Menezes LF. Mechanisms of Cyst Development in Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:209-219. [PMID: 37088523 PMCID: PMC10289784 DOI: 10.1053/j.akdh.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common inherited cause of end-stage kidney disease worldwide. Most cases result from mutation of either of 2 genes, PKD1 and PKD2, which encode proteins that form a probable receptor/channel complex. Studies suggest that a loss of function of the complex below an indeterminate threshold triggers cyst initiation, which ultimately results in dysregulation of multiple metabolic processes and downstream pathways and subsequent cyst growth. Noncell autonomous factors may also promote cyst growth. In this report, we focus primarily on the process of early cyst formation and factors that contribute to its variability with brief consideration of how new studies suggest this process may be reversible.
Collapse
Affiliation(s)
- Jiahe Qiu
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Gregory G Germino
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| | - Luis F Menezes
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| |
Collapse
|
13
|
Luo L, Roy S, Li L, Ma M. Polycystic kidney disease: novel insights into polycystin function. Trends Mol Med 2023; 29:268-281. [PMID: 36805211 DOI: 10.1016/j.molmed.2023.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a life-threatening monogenic disease caused by mutations in PKD1 and PKD2 that encode polycystin 1 (PC1) and polycystin 2 (PC2). PC1/2 localize to cilia of renal epithelial cells, and their function is believed to embody an inhibitory activity that suppresses the cilia-dependent cyst activation (CDCA) signal. Consequently, PC deficiency results in activation of CDCA and stimulates cyst growth. Recently, re-expression of PCs in established cysts has been shown to reverse PKD. Thus, the mode of action of PCs resembles a 'counterbalance in cruise control' to maintain lumen diameter within a designated range. Herein we review recent studies that point to novel arenas for future PC research with therapeutic potential for ADPKD.
Collapse
Affiliation(s)
- Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Li Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China; Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
14
|
Steidl ME, Nigro EA, Nielsen AK, Pagliarini R, Cassina L, Lampis M, Podrini C, Chiaravalli M, Mannella V, Distefano G, Yang M, Aslanyan M, Musco G, Roepman R, Frezza C, Boletta A. Primary cilia sense glutamine availability and respond via asparagine synthetase. Nat Metab 2023; 5:385-397. [PMID: 36879119 PMCID: PMC10042734 DOI: 10.1038/s42255-023-00754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Depriving cells of nutrients triggers an energetic crisis, which is resolved by metabolic rewiring and organelle reorganization. Primary cilia are microtubule-based organelles at the cell surface, capable of integrating multiple metabolic and signalling cues, but their precise sensory function is not fully understood. Here we show that primary cilia respond to nutrient availability and adjust their length via glutamine-mediated anaplerosis facilitated by asparagine synthetase (ASNS). Nutrient deprivation causes cilia elongation, mediated by reduced mitochondrial function, ATP availability and AMPK activation independently of mTORC1. Of note, glutamine removal and replenishment is necessary and sufficient to induce ciliary elongation or retraction, respectively, under nutrient stress conditions both in vivo and in vitro by restoring mitochondrial anaplerosis via ASNS-dependent glutamate generation. Ift88-mutant cells lacking cilia show reduced glutamine-dependent mitochondrial anaplerosis during metabolic stress, due to reduced expression and activity of ASNS at the base of cilia. Our data indicate a role for cilia in responding to, and possibly sensing, cellular glutamine levels via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Maria Elena Steidl
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa A Nigro
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Anne Kallehauge Nielsen
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cassina
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lampis
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Mannella
- Center for Omics Sciences, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Gianfranco Distefano
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ming Yang
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Mariam Aslanyan
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Frezza
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
15
|
Bano N, Aalam S, Bag SK. Tubby-like proteins (TLPs) transcription factor in different regulatory mechanism in plants: a review. PLANT MOLECULAR BIOLOGY 2022; 110:455-468. [PMID: 36255595 DOI: 10.1007/s11103-022-01301-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Tubby-like proteins (TLPs) transcription factors are found in single-celled to multi-cellular eukaryotes in the form of large multigene families. TLPs are identified through a specific signature of carboxyl terminal tubby domain, required for plasma membrane tethering and amino terminal F-box domain communicate as functional SCF-type E3 ligases. The comprehensive distribution of TLP gene family members in diverse species indicates some conserved functions of TLPs in multicellular organisms. Plant TLPs have higher gene members than animals and these members reported important role in multiple physiological and developmental processes and various environmental stress responses. Although the TLPs are suggested to be a putative transcription factors but their functional mechanism is not much clear. This review provides significant recent updates on TLP-mediated regulation with an insight into its functional roles, origin and evolution and also phytohormones related regulation to combat with various stresses and its involvement in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahre Aalam
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Maser RL, Calvet JP, Parnell SC. The GPCR properties of polycystin-1- A new paradigm. Front Mol Biosci 2022; 9:1035507. [PMID: 36406261 PMCID: PMC9672506 DOI: 10.3389/fmolb.2022.1035507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 (PC1) is an 11-transmembrane (TM) domain-containing protein encoded by the PKD1 gene, the most frequently mutated gene leading to autosomal dominant polycystic kidney disease (ADPKD). This large (> 462 kDal) protein has a complex posttranslational maturation process, with over five proteolytic cleavages having been described, and is found at multiple cellular locations. The initial description of the binding and activation of heterotrimeric Gαi/o by the juxtamembrane region of the PC1 cytosolic C-terminal tail (C-tail) more than 20 years ago opened the door to investigations, and controversies, into PC1's potential function as a novel G protein-coupled receptor (GPCR). Subsequent biochemical and cellular-based assays supported an ability of the PC1 C-tail to bind numerous members of the Gα protein family and to either inhibit or activate G protein-dependent pathways involved in the regulation of ion channel activity, transcription factor activation, and apoptosis. More recent work has demonstrated an essential role for PC1-mediated G protein regulation in preventing kidney cyst development; however, the mechanisms by which PC1 regulates G protein activity continue to be discovered. Similarities between PC1 and the adhesion class of 7-TM GPCRs, most notably a conserved GPCR proteolysis site (GPS) before the first TM domain, which undergoes autocatalyzed proteolytic cleavage, suggest potential mechanisms for PC1-mediated regulation of G protein signaling. This article reviews the evidence supporting GPCR-like functions of PC1 and their relevance to cystic disease, discusses the involvement of GPS cleavage and potential ligands in regulating PC1 GPCR function, and explores potential connections between PC1 GPCR-like activity and regulation of the channel properties of the polycystin receptor-channel complex.
