1
|
Díaz-Castro F, Morselli E, Claret M. Interplay between the brain and adipose tissue: a metabolic conversation. EMBO Rep 2024; 25:5277-5293. [PMID: 39558137 PMCID: PMC11624209 DOI: 10.1038/s44319-024-00321-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The central nervous system and adipose tissue interact through complex communication. This bidirectional signaling regulates metabolic functions. The hypothalamus, a key homeostatic brain region, integrates exteroceptive and interoceptive signals to control appetite, energy expenditure, glucose, and lipid metabolism. This regulation is partly achieved via the nervous modulation of white (WAT) and brown (BAT) adipose tissue. In this review, we highlight the roles of sympathetic and parasympathetic innervation in regulating WAT and BAT activities, such as lipolysis and thermogenesis. Adipose tissue, in turn, plays a dual role as an energy reservoir and an endocrine organ, secreting hormones that influence brain function and metabolic health. In addition, this review focuses on recently uncovered communication pathways, including extracellular vesicles and neuro-mesenchymal units, which add new layers of regulation and complexity to the brain-adipose tissue interaction. Finally, we also examine the consequences of disrupted communication between the brain and adipose tissue in metabolic disorders like obesity and type-2 diabetes, emphasizing the potential for new therapeutic strategies targeting these pathways to improve metabolic health.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- IBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Zhang Y, Jiang X, Wang W, Lei L, Sheng R, Li S, Luo J, Liu H, Zhang J, Han X, Li Y, Zhang Y, Wang C, Si S, Jin ZG, Xu Y. ASGR1 Deficiency Inhibits Atherosclerosis in Western Diet-Fed ApoE-/- Mice by Regulating Lipoprotein Metabolism and Promoting Cholesterol Efflux. Arterioscler Thromb Vasc Biol 2024; 44:2428-2449. [PMID: 39387120 PMCID: PMC11593992 DOI: 10.1161/atvbaha.124.321076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Atherosclerosis is the most common cause of cardiovascular diseases. Clinical studies indicate that loss-of-function ASGR1 (asialoglycoprotein receptor 1) is significantly associated with lower plasma cholesterol levels and reduces cardiovascular disease risk. However, the effect of ASGR1 on atherosclerosis remains incompletely understood; whether inhibition of ASGR1 causes liver injury remains controversial. Here, we comprehensively investigated the effects and the underlying molecular mechanisms of ASGR1 deficiency and overexpression on atherosclerosis and liver injury in mice. METHODS We engineered Asgr1 knockout mice (Asgr1-/-), Asgr1 and ApoE double-knockout mice (Asgr1-/-ApoE-/-), and ASGR1-overexpressing mice on an ApoE-/- background and then fed them different diets to assess the role of ASGR1 in atherosclerosis and liver injury. RESULTS After being fed a Western diet for 12 weeks, Asgr1-/-ApoE-/- mice exhibited significantly decreased atherosclerotic lesion areas in the aorta and aortic root sections, reduced plasma VLDL (very-low-density lipoprotein) cholesterol and LDL (low-density lipoprotein) cholesterol levels, decreased VLDL production, and increased fecal cholesterol contents. Conversely, ASGR1 overexpression in ApoE-/- mice increased atherosclerotic lesions in the aorta and aortic root sections, augmented plasma VLDL cholesterol and LDL cholesterol levels and VLDL production, and decreased fecal cholesterol contents. Mechanistically, ASGR1 deficiency reduced VLDL production by inhibiting the expression of MTTP (microsomal triglyceride transfer protein) and ANGPTL3 (angiopoietin-like protein 3)/ANGPTL8 (angiopoietin-like protein 8) but increasing LPL (lipoprotein lipase) activity, increased LDL uptake by increasing LDLR (LDL receptor) expression, and promoted cholesterol efflux through increasing expression of LXRα (liver X receptor-α), ABCA1 (ATP-binding cassette subfamily A member 1), ABCG5 (ATP-binding cassette subfamily G member 5), and CYP7A1 (cytochrome P450 family 7 subfamily A member 1). These underlying alterations were confirmed in ASGR1-overexpressing ApoE-/- mice. In addition, ASGR1 deficiency exacerbates liver injury in Western diet-induced Asgr1-/-ApoE-/- mice and high-fat diet-induced but not normal laboratory diet-induced and high-fat and high-cholesterol diet-induced Asgr1-/- mice, while its overexpression mitigates liver injury in Western diet-induced ASGR1-overexpressing ApoE-/- mice. CONCLUSIONS Inhibition of ASGR1 inhibits atherosclerosis in Western diet-fed ApoE-/- mice, suggesting that inhibiting ASGR1 may serve as a novel therapeutic strategy to treat atherosclerosis and cardiovascular diseases.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Diet, Western
- Disease Models, Animal
- Mice
- Male
- Liver/metabolism
- Liver/pathology
- Cholesterol/blood
- Cholesterol/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Asialoglycoprotein Receptor/metabolism
- Asialoglycoprotein Receptor/genetics
- Mice, Knockout
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Plaque, Atherosclerotic
- Aorta/pathology
- Aorta/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- Macrophages/metabolism
- Signal Transduction
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
Collapse
Affiliation(s)
- Yuyan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Xinhai Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Weizhi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Lijuan Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Ren Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Shunwang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Jinque Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.L., H.L., Z.-G.J.)
| | - Huan Liu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.L., H.L., Z.-G.J.)
| | - Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Yining Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Yuhao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Chenyin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Shuyi Si
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| | - Zheng-Gen Jin
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, NY (J.L., H.L., Z.-G.J.)
| | - Yanni Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC (National Health Commission) Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China (Yuyan Zhang, X.J., W.W., L.L., R.S., S.L., J.L., J.Z., X.H., Y.L., Yuhao Zhang, C.W., S.S., Y.X.)
| |
Collapse
|
3
|
Hwang J, Okada J, Liu L, Pessin JE, Schwartz GJ, Jo YH. The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet. PLoS Biol 2024; 22:e3002865. [PMID: 39436946 PMCID: PMC11530026 DOI: 10.1371/journal.pbio.3002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/01/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and cholangiocytes are innervated by parasympathetic nerve terminals originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promotes browning of inguinal white adipose tissue (ingWAT). The loss of liver-innervating cholinergic neurons increases hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of liver-innervating cholinergic neurons, leading to the reappearance of hepatic steatosis. Deleting liver-innervating cholinergic neurons has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Taken together, these data suggest that targeting the parasympathetic cholinergic innervation of the liver is a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.
