1
|
Klein J, Schad L, Malliavin TE, Müller MM. Protein-membrane interactions with a twist. SOFT MATTER 2025. [PMID: 40197985 DOI: 10.1039/d4sm01494d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Within a framework of elasticity theory and geometry, the twister mechanism has been proposed some years ago for describing the interaction between a biofilament containing a twisted hydrophobic strip and a lipid membrane: this mechanism is capable of inducing deformations of the membrane, which can lead to its opening. The present work intends to extend this model to the interactions between a membrane and protein regions conserving their folds using coarse-grained molecular dynamics simulations. The protein region is modeled as a cylinder stabilized by a tensegrity scheme, leading to an elasticity similar to that observed in real proteins. Recording molecular dynamics trajectories of this cylinder in the presence of a fluid lipid bilayer membrane allows investigation of the effect of the positions of the hydrophobic parts on the interaction with the membrane. The entire configuration space is explored by systematically varying the hydrophobic strip width, the twisting of the strip as well as the range of hydrophobic interactions between the cylinder and the membrane. Three different states are observed: no interaction between the cylinder and membrane, the cylinder in contact with the membrane surface and the cylinder inserted into the membrane with a variable tilt angle. The variations of the tilt angle are explained using a qualitative model based on the total hydrophobic moment of the cylinder. A deformation pattern of the membrane, previously predicted for the filament-membrane interaction by the twister model, is observed for the state when the cylinder is in contact with the membrane surface, which allows estimation of the applied torques.
Collapse
Affiliation(s)
- Jordan Klein
- Université de Lorraine, CNRS, LPCT, 57000 Metz, France.
| | - Lorène Schad
- Université de Lorraine, CNRS, LPCT, 57000 Metz, France.
| | - Thérèse E Malliavin
- Université de Lorraine, CNRS, LPCT, 57000 Metz, France.
- Université de Lorraine, CNRS, LPCT, 54000 Nancy, France
| | | |
Collapse
|
2
|
Chatterjee A, Naskar P, Mishra S, Dutta S. Pore Formation by Pore Forming Proteins in Lipid Membranes: Structural Insights Through Cryo-EM. J Membr Biol 2025:10.1007/s00232-025-00344-5. [PMID: 40155553 DOI: 10.1007/s00232-025-00344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Many pathogenic bacteria utilize their complicated appalling arsenal, bacterial virulence factors, to attack host cells by damaging the host cell membrane and neutralizing host defense mechanisms. Bacterial pore-forming proteins (PFPs) are one of them, they include a distinct class of secreted soluble toxin monomers, which binds to the specific cell surface receptors and /or lipids, oligomerizes as an amphipathic transmembrane pore complex on host cell membranes, and deforms the integrity of the plasma membrane. Researchers have focused on characterizing the structure and function of different Pore Forming Toxins (PFTs) from various organisms, where most of the structural studies employed X-ray crystallography, single-particle cryo-EM, and cryo-electron tomography. However, historically, most of these previous studies focused on using detergent to solubilize and oligomerize the PFTs. Additionally, previous studies have also shown that lipid membranes and lipid components, including cell surface receptors, play a critical role in pore formation and oligomerization. However, there are limited studies available that aim to resolve the structure and function of PFTs in liposomes. In this review article, we majorly focused on structural and functional studies of pore-forming toxins in the presence of detergents, lipid nanodiscs, and liposomes. We will also discuss the challenges and benefits of using liposomes to study pore-forming proteins in more biologically relevant membrane environments.
Collapse
Affiliation(s)
- Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Prasenjit Naskar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
3
|
Šolinc G, Srnko M, Merzel F, Crnković A, Kozorog M, Podobnik M, Anderluh G. Cryo-EM structures of a protein pore reveal a cluster of cholesterol molecules and diverse roles of membrane lipids. Nat Commun 2025; 16:2972. [PMID: 40140423 PMCID: PMC11947440 DOI: 10.1038/s41467-025-58334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The structure and function of membrane proteins depend on their interactions with lipids that constitute membranes. Actinoporins are α-pore-forming proteins that bind preferentially to sphingomyelin-containing membranes, where they oligomerize and form transmembrane pores. Through a comprehensive cryo-electron microscopic analysis of a pore formed by an actinoporin Fav from the coral Orbicella faveolata, we show that the octameric pore interacts with 112 lipids in the upper leaflet of the membrane, reveal the roles of lipids, and demonstrate that the actinoporin surface is suited for binding multiple receptor sphingomyelin molecules. When cholesterol is present in the membrane, it forms a cluster of four molecules associated with each protomer. Atomistic simulations support the structural data and reveal additional effects of the pore on the lipid membrane. These data reveal a complex network of protein-lipid and lipid-lipid interactions and an underrated role of lipids in the structure and function of transmembrane protein complexes.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marija Srnko
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mirijam Kozorog
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Yi Y, Li Z, Liu L, Wu HC. Towards Next Generation Protein Sequencing. Chembiochem 2025; 26:e202400824. [PMID: 39632614 DOI: 10.1002/cbic.202400824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Understanding the structure and function of proteins is a critical objective in the life sciences. Protein sequencing, a central aspect of this endeavor, was first accomplished through Edman degradation in the 1950s. Since the late 20th century, mass spectrometry has emerged as a prominent method for protein sequencing. In recent years, single-molecule technologies have increasingly been applied to this field, yielding numerous innovative results. Among these, nanopore sensing has proven to be a reliable single-molecule technology, enabling advancements in amino acid recognition, short peptide differentiation, and peptide sequence reading. These developments are set to elevate protein sequencing technology to new heights. The next generation of protein sequencing technologies is anticipated to revolutionize our understanding of molecular mechanisms in biological processes and significantly enhance clinical diagnostics and treatments.