Collapse
Affiliation(s)
- Robin L. Maser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephen C. Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
17
|
Wildtype heterogeneity contributes to clonal variability in genome edited cells. Sci Rep 2022; 12:18211. [PMID: 36307508 PMCID: PMC9616811 DOI: 10.1038/s41598-022-22885-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
Genome editing tools such as CRISPR/Cas9 enable the rapid and precise manipulation of genomes. CRISPR-based genome editing has greatly simplified the study of gene function in cell lines, but its widespread use has also highlighted challenges of reproducibility. Phenotypic variability among different knockout clones of the same gene is a common problem confounding the establishment of robust genotype-phenotype correlations. Optimized genome editing protocols to enhance reproducibility include measures to reduce off-target effects. However, even if current state-of-the-art protocols are applied phenotypic variability is frequently observed. Here we identify heterogeneity of wild-type cells as an important and often neglected confounding factor in genome-editing experiments. We demonstrate that isolation of individual wild-type clones from an apparently homogenous stable cell line uncovers significant phenotypic differences between clones. Strikingly, we observe hundreds of differentially regulated transcripts (477 up- and 306 downregulated) when comparing two populations of wild-type cells. Furthermore, we show a variety of cellular and biochemical alterations in different wild-type clones in a range that is commonly interpreted as biologically relevant in genome-edited cells. Heterogeneity of wild-type cells thus contributes to variability in genome-edited cells when these are generated through isolation of clones. We show that the generation of monoclonal isogenic wild-type cells prior to genomic manipulation reduces phenotypic variability. We therefore propose to generate matched isogenic control cells prior to genome editing to increase reproducibility.
Collapse
|
18
|
Lemoine H, Raud L, Foulquier F, Sayer JA, Lambert B, Olinger E, Lefèvre S, Knebelmann B, Harris PC, Trouvé P, Desprès A, Duneau G, Matignon M, Poyet A, Jourde-Chiche N, Guerrot D, Lemoine S, Seret G, Barroso-Gil M, Bingham C, Gilbert R, Le Meur Y, Audrézet MP, Cornec-Le Gall E. Monoallelic pathogenic ALG5 variants cause atypical polycystic kidney disease and interstitial fibrosis. Am J Hum Genet 2022; 109:1484-1499. [PMID: 35896117 PMCID: PMC9388391 DOI: 10.1016/j.ajhg.2022.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.
Collapse
Affiliation(s)
- Hugo Lemoine
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France
| | - Loann Raud
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Renal Services, Freeman Road, Newcastle Upon Tyne NE7 7DN, UK; NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - Baptiste Lambert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Eric Olinger
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Siriane Lefèvre
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France; Service de Néphrologie, Hôpital de Lorient, 56322 Lorient, France
| | - Bertrand Knebelmann
- Service de Néphrologie et Transplantation rénale, Hôpital Necker, APHP, Université de Paris, Paris, France
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA
| | - Pascal Trouvé
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France
| | - Aurore Desprès
- Service de Génétique moléculaire, CHRU Brest, 29609 Brest, France
| | | | - Marie Matignon
- University Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire "Innovative Therapy for Immune Disorders", Créteil, France
| | - Anais Poyet
- Association Régionale d'Aide aux Urémiques du Centre Ouest (ARAUCO), Bourges, France
| | - Noémie Jourde-Chiche
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception (APHM), Marseille, France
| | - Dominique Guerrot
- Service de Néphrologie, Dialyse et Transplantation, CHU de Rouen, Rouen, France
| | - Sandrine Lemoine
- Néphrologie, Dialyse, Hypertension artérielle et Exploration Fonctionnelle rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Coralie Bingham
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Rodney Gilbert
- Southampton Children's Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Yannick Le Meur
- Univ Brest, UMR 1227, LBAI, Labex IGO, 29200 Brest, France; Service de Néphrologie, Hémodialyse et Transplantation rénale, CHRU Brest, 29609 Brest, France
| | - Marie-Pierre Audrézet
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France; Service de Génétique moléculaire, CHRU Brest, 29609 Brest, France
| | - Emilie Cornec-Le Gall
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France; Service de Néphrologie, Hémodialyse et Transplantation rénale, CHRU Brest, 29609 Brest, France.
| |
Collapse
|
19
|
Tran T, Song CJ, Nguyen T, Cheng SY, McMahon JA, Yang R, Guo Q, Der B, Lindström NO, Lin DCH, McMahon AP. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell 2022; 29:1083-1101.e7. [PMID: 35803227 PMCID: PMC11088748 DOI: 10.1016/j.stem.2022.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem-cell-derived organoids are models for human development and disease. We report a modified human kidney organoid system that generates thousands of similar organoids, each consisting of 1-2 nephron-like structures. Single-cell transcriptomic profiling and immunofluorescence validation highlighted patterned nephron-like structures utilizing similar pathways, with distinct morphogenesis, to human nephrogenesis. To examine this platform for therapeutic screening, the polycystic kidney disease genes PKD1 and PKD2 were inactivated by gene editing. PKD1 and PKD2 mutant models exhibited efficient and reproducible cyst formation. Cystic outgrowths could be propagated for months to centimeter-sized cysts. To shed new light on cystogenesis, 247 protein kinase inhibitors (PKIs) were screened in a live imaging assay identifying compounds blocking cyst formation but not overall organoid growth. Scaling and further development of the organoid platform will enable a broader capability for kidney disease modeling and high-throughput drug screens.
Collapse
Affiliation(s)
- Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Cheng Jack Song
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Trang Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shun-Yang Cheng
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rui Yang
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel C-H Lin
- Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
21
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
22
|
Walker RV, Maranto A, Palicharla VR, Hwang SH, Mukhopadhyay S, Qian F. Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis. Front Mol Biosci 2022; 9:936070. [PMID: 35832738 PMCID: PMC9272769 DOI: 10.3389/fmolb.2022.936070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
Primary cilia play counterregulatory roles in cystogenesis-they inhibit cyst formation in the normal renal tubule but promote cyst growth when the function of polycystins is impaired. Key upstream cilia-specific signals and components involved in driving cystogenesis have remained elusive. Recent studies of the tubby family protein, Tubby-like protein 3 (TULP3), have provided new insights into the cilia-localized mechanisms that determine cyst growth. TULP3 is a key adapter of the intraflagellar transport complex A (IFT-A) in the trafficking of multiple proteins specifically into the ciliary membrane. Loss of TULP3 results in the selective exclusion of its cargoes from cilia without affecting their extraciliary pools and without disrupting cilia or IFT-A complex integrity. Epistasis analyses have indicated that TULP3 inhibits cystogenesis independently of the polycystins during kidney development but promotes cystogenesis in adults when polycystins are lacking. In this review, we discuss the current model of the cilia-dependent cyst activation (CDCA) mechanism in autosomal dominant polycystic kidney disease (ADPKD) and consider the possible roles of ciliary and extraciliary polycystins in regulating CDCA. We then describe the limitations of this model in not fully accounting for how cilia single knockouts cause significant cystic changes either in the presence or absence of polycystins. Based on available data from TULP3/IFT-A-mediated differential regulation of cystogenesis in kidneys with deletion of polycystins either during development or in adulthood, we hypothesize the existence of cilia-localized components of CDCA (cCDCA) and cilia-localized cyst inhibition (CLCI) signals. We develop the criteria for cCDCA/CLCI signals and discuss potential TULP3 cargoes as possible cilia-localized components that determine cystogenesis in kidneys during development and in adult mice.