Collapse
Affiliation(s)
- Jiyeon Hwang
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Junichi Okada
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Li Liu
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeffrey E. Pessin
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Young-Hwan Jo
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscince, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
4
|
Hwang J, Okada J, Liu L, Pessin JE, Schwartz GJ, Jo YH. The development of hepatic steatosis depends on the presence of liver-innervating parasympathetic cholinergic neurons in mice fed a high-fat diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565494. [PMID: 38260695 PMCID: PMC10802435 DOI: 10.1101/2023.11.03.565494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hepatic lipid metabolism is regulated by the autonomic nervous system of the liver, with the sympathetic innervation being extensively studied, while the parasympathetic efferent innervation is less understood despite its potential importance. In this study, we investigate the consequences of disrupted brain-liver communication on hepatic lipid metabolism in mice exposed to obesogenic conditions. We found that a subset of hepatocytes and cholangiocytes are innervated by parasympathetic nerve terminals originating from the dorsal motor nucleus of the vagus. The elimination of the brain-liver axis by deleting parasympathetic cholinergic neurons innervating the liver prevents hepatic steatosis and promotes browning of inguinal white adipose tissue (ingWAT). The loss of liver-innervating cholinergic neurons increases hepatic Cyp7b1 expression and fasting serum bile acid levels. Furthermore, knockdown of the G protein-coupled bile acid receptor 1 gene in ingWAT reverses the beneficial effects of the loss of liver-innervating cholinergic neurons, leading to the reappearance of hepatic steatosis. Deleting liver-innervating cholinergic neurons has a small but significant effect on body weight, which is accompanied by an increase in energy expenditure. Taken together, these data suggest that targeting the parasympathetic cholinergic innervation of the liver is a potential therapeutic approach for enhancing hepatic lipid metabolism in obesity and diabetes.
Collapse
|
5
|
Cruciani-Guglielmacci C, Le Stunff H, Magnan C. Brain lipid sensing and the neural control of energy balance. Biochimie 2024; 223:159-165. [PMID: 38825062 DOI: 10.1016/j.biochi.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
The central nervous system continuously detects circulating concentrations of lipids such as fatty acids and troglycerides. Once information has been detected, the central nervous system can in turn participate in the control of energy balance and blood sugar levels and in particular regulate the secretion and action of insulin. Neurons capable of detecting circulating lipid variations are located in the hypothalamus and in other regions such as the nucleus accumbens, the striatum or the hippocampus. An excess of lipids will have deleterious effects and may induce central lipotoxicity, in particular following local production of ceramides and the appearance of neuroinflammation which may lead to metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay, France
| | | |
Collapse
|
6
|
Bruce K, Garrido AN, Zhang SY, Lam TKT. Regulation of Energy and Glucose Homeostasis by the Nucleus of the Solitary Tract and the Area Postrema. Endocrinol Metab (Seoul) 2024; 39:559-568. [PMID: 39086274 PMCID: PMC11377841 DOI: 10.3803/enm.2024.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
The central nervous system regulates feeding, weight and glucose homeostasis in rodents and humans, but the site-specific mechanisms remain unclear. The dorsal vagal complex in the brainstem that contains the nucleus of the solitary tract (NTS) and area postrema (AP) emerges as a regulatory center that impacts energy and glucose balance by monitoring hormonal and nutrient changes. However, the specific mechanistic metabolic roles of the NTS and AP remain elusive. This mini-review highlights methods to study their distinct roles and recent findings on their metabolic differences and similarities of growth differentiation factor 15 (GDF15) action and glucose sensing in the NTS and AP. In summary, future research aims to characterize hormonal and glucose sensing mechanisms in the AP and/or NTS carries potential to unveil novel targets that lower weight and glucose levels in obesity and diabetes.
Collapse
Affiliation(s)
- Kyla Bruce
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Ameth N Garrido
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Tony K T Lam
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Medicine, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Bohnert S, Reinert C, Trella S, Cattaneo A, Preiß U, Bohnert M, Zwirner J, Büttner A, Schmitz W, Ondruschka B. Neuroforensomics: metabolites as valuable biomarkers in cerebrospinal fluid of lethal traumatic brain injuries. Sci Rep 2024; 14:13651. [PMID: 38871842 DOI: 10.1038/s41598-024-64312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Traumatic brain injury (TBI) is a ubiquitous, common sequela of accidents with an annual prevalence of several million cases worldwide. In forensic pathology, structural proteins of the cellular compartments of the CNS in serum and cerebrospinal fluid (CSF) have been predominantly used so far as markers of an acute trauma reaction for the biochemical assessment of neuropathological changes after TBI. The analysis of endogenous metabolites offers an innovative approach that has not yet been considered widely in the assessment of causes and circumstances of death, for example after TBI. The present study, therefore, addresses the question whether the detection of metabolites by liquid-chromatography-mass spectrometry (LC/MS) analysis in post mortem CSF is suitable to identify TBI and to distinguish it from acute cardiovascular control fatalities (CVF). Metabolite analysis of 60 CSF samples collected during autopsies was performed using high resolution (HR)-LC/MS. Subsequent statistical and graphical evaluation as well as the calculation of a TBI/CVF quotient yielded promising results: numerous metabolites were identified that showed significant concentration differences in the post mortem CSF for lethal acute TBI (survival times up to 90 min) compared to CVF. For the first time, this forensic study provides an evaluation of a new generation of biomarkers for diagnosing TBI in the differentiation to other causes of death, here CVF, as surrogate markers for the post mortem assessment of complex neuropathological processes in the CNS ("neuroforensomics").
Collapse
Affiliation(s)
- Simone Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Christoph Reinert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Stefanie Trella
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Andrea Cattaneo
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Preiß
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Werner Schmitz
- Institute of Biochemistry and Molecular Biology, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Sun M, Wan Y, Shi M, Meng ZX, Zeng W. Neural innervation in adipose tissue, gut, pancreas, and liver. LIFE METABOLISM 2023; 2:load022. [PMID: 39872245 PMCID: PMC11749697 DOI: 10.1093/lifemeta/load022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 01/30/2025]
Abstract
Efficient communication between the brain and peripheral organs is indispensable for regulating physiological function and maintaining energy homeostasis. The peripheral nervous system (PNS) in vertebrates, consisting of the autonomic and somatic nervous systems, bridges the peripheral organs and the central nervous system (CNS). Metabolic signals are processed by both vagal sensory nerves and somatosensory nerves. The CNS receives sensory inputs via ascending nerves, serves as the coordination and integration center, and subsequently controls internal organs and glands via descending nerves. The autonomic nervous system consists of sympathetic and parasympathetic branches that project peripheral nerves into various anatomical locations to regulate the energy balance. Sympathetic and parasympathetic nerves typically control the reflexive and involuntary functions in organs. In this review article, we outline the innervation of adipose tissue, gut, pancreas, and liver, to illustrate the neurobiological basis of central-peripheral interactions. We emphasize the importance of understanding the functional atlas of neural control of energy metabolism, and more importantly, provide potential avenues for further research in this area.