Collapse
Affiliation(s)
- Yakun Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ziyi Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Liu
- College of Food and Bioengineering, Xihua University, 610039, Chengdu, China
| | - Hai-Chen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
5
|
Mereuta L, Cimpanu A, Park J, Park Y, Luchian T. Vectorial Discrimination of Small Molecules with a Macrocycle Adaptor-Protein Nanopore System and Nanocavity-Dependent, pH Gradient-Controlled Analyte Kinetics. Anal Chem 2025; 97:5225-5233. [PMID: 40019291 PMCID: PMC11912126 DOI: 10.1021/acs.analchem.4c06801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
Owing to their intrinsic qualities, protein nanopores became game-changers in the realm of analyte sensing, as they offer an inexpensive and label-free method for sophisticated recognition at the single-molecule level. Here, we exploit the complexation capability of nonfunctionalized γ-cyclodextrin (γ-CD), coupled with its propensity to get reversibly captured inside a wild-type α-hemolysin nanopore (α-HL), and achieve a hybrid construct endowing specific sensing of selected, 5 bases-long oligonucleotides. We find that the molecular discrimination capability of the system has a vectorial-like sensitivity and is influenced by the sidedness and geometry of γ-CD. We showcase that asymmetrical pH changes across the γ-CD-α-HL hybrid and the ensuing electro-osmotic flow offer a simple yet powerful method to control γ-CD capture and residence time inside the nanopore, highlighting the capability of programmable sensing of spatially separated analytes. Unexpectedly, the electro-osmotic flow ensued via pH changes exerted a negligible effect on host (γ-CD)-guest (analyte) interactions, suggesting the complexity arising from a combination of hydrodynamic effects in a restricted environment and electrostatics screening in hydrophobic nanoconfinement. We present evidence that the asymmetric, low pH-mediated, electro-osmotic stabilization of a γ-CD molecule inside α-HL enables probing of β-lactam antibiotic azlocillin encapsulation inside γ-CD under distinct ionization states.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Adina Cimpanu
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Jonggwan Park
- Department
of Bioinformatics, Kongju National University, 32588 Kongju, Republic of Korea
| | - Yoonkyung Park
- Department
of Biomedical Science and Research Center for Proteinaceous Materials
(RCPM), Chosun University, 61452 Gwangju, Republic of Korea
| | - Tudor Luchian
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
6
|
Li JG, Ying YL, Long YT. Aerolysin Nanopore Electrochemistry. Acc Chem Res 2025; 58:517-528. [PMID: 39874057 DOI: 10.1021/acs.accounts.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Ions are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore. Therefore, the pore-forming protein can efficiently transduce the characteristics of each target molecule into ion-transport-mediated signals with high sensitivity. Inspired by nature, various protein pores have been developed into high-throughput and label-free nanopore sensors for single-molecule detection, enabling rapid and accurate readouts. In particular, aerolysin, a key virulence factor of Aeromonas hydrophila, exhibits a high sensitivity in generating ionic current fingerprints for detecting subtle differences in the sequence, conformation, and structure of DNA, proteins, polypeptides, oligosaccharides, and other molecules. Aerolysin features a cap that is approximately 14 nm wide on the cis side and a central pore that is about 10 nm long with a minimum diameter of around 1 nm. Its long lumen, with 11 charged rings at two entrances and neutral amino acids in between, facilitates the dwelling of the single analyte within the pore. This characteristic enables rich interactions between the well-defined residues within the pore and the analyte. As a result, the ionic current signal offers a unique molecular fingerprint, extending beyond the traditional volume exclusion model in nanopore sensing. In 2006, aerolysin was first reported to discriminate conformational differences of single peptides, opening the door for a rapidly growing field of aerolysin nanopore electrochemistry. Over the years, various mutant aerolysin nanopores have emerged, associated with advanced instrumentation and data analysis algorithms, enabling the simultaneous identification of over 30 targets with the number still increasing. Aerolysin nanopore electrochemistry in particular allows time-resolved qualitative and quantitative analysis ranging from DNA sequencing, proteomics, enzyme kinetics, and single-molecule reactions to potential clinical diagnostics. Especially, the feasibility of aerolysin nanopore electrochemistry in dynamic quantitative analysis would revolutionize omics studies at the single-molecule level, paving the way for the promising field of single-molecule temporal omics. Despite the success of this approach so far, it remains challenging to understand how confined interactions correlate to the distinguishable ionic signatures. Recent attempts have added correction terms to the volume exclusion model to account for variations in ion mobility within the nanopore caused by the confined interactions between the aerolysin and the analyte. Therefore, in this Account, we revisit the origin of the current blockade induced by target molecules inside the aerolysin nanopore. We highlight the contributions of the confined noncovalent interactions to the sensing ability of the aerolysin nanopore through the corrected conductance model. This Account then describes the design of interaction networks within the aerolysin nanopore, including electrostatic, hydrophobic, hydrogen-bonding, cation-π, and ion-charged amino acid interactions, for ultrasensitive biomolecular identification and quantification. Finally, we provide an outlook on further understanding the noncovalent interaction network inside the aerolysin nanopore, improving the manipulating and fine-tuning of confined electrochemistry toward a broad range of practical applications.
Collapse
Affiliation(s)
- Jun-Ge Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Schreier S, Paulino J, Carretero GPB, Barbosa LRS, Cilli EM, Alvarez C, Ros U. Extension of sticholysins N-terminal α-helix signals membrane lipids to acquire curvature for toroidal pore formation. Biochem Biophys Res Commun 2025; 742:151071. [PMID: 39657352 DOI: 10.1016/j.bbrc.2024.151071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear. Here we combine circular dichroism, electron paramagnetic resonance, and small-angle X-ray scattering to investigate how synthetic peptides encompassing the N-terminal segments of St I and II (StI1-31, StII1-30, StI12-31, and StII11-30) interact with lipid bilayers and micelles as mimics of the topography of the initial membrane binding and of the subsequently formed positively curved pore. We investigate both the conformational changes and peptides' effects on membrane organization resulting from these interactions. According to the toroidal pore model, our results support that the actinoporins amphipathic α-helices rest at the membrane interface, forming pore walls with lipid head groups, while the 1-10 segment of St II penetrates the bilayer, acting as an anchor. We relate this ability to the higher hydrophobicity of this segment in St II, compared to St I. This unique feature of St II would contribute to enhanced pore formation, explaining St II's increased activity when compared to other actinoporins. Our results reinforce the notion that pore formation by actinoporins is a highly cooperative process where specific protein segments and the lipid bilayer mutually modulate their conformation and organization.
Collapse
Affiliation(s)
- Shirley Schreier
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| | - Joana Paulino
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Eduardo M Cilli
- Institute of Chemistry, State University of São Paulo, Araraquara, Brazil
| | - Carlos Alvarez
- Center of Protein Studies, Faculty of Biology, Havana University, Havana, Cuba
| | - Uris Ros
- Center of Protein Studies, Faculty of Biology, Havana University, Havana, Cuba
| |
Collapse
|
8
|
Satheesan R, Janeena A, Mahendran KR. Hetero-Oligomeric Protein Pores for Single-Molecule Sensing. J Membr Biol 2024:10.1007/s00232-024-00331-2. [PMID: 39699641 DOI: 10.1007/s00232-024-00331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Protein nanopores are emerging as versatile single-molecule sensors with broad applications in DNA and protein sequencing. However, their narrow size restricts the range of detectable analytes, necessitating the development of advanced nanopores to broaden their applications in biotechnology. This review highlights a natural hetero-oligomeric porin, Nocardia farcinica porin AB (NfpAB), based on the Gram-positive mycolata, Nocardia farcinica. The pore comprises two subunits, NfpA and NfpB, that combine to form a stable structure with a unique pore geometry, asymmetrical shape, and charge distribution. Single-channel electrical recordings demonstrate that NfpAB forms stable, high-conductance channels suitable for sensing charged molecules, particularly cationic polypeptides and cyclic sugars. This pore offers advantages such as enhanced control over molecular interactions due to densely crowded charged residues, thus allowing the quantification of voltage-dependent translocation kinetics. Notably, NfpAB contains intrinsic cysteines in the pore lumen, providing an accessible site for thiol-based reactions and attachment of molecular adapters. We propose that such hetero-oligomeric pores will be effective for several applications in nanopore technology for biomolecular detection and sequencing.