Collapse
Affiliation(s)
- Rebecca V. Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Primary cilia in satellite cells are the mechanical sensors for muscle hypertrophy. Proc Natl Acad Sci U S A 2022; 119:e2103615119. [PMID: 35671424 PMCID: PMC9214504 DOI: 10.1073/pnas.2103615119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.
Collapse
|
24
|
Dutta P, Ray K. Ciliary membrane, localised lipid modification and cilia function. J Cell Physiol 2022; 237:2613-2631. [PMID: 35661356 DOI: 10.1002/jcp.30787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
Cilium, a tiny microtubule-based cellular appendage critical for cell signalling and physiology, displays a large variety of receptors. The composition and turnover of ciliary lipids and receptors determine cell behaviour. Due to the exclusion of ribosomal machinery and limited membrane area, a cilium needs adaptive logistics to actively reconstitute the lipid and receptor compositions during development and differentiation. How is this dynamicity generated? Here, we examine whether, along with the Intraflagellar-Transport, targeted changes in sector-wise lipid composition could control the receptor localisation and functions in the cilia. We discuss how an interplay between ciliary lipid composition, localised lipid modification, and receptor function could contribute to cilia growth and signalling. We argue that lipid modification at the cell-cilium interface could generate an added thrust for a selective exchange of membrane lipids and the transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Priya Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
25
|
Dewees SI, Vargová R, Hardin KR, Turn RE, Devi S, Linnert J, Wolfrum U, Caspary T, Eliáš M, Kahn RA. Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E. Mol Biol Cell 2022; 33:ar33. [PMID: 35196065 PMCID: PMC9250359 DOI: 10.1091/mbc.e21-10-0509-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
The ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogues in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in mouse embryonic fibroblasts (MEFs) results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 knockout (KO) in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accumulate at the Golgi in Arl16 KO lines, while other intraflagellar transport (IFT) proteins do not, suggesting a specific defect in traffic from Golgi to cilia. We propose that ARL16 regulates a Golgi-cilia traffic pathway and is required specifically in the export of IFT140 and INPP5E from the Golgi.
Collapse
Affiliation(s)
- Skylar I. Dewees
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, CZ-710 00, Ostrava, Czech Republic
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94305-5124
| | - Saroja Devi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joshua Linnert
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University, Mainz 55128, Germany
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, CZ-710 00, Ostrava, Czech Republic
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
26
|
Amaral AG, da Silva CCC, Serna JDC, Honorato-Sampaio K, Freitas JA, Duarte-Neto AN, Bloise AC, Cassina L, Yoshinaga MY, Chaves-Filho AB, Qian F, Miyamoto S, Boletta A, Bordin S, Kowaltowski AJ, Onuchic LF. Disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166371. [PMID: 35218894 DOI: 10.1016/j.bbadis.2022.166371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular manifestations account for marked morbi-mortality in autosomal dominant polycystic kidney disease (ADPKD). Pkd1- and Pkd2-deficient mice develop cardiac dysfunction, however the underlying mechanisms remain largely unclear. It is unknown whether impairment of polycystin-1 cleavage at the G-protein-coupled receptor proteolysis site, a significant ADPKD mutational mechanism, is involved in this process. We analyzed the impact of polycystin-1 cleavage on heart metabolism using Pkd1V/V mice, a model unable to cleave this protein and with early cardiac dysfunction. Pkd1V/V hearts showed lower levels of glucose and amino acids and higher lipid levels than wild-types, as well as downregulation of p-AMPK, p-ACCβ, CPT1B-Cpt1b, Ppara, Nppa and Acta1. These findings suggested decreased fatty acid β-oxidation, which was confirmed by lower oxygen consumption by Pkd1V/V isolated mitochondria using palmitoyl-CoA. Pkd1V/V hearts also presented increased oxygen consumption in response to glucose, suggesting that alternative substrates may be used to generate energy. Pkd1V/V hearts displayed a higher density of decreased-size mitochondria, a finding associated with lower MFN1, Parkin and BNIP3 expression. These derangements were correlated with increased apoptosis and inflammation but not hypertrophy. Notably, Pkd1V/V neonate cardiomyocytes also displayed shifts in oxygen consumption and p-AMPK downregulation, suggesting that, at least partially, the metabolic alterations are not induced by kidney dysfunction. Our findings reveal that disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice, expanding the understanding of heart dysfunction associated with Pkd1 deficiency and likely with human ADPKD.
Collapse
Affiliation(s)
- Andressa G Amaral
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Camille C C da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Kinulpe Honorato-Sampaio
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG 31270901, Brazil
| | - Jéssica A Freitas
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Amaro N Duarte-Neto
- Disciplina de Emergências Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Antonio C Bloise
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Laura Cassina
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marcos Y Yoshinaga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Feng Qian
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Silvana Bordin
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Luiz F Onuchic
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil.
| |
Collapse
|
27
|
Quidwai T, Wang J, Hall EA, Petriman NA, Leng W, Kiesel P, Wells JN, Murphy LC, Keighren MA, Marsh JA, Lorentzen E, Pigino G, Mill P. A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia. eLife 2021; 10:e69786. [PMID: 34734804 PMCID: PMC8754431 DOI: 10.7554/elife.69786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.