Collapse
Affiliation(s)
- Mengxue Sun
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yongwen Wan
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Mengjie Shi
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
9
|
Ferreira V, Folgueira C, García-Altares M, Guillén M, Ruíz-Rosario M, DiNunzio G, Garcia-Martinez I, Alen R, Bookmeyer C, Jones JG, Cigudosa JC, López-Larrubia P, Correig-Blanchar X, Davis RJ, Sabio G, Rada P, Valverde ÁM. Hypothalamic JNK1-hepatic fatty acid synthase axis mediates a metabolic rewiring that prevents hepatic steatosis in male mice treated with olanzapine via intraperitoneal: Additional effects of PTP1B inhibition. Redox Biol 2023; 63:102741. [PMID: 37230004 DOI: 10.1016/j.redox.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Olanzapine (OLA), a widely used second-generation antipsychotic (SGA), causes weight gain and metabolic alterations when administered orally to patients. Recently, we demonstrated that, contrarily to the oral treatment which induces weight gain, OLA administered via intraperitoneal (i.p.) in male mice resulted in body weight loss. This protection was due to an increase in energy expenditure (EE) through a mechanism involving the modulation of hypothalamic AMPK activation by higher OLA levels reaching this brain region compared to those of the oral treatment. Since clinical studies have shown hepatic steatosis upon chronic treatment with OLA, herein we further investigated the role of the hypothalamus-liver interactome upon OLA administration in wild-type (WT) and protein tyrosine phosphatase 1B knockout (PTP1B-KO) mice, a preclinical model protected against metabolic syndrome. WT and PTP1B-KO male mice were fed an OLA-supplemented diet or treated via i.p. Mechanistically, we found that OLA i.p. treatment induces mild oxidative stress and inflammation in the hypothalamus in a JNK1-independent and dependent manner, respectively, without features of cell dead. Hypothalamic JNK activation up-regulated lipogenic gene expression in the liver though the vagus nerve. This effect concurred with an unexpected metabolic rewiring in the liver in which ATP depletion resulted in increased AMPK/ACC phosphorylation. This starvation-like signature prevented steatosis. By contrast, intrahepatic lipid accumulation was observed in WT mice treated orally with OLA; this effect being absent in PTP1B-KO mice. We also demonstrated an additional benefit of PTP1B inhibition against hypothalamic JNK activation, oxidative stress and inflammation induced by chronic OLA i.p. treatment, thereby preventing hepatic lipogenesis. The protection conferred by PTP1B deficiency against hepatic steatosis in the oral OLA treatment or against oxidative stress and neuroinflammation in the i.p. treatment strongly suggests that targeting PTP1B might be also a therapeutic strategy to prevent metabolic comorbidities in patients under OLA treatment in a personalized manner.
Collapse
Affiliation(s)
- Vitor Ferreira
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - María García-Altares
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - Maria Guillén
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Giada DiNunzio
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Christoph Bookmeyer
- Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain
| | - John G Jones
- Center for Neurosciences and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | | | - Pilar López-Larrubia
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Xavier Correig-Blanchar
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain; Rovira I Virgili University, Department of Electronic Engineering, Tarragona, Spain; Institut D'Investigacio Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Roger J Davis
- Program in Molecular Medicine, Chan Medical School, University of Massachusetts, Worcester, USA
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain.
| |
Collapse
|
10
|
Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2021; 205:108915. [PMID: 34919906 DOI: 10.1016/j.neuropharm.2021.108915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The liver is the largest organ in the human body and is responsible for the metabolism and storage of the three principal nutrients: carbohydrates, fats, and proteins. In addition, the liver contributes to the breakdown and excretion of alcohol, medicinal agents, and toxic substances and the production and secretion of bile. In addition to its role as a metabolic centre, the liver has recently attracted attention for its function in the liver-brain axis, which interacts closely with the central nervous system via the autonomic nervous system, including the vagus nerve. The liver-brain axis influences the control of eating behaviour in the central nervous system through stimuli from the liver. Conversely, neural signals from the central nervous system influence glucose, lipid, and protein metabolism in the liver. The liver also receives a constant influx of nutrients and hormones from the intestinal tract and compounds of bacterial origin via the portal system. As a result, the intestinal tract and liver are involved in various immunological interactions. A good example is the co-occurrence of primary sclerosing cholangitis and ulcerative colitis. These heterogeneous roles of the liver-brain axis are mediated via the vagus nerve in an asymmetrical manner. In this review, we provide an overview of these interactions, mainly with the liver but also with the brain and gut.
Collapse
Affiliation(s)
- Yuta Matsubara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
11
|
Stahel P, Xiao C, Nahmias A, Tian L, Lewis GF. Multi-organ Coordination of Lipoprotein Secretion by Hormones, Nutrients and Neural Networks. Endocr Rev 2021; 42:815-838. [PMID: 33743013 PMCID: PMC8599201 DOI: 10.1210/endrev/bnab008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease. Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut [glucagon-like peptide 1 (GLP-1) and 2 (GLP-2), ghrelin, cholecystokinin (CCK), peptide YY], adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signaling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are "emerging" regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional, and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.
Collapse
Affiliation(s)
- Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Avital Nahmias
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lili Tian
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary Franklin Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Scherer T, Sakamoto K, Buettner C. Brain insulin signalling in metabolic homeostasis and disease. Nat Rev Endocrinol 2021; 17:468-483. [PMID: 34108679 DOI: 10.1038/s41574-021-00498-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Insulin signalling in the central nervous system regulates energy homeostasis by controlling metabolism in several organs and by coordinating organ crosstalk. Studies performed in rodents, non-human primates and humans over more than five decades using intracerebroventricular, direct hypothalamic or intranasal application of insulin provide evidence that brain insulin action might reduce food intake and, more importantly, regulates energy homeostasis by orchestrating nutrient partitioning. This Review discusses the metabolic pathways that are under the control of brain insulin action and explains how brain insulin resistance contributes to metabolic disease in obesity, the metabolic syndrome and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Kenichi Sakamoto
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christoph Buettner
- Division of Endocrinology, Metabolism & Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
13
|
Li RJW, Batchuluun B, Zhang SY, Abraham MA, Wang B, Lim YM, Yue JTY, Lam TKT. Nutrient infusion in the dorsal vagal complex controls hepatic lipid and glucose metabolism in rats. iScience 2021; 24:102366. [PMID: 33870148 PMCID: PMC8044434 DOI: 10.1016/j.isci.2021.102366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