Collapse
Affiliation(s)
- Remya Satheesan
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India
| | - Asuma Janeena
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India
| | - Kozhinjampara R Mahendran
- Membrane Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Research Program, Thiruvananthapuram, 695014, India.
| |
Collapse
|
9
|
Rivero-Hernández AL, Hervis YP, Valdés-Tresanco ME, Escalona-Rodríguez FA, Cancelliere R, Relova-Hernández E, Romero-Hernández G, Pérez-Rivera E, Torres-Palacios Y, Cartaya-Quintero P, Ros U, Porchetta A, Micheli L, Fernández LE, Laborde R, Álvarez C, Sagan S, Lanio ME, Pazos Santos IF. Decoupling immunomodulatory properties from lipid binding in the α-pore-forming toxin Sticholysin II. Int J Biol Macromol 2024; 280:136244. [PMID: 39368578 DOI: 10.1016/j.ijbiomac.2024.136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala. In the present work, we demonstrated that StII3A keeps the secondary structure composition and global folding of StII, while it loses its lipid binding and permeabilization abilities. Despite this, StII3A upregulates dendritic cells maturation markers, enhances an antigen-specific effector CD8+ T cells response and confers antitumor protection in a preventive scenario in C57BL/6 mice. Our results indicate that a mechanism independent of its lipid binding ability is involved in the immunomodulatory capacity of StII, pointing to StII3A as a promising candidate to improve the reliability of the Sts-based vaccine platform.
Collapse
Affiliation(s)
- Ada L Rivero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mario E Valdés-Tresanco
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Center for Molecular Simulations and Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada.
| | - Felipe A Escalona-Rodríguez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Glenda Romero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Eric Pérez-Rivera
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Yusniel Torres-Palacios
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Patricia Cartaya-Quintero
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Rady Laborde
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Carlos Álvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| | - Maria Eliana Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Isabel F Pazos Santos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| |
Collapse
|
10
|
Baldelli M, Di Muccio G, Sauciuc A, Morozzo Della Rocca B, Viola F, Balme S, Bonini A, Maglia G, Chinappi M. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401761. [PMID: 38860821 DOI: 10.1002/adma.202401761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Nanopores are powerful tools for single-molecule sensing of biomolecules and nanoparticles. The signal coming from the molecule to be analyzed strongly depends on its interaction with the narrower section of the nanopore (constriction) that may be tailored to increase sensing accuracy. Modifications of nanopore constriction have also been commonly used to induce electroosmosis, that favors the capture of molecules in the nanopore under a voltage bias and independently of their charge. However, engineering nanopores for increasing both electroosmosis and sensing accuracy is challenging. Here it is shown that large electroosmotic flows can be achieved without altering the nanopore constriction. Using continuum electrohydrodynamic simulations, it is found that an external charged ring generates strong electroosmosis in cylindrical nanopores. Similarly, for conical nanopores it is shown that moving charges away from the cone tip still results in an electroosmotic flow (EOF), whose intensity reduces increasing the diameter of the nanopore section where charges are placed. This paradigm is applied to engineered biological nanopores showing, via atomistic simulations and experiments, that mutations outside the constriction induce a relatively intense electroosmosis. This strategy provides much more flexibility in nanopore design since electroosmosis can be controlled independently from the constriction, which can be optimized to improve sensing accuracy.
Collapse
Affiliation(s)
- Matteo Baldelli
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Giovanni Di Muccio
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, 00184, Italy
| | - Adina Sauciuc
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | | | | | - Sébastien Balme
- Institut Europeen des Membranes, UMR5635, University of Montpellier ENCSM CNRS, Montpellier, 34095, France
| | - Andrea Bonini
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Mauro Chinappi
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, 00133, Italy
| |
Collapse
|
11
|
Mereuta L, Bhatti H, Asandei A, Cimpanu A, Ying YL, Long YT, Luchian T. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40100-40110. [PMID: 39038810 PMCID: PMC11299134 DOI: 10.1021/acsami.4c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Biological and solid-state nanopores are at the core of transformative techniques and nanodevices, democratizing the examination of matter and biochemical reactions at the single-molecule level, with low cost, portability, and simplicity in operation. One of the crucial hurdles in such endeavors is the fast analyte translocation, which limits characterization, and a rich number of strategies have been explored over the years to overcome this. Here, by site-directed mutagenesis on the α-hemolysin protein nanopore (α-HL), sought to replace selected amino acids with glycine, electrostatic binding sites were induced on the nanopore's vestibule and constriction region and achieved in the most favorable case a 20-fold increase in the translocation time of short single-stranded DNA (ssDNA) at neutral pH, with respect to the wild-type (WT) nanopore. We demonstrated an efficient tool of controlling the ssDNA translocation time, via the interplay between the nanopore-ssDNA surface electrostatic interactions and electroosmotic flow, all mediated by the pH-dependent ionization of amino acids lining the nanopore's translocation pathway. Our data also reveal the nonmonotonic, pH-induced alteration of ssDNA average translocation time. Unlike mildly acidic conditions (pH ∼ 4.7), at a pH ∼ 2.8 maintained symmetrically or asymmetrically across the WT α-HL, we evidenced the manifestation of a dominant electroosmotic flow, determining the speeding up of the ssDNA translocation across the nanopore by counteracting the ssDNA-nanopore attractive electrostatic interactions. We envision potential applications of the presented approach by enabling easy-to-use, real-time detection of short ssDNA sequences, without the need for complex biochemical modifications to the nanopore to mitigate the fast translocation of such sequences.