Collapse
Affiliation(s)
- Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Narcis A Petriman
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Human TechnopoleMilanItaly
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
28
|
Nahalka J. Theoretical Analysis of S, M and N Structural Proteins by the Protein-RNA Recognition Code Leads to Genes/proteins that Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Front Genet 2021; 12:763995. [PMID: 34659373 PMCID: PMC8511677 DOI: 10.3389/fgene.2021.763995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
In this conceptual review, based on the protein-RNA recognition code, some theoretical sequences were detected in the spike (S), membrane (M) and capsid (N) proteins that may post-transcriptionally regulate the host genes/proteins in immune homeostasis, pulmonary epithelial tissue homeostasis, and lipid homeostasis. According to the review of literature, the spectrum of identified genes/proteins shows that the virus promotes IL1α/β-IL1R1 signaling (type 1 immunity) and immunity defense against helminths and venoms (type 2 immunity). In the alteration of homeostasis in the pulmonary epithelial tissue, the virus blocks the function of cilia and the molecular programs that are involved in wound healing (EMT and MET). Additionally, the protein-RNA recognition method described here identifies compatible sequences in the S1A-domain for the post-transcriptional promotion of PIKFYVE, which is one of the critical factors for SARS-CoV-2 entry to the host cell, and for the post-transcriptional repression of xylulokinase XYLB. A decrease in XYLB product (Xu5P) in plasma was proposed as one of the potential metabolomics biomarkers of COVID-19. In summary, the protein-RNA recognition code leads to protein genes relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
29
|
Yao Q, Outeda P, Xu H, Walker R, Basquin D, Qian F, Cebotaru L, Watnick T, Cebotaru V. Polycystin-1 dependent regulation of polycystin-2 via GRP94, a member of HSP90 family that resides in the endoplasmic reticulum. FASEB J 2021; 35:e21865. [PMID: 34486178 DOI: 10.1096/fj.202100325rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Autosomal dominant polycystic kidney disease is a common inherited renal disorder that results from mutations in either PKD1 or PKD2, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Downregulation or overexpression of PKD1 or PKD2 in mouse models results in renal cyst formation, suggesting that the quantity of PC1 and PC2 needs to be maintained within a tight functional window to prevent cystogenesis. Here we show that enhanced PC2 expression is a common feature of PKD1 mutant tissues, in part due to an increase in Pkd2 mRNA. However, our data also suggest that more effective protein folding contributes to the augmented levels of PC2. We demonstrate that the unfolded protein response is activated in Pkd1 knockout kidneys and in Pkd1 mutant cells and that this is coupled with increased levels of GRP94, an endoplasmic reticulum protein that is a member of the HSP90 family of chaperones. GRP94 was found to physically interact with PC2 and depletion or chemical inhibition of GRP94 led to a decrease in PC2, suggesting that GRP94 serves as its chaperone. Moreover, GRP94 is acetylated and binds to histone deacetylase 6 (HDAC6), a known deacetylase and activator of HSP90 proteins. Inhibition of HDAC6 decreased PC2 suggesting that HDAC6 and GRP94 work together to regulate PC2 levels. Lastly, we showed that inhibition of GRP94 prevents cAMP-induced cyst formation in vitro. Taken together our data uncovered a novel HDAC6-GRP94-related axis that likely participates in maintaining elevated PC2 levels in Pkd1 mutant cells.
Collapse
Affiliation(s)
- Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Denis Basquin
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Liudmila Cebotaru
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Valeriu Cebotaru
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Diaz J, Gérard X, Emerit MB, Areias J, Geny D, Dégardin J, Simonutti M, Guerquin MJ, Collin T, Viollet C, Billard JM, Métin C, Hubert L, Larti F, Kahrizi K, Jobling R, Agolini E, Shaheen R, Zigler A, Rouiller-Fabre V, Rozet JM, Picaud S, Novelli A, Alameer S, Najmabadi H, Cohn R, Munnich A, Barth M, Lugli L, Alkuraya FS, Blaser S, Gashlan M, Besmond C, Darmon M, Masson J. YIF1B mutations cause a post-natal neurodevelopmental syndrome associated with Golgi and primary cilium alterations. Brain 2021; 143:2911-2928. [PMID: 33103737 DOI: 10.1093/brain/awaa235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.
Collapse
Affiliation(s)
- Jorge Diaz
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Xavier Gérard
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Michel-Boris Emerit
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Julie Areias
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - David Geny
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Julie Dégardin
- INSERM UMR-S968, Institut de la vision, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris F-75012, Université Pierre et Marie Curie, France
| | - Manuel Simonutti
- INSERM UMR-S968, Institut de la vision, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris F-75012, Université Pierre et Marie Curie, France
| | | | - Thibault Collin
- Saint Pères Paris Institute for the Neurosciences CNRS - UMR 8003 Université de Paris, Paris 75006, France
| | - Cécile Viollet
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Jean-Marie Billard
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France
| | - Christine Métin
- INSERM, UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris F-75005, France
| | - Laurence Hubert
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Farzaneh Larti
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran 19834, Iran
| | - Kimia Kahrizi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran 19834, Iran
| | - Rebekah Jobling
- The Hospital for Sick Children, Molecular Genetics, Toronto, Canada
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Ranad Shaheen
- King Faisal Specialist Hospital and Research Center, Developmental Genetics Unit, Riyadh 11211, Saudi Arabia
| | | | | | - Jean-Michel Rozet
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Serge Picaud
- INSERM UMR-S968, Institut de la vision, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris F-75012, Université Pierre et Marie Curie, France
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, 00146 Rome, Italy
| | - Seham Alameer
- Department of Pediatrics, King Khaled National Guard Hospital, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Hossein Najmabadi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran 19834, Iran
| | - Ronald Cohn
- The Hospital for Sick Children, Molecular Genetics, Toronto, Canada
| | - Arnold Munnich
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | | | - Licia Lugli
- Division of Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, 41125 Modena, Italy
| | - Fowzan S Alkuraya
- King Faisal Specialist Hospital and Research Center, Developmental Genetics Unit, Riyadh 11211, Saudi Arabia
| | - Susan Blaser
- Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Maha Gashlan
- King Faisal Specialist Hospital and Research Center, Developmental Genetics Unit, Riyadh 11211, Saudi Arabia
| | - Claude Besmond
- INSERM UMR-S1163 Imagine Institute for Genetic Diseases, Paris Descartes-Sorbonne Paris Cité University, France
| | - Michèle Darmon
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France.,INSERM, UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris F-75005, France
| | - Justine Masson
- INSERM UMR894, Center for Psychiatry and Neuroscience, Paris F-75014, Université Paris Descartes, Sorbonne Paris Cité - Paris 5, France.,INSERM, UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris F-75005, France
| |
Collapse
|
31
|
Li W, Liang J, Outeda P, Turner S, Wakimoto BT, Watnick T. A genetic screen in Drosophila reveals an unexpected role for the KIP1 ubiquitination-promoting complex in male fertility. PLoS Genet 2020; 16:e1009217. [PMID: 33378371 PMCID: PMC7802972 DOI: 10.1371/journal.pgen.1009217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/12/2021] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
A unifying feature of polycystin-2 channels is their localization to both primary and motile cilia/flagella. In Drosophila melanogaster, the fly polycystin-2 homologue, Amo, is an ER protein early in sperm development but the protein must ultimately cluster at the flagellar tip in mature sperm to be fully functional. Male flies lacking appropriate Amo localization are sterile due to abnormal sperm motility and failure of sperm storage. We performed a forward genetic screen to identify additional proteins that mediate ciliary trafficking of Amo. Here we report that Drosophila homologues of KPC1 and KPC2, which comprise the mammalian KIP1 ubiquitination-promoting complex (KPC), form a conserved unit that is required for the sperm tail tip localization of Amo. Male flies lacking either KPC1 or KPC2 phenocopy amo mutants and are sterile due to a failure of sperm storage. KPC is a heterodimer composed of KPC1, an E3 ligase, and KPC2 (or UBAC1), an adaptor protein. Like their mammalian counterparts Drosophila KPC1 and KPC2 physically interact and they stabilize one another at the protein level. In flies, KPC2 is monoubiquitinated and phosphorylated and this modified form of the protein is located in mature sperm. Neither KPC1 nor KPC2 directly interact with Amo but they are detected in proximity to Amo at the tip of the sperm flagellum. In summary we have identified a new complex that is involved in male fertility in Drosophila melanogaster.