Hypothalamic regulation of lipid and glucose homeostasis is emerging, but whether the dorsal vagal complex (DVC) senses nutrients and regulates hepatic nutrient metabolism remains unclear. Here, we found in rats DVC oleic acid infusion suppressed hepatic secretion of triglyceride-rich very-low-density lipoprotein (VLDL-TG), which was disrupted by inhibiting DVC long-chain fatty acyl-CoA synthetase that in parallel disturbed lipid homeostasis during intravenous lipid infusion. DVC glucose infusion elevated local glucose levels similarly as intravenous glucose infusion and suppressed hepatic glucose production. This was independent of lactate metabolism as inhibiting lactate dehydrogenase failed to disrupt glucose sensing and neither could DVC lactate infusion recapitulate glucose effect. DVC oleic acid and glucose infusion failed to lower VLDL-TG secretion and glucose production in high-fat fed rats, while inhibiting DVC farnesoid X receptor enhanced oleic acid but not glucose sensing. Thus, an impairment of DVC nutrient sensing may lead to the disruption of lipid and glucose homeostasis in metabolic syndrome. DVC oleic acid infusion lowers hepatic secretion of VLDL-TG in chow but not HF rats Inhibition of ACSL in the DVC negates lipid sensing DVC glucose infusion lowers hepatic glucose production in chow but not HF rats Inhibition of FXR in the DVC enhances oleic acid but not glucose sensing in HF rats
Collapse
Affiliation(s)
- Rosa J W Li
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Battsetseg Batchuluun
- Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Mona A Abraham
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Beini Wang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada
| | - Yu-Mi Lim
- Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Jessica T Y Yue
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tony K T Lam
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Toronto General Hospital Research Institute, UHN, MaRS Center, TMDT 101 College Street, 10-705, Toronto, ON M5G 1L7, Canada.,Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
14
|
Patel B, New LE, Griffiths JC, Deuchars J, Filippi BM. Inhibition of mitochondrial fission and iNOS in the dorsal vagal complex protects from overeating and weight gain. Mol Metab 2020; 43:101123. [PMID: 33227495 PMCID: PMC7753200 DOI: 10.1016/j.molmet.2020.101123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The dorsal vagal complex (DVC) senses insulin and controls glucose homeostasis, feeding behaviour and body weight. Three-days of high-fat diet (HFD) in rats are sufficient to induce insulin resistance in the DVC and impair its ability to regulate feeding behaviour. HFD-feeding is associated with increased dynamin-related protein 1 (Drp1)-dependent mitochondrial fission in the DVC. We investigated the effects that altered Drp1 activity in the DVC has on feeding behaviour. Additionally, we aimed to uncover the molecular events and the neuronal cell populations associated with DVC insulin sensing and resistance. METHODS Eight-week-old male Sprague Dawley rats received DVC stereotactic surgery for brain infusion to facilitate the localised administration of insulin or viruses to express mutated forms of Drp1 or to knockdown inducible nitric oxide synthase (iNOS) in the NTS of the DVC. High-Fat diet feeding was used to cause insulin resistance and obesity. RESULTS We showed that Drp1 activation in the DVC increases weight gain in rats and Drp1 inhibition in HFD-fed rats reduced food intake, weight gain and adipose tissue. Rats expressing active Drp1 in the DVC had higher levels of iNOS and knockdown of DVC iNOS in HFD-fed rats led to a reduction of food intake, weight gain and adipose tissue. Finally, inhibiting mitochondrial fission in DVC astrocytes was sufficient to protect rats from HFD-dependent insulin resistance, hyperphagia, weight gain and fat deposition. CONCLUSION We uncovered new molecular and cellular targets for brain regulation of whole-body metabolism, which could inform new strategies to combat obesity and diabetes.
Collapse
Affiliation(s)
- Bianca Patel
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Lauryn E New
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Joanne C Griffiths
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Beatrice M Filippi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom.
| |
Collapse
|
15
|
Bruce KD, Dobrinskikh E, Wang H, Rudenko I, Gao H, Libby AE, Gorkhali S, Yu T, Zsombok A, Eckel RH. Neuronal Lipoprotein Lipase Deficiency Alters Neuronal Function and Hepatic Metabolism. Metabolites 2020; 10:metabo10100385. [PMID: 32998280 PMCID: PMC7600143 DOI: 10.3390/metabo10100385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
The autonomic regulation of hepatic metabolism offers a novel target for the treatment of non-alcoholic fatty liver disease (NAFLD). However, the molecular characteristics of neurons that regulate the brain-liver axis remain unclear. Since mice lacking neuronal lipoprotein lipase (LPL) develop perturbations in neuronal lipid-sensing and systemic energy balance, we reasoned that LPL might be a component of pre-autonomic neurons involved in the regulation of hepatic metabolism. Here, we show that, despite obesity, mice with reduced neuronal LPL (NEXCreLPLflox (LPL KD)) show improved glucose tolerance and reduced hepatic lipid accumulation with aging compared to wilt type (WT) controls (LPLflox). To determine the effect of LPL deficiency on neuronal physiology, liver-related neurons were identified in the paraventricular nucleus (PVN) of the hypothalamus using the transsynaptic retrograde tracer PRV-152. Patch-clamp studies revealed reduced inhibitory post-synaptic currents in liver-related neurons of LPL KD mice. Fluorescence lifetime imaging microscopy (FLIM) was used to visualize metabolic changes in LPL-depleted neurons. Quantification of free vs. bound nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) revealed increased glucose utilization and TCA cycle flux in LPL-depleted neurons compared to controls. Global metabolomics from hypothalamic cell lines either deficient in or over-expressing LPL recapitulated these findings. Our data suggest that LPL is a novel feature of liver-related preautonomic neurons in the PVN. Moreover, LPL loss is sufficient to cause changes in neuronal substrate utilization and function, which may precede changes in hepatic metabolism.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
- Correspondence:
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Hong Wang
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Ivan Rudenko
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (H.G.); (A.Z.)
| | - Andrew E. Libby
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Tian Yu
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (H.G.); (A.Z.)
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism, & Diabetes, Denver Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (H.W.); (I.R.); (S.G.); (T.Y.); (R.H.E.)
| |
Collapse
|
16
|
Huang KP, Goodson ML, Vang W, Li H, Page AJ, Raybould HE. Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. Int J Obes (Lond) 2020; 45:348-357. [PMID: 32917985 PMCID: PMC7854885 DOI: 10.1038/s41366-020-00678-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
Objective: Activation of vagal afferent neurons (VAN) by postprandial gastrointestinal signals terminates feeding and facilitates nutrient digestion and absorption. Leptin modulates responsiveness of VAN to meal-related gastrointestinal signals. Rodents with high-fat diet (HF) feeding develop leptin resistance that impairs responsiveness of VAN. We hypothesized that lack of leptin signaling in VAN reduces responses to meal-related signals, which in turn decreases absorption of nutrients and energy storage from high-fat, calorically dense food. Methods: Mice with conditional deletion of the leptin receptor from VAN (Nav1.8-Cre/LepRfl/fl; KO) were used in this study. Six-week-old male mice were fed a 45% HF for 4 weeks; metabolic phenotype, food intake, and energy expenditure were measured. Absorption and storage of nutrients were investigated in the refed state. Results: After 4 weeks of HF feeding, KO mice gained less body weight and fat mass that WT controls, but this was not due to differences in food intake or energy expenditure. KO mice had reduced expression of carbohydrate transporters and absorption of carbohydrate in the jejunum. KO mice had fewer hepatic lipid droplets and decreased expression of de novo lipogenesis-associated enzymes and lipoproteins for endogenous lipoprotein pathway in liver, suggesting decreased long-term storage of carbohydrate in KO mice. Conclusions: Impairment of leptin signaling in VAN reduces responsiveness to gastrointestinal signals, which reduces intestinal absorption of carbohydrates and de novo lipogenesis resulting in reduced long-term energy storage. This study reveals a novel role of vagal afferents to support digestion and energy storage that may contribute to the effectiveness of vagal blockade to induce weight loss.