Collapse
Affiliation(s)
- Loredana Mereuta
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Huma Bhatti
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Alina Asandei
- Interdisciplinary
Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Adina Cimpanu
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| | - Yi-Lun Ying
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular
Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tudor Luchian
- Department
of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania
| |
Collapse
|
12
|
Krishnan R S, Firzan Ca N, Mahendran KR. Functionally Active Synthetic α-Helical Pores. Acc Chem Res 2024; 57:1790-1802. [PMID: 38875523 DOI: 10.1021/acs.accounts.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Transmembrane pores are currently at the forefront of nanobiotechnology, nanopore chemistry, and synthetic chemical biology research. Over the past few decades, significant studies in protein engineering have paved the way for redesigning membrane protein pores tailored for specific applications in nanobiotechnology. Most previous efforts predominantly centered on natural β-barrel pores designed with atomic precision for nucleic acid sequencing and sensing of biomacromolecules, including protein fragments. The requirement for a more efficient single-molecule detection system has driven the development of synthetic nanopores. For example, engineering channels to conduct ions and biomolecules selectively could lead to sophisticated nanopore sensors. Also, there has been an increased interest in synthetic pores, which can be fabricated to provide more control in designing architecture and diameter for single-molecule sensing of complex biomacromolecules. There have been impressive advancements in developing synthetic DNA-based pores, although their application in nanopore technology is limited. This has prompted a significant shift toward building synthetic transmembrane α-helical pores, a relatively underexplored field offering novel opportunities. Recently, computational tools have been employed to design and construct α-helical barrels of defined structure and functionality. We focus on building synthetic α-helical pores using naturally occurring transmembrane motifs of membrane protein pores. Our laboratory has developed synthetic α-helical transmembrane pores based on the natural porin PorACj (Porin A derived from Corynebacterium jeikeium) that function as nanopore sensors for single-molecule sensing of cationic cyclodextrins and polypeptides. Our breakthrough lies in being the first to create a functional and large stable synthetic transmembrane pore composed of short synthetic α-helical peptides. The key highlight of our work is that these pores can be synthesized using easy chemical synthesis, which permits its easy modification to include a variety of functional groups to build charge-selective sophisticated pores. Additionally, we have demonstrated that stable functional pores can be constructed from D-amino acid peptides. The analysis of pores composed of D- and L-amino acids in the presence of protease showed that only the D pores are highly functional and stable. The structural models of these pores revealed distinct surface charge conformation and geometry. These new classes of synthetic α-helical pores are highly original systems of general interest due to their unique architecture, functionality, and potential applications in nanopore technology and chemical biology. We emphasize that these simplified transmembrane pores have the potential to be components of functional nanodevices and therapeutic tools. We also suggest that such designed peptides might be valuable as antimicrobial agents and can be targeted to cancer cells. This article will focus on the evolutions in assembling α-helical transmembrane pores and highlight their advantages, including structural and functional versatility.
Collapse
Affiliation(s)
- Smrithi Krishnan R
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India-695014
| | - Neilah Firzan Ca
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India-695014
- Manipal Academy of Higher Education, Manipal, Karnataka India-576104
| | - Kozhinjampara R Mahendran
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India-695014
| |
Collapse
|
13
|
Borges-Araújo L, Pereira GP, Valério M, Souza PCT. Assessing the Martini 3 protein model: A review of its path and potential. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141014. [PMID: 38670324 DOI: 10.1016/j.bbapap.2024.141014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Coarse-grained (CG) protein models have become indispensable tools for studying many biological protein details, from conformational dynamics to the organization of protein macro-complexes, and even the interaction of proteins with other molecules. The Martini force field is one of the most widely used CG models for bio-molecular simulations, partly because of the enormous success of its protein model. With the recent release of a new and improved version of the Martini force field - Martini 3 - a new iteration of its protein model was also made available. The Martini 3 protein force field is an evolution of its Martini 2 counterpart, aimed at improving many of the shortcomings that had been previously identified. In this mini-review, we first provide a general overview of the model and then focus on the successful advances made in the short time since its release, many of which would not have been possible before. Furthermore, we discuss reported limitations, potential directions for model improvement and comment on what the likely future development and application avenues are.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Gilberto P Pereira
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Mariana Valério
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France.
| |
Collapse
|
14
|
Gupta LK, Molla J, Prabhu AA. Story of Pore-Forming Proteins from Deadly Disease-Causing Agents to Modern Applications with Evolutionary Significance. Mol Biotechnol 2024; 66:1327-1356. [PMID: 37294530 DOI: 10.1007/s12033-023-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Animal venoms are a complex mixture of highly specialized toxic molecules. Among them, pore-forming proteins (PFPs) or toxins (PFTs) are one of the major disease-causing toxic elements. The ability of the PFPs in defense and toxicity through pore formation on the host cell surface makes them unique among the toxin proteins. These features made them attractive for academic and research purposes for years in the areas of microbiology as well as structural biology. All the PFPs share a common mechanism of action for the attack of host cells and pore formation in which the selected pore-forming motifs of the host cell membrane-bound protein molecules drive to the lipid bilayer of the cell membrane and eventually produces water-filled pores. But surprisingly their sequence similarity is very poor. Their existence can be seen both in a soluble state and also in transmembrane complexes in the cell membrane. PFPs are prevalent toxic factors that are predominately produced by all kingdoms of life such as virulence bacteria, nematodes, fungi, protozoan parasites, frogs, plants, and also from higher organisms. Nowadays, multiple approaches to applications of PFPs have been conducted by researchers both in basic as well as applied biological research. Although PFPs are very devastating for human health nowadays researchers have been successful in making these toxic proteins into therapeutics through the preparation of immunotoxins. We have discussed the structural, and functional mechanism of action, evolutionary significance through dendrogram, domain organization, and practical applications for various approaches. This review aims to emphasize the PFTs to summarize toxic proteins together for basic knowledge as well as to highlight the current challenges, and literature gap along with the perspective of promising biotechnological applications for their future research.