Collapse
Affiliation(s)
- Weizhe Li
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Jinqing Liang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Stacey Turner
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Barbara T. Wakimoto
- Department of Biology, University of Washington Seattle, WA, United States of America
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Fisher S, Kuna D, Caspary T, Kahn RA, Sztul E. ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 2020; 319:C404-C418. [PMID: 32520609 PMCID: PMC7500214 DOI: 10.1152/ajpcell.00188.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ADP-ribosylation factor (ARF) superfamily of regulatory GTPases, including both the ARF and ARF-like (ARL) proteins, control a multitude of cellular functions, including aspects of vesicular traffic, lipid metabolism, mitochondrial architecture, the assembly and dynamics of the microtubule and actin cytoskeletons, and other pathways in cell biology. Considering their general utility, it is perhaps not surprising that increasingly ARF/ARLs have been found in connection to primary cilia. Here, we critically evaluate the current knowledge of the roles four ARF/ARLs (ARF4, ARL3, ARL6, ARL13B) play in cilia and highlight key missing information that would help move our understanding forward. Importantly, these GTPases are themselves regulated by guanine nucleotide exchange factors (GEFs) that activate them and by GTPase-activating proteins (GAPs) that act as both effectors and terminators of signaling. We believe that the identification of the GEFs and GAPs and better models of the actions of these GTPases and their regulators will provide a much deeper understanding and appreciation of the mechanisms that underly ciliary functions and the causes of a number of human ciliopathies.
Collapse
Affiliation(s)
- Skylar Fisher
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Damian Kuna
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| | - Tamara Caspary
- 3Department of Human Genetics, Emory
University School of Medicine, Atlanta,
Georgia
| | - Richard A. Kahn
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Elizabeth Sztul
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| |
Collapse
|
34
|
Cilia and polycystic kidney disease. Semin Cell Dev Biol 2020; 110:139-148. [PMID: 32475690 DOI: 10.1016/j.semcdb.2020.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.
Collapse
|
35
|
Streets A, Ong A. Post-translational modifications of the polycystin proteins. Cell Signal 2020; 72:109644. [PMID: 32320857 DOI: 10.1016/j.cellsig.2020.109644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.
Collapse
Affiliation(s)
- Andrew Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.
| | - Albert Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
36
|
Polycystins as components of large multiprotein complexes of polycystin interactors. Cell Signal 2020; 72:109640. [PMID: 32305669 DOI: 10.1016/j.cellsig.2020.109640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
Naturally occurring mutations in two separate genes, PKD1 and PKD2, are responsible for the vast majority of all cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases affecting 1 in 1000 Americans. The hallmark of ADPKD is the development of epithelial cysts in the kidney, liver, and pancreas. PKD1 encodes a large plasma membrane protein (PKD1, PC1, or Polycystin-1) with a long extracellular domain and has been speculated to function as an atypical G protein coupled receptor. PKD2 encodes an ion channel of the Transient Receptor Potential superfamily (TRPP2, PKD2, PC2, or Polycystin-2). Despite the identification of these genes more than 20 years ago, the molecular function of their encoded proteins and the mechanism(s) by which mutations in PKD1 and PKD2 cause ADPKD remain elusive. Genetic, biochemical, and functional evidence suggests they form a multiprotein complex present in multiple locations in the cell, including the plasma membrane, endoplasmic reticulum, and the primary cilium. Over the years, numerous interacting proteins have been identified using directed and unbiased approaches, and shown to modulate function, cellular localization, and protein stability and turnover of Polycystins. Delineation of the molecular composition of the Polycystin complex can have a significant impact on understanding their cellular function in health and disease states and on the identification of more specific and effective therapeutic targets.
Collapse
|
37
|
Viau A, Baaziz M, Aka A, Mazloum M, Nguyen C, Kuehn EW, Terzi F, Bienaimé F. Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2020; 31:1035-1049. [PMID: 32238474 DOI: 10.1681/asn.2019090959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression. METHOD To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines. RESULTS Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells. CONCLUSIONS STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.
Collapse
Affiliation(s)
- Amandine Viau
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Maroua Baaziz
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Amandine Aka
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Manal Mazloum
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Clément Nguyen
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Fabiola Terzi
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Frank Bienaimé
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France .,Paris University, Paris, France.,Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
38
|
Long H, Huang K. Transport of Ciliary Membrane Proteins. Front Cell Dev Biol 2020; 7:381. [PMID: 31998723 PMCID: PMC6970386 DOI: 10.3389/fcell.2019.00381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cilia and flagella are highly conserved organelles in eukaryotic cells that drive cell movement and act as cell antennae that receive and transmit signals. In addition to receiving and transducing external signals that activate signal cascades, cilia also secrete ciliary ectosomes that send signals to recipient cells, and thereby mediate cell–cell communication. Abnormal ciliary function leads to various ciliopathies, and the precise transport and localization of ciliary membrane proteins are essential for cilium function. This review summarizes current knowledge about the transport processes of ciliary membrane proteins after their synthesis at the endoplasmic reticulum: modification and sorting in the Golgi apparatus, transport through vesicles to the ciliary base, entrance into cilia through the diffusion barrier, and turnover by ectosome secretion. The molecular mechanisms and regulation involved in each step are also discussed. Transport of ciliary membrane proteins is a complex, precise cellular process coordinated among multiple organelles. By systematically analyzing the existing research, we identify topics that should be further investigated to promote progress in this field of research.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Margaria JP, Campa CC, De Santis MC, Hirsch E, Franco I. The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium. Cell Signal 2019; 66:109468. [PMID: 31715259 DOI: 10.1016/j.cellsig.2019.109468] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Carlo Cosimo Campa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