Collapse
Affiliation(s)
- Kuei-Pin Huang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Michael L Goodson
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Wendie Vang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Helen E Raybould
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
17
|
Liu C, Guan T, Lai Y, Zhu J, Kuang J, Shen Y. ATP-sensitive potassium channels gene polymorphism rs1799858 affects the risk of macro-/micro-vascular arteriosclerotic event in patients with increased low-density lipoprotein cholesterol levels. Lipids Health Dis 2020; 19:147. [PMID: 32576189 PMCID: PMC7313205 DOI: 10.1186/s12944-020-01315-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background Plasma concentration of low-density lipoprotein cholesterol (LDL-C) is causally related to the risk of arteriosclerotic events. Whether ATP-sensitive potassium channels (KATP) genetic variants predict increased LDL-C concentration (≥1.8 mmol/L) and risk of macro-/micro-vascular arteriosclerotic event remain elusive. Methods A total of 320 subjects with increased LDL-C concentration (≥1.8 mmol/L) and 320 counterpart subjects (< 1.8 mmol/L) from the South China were enrolled in this study. Three KATP polymorphisms (rs1799858, rs4148671 and rs78148713) were genotyped by the Sequenom MassARRAY system. Binary logistic regression analysis was used to evaluate the association of the 3 KATP variants with increased LDL-C concentration and carotid artery stenosis (CAS) ≥50%. Two-way ANOVA was used to analyze the association of the 3 KATP variants with microalbumin in urine (MAU) and high-sensitivity C-reactive protein (HsCRP) levels. Cox proportional hazards regression analysis was used to retrospectively analyse the association of the optimal variant with the risk of new onset/recurrent acute myocardial infarction (AMI). Results Among the 3 studied KATP gene single nucleotide polymorphisms (SNPs), only rs1799858 (TT + CT genotype) was associated with elevated risk of LDL-C ≥ 1.8 mmol/L (adjusted OR = 2.25, 95% CI: 1.31–3.85, P = 0.003) and CAS ≥50% (adjusted OR = 2.80, 95% CI: 1.12–6.98, P = 0.028). KATP SNP rs1799858 was also associated with increased MAU (P = 0.013) and HsCRP (P = 0.027) levels. The follow-up for an average of 51.1-months revealed that participants carrying the T-allele (TT + CT) of rs1799858 was associated with high risk of new onset/recurrent AMI (adjusted HR = 2.90, 95% CI: 1.06–7.94, P = 0.038). Conclusion The KATP SNP rs1799858 may be an optimal genetic predisposition marker for increased LDL-C concentration (≥1.8 mmol/L) and its related macro-/micro-vascular arteriosclerotic event risk. The KATP variant rs1799858 was associated with higher risk of macro-/micro-vascular arteriosclerotic events in patients with elevated serum LDL-C levels.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu road, Guangzhou, 510180, China. .,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu road, Guangzhou, 510180, China
| | - Jieming Zhu
- Department of Cardiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian Kuang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| |
Collapse
|
18
|
Interaction of glucose sensing and leptin action in the brain. Mol Metab 2020; 39:101011. [PMID: 32416314 PMCID: PMC7267726 DOI: 10.1016/j.molmet.2020.101011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023] Open
Abstract
Background In response to energy abundant or deprived conditions, nutrients and hormones activate hypothalamic pathways to maintain energy and glucose homeostasis. The underlying CNS mechanisms, however, remain elusive in rodents and humans. Scope of review Here, we first discuss brain glucose sensing mechanisms in the presence of a rise or fall of plasma glucose levels, and highlight defects in hypothalamic glucose sensing disrupt in vivo glucose homeostasis in high-fat fed, obese, and/or diabetic conditions. Second, we discuss brain leptin signalling pathways that impact glucose homeostasis in glucose-deprived and excessed conditions, and propose that leptin enhances hypothalamic glucose sensing and restores glucose homeostasis in short-term high-fat fed and/or uncontrolled diabetic conditions. Major conclusions In conclusion, we believe basic studies that investigate the interaction of glucose sensing and leptin action in the brain will address the translational impact of hypothalamic glucose sensing in diabetes and obesity.
Collapse
|
19
|
Li Y, Tian M, Yang M, Yang G, Chen J, Wang H, Liu D, Wang H, Deng W, Zhu Z, Zheng H, Li L. Central Sfrp5 regulates hepatic glucose flux and VLDL-triglyceride secretion. Metabolism 2020; 103:154029. [PMID: 31770545 DOI: 10.1016/j.metabol.2019.154029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Secreted frizzled-related protein 5 (Sfrp5) has been shown to be associated with energy homeostasis and insulin resistance in mouse models of obesity and diabetes. However, its central role in glucose and lipid metabolism is unknown. METHODS HFD-fed rats received ICV infusions of vehicle or Sfrp5 during a pancreatic euglycemic clamp procedure. To delineate the pathway(s) by which ICV Sfrp5 modulates HGP and VLDL-TG secretion, we inhibited the hypothalamic KATP channel using glibenclamide, the DVC NMDA receptor with MK801, and selectively transected the hepatic branch of the vagal nerve while centrally infusing Sfrp5. RESULTS ICV Sfrp5 in HFD-fed rats significantly increased the glucose infusion required to maintain euglycemia due to HGP inhibition during the clamp procedure; moreover, hepatic PEPCK and G6Pase expression was decreased, and InsR and Akt phosphorylation was increased in the liver. ICV Sfrp5 also decreased circulating triglyceride levels via inhibiting hepatic VLDL-TG secretion. These changes were accompanied by the inhibition of enzymes related to lipogenesis in the liver. ICV Sfrp5 significantly increased insulin-stimulated phosphorylation of InsR and Akt in the hypothalamus of HFD-fed rats, and insulin-stimulated immunodetectable PIP3 levels were higher in Sfrp5 group than in control group both in vitro and vivo. The glucose- and lipid-lowering effects of ICV Sfrp5 were eliminated by NMDA receptor or DVC KATP channel inhibition or HVAG. CONCLUSIONS The present study demonstrates that central Sfrp5 signaling activates a previously unappreciated InsR-Akt-PI3k-KATP channel pathway in the hypothalamus and brain-hepatic vagus neurocircuitry to decrease HGP and VLDL-TG secretion.
Collapse
Affiliation(s)
- Yang Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Mingyuan Tian
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Mengliu Yang
- School of Biomedical Sciences, the University of Queensland, Brisbane 4103, Australia
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Jianrong Chen
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Han Wang
- Department of Laboratory, Children's Hospital of Chongqing Medical University, 400015, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hongyan Wang
- Chongqing Emergency Medical Center, Chongqing, China
| | - Wuquan Deng
- Chongqing Emergency Medical Center, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400010, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400010, China
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
20
|
Lee SD, Priest C, Bjursell M, Gao J, Arneson DV, Ahn IS, Diamante G, van Veen JE, Massa MG, Calkin AC, Kim J, Andersén H, Rajbhandari P, Porritt M, Carreras A, Ahnmark A, Seeliger F, Maxvall I, Eliasson P, Althage M, Åkerblad P, Lindén D, Cole TA, Lee R, Boyd H, Bohlooly-Y M, Correa SM, Yang X, Tontonoz P, Hong C. IDOL regulates systemic energy balance through control of neuronal VLDLR expression. Nat Metab 2019; 1:1089-1100. [PMID: 32072135 PMCID: PMC7028310 DOI: 10.1038/s42255-019-0127-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.