Collapse
Affiliation(s)
- Laxmi Kumari Gupta
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Johiruddin Molla
- Ghatal Rabindra Satabarsiki Mahavidyalaya Ghatal, Paschim Medinipur, Ghatal, West Bengal, 721212, India
| | - Ashish A Prabhu
- Bioprocess Development Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
15
|
Yao G, Ke W, Xia B, Gao Z. Nanopore-based glycan sequencing: state of the art and future prospects. Chem Sci 2024; 15:6229-6243. [PMID: 38699252 PMCID: PMC11062086 DOI: 10.1039/d4sc01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Sequencing of biomacromolecules is a crucial cornerstone in life sciences. Glycans, one of the fundamental biomolecules, derive their physiological and pathological functions from their structures. Glycan sequencing faces challenges due to its structural complexity and current detection technology limitations. As a highly sensitive sensor, nanopores can directly convert nucleic acid sequence information into electrical signals, spearheading the revolution of third-generation nucleic acid sequencing technologies. However, their potential for deciphering complex glycans remains untapped. Initial attempts demonstrated the significant sensitivity of nanopores in glycan sensing, which provided the theoretical basis and insights for the realization of nanopore-based glycan sequencing. Here, we present three potential technical routes to employ nanopore technology in glycan sequencing for the first time. The three novel technical routes include: strand sequencing, capturing glycan chains as they translocate through nanopores; sequential hydrolysis sequencing, capturing released monosaccharides one by one; splicing sequencing, mapping signals from hydrolyzed glycan fragments to an oligosaccharide database/library. Designing suitable nanopores, enzymes, and motors, and extracting characteristic signals pose major challenges, potentially aided by artificial intelligence. It would be highly desirable to design an all-in-one high-throughput glycan sequencer instrument by integrating a sample processing unit, nanopore array, and signal acquisition system into a microfluidic device. The nanopore sequencer invention calls for intensive multidisciplinary cooperation including electrochemistry, glycochemistry, engineering, materials, enzymology, etc. Advancing glycan sequencing will promote the development of basic research and facilitate the discovery of glycan-based drugs and disease markers, fostering progress in glycoscience and even life sciences.
Collapse
Affiliation(s)
- Guangda Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- School of Life Science and Technology, Shanghai Tech University 201210 Shanghai China
- Lingang Laboratory 200031 Shanghai China
| | - Wenjun Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 201203 Shanghai China
- University of Chinese Academy of Sciences 100049 Beijing China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 528400 Zhongshan China
| |
Collapse
|
16
|
Zhao Y, Su Z, Zhang X, Wu D, Wu Y, Li G. Recent advances in nanopore-based analysis for carbohydrates and glycoconjugates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1454-1467. [PMID: 38415741 DOI: 10.1039/d3ay02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Saccharides are not only the basic constituents and nutrients of living organisms, but also participate in various life activities, and play important roles in cell recognition, immune regulation, development, cancer, etc. The analysis of carbohydrates and glycoconjugates is a necessary means to study their transformations and physiological roles in living organisms. Existing detection techniques can hardly meet the requirements for the analysis of carbohydrates and glycoconjugates in complex matrices as they are expensive, involve complex derivatization, and are time-consuming. Nanopore sensing technology, which is amplification-free and label-free, and is a high-throughput process, provides a new solution for the identification and sequencing of carbohydrates and glycoconjugates. This review highlights recent advances in novel nanopore-based single-molecule sensing technologies for the detection of carbohydrates and glycoconjugates and discusses the advantages and challenges of nanopore sensing technologies. Finally, current issues and future perspectives are discussed with the aim of improving the performance of nanopores in complex media diagnostic applications, as well as providing a new direction for the quantification of glycan chains and the study of glycan chain properties and functions.
Collapse
Affiliation(s)
- Yan Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
17
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
18
|
Berkovich AK, Pyshkina OA, Zorina AA, Rodin VA, Panova TV, Sergeev VG, Zvereva ME. Direct Determination of the Structure of Single Biopolymer Molecules Using Nanopore Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S234-S248. [PMID: 38621753 DOI: 10.1134/s000629792414013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 04/17/2024]
Abstract
This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.
Collapse
Affiliation(s)
- Anna K Berkovich
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Olga A Pyshkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna A Zorina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir A Rodin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana V Panova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir G Sergeev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria E Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
19
|
Paulo G, Sun K, Di Muccio G, Gubbiotti A, Morozzo Della Rocca B, Geng J, Maglia G, Chinappi M, Giacomello A. Hydrophobically gated memristive nanopores for neuromorphic applications. Nat Commun 2023; 14:8390. [PMID: 38110352 PMCID: PMC10728163 DOI: 10.1038/s41467-023-44019-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
Signal transmission in the brain relies on voltage-gated ion channels, which exhibit the electrical behaviour of memristors, resistors with memory. State-of-the-art technologies currently employ semiconductor-based neuromorphic approaches, which have already demonstrated their efficacy in machine learning systems. However, these approaches still cannot match performance achieved by biological neurons in terms of energy efficiency and size. In this study, we utilise molecular dynamics simulations, continuum models, and electrophysiological experiments to propose and realise a bioinspired hydrophobically gated memristive nanopore. Our findings indicate that hydrophobic gating enables memory through an electrowetting mechanism, and we establish simple design rules accordingly. Through the engineering of a biological nanopore, we successfully replicate the characteristic hysteresis cycles of a memristor and construct a synaptic device capable of learning and forgetting. This advancement offers a promising pathway for the realization of nanoscale, cost- and energy-effective, and adaptable bioinspired memristors.
Collapse
Affiliation(s)
- Gonçalo Paulo
- Department of Mechanics and Aerospace Engineering, Sapienza University of Rome, Rome, 00184, Italy
| | - Ke Sun
- Chemical Biology Department, Groningen Biomolecular Sciences & Biotechnology Institute, Groningen, 9700 CC, The Netherlands
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Giovanni Di Muccio
- Department of Mechanics and Aerospace Engineering, Sapienza University of Rome, Rome, 00184, Italy
| | - Alberto Gubbiotti
- Department of Mechanics and Aerospace Engineering, Sapienza University of Rome, Rome, 00184, Italy
| | | | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Giovanni Maglia
- Chemical Biology Department, Groningen Biomolecular Sciences & Biotechnology Institute, Groningen, 9700 CC, The Netherlands
| | - Mauro Chinappi
- Department of Industrial Engineering, Tor Vergata University of Rome, Rome, 00133, Italy
| | - Alberto Giacomello
- Department of Mechanics and Aerospace Engineering, Sapienza University of Rome, Rome, 00184, Italy.
| |
Collapse
|
20
|
Kulshrestha A, Punnathanam SN, Roy R, Ayappa KG. Cholesterol catalyzes unfolding in membrane-inserted motifs of the pore forming protein cytolysin A. Biophys J 2023; 122:4068-4081. [PMID: 37740492 PMCID: PMC10598289 DOI: 10.1016/j.bpj.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Plasma membrane-induced protein folding and conformational transitions play a central role in cellular homeostasis. Several transmembrane proteins are folded in the complex lipid milieu to acquire a specific structure and function. Bacterial pore forming toxins (PFTs) are proteins expressed by a large class of pathogenic bacteria that exploit the plasma membrane environment to efficiently undergo secondary structure changes, oligomerize, and form transmembrane pores. Unregulated pore formation causes ion imbalance, leading to cell death and infection. Determining the free energy landscape of these membrane-driven-driven transitions remains a challenging problem. Although cholesterol recognition is required for lytic activity of several proteins in the PFT family of toxins, the regulatory role of cholesterol for the α-PFT, cytolysin A expressed by Escherichia coli remains unexplained. In a recent free energy computation, we showed that the β tongue, a critical membrane-inserted motif of the ClyA toxin, has an on-pathway partially unfolded intermediate that refolds into the helix-turn-helix motif of the pore state. To understand the molecular role played by cholesterol, we carry out string-method-based computations in membranes devoid of cholesterol, which reveals an increase of ∼30 times in the free energy barrier for the loss of β sheet secondary structure when compared with membranes containing cholesterol. Specifically, the tyrosine-cholesterol interaction was found to be critical to creating the unfolded intermediate. Cholesterol also increases the packing and hydrophobicity of the bilayer, resulting in enhanced interactions of the bound protein before complete membrane insertion. Our study illustrates that cholesterol is critical to catalyzing and stabilizing the membrane-inserted unfolded state of the β tongue motif of ClyA, opening up fresh insights into cholesterol-assisted unfolding of membrane proteins.