40
|
Wang Z, Ng C, Liu X, Wang Y, Li B, Kashyap P, Chaudhry HA, Castro A, Kalontar EM, Ilyayev L, Walker R, Alexander RT, Qian F, Chen X, Yu Y. The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep 2019; 20:e48336. [PMID: 31441214 PMCID: PMC6832002 DOI: 10.15252/embr.201948336] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2 gene, encoding the polycystic kidney disease protein polycystin-1 and the transient receptor potential channel polycystin-2 (also known as TRPP2), respectively. Polycystin-1 and polycystin-2 form a receptor-ion channel complex located in primary cilia. The function of this complex, especially the role of polycystin-1, is largely unknown due to the lack of a reliable functional assay. In this study, we dissect the role of polycystin-1 by directly recording currents mediated by a gain-of-function (GOF) polycystin-1/polycystin-2 channel. Our data show that this channel has distinct properties from that of the homomeric polycystin-2 channel. The polycystin-1 subunit directly contributes to the channel pore, and its eleven transmembrane domains are sufficient for its channel function. We also show that the cleavage of polycystin-1 at the N-terminal G protein-coupled receptor proteolysis site is not required for the activity of the GOF polycystin-1/polycystin-2 channel. These results demonstrate the ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex, enriching our understanding of this channel and its role in ADPKD.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Courtney Ng
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Xiong Liu
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yan Wang
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Bin Li
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Parul Kashyap
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Alexis Castro
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | | | - Leah Ilyayev
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| | - Rebecca Walker
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - R Todd Alexander
- Departments of Pediatrics and PhysiologyUniversity of AlbertaEdmontonABCanada
| | - Feng Qian
- Division of NephrologyDepartment of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xing‐Zhen Chen
- Department of Physiology, Membrane Protein Disease Research GroupFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yong Yu
- Department of Biological SciencesSt. John's UniversityQueensNYUSA
| |
Collapse
|
41
|
Ciliary exclusion of Polycystin-2 promotes kidney cystogenesis in an autosomal dominant polycystic kidney disease model. Nat Commun 2019; 10:4072. [PMID: 31492868 PMCID: PMC6731238 DOI: 10.1038/s41467-019-12067-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
The human PKD2 locus encodes Polycystin-2 (PC2), a TRPP channel that localises to several distinct cellular compartments, including the cilium. PKD2 mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD) and affect many cellular pathways. Data underlining the importance of ciliary PC2 localisation in preventing PKD are limited because PC2 function is ablated throughout the cell in existing model systems. Here, we dissect the ciliary role of PC2 by analysing mice carrying a non-ciliary localising, yet channel-functional, PC2 mutation. Mutants develop embryonic renal cysts that appear indistinguishable from mice completely lacking PC2. Despite not entering the cilium in mutant cells, mutant PC2 accumulates at the ciliary base, forming a ring pattern consistent with distal appendage localisation. This suggests a two-step model of ciliary entry; PC2 first traffics to the cilium base before TOP domain dependent entry. Our results suggest that PC2 localisation to the cilium is necessary to prevent PKD. The molecular role of ciliary Polycystin-2 (PC2) in cyst formation and polycystic kidney disease (ADKPD) is unclear. Here, the authors identify a PC2 mutant lacking ciliary localisation but with active Ca2+ channel function in mice, that is sufficient to generate an ADPKD phenotype.
Collapse
|
42
|
Tajhya R, Delling M. New insights into ion channel-dependent signalling during left-right patterning. J Physiol 2019; 598:1741-1752. [PMID: 31106399 DOI: 10.1113/jp277835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
The left-right organizer (LRO) in the mouse consists of pit cells within the depression, located at the end of the developing notochord, also known as the embryonic node and crown cells lining the outer periphery of the node. Cilia on pit cells are posteriorly tilted, rotate clockwise and generate leftward fluid flow. Primary cilia on crown cells are required to interpret the directionality of fluid movement and initiate flow-dependent gene transcription. Crown cells express PC1-L1 and PC2, which may form a heteromeric polycystin channel complex on primary cilia. It is still only poorly understood how fluid flow activates the ciliary polycystin complex. Besides polycystin channels voltage gated channels like HCN4 and KCNQ1 have been implicated in establishing asymmetry. How this electrical network of ion channels initiates left-sided signalling cascades and differential gene expression is currently only poorly defined.
Collapse
Affiliation(s)
- Rajeev Tajhya
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| | - Markus Delling
- Department of Physiology, University of California, 1550 4th Street, San Francisco, CA, 94518, USA
| |
Collapse
|
43
|
Luo C, Wu M, Su X, Yu F, Brautigan DL, Chen J, Zhou J. Protein phosphatase 1α interacts with a novel ciliary targeting sequence of polycystin-1 and regulates polycystin-1 trafficking. FASEB J 2019; 33:9945-9958. [PMID: 31157564 DOI: 10.1096/fj.201900338r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder causing renal failure. Mutations of polycystic kidney disease 1 (PKD1) account for most ADPKD cases. Defective ciliary localization of polycystin-1 (PC1), a large integral membrane protein encoded by PKD1, underlies the pathogenesis of a subgroup of patients with ADPKD. However, the mechanisms by which PC1 and other ciliary proteins traffic to the primary cilium remain poorly understood. A ciliary targeting sequence (CTS) that resides in ciliary receptors is considered to function in the process. It has been reported that the VxP motif in the intracellular C-terminal tail of PC1 functions as a CTS in an ADP ribosylation factor 4 (Arf4)/ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1)-dependent manner. However, other recent studies have revealed that this motif is dispensable for PC1 trafficking to cilia. In this study, we identified a novel CTS consisting of 8 residues (RHKVRFEG) in the PC1 C tail. We found that this motif is sufficient to bind protein phosphatase 1 (PP1)α, a ubiquitously expressed phosphatase in the phosphoprotein phosphatase (PPP) family. Mutations in this CTS motif disrupt binding with PP1α and impair ciliary localization of PC1. Additionally, short hairpin RNA-mediated knockdown of PP1α results in reduced ciliary localization of PC1 and elongated cilia, suggesting a role for PP1α in the regulation of ciliary structure and function.-Luo, C., Wu, M., Su, X., Yu, F., Brautigan, D. L., Chen, J., Zhou, J. Protein phosphatase 1α interacts with a novel ciliary targeting sequence of polycystin-1 and regulates polycystin-1 trafficking.