Collapse
Affiliation(s)
- Stephen D Lee
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jie Gao
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas V Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna C Calkin
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harriet Andersén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Porritt
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alba Carreras
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernilla Eliasson
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Åkerblad
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tracy A Cole
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Richard Lee
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca; Cambridge Science Park, Cambridge, UK
| | | | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Hackl MT, Fürnsinn C, Schuh CM, Krssak M, Carli F, Guerra S, Freudenthaler A, Baumgartner-Parzer S, Helbich TH, Luger A, Zeyda M, Gastaldelli A, Buettner C, Scherer T. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat Commun 2019; 10:2717. [PMID: 31222048 PMCID: PMC6586634 DOI: 10.1038/s41467-019-10684-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatic steatosis develops when lipid influx and production exceed the liver's ability to utilize/export triglycerides. Obesity promotes steatosis and is characterized by leptin resistance. A role of leptin in hepatic lipid handling is highlighted by the observation that recombinant leptin reverses steatosis of hypoleptinemic patients with lipodystrophy by an unknown mechanism. Since leptin mainly functions via CNS signaling, we here examine in rats whether leptin regulates hepatic lipid flux via the brain in a series of stereotaxic infusion experiments. We demonstrate that brain leptin protects from steatosis by promoting hepatic triglyceride export and decreasing de novo lipogenesis independently of caloric intake. Leptin's anti-steatotic effects are generated in the dorsal vagal complex, require hepatic vagal innervation, and are preserved in high-fat-diet-fed rats when the blood brain barrier is bypassed. Thus, CNS leptin protects from ectopic lipid accumulation via a brain-vagus-liver axis and may be a therapeutic strategy to ameliorate obesity-related steatosis.
Collapse
Affiliation(s)
- Martina Theresa Hackl
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Clemens Fürnsinn
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Christina Maria Schuh
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Martin Krssak
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, MOLIMA, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Sara Guerra
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Via Santa Cecilia 3, 56127, Pisa, Italy
| | - Angelika Freudenthaler
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Anton Luger
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Maximilian Zeyda
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Via Santa Cecilia 3, 56127, Pisa, Italy
| | - Christoph Buettner
- Departments of Medicine and Neuroscience, and Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mt Sinai, One Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Thomas Scherer
- Department of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
22
|
Current Models of Fatty Liver Disease; New Insights, Therapeutic Targets and Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:33-58. [PMID: 30919331 DOI: 10.1007/978-3-030-12668-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to steatosis with inflammation and fibrosis. NAFLD is currently the most prevalent chronic liver disease worldwide, with a global prevalence of 25%, and is soon projected to be the leading cause for liver transplantation in the US. Alarmingly, few effective pharmacotherapeutic approaches are currently available to block or attenuate development and progression of NAFLD. Preclinical models are critical for unraveling the complex and multi-factorial etiology of NAFLD and for testing potential therapeutics. Here we review preclinical models that have been instrumental in highlighting molecular and cellular mechanisms underlying the pathogenesis of NAFLD and in facilitating early proof-of-concept investigations into novel intervention strategies.
Collapse
|
23
|
Remifentanil Preconditioning Attenuates Hepatic Ischemia-Reperfusion Injury in Rats via Neuronal Activation in Dorsal Vagal Complex. Mediators Inflamm 2018; 2018:3260256. [PMID: 29861656 PMCID: PMC5976991 DOI: 10.1155/2018/3260256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/15/2018] [Indexed: 12/28/2022] Open
Abstract
Remifentanil, an ultra-short acting opiate, has been reported to protect against hepatic ischemia-reperfusion injury, which is a major cause of postoperative liver dysfunction. The objective of this study was to determine whether a central vagal pathway is involved in this protective procedure. Rat models of hepatic ischemia-reperfusion were used in the experimental procedures. The results revealed that intravenous pretreatment with remifentanil decreased serum aminotransferases and hepatic histologic damage; however, an intraperitoneal injection of μ-opioid receptor antagonist did not abolish the protection of remifentanil preconditioning. c-Fos immunofluorescence of the brain stem showed that dorsal motor nucleus of the vagus was activated after remifentanil preconditioning. Moreover, serum alanine aminotransferase, histopathologic damage, and apoptosis decreased in remifentanil preconditioning group compared to vagotomized animals with remifentanil preconditioning, and there was no statistical difference of TNF-α and IL-6 between NS/Va and RPC/Va groups. In addition, remifentanil microinjection into dorsal vagal complex decreased serum aminotransferases, inflammatory cytokines, and hepatic histologic injury and apoptosis, and these effects were also abolished by a peripheral hepatic vagotomy. In conclusion, remifentanil preconditioning conferred liver protection against ischemia-reperfusion injury, which was mediated by the central vagal pathway.
Collapse
|
24
|
Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab 2018; 29:178-190. [PMID: 29290500 DOI: 10.1016/j.tem.2017.11.009] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Increased plasma non-esterified fatty acids (NEFAs) link obesity with insulin resistance and type 2 diabetes mellitus (T2DM). However, in contrast to the saturated FA (SFA) palmitic acid, the monounsaturated FA (MUFA) oleic acid elicits beneficial effects on insulin sensitivity, and the dietary palmitic acid:oleic acid ratio impacts diabetes risk in humans. Here we review recent mechanistic insights into the beneficial effects of oleic acid compared with palmitic acid on insulin resistance and T2DM, including its anti-inflammatory actions, and its capacity to inhibit endoplasmic reticulum (ER) stress, prevent attenuation of the insulin signaling pathway, and improve β cell survival. Understanding the molecular mechanisms of the antidiabetic effects of oleic acid may contribute to understanding the benefits of this FA in the prevention or delay of T2DM.
Collapse
Affiliation(s)
- Xavier Palomer
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Avinguda Joan XXIII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
25
|
Khound R, Taher J, Baker C, Adeli K, Su Q. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance. Arterioscler Thromb Vasc Biol 2017; 37:2252-2259. [PMID: 29074588 DOI: 10.1161/atvbaha.117.310251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. APPROACH AND RESULTS By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. CONCLUSIONS Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism.