Collapse
Affiliation(s)
- Avijeet Kulshrestha
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sudeep N Punnathanam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
21
|
Wei X, Penkauskas T, Reiner JE, Kennard C, Uline MJ, Wang Q, Li S, Aksimentiev A, Robertson JW, Liu C. Engineering Biological Nanopore Approaches toward Protein Sequencing. ACS NANO 2023; 17:16369-16395. [PMID: 37490313 PMCID: PMC10676712 DOI: 10.1021/acsnano.3c05628] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.
Collapse
Affiliation(s)
- Xiaojun Wei
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Tadas Penkauskas
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Celeste Kennard
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
| | - Mark J. Uline
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Sheng Li
- School of Data Science, University of Virginia, Charlottesville, VA 22903, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joseph W.F. Robertson
- Biophysics and Biomedical Measurement Group, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
22
|
Förderer A, Kourelis J. NLR immune receptors: structure and function in plant disease resistance. Biochem Soc Trans 2023; 51:1473-1483. [PMID: 37602488 PMCID: PMC10586772 DOI: 10.1042/bst20221087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are a diverse family of intracellular immune receptors that play crucial roles in recognizing and responding to pathogen invasion in plants. This review discusses the overall model of NLR activation and provides an in-depth analysis of the different NLR domains, including N-terminal executioner domains, the nucleotide-binding oligomerization domain (NOD) module, and the leucine-rich repeat (LRR) domain. Understanding the structure-function relationship of these domains is essential for developing effective strategies to improve plant disease resistance and agricultural productivity.
Collapse
Affiliation(s)
- Alexander Förderer
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
23
|
García-Montoya C, Heras-Marquez D, Amigot-Sánchez R, García-Linares S, Martínez-Del-Pozo Á, Palacios-Ortega J. Sticholysin recognition of ceramide-phosphoethanolamine. Arch Biochem Biophys 2023; 742:109623. [PMID: 37207934 DOI: 10.1016/j.abb.2023.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Actinoporins are pore-forming toxins produced by sea anemones. They exert their activity by binding to the membranes of target cells. There, they oligomerize, forming cation-selective pores, and inducing cell death by osmotic shock. In the early days of the field, it was shown that accessible sphingomyelin (SM) in the bilayer is required for the activity of actinoporins. While these toxins can also act on membranes composed solely of phosphatidylcholine (PC) with a high amount of cholesterol (Chol), consensus is that SM acts as a lipid receptor for actinoporins. It has been shown that the 2NH and 3OH moieties of SM are essential for actinoporin recognition. Hence, we wondered if ceramide-phosphoethanolamine (CPE) could also be recognized. Like SM, CPE has the 2NH and 3OH groups, and a positively charged headgroup. While actinoporins have been observed to affect membranes containing CPE, Chol was always also present, with the recognition of CPE remaining unclear. To test this possibility, we used sticholysins, produced by the Caribbean Sea anemone Stichodactyla helianthus. Our results show that sticholysins can induce calcein release on vesicles composed only of PC and CPE, in absence of Chol, in a way that is comparable to that induced on PC:SM membranes.
Collapse
Affiliation(s)
- Carmen García-Montoya
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Marquez
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Rafael Amigot-Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias Biológicas y Ciencias Químicas, Universidad Complutense, Madrid, Spain; Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
24
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
25
|
Sihorwala AZ, Lin AJ, Stachowiak JC, Belardi B. Light-Activated Assembly of Connexon Nanopores in Synthetic Cells. J Am Chem Soc 2023; 145:3561-3568. [PMID: 36724060 PMCID: PMC10188233 DOI: 10.1021/jacs.2c12491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During developmental processes and wound healing, activation of living cells occurs with spatiotemporal precision and leads to rapid release of soluble molecular signals, allowing communication and coordination between neighbors. Nonliving systems capable of similar responsive release hold great promise for information transfer in materials and site-specific drug delivery. One nonliving system that offers a tunable platform for programming release is synthetic cells. Encased in a lipid bilayer structure, synthetic cells can be outfitted with molecular conduits that span the bilayer and lead to material exchange. While previous work expressing membrane pore proteins in synthetic cells demonstrated content exchange, user-defined control over release has remained elusive. In mammalian cells, connexon nanopore structures drive content release and have garnered significant interest since they can direct material exchange through intercellular contacts. Here, we focus on connexon nanopores and present activated release of material from synthetic cells in a light-sensitive fashion. To do this, we re-engineer connexon nanopores to assemble after post-translational processing by a protease. By encapsulating proteases in light-sensitive liposomes, we show that assembly of nanopores can be triggered by illumination, resulting in rapid release of molecules encapsulated within synthetic cells. Controlling connexon nanopore activity provides an opportunity for initiating communication with extracellular signals and for transferring molecular agents to the cytoplasm of living cells in a rapid, light-guided manner.
Collapse
Affiliation(s)
- Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Pedrera L, Ros U, Fanani ML, Lanio ME, Epand RM, García-Sáez AJ, Álvarez C. The Important Role of Membrane Fluidity on the Lytic Mechanism of the α-Pore-Forming Toxin Sticholysin I. Toxins (Basel) 2023; 15:80. [PMID: 36668899 PMCID: PMC9865829 DOI: 10.3390/toxins15010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear. Here we studied the effect of membrane fluidity on the permeabilizing activity of sticholysin I (St I), a toxin that belongs to the actinoporins family of α-PFTs. To modulate membrane fluidity we used vesicles made of an equimolar mixture of phosphatidylcholine (PC) and egg sphingomyelin (eggSM), in which PC contained fatty acids of different acyl chain lengths and degrees of unsaturation. Our detailed single-vesicle analysis revealed that when membrane fluidity is high, most of the vesicles are partially permeabilized in a graded manner. In contrast, more rigid membranes can be either completely permeabilized or not, indicating an all-or-none mechanism. Altogether, our results reveal that St I pores can be heterogeneous in size and stability, and that these properties depend on the fluid state of the lipid bilayer. We propose that membrane fluidity at different regions of cellular membranes is a key factor to modulate the activity of the actinoporins, which has implications for the design of different therapeutic strategies based on their lytic action.