Collapse
Affiliation(s)
- Chong Luo
- Kidney Disease Center, The First Affiliated Hospital-College of Medicine-National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China.,Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Maoqing Wu
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Xuefeng Su
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Fangyan Yu
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - David L Brautigan
- Center for Cell Signaling, Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital-College of Medicine-National Key Clinical Department of Kidney Diseases, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research-Renal Division, Department of Medicine, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Kashyap P, Ng C, Wang Z, Li B, Arif Pavel M, Martin H, Yu Y. A PKD1L3 splice variant in taste buds is not cleaved at the G protein-coupled receptor proteolytic site. Biochem Biophys Res Commun 2019; 512:812-818. [PMID: 30928102 DOI: 10.1016/j.bbrc.2019.03.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/16/2019] [Indexed: 01/23/2023]
Abstract
Mutations in polycystin proteins PKD1 and TRPP2 lead to autosomal dominant polycystic kidney disease. These two proteins form a receptor-ion channel complex on primary cilia. PKD1 undergoes an autoproteolysis at the N terminal G-protein-coupled receptor proteolytic site (GPS), which is essential for the function of PKD1. Whether GPS cleavage happens in other PKD proteins and its functional consequence has remained elusive. Here we studied the GPS cleavage of PKD1L3, a protein that associates with TRPP3 in taste cells and may play a role in sour taste. Our results show that PKD1L3 also undergoes GPS cleavage. Mutation at the GPS abolishes the cleavage, and the non-cleavable mutant does not traffic to the plasma membrane when associated with TRPP3. We also found that a splice variant of PKD1L3, which was originally identified in taste buds, is not cleaved. Amino acids L708 and S709, which are missing in this splice variant, are crucial for the GPS cleavage of PKD1L3 and the trafficking of the PKD1L3/TRPP3 complex. Our results gain insight into the molecular mechanism of the GPS cleavage of PKD1L3. The presence of the non-cleavable variant suggests the potential in vivo function of uncleaved PKD proteins.
Collapse
Affiliation(s)
- Parul Kashyap
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Courtney Ng
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Zhifei Wang
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Bin Li
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Mahmud Arif Pavel
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Hannah Martin
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Yong Yu
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA.
| |
Collapse
|
45
|
Bhattarai SR, Begum S, Popow R, Ezratty EJ. The ciliary GTPase Arl3 maintains tissue architecture by directing planar spindle orientation during epidermal morphogenesis. Development 2019; 146:dev.161885. [PMID: 30952667 DOI: 10.1242/dev.161885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Arl/ARF GTPases regulate ciliary trafficking, but their tissue-specific functions are unclear. Here, we demonstrate that ciliary GTPase Arl3 is required for mitotic spindle orientation of mouse basal stem cells during skin development. Arl3 loss diminished cell divisions within the plane of the epithelium, leading to increased perpendicular divisions, expansion of progenitor cells and loss of epithelial integrity. These observations suggest that an Arl3-dependent mechanism maintains cell division polarity along the tissue axis, and disruption of planar spindle orientation has detrimental consequences for epidermal architecture. Defects in planar cell polarity (PCP) can disrupt spindle positioning during tissue morphogenesis. Upon Arl3 loss, the PCP signaling molecules Celsr1 and Vangl2 failed to maintain planar polarized distributions, resulting in defective hair follicle angling, a hallmark of disrupted PCP. In the absence of Celsr1 polarity, frizzled 6 lost its asymmetrical distribution and abnormally segregated to the apical cortex of basal cells. We propose that Arl3 regulates polarized endosomal trafficking of PCP components to compartmentalized membrane domains. Cell-cell communication via ciliary GTPase signaling directs mitotic spindle orientation and PCP signaling, processes that are crucial for the maintenance of epithelial architecture.
Collapse
Affiliation(s)
- Samip R Bhattarai
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Salma Begum
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rachel Popow
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ellen J Ezratty
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
46
|
Jia XJ, Mu QR, Lei TC. Abnormalities in endothelial form of nitric oxide synthase is pathogenic in limited cutaneous systemic sclerosis. J Cosmet Dermatol 2019; 18:1938-1946. [PMID: 30980594 DOI: 10.1111/jocd.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Limited cutaneous systemic sclerosis is one subtype of systemic sclerosis which is characterized by a prototypic multisystem fibrotic disorder. OBJECTIVE This study aimed to further investigate the pathological mechanism of limited cutaneous systemic sclerosis (lcSSc). METHODS The dataset GSE76807 generated from 10 lcSSc patients and five healthy controls was used. After the preprocessing of the original data, differentially expressed genes (DEGs) were identified and then performed functional analysis, protein-protein interaction (PPI) network and module analysis. Additionally, the transcription factors (TFs) and miRNAs which potentially regulating DEGs were identified and the co-regulatory network was constructed. Finally, DEGs targeted by current drugs were identified. Real-time quantitative PCR analyses of some DEGs in mice with lcSSc were performed. RESULTS Total 203 up-regulated and 189 down-regulated DEGs were obtained. The up-regulated genes were enriched in protein interactions at the synapses neuronal system, NCAM1 interactions, and CREB phosphorylation through the activation of CaMKII, while, cilium assembly, and endothelial form of nitric oxide synthase (eNOS) activation were enriched by down-regulated genes. SCRT2 and RABEP1 regulated by miR-218 were hub nodes in the network. DRD4 and GRIN2D were the main drug targets. RABEP1 and SSB were found lowly expressed in mice model with lcSSc. CONCLUSION Endothelial form of NOS activation would be suppressed, and the process of neuronal migration and outgrowth would be activated to participant in the pathological mechanism of lcSSc.