Collapse
Affiliation(s)
- Rituraj Khound
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Jennifer Taher
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Christopher Baker
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Khosrow Adeli
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.)
| | - Qiaozhu Su
- From the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln (R.K., Q.S.); Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada (J.T., C.B., K.A.); and Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Ontario, Canada (J.T.).
| |
Collapse
|
26
|
Xiao C, Dash S, Stahel P, Lewis GF. Effects of Intranasal Insulin on Triglyceride-Rich Lipoprotein Particle Production in Healthy Men. Arterioscler Thromb Vasc Biol 2017; 37:1776-1781. [DOI: 10.1161/atvbaha.117.309705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Changting Xiao
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Satya Dash
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Priska Stahel
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Gary F. Lewis
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
27
|
Katashima CK, Silva VRR, Lenhare L, Marin RM, Carvalheira JBC. iNOS promotes hypothalamic insulin resistance associated with deregulation of energy balance and obesity in rodents. Sci Rep 2017; 7:9265. [PMID: 28835706 PMCID: PMC5569114 DOI: 10.1038/s41598-017-08920-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 07/20/2017] [Indexed: 02/07/2023] Open
Abstract
Inducible nitric oxide (iNOS)-mediated S-nitrosation of the metabolic signaling pathway has emerged as a post-translational modification that triggers insulin resistance in obesity and aging. However, the effects of S-nitrosation in controlling energy homeostasis are unknown. Thus, in the present study we aimed to evaluate the effects of S-nitrosation in insulin signaling pathway in the hypothalamus of rodents. Herein, we demonstrated that the intracerebroventricular infusion of the nitric oxide (NO) donor S-nitrosoglutathione (GSNO) promoted hypothalamic insulin signaling resistance and replicated the food intake pattern of obese individuals. Indeed, obesity induced S-nitrosation of hypothalamic IR and Akt, whereas inhibition of iNOS or S-nitrosation of insulin signaling pathway protected against hypothalamic insulin resistance and normalized energy homeostasis. Overall, these findings indicated that S-nitrosation of insulin signaling pathway is required to sustain hypothalamic insulin resistance in obesity.
Collapse
Affiliation(s)
| | | | - Luciene Lenhare
- Department of Internal Medicine, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Rodrigo Miguel Marin
- Department of Internal Medicine, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
28
|
Brenachot X, Gautier T, Nédélec E, Deckert V, Laderrière A, Nuzzaci D, Rigault C, Lemoine A, Pénicaud L, Lagrost L, Benani A. Brain Control of Plasma Cholesterol Involves Polysialic Acid Molecules in the Hypothalamus. Front Neurosci 2017; 11:245. [PMID: 28515677 PMCID: PMC5414510 DOI: 10.3389/fnins.2017.00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized within the first week, LDL and HDL were still elevated after 2 weeks upon HFD. Importantly, we found that hypothalamic PSA removal aggravated LDL elevation and reduced HDL levels upon HFD. These results indicate that hypothalamic PSA controls plasma lipoprotein profile by circumventing the rise of LDL-to-HDL cholesterol ratio in plasma during overfeeding. Although mechanisms by which hypothalamic PSA controls plasma cholesterol homeostasis remains to be elucidated, these findings also suggest that low level of hypothalamic PSA might be a risk factor for dyslipidemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Xavier Brenachot
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Thomas Gautier
- Institut National de la Santé et de la Recherche Médicale LNC, U1231, Université Bourgogne-Franche Comté, LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche ComtéDijon, France
| | - Emmanuelle Nédélec
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Valérie Deckert
- Institut National de la Santé et de la Recherche Médicale LNC, U1231, Université Bourgogne-Franche Comté, LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche ComtéDijon, France
| | - Amélie Laderrière
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Danaé Nuzzaci
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Caroline Rigault
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Aleth Lemoine
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Luc Pénicaud
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Laurent Lagrost
- Institut National de la Santé et de la Recherche Médicale LNC, U1231, Université Bourgogne-Franche Comté, LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche ComtéDijon, France
| | - Alexandre Benani
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| |
Collapse
|
29
|
Yan-Do R, MacDonald PE. Impaired "Glycine"-mia in Type 2 Diabetes and Potential Mechanisms Contributing to Glucose Homeostasis. Endocrinology 2017; 158:1064-1073. [PMID: 28323968 DOI: 10.1210/en.2017-00148] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
The onset and/or progression of type 2 diabetes (T2D) can be prevented if intervention is early enough. As such, much effort has been placed on the search for indicators predictive of prediabetes and disease onset or progression. An increasing body of evidence suggests that changes in plasma glycine may be one such biomarker. Circulating glycine levels are consistently low in patients with T2D. Levels of this nonessential amino acid correlate negatively with obesity and insulin resistance. Plasma glycine correlates positively with glucose disposal, and rises with interventions such as exercise and bariatric surgery that improve glucose homeostasis. A role for glycine in the regulation of glucose, beyond being a potential biomarker, is less clear, however. Dietary glycine supplementation increases insulin, reduces systemic inflammation, and improves glucose tolerance. Emerging evidence suggests that glycine, a neurotransmitter, also acts directly on target tissues that include the endocrine pancreas and the brain via glycine receptors and as a coligand for N-methyl-d-aspartate glutamate receptors to control insulin secretion and liver glucose output, respectively. Here, we review the current evidence supporting a role for glycine in glucose homeostasis via its central and peripheral actions and changes that occur in T2D.
Collapse
Affiliation(s)
- Richard Yan-Do
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Hepatic lipid and lipoprotein metabolism is an important determinant of fasting dyslipidemia and the development of fatty liver disease. Although endocrine factors like insulin have known effects on hepatic lipid homeostasis, emerging evidence also supports a regulatory role for the central nervous system (CNS) and neuronal networks. This review summarizes evidence implicating a bidirectional liver-brain axis in maintaining metabolic lipid homeostasis, and discusses clinical implications in insulin-resistant states. RECENT FINDINGS The liver utilizes sympathetic and parasympathetic afferent and efferent fibers to communicate with key regulatory centers in the brain including the hypothalamus. Hypothalamic anorexigenic and orexigenic peptides signal to the liver via neuronal networks to modulate lipid content and VLDL production. In addition, peripheral hormones such as insulin, leptin, and glucagon-like-peptide-1 exert control over hepatic lipid by acting directly within the CNS or via peripheral nerves. Central regulation of lipid metabolism in other organs including white and brown adipose tissue may also contribute to hepatic lipid content indirectly via free fatty acid release and changes in lipoprotein clearance. SUMMARY The CNS communicates with the liver in a bidirectional manner to regulate hepatic lipid metabolism and lipoprotein production. Impairments in these pathways may contribute to dyslipidemia and hepatic steatosis in insulin-resistant states.