Collapse
Affiliation(s)
- Lohans Pedrera
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas-CONICET, Córdoba X5000HUA, Argentina
| | - María E. Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ana J. García-Sáez
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Carlos Álvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
| |
Collapse
|
27
|
Hervis YP, Valle A, Canet L, Rodríguez A, Lanio ME, Alvarez C, Steinhoff HJ, Pazos IF. Cys mutants as tools to study the oligomerization of the pore-forming toxin sticholysin I. Toxicon 2023; 222:106994. [PMID: 36529153 DOI: 10.1016/j.toxicon.2022.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Sticholysin I (StI) is a water-soluble protein with the ability to bind membranes where it oligomerizes and forms pores leading to cell death. Understanding the assembly property of this protein may be valuable for designing potential biotechnological tools, such as stable or structurally defined nanopores. In order to get insights into the stabilization of StI oligomers by disulfide bonds, we designed and characterized single and double cysteine mutants at the oligomerization interface. The oligomer formation was induced in the presence of lipid membranes and visualized by SDS-PAGE. The contribution of the oligomeric structures to the membrane binding and pore-forming capacities of StI was assessed. Single and double cysteine introduction at the protein-protein oligomerization interface does not considerably affect the conformation and function of the monomeric protein. In the presence of membranes, a cysteine double mutation at positions 15 and 59 favored formation of different size oligomers stabilized by disulfide bonds. The results of this work highlight the relevance of these positions (15 and 59) to be considered for developing biosensors based on nanopores from StI.
Collapse
Affiliation(s)
- Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Aisel Valle
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Liem Canet
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | | | - Maria E Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Heinz J Steinhoff
- Department of Physics, University of Osnabrueck, Osnabrueck, 49069, Germany.
| | - Isabel F Pazos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| |
Collapse
|
28
|
Mondal AK, Lata K, Singh M, Chatterjee S, Chauhan A, Puravankara S, Chattopadhyay K. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184013. [PMID: 35908609 DOI: 10.1016/j.bbamem.2022.184013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) rupture plasma membranes and kill target cells. PFTs are secreted as soluble monomers that undergo drastic structural rearrangements upon interacting with the target membrane and generate transmembrane oligomeric pores. A detailed understanding of the molecular mechanisms of the pore-formation process remains unclear due to limited structural insights regarding the transmembrane oligomeric pore states of the PFTs. However, recent advances in the field of cryo-electron microscopy (cryo-EM) have led to the high-resolution structure determination of the oligomeric pore forms of diverse PFTs. Here, we discuss the pore-forming mechanisms of various PFTs, specifically the mechanistic details contributed by the cryo-EM-based structural studies.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India.
| |
Collapse
|
29
|
Zhou C, Lu P. De novo
design of membrane transport proteins. Proteins 2022; 90:1800-1806. [DOI: 10.1002/prot.26336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Zhou
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| |
Collapse
|
30
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Šolinc G, Švigelj T, Omersa N, Snoj T, Pirc K, Žnidaršič N, Yamaji-Hasegawa A, Kobayashi T, Anderluh G, Podobnik M. Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians. J Biol Chem 2022; 298:102455. [PMID: 36063994 PMCID: PMC9526159 DOI: 10.1016/j.jbc.2022.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/26/2022] Open
Abstract
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tomaž Švigelj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | | | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Sea Anemones, Actinoporins, and Cholesterol. Int J Mol Sci 2022; 23:ijms23158771. [PMID: 35955905 PMCID: PMC9369217 DOI: 10.3390/ijms23158771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Spanish or Spanish-speaking scientists represent a remarkably populated group within the scientific community studying pore-forming proteins. Some of these scientists, ourselves included, focus on the study of actinoporins, a fascinating group of metamorphic pore-forming proteins produced within the venom of several sea anemones. These toxic proteins can spontaneously transit from a water-soluble fold to an integral membrane ensemble because they specifically recognize sphingomyelin in the membrane. Once they bind to the bilayer, they subsequently oligomerize into a pore that triggers cell-death by osmotic shock. In addition to sphingomyelin, some actinoporins are especially sensible to some other membrane components such as cholesterol. Our group from Universidad Complutense of Madrid has focused greatly on the role played by sterols in this water–membrane transition, a question which still remains only partially solved and constitutes the main core of the article below.
Collapse
|
33
|
Kumar H, Jimah JR, Misal SA, Salinas ND, Fried M, Schlesinger PH, Tolia NH. Implications of conformational flexibility, lipid binding, and regulatory domains in cell traversal-protein CelTOS for apicomplexan migration. J Biol Chem 2022; 298:102241. [PMID: 35809642 PMCID: PMC9400078 DOI: 10.1016/j.jbc.2022.102241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Malaria and other apicomplexan-caused diseases affect millions of humans, agricultural animals, and pets. Cell traversal is a common feature used by multiple apicomplexan parasites to migrate through host cells and can be exploited to develop therapeutics against these deadly parasites. Here, we provide insights into the mechanism of the Cell-traversal protein for ookinetes and sporozoites (CelTOS), a conserved cell-traversal protein in apicomplexan parasites and malaria vaccine candidate. CelTOS has previously been shown to form pores in cell membranes to enable traversal of parasites through cells. We establish roles for the distinct protein regions of Plasmodium vivax CelTOS and examine the mechanism of pore formation. We further demonstrate that CelTOS dimer dissociation is required for pore formation, as disulfide bridging between monomers inhibits pore formation, and this inhibition is rescued by disulfide-bridge reduction. We also show that a helix-destabilizing amino acid, Pro127, allows CelTOS to undergo significant conformational changes to assemble into pores. The flexible C terminus of CelTOS is a negative regulator that limits pore formation. Finally, we highlight that lipid binding is a prerequisite for pore assembly as mutation of a phospholipids-binding site in CelTOS resulted in loss of lipid binding and abrogated pore formation. These findings identify critical regions in CelTOS and will aid in understanding the egress mechanism of malaria and other apicomplexan parasites as well as have implications for studying the function of other essential pore-forming proteins.
Collapse
Affiliation(s)
- Hirdesh Kumar
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health Bethesda, Maryland
| | - John R Jimah
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Santosh A Misal
- Molecular Pathogenesis and Biomarkers Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health Bethesda, Maryland
| | - Nichole D Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health Bethesda, Maryland
| | - Michal Fried
- Molecular Pathogenesis and Biomarkers Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health Bethesda, Maryland
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington, University School of Medicine, Saint Louis, United States
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health Bethesda, Maryland.
| |
Collapse
|
34
|
Wang Q, Li Y, Kosami KI, Liu C, Li J, Zhang D, Miki D, Kawano Y. Three highly conserved hydrophobic residues in the predicted α2-helix of rice NLR protein Pit contribute to its localization and immune induction. PLANT, CELL & ENVIRONMENT 2022; 45:1876-1890. [PMID: 35312080 DOI: 10.1111/pce.14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Nucleotide-binding leucine-rich repeat (NLR) proteins work as crucial intracellular immune receptors. N-terminal domains of NLRs fall into two groups, coiled-coil (CC) and Toll-interleukin 1 receptor domains, which play critical roles in signal transduction and disease resistance. However, the activation mechanisms of NLRs, and how their N-termini function in immune induction, remain largely unknown. Here, we revealed that the CC domain of a rice NLR Pit contributes to self-association. The Pit CC domain possesses three conserved hydrophobic residues that are known to be involved in oligomer formation in two NLRs, barley MLA10 and Arabidopsis RPM1. Interestingly, the function of these residues in Pit differs from that in MLA10 and RPM1. Although three hydrophobic residues are important for Pit-induced disease resistance against rice blast fungus, they do not participate in self-association or binding to downstream signalling molecules. By homology modelling of Pit using the Arabidopsis ZAR1 structure, we tried to clarify the role of three conserved hydrophobic residues and found that they are located in the predicted α2-helix of the Pit CC domain and involved in the plasma membrane localization. Our findings provide novel insights for understanding the mechanisms of NLR activation as well as the relationship between subcellular localization and immune induction.
Collapse
Affiliation(s)
- Qiong Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ken-Ichi Kosami
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Ehime, Japan
| | - Chaochao Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jing Li
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Daisuke Miki
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yoji Kawano
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
35
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
36
|
Lata K, Singh M, Chatterjee S, Chattopadhyay K. Membrane Dynamics and Remodelling in Response to the Action of the Membrane-Damaging Pore-Forming Toxins. J Membr Biol 2022; 255:161-173. [PMID: 35305136 DOI: 10.1007/s00232-022-00227-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming protein toxins (PFTs) represent a diverse class of membrane-damaging proteins that are produced by a wide variety of organisms. PFT-mediated membrane perforation is largely governed by the chemical composition and the physical properties of the plasma membranes. The interaction between the PFTs with the target membranes is critical for the initiation of the pore-formation process, and can lead to discrete membrane reorganization events that further aids in the process of pore-formation. Punching holes on the plasma membranes by the PFTs interferes with the cellular homeostasis by disrupting the ion-balance inside the cells that in turn can turn on multiple signalling cascades required to restore membrane integrity and cellular homeostasis. In this review, we discuss the physicochemical attributes of the plasma membranes associated with the pore-formation processes by the PFTs, and the subsequent membrane remodelling events that may start off the membrane-repair mechanisms.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
37
|
García‐Linares S, Amigot‐Sánchez R, García‐Montoya C, Heras‐Márquez D, Alfonso C, Luque‐Ortega JR, Gavilanes JG, Martínez‐del‐Pozo Á, Palacios‐Ortega J. Sticholysin I‐II oligomerization in the absence of membranes. FEBS Lett 2022; 596:1029-1036. [DOI: 10.1002/1873-3468.14326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sara García‐Linares
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Rafael Amigot‐Sánchez
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Carmen García‐Montoya
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Diego Heras‐Márquez
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Carlos Alfonso
- Systems Biochemistry of Bacterial Division Lab Centro de Investigaciones Biológicas Margarita Salas (CSIC) C. Ramiro de Maeztu 9 28040 Madrid Spain
| | - Juan Román Luque‐Ortega
- Molecular Interactions Facility Centro de Investigaciones Biológicas Margarita Salas (CSIC) C. Ramiro de Maeztu 9 28040 Madrid Spain
| | - José G. Gavilanes
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | | | - Juan Palacios‐Ortega
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| |
Collapse
|
38
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Control of subunit stoichiometry in single-chain MspA nanopores. Biophys J 2022; 121:742-754. [PMID: 35101416 PMCID: PMC8943699 DOI: 10.1016/j.bpj.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/18/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Transmembrane protein channels enable fast and highly sensitive detection of single molecules. Nanopore sequencing of DNA was achieved using an engineered Mycobacterium smegmatis porin A (MspA) in combination with a motor enzyme. Due to its favorable channel geometry, the octameric MspA pore exhibits the highest current level compared with other pore proteins. To date, MspA is the only protein nanopore with a published record of DNA sequencing. While widely used in commercial devices, nanopore sequencing of DNA suffers from significant base-calling errors due to stochastic events of the complex DNA-motor-pore combination and the contribution of up to five nucleotides to the signal at each position. Different mutations in specific subunits of a pore protein offer an enormous potential to improve nucleotide resolution and sequencing accuracy. However, individual subunits of MspA and other oligomeric protein pores are randomly assembled in vivo and in vitro, preventing the efficient production of designed pores with different subunit mutations. In this study, we converted octameric MspA into a single-chain pore by connecting eight subunits using peptide linkers. Lipid bilayer experiments demonstrated that single-chain MspA formed membrane-spanning channels and discriminated all four nucleotides identical to MspA produced from monomers in DNA hairpin experiments. Single-chain constructs comprising three, five, six, and seven connected subunits assembled to functional channels, demonstrating a remarkable plasticity of MspA to different subunit stoichiometries. Thus, single-chain MspA constitutes a new milestone in the optimization of MspA as a biosensor for DNA sequencing and many other applications by enabling the production of pores with distinct subunit mutations and pore diameters.
Collapse
|
40
|
Zhang M, Chen C, Zhang Y, Geng J. Biological nanopores for sensing applications. Proteins 2022; 90:1786-1799. [PMID: 35092317 DOI: 10.1002/prot.26308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023]
Abstract
Biological nanopores are proteins with transmembrane pore that can be embedded in lipid bilayer. With the development of single-channel current measurement technologies, biological nanopores have been reconstituted into planar lipid bilayer and used for single-molecule sensing of various analytes and events such as single-molecule DNA sensing and sequencing. To improve the sensitivity for specific analytes, various engineered nanopore proteins and strategies are deployed. Here, we introduce the origin and principle of nanopore sensing technology as well as the structure and associated properties of frequently used protein nanopores. Furthermore, sensing strategies for different applications are reviewed, with focus on the alteration