Collapse
Affiliation(s)
- Xiu-Juan Jia
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi-Ri Mu
- Department of Dermatology, Inner Mongolia People's Hospital, Hohhot, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Hwang SH, Somatilaka BN, Badgandi H, Palicharla VR, Walker R, Shelton JM, Qian F, Mukhopadhyay S. Tulp3 Regulates Renal Cystogenesis by Trafficking of Cystoproteins to Cilia. Curr Biol 2019; 29:790-802.e5. [PMID: 30799239 DOI: 10.1016/j.cub.2019.01.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/09/2018] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
Abstract
Polycystic kidney disease proteins, polycystin-1 and polycystin-2, localize to primary cilia. Polycystin knockouts have severe cystogenesis compared to ciliary disruption, whereas simultaneous ciliary loss suppresses excessive cyst growth. These data suggest the presence of a cystogenic activator that is inhibited by polycystins and an independent but relatively minor cystogenic inhibitor, either of which are cilia dependent. However, current genetic models targeting cilia completely ablate the compartment, making it difficult to uncouple cystoprotein function from ciliary localization. Thus, the role of cilium-generated signaling in cystogenesis is unclear. We recently demonstrated that the tubby family protein Tulp3 determines ciliary trafficking of polycystins in kidney collecting duct cells without affecting protein levels or cilia. Here, we demonstrate that embryonic-stage, nephron-specific Tulp3 knockout mice developed cystic kidneys, while retaining intact cilia. Cystic kidneys showed increased mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), mTOR, and persistently high cyclic AMP (cAMP) signaling, suggesting contribution of multiple factors to cystogenesis. Based on kidney-to-body-weight ratio, cystic index, and epithelial proliferation in developing tubules or cysts, the severity of cystogenesis upon Tulp3 deletion was intermediate between that caused by loss of polycystin-1 or cilia. However, concomitant Tulp3 loss did not inhibit cystogenesis in polycystin-1 knockouts, unlike ciliary disruption. Interestingly, ciliary trafficking of the small guanosine triphosphatase (GTPase) Arl13b, loss of which causes cystogenic severity similar to ciliary loss, was reduced prior to cyst initiation. Thus, we propose that cystogenesis in Tulp3 mutants results from a reduction of ciliary levels of polycystins, Arl13b, and Arl13b-dependent lipidated cargoes. Arl13b might be the ciliary factor that represses cystogenesis distinct from polycystins.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Bandarigoda N Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Hemant Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rebecca Walker
- Division of Nephrology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Feng Qian
- Division of Nephrology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Legué E, Liem KF. Tulp3 Is a Ciliary Trafficking Gene that Regulates Polycystic Kidney Disease. Curr Biol 2019; 29:803-812.e5. [PMID: 30799240 DOI: 10.1016/j.cub.2019.01.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/12/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
The primary cilium is an organelle essential for cell signaling pathways. One of the most common human genetic diseases is autosomal dominant polycystic kidney disease (ADPKD), which is caused by mutations in the PKD1 or PKD2 genes that encode Polycystin 1 and 2 (PC1/2), transmembrane proteins that translocate to the cilium. Mutations in genes that disrupt ciliogenesis also cause kidney cysts as part of a "ciliopathic" disease spectrum. The molecular mechanisms that link cilia function with renal cystic diseases are not well understood, and the mechanistic relationship between ADPKD and ciliopathic PKD is not known. Here we identify the gene Tubby-like protein-3 (Tulp3) as a key regulator of renal cystic disease from a forward genetic screen in the mouse. Mice homozygous for a hypomorphic missense mutation within the conserved Tubby domain of Tulp3 develop cysts at late embryonic stages, leading to severe postnatal loss of kidney function. In contrast to other ciliopathic disease models, Tulp3 mutations do not affect ciliogenesis. Instead, we demonstrate that Tulp3 is essential for the trafficking of the Joubert syndrome-associated small GTPase Arl13b into kidney cilia. We show that reduction of Pkd1 dosage promotes cystogenesis in the Tulp3 conditional ciliopathic PKD model. However, in an adult model of ADPKD utilizing inducible conditional Pkd1 deletion, concomitant removal of Tulp3 surprisingly ameliorates cystic disease. Therefore, Tulp3 controls distinct ciliary pathways that positively or negatively regulate cystogenesis depending on the cellular context.
Collapse
Affiliation(s)
- Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Karel F Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
49
|
Merrick D, Mistry K, Wu J, Gresko N, Baggs JE, Hogenesch JB, Sun Z, Caplan MJ. Polycystin-1 regulates bone development through an interaction with the transcriptional coactivator TAZ. Hum Mol Genet 2019; 28:16-30. [PMID: 30215740 PMCID: PMC6298236 DOI: 10.1093/hmg/ddy322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Abstract
Polycystin-1 (PC1), encoded by the PKD1 gene that is mutated in the autosomal dominant polycystic kidney disease, regulates a number of processes including bone development. Activity of the transcription factor RunX2, which controls osteoblast differentiation, is reduced in Pkd1 mutant mice but the mechanism governing PC1 activation of RunX2 is unclear. PC1 undergoes regulated cleavage that releases its C-terminal tail (CTT), which translocates to the nucleus to modulate transcriptional pathways involved in proliferation and apoptosis. We find that the cleaved CTT of PC1 (PC1-CTT) stimulates the transcriptional coactivator TAZ (Wwtr1), an essential coactivator of RunX2. PC1-CTT physically interacts with TAZ, stimulating RunX2 transcriptional activity in pre-osteoblast cells in a TAZ-dependent manner. The PC1-CTT increases the interaction between TAZ and RunX2 and enhances the recruitment of the p300 transcriptional co-regulatory protein to the TAZ/RunX2/PC1-CTT complex. Zebrafish injected with morpholinos directed against pkd1 manifest severe bone calcification defects and a curly tail phenotype. Injection of messenger RNA (mRNA) encoding the PC1-CTT into pkd1-morphant fish restores bone mineralization and reduces the severity of the curly tail phenotype. These effects are abolished by co-injection of morpholinos directed against TAZ. Injection of mRNA encoding a dominant-active TAZ construct is sufficient to rescue both the curly tail phenotype and the skeletal defects observed in pkd1-morpholino treated fish. Thus, TAZ constitutes a key mechanistic link through which PC1 mediates its physiological functions.
Collapse
Affiliation(s)
- David Merrick
- Department of Cellular and Molecular Physiology, New Haven, CT USA
- Department of Cell Biology, Norcross, GA USA
| | - Kavita Mistry
- Department of Cellular and Molecular Physiology, New Haven, CT USA
| | - Jingshing Wu
- Department of Cellular and Molecular Physiology, New Haven, CT USA
| | - Nikolay Gresko
- Department of Cellular and Molecular Physiology, New Haven, CT USA
| | | | - John B Hogenesch
- Divisions of Perinatal Biology and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT USA
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, New Haven, CT USA
- Department of Cell Biology, Norcross, GA USA
| |
Collapse
|
50
|
Bissler JJ, Zadjali F, Bridges D, Astrinidis A, Barone S, Yao Y, Redd JR, Siroky BJ, Wang Y, Finley JT, Rusiniak ME, Baumann H, Zahedi K, Gross KW, Soleimani M. Tuberous sclerosis complex exhibits a new renal cystogenic mechanism. Physiol Rep 2019; 7:e13983. [PMID: 30675765 PMCID: PMC6344348 DOI: 10.14814/phy2.13983] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a tumor predisposition syndrome with significant renal cystic and solid tumor disease. While the most common renal tumor in TSC, the angiomyolipoma, exhibits a loss of heterozygosity associated with disease, we have discovered that the renal cystic epithelium is composed of type A intercalated cells that have an intact Tsc gene that have been induced to exhibit Tsc-mutant disease phenotype. This mechanism appears to be different than that for ADPKD. The murine models described here closely resemble the human disease and both appear to be mTORC1 inhibitor responsive. The induction signaling driving cystogenesis may be mediated by extracellular vesicle trafficking.
Collapse
Affiliation(s)
- John J. Bissler
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
- St. Jude Children's Research HospitalMemphisTennessee
| | - Fahad Zadjali
- Department of Clinical BiochemistryCollege of Medicine & Health SciencesSultan Qaboos UniversityMuscatOman
| | - Dave Bridges
- Department of Nutritional SciencesUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Aristotelis Astrinidis
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - Sharon Barone
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| | - Ying Yao
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - JeAnna R. Redd
- Department of Nutritional SciencesUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Brian J. Siroky
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhio
| | - Yanqing Wang
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Joel T. Finley
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - Michael E. Rusiniak
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Heinz Baumann
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Kamyar Zahedi
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| | - Kenneth W. Gross
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Manoocher Soleimani
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| |
Collapse
|