Collapse
Affiliation(s)
- Jennifer Taher
- aDepartment of Laboratory Medicine and Pathobiology, University of Toronto bMolecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Front Endocrinol (Lausanne) 2017; 8:60. [PMID: 28421037 PMCID: PMC5378716 DOI: 10.3389/fendo.2017.00060] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Metabolic disorders, particularly aberrations in lipid homeostasis, such as obesity, type 2 diabetes mellitus, and hypertriglyceridemia often manifest together as the metabolic syndrome (MetS). Despite major advances in our understanding of the pathogenesis of these disorders, the prevalence of the MetS continues to rise. It is becoming increasingly apparent that intermediary metabolism within the central nervous system is a major contributor to the regulation of systemic metabolism. In particular, lipid metabolism within the brain is tightly regulated to maintain neuronal structure and function and may signal nutrient status to modulate metabolism in key peripheral tissues such as the liver. There is now a growing body of evidence to suggest that fatty acid (FA) sensing in hypothalamic neurons via accumulation of FAs or FA metabolites may signal nutritional sufficiency and may decrease hepatic glucose production, lipogenesis, and VLDL-TG secretion. In addition, recent studies have highlighted the existence of liver-related neurons that have the potential to direct such signals through parasympathetic and sympathetic nervous system activity. However, to date whether these liver-related neurons are FA sensitive remain to be determined. The findings discussed in this review underscore the importance of the autonomic nervous system in the regulation of systemic metabolism and highlight the need for further research to determine the key features of FA neurons, which may serve as novel therapeutic targets for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Kimberley D. Bruce
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
- *Correspondence: Kimberley D. Bruce,
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Robert H. Eckel
- University of Colorado School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Aurora, CO, USA
| |
Collapse
|
32
|
Yue JTY, Abraham MA, Bauer PV, LaPierre MP, Wang P, Duca FA, Filippi BM, Chan O, Lam TKT. Inhibition of glycine transporter-1 in the dorsal vagal complex improves metabolic homeostasis in diabetes and obesity. Nat Commun 2016; 7:13501. [PMID: 27874011 PMCID: PMC5121412 DOI: 10.1038/ncomms13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
Impaired glucose homeostasis and energy balance are integral to the pathophysiology of diabetes and obesity. Here we show that administration of a glycine transporter 1 (GlyT1) inhibitor, or molecular GlyT1 knockdown, in the dorsal vagal complex (DVC) suppresses glucose production, increases glucose tolerance and reduces food intake and body weight gain in healthy, obese and diabetic rats. These findings provide proof of concept that GlyT1 inhibition in the brain improves glucose and energy homeostasis. Considering the clinical safety and efficacy of GlyT1 inhibitors in raising glycine levels in clinical trials for schizophrenia, we propose that GlyT1 inhibitors have the potential to be repurposed as a treatment of both obesity and diabetes.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Mona A Abraham
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Paige V Bauer
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Mary P LaPierre
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Peili Wang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Beatrice M Filippi
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8.,Departments of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| |
Collapse
|
33
|
Blasi C. The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes. Obes Surg 2016; 26:3045-3057. [DOI: 10.1007/s11695-016-2419-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Boychuk CR, Smith BN. Glutamatergic drive facilitates synaptic inhibition of dorsal vagal motor neurons after experimentally induced diabetes in mice. J Neurophysiol 2016; 116:1498-506. [PMID: 27385796 DOI: 10.1152/jn.00325.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022] Open
Abstract
The role of central regulatory circuits in modulating diabetes-associated glucose dysregulation has only recently been under rigorous investigation. One brain region of interest is the dorsal motor nucleus of the vagus (DMV), which contains preganglionic parasympathetic motor neurons that regulate subdiaphragmatic visceral function. Previous research has demonstrated that glutamatergic and GABAergic neurotransmission are independently remodeled after chronic hyperglycemia/hypoinsulinemia. However, glutamatergic circuitry within the dorsal brain stem impinges on GABAergic regulation of the DMV. The present study investigated the role of glutamatergic neurotransmission in synaptic GABAergic control of DMV neurons after streptozotocin (STZ)-induced hyperglycemia/hypoinsulinemia by using electrophysiological recordings in vitro. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) was elevated in DMV neurons from STZ-treated mice. The effect was abolished in the presence of the ionotropic glutamate receptor blocker kynurenic acid or the sodium channel blocker tetrodotoxin, suggesting that after STZ-induced hyperglycemia/hypoinsulinemia, increased glutamatergic receptor activity occurs at a soma-dendritic location on local GABA neurons projecting to the DMV. Although sIPSCs in DMV neurons normally demonstrated considerable amplitude variability, this variability was significantly increased after STZ-induced hyperglycemia/hypoinsulinemia. The elevated amplitude variability was not related to changes in quantal release, but rather correlated with significantly elevated frequency of sIPSCs in these mice. Taken together, these findings suggest that GABAergic regulation of central vagal circuitry responsible for the regulation of energy homeostasis undergoes complex functional reorganization after several days of hyperglycemia/hypoinsulinemia, including both glutamate-dependent and -independent forms of plasticity.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
35
|
Scherer T, Lindtner C, O'Hare J, Hackl M, Zielinski E, Freudenthaler A, Baumgartner-Parzer S, Tödter K, Heeren J, Krššák M, Scheja L, Fürnsinn C, Buettner C. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain. Diabetes 2016; 65:1511-20. [PMID: 26861781 PMCID: PMC4878422 DOI: 10.2337/db15-1552] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022]
Abstract
Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis.
Collapse
Affiliation(s)
- Thomas Scherer
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Lindtner
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James O'Hare
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Martina Hackl
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Zielinski
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Angelika Freudenthaler
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klaus Tödter
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christoph Buettner
- Departments of Medicine and Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
36
|
Berland C, Cansell C, Hnasko TS, Magnan C, Luquet S. Dietary triglycerides as signaling molecules that influence reward and motivation. Curr Opin Behav Sci 2016; 9:126-135. [PMID: 28191490 DOI: 10.1016/j.cobeha.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reinforcing and motivational aspects of food are tied to the release of the dopamine in the mesolimbic system (ML). Free fatty acids from triglyceride (TG)-rich particles are released upon action of TG-lipases found at high levels in peripheral oxidative tissue (muscle, heart), but also in the ML. This suggests that local TG-hydrolysis in the ML might regulate food seeking and reward. Indeed, evidence now suggests that dietary TG directly target the ML to regulate amphetamine-induced locomotion and reward seeking behavior. Though the cellular mechanisms of TG action are unresolved, TG act in part through ML lipoprotein lipase, upstream of dopamine 2 receptor (D2R), and show desensitization in conditions of chronically elevated plasma TG as occur in obesity. TG sensing in the ML therefore represents a new mechanism by which chronic consumption of dietary fat might lead to adaptations in the ML and dysregulated feeding behaviors.
Collapse
Affiliation(s)
- Chloé Berland
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France; Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany; Div. of Metabolic Diseases, Dept. of Medicine, Technische Universität München, Germany
| | - Céline Cansell
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla CA, USA
| | - Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| |
Collapse
|
37
|
Magnan C, Levin BE, Luquet S. Brain lipid sensing and the neural control of energy balance. Mol Cell Endocrinol 2015; 418 Pt 1:3-8. [PMID: 26415589 DOI: 10.1016/j.mce.2015.09.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Fatty acid (FA) -sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of energy and glucose homeostasis including feeding behavior, secretion insulin and action. Subpopulations of neurons in the arcuate and ventromedial hypothalamic nuclei are selectively either activated or inhibited by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition, at least half of the responses in the hypothalamic ventromedial FA neurons are mediated through interaction with the FA translocator/receptor, FAT/CD36, that does not require metabolism to activate intracellular signaling downstream. Recently, an important role of lipoprotein lipase in FA detection has also been demonstrated not only in the hypothalamus, but also in the hippocampus and striatum. Finally, FA could overload energy homeostasis via increased hypothalamic ceramide synthesis which could, in turn, contribute to the pathogenesis of diabetes of obesity and/or type 2 in predisposed individuals by disrupting the endocrine signaling pathways of insulin and/or leptin.
Collapse
Affiliation(s)
- Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France.
| | - Barry E Levin
- Neurology Service, VA Medical Center, East Orange, NJ, USA; Department of Neurology, Rutgers, NJ Medical School, Newark, NJ, USA
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France
| |
Collapse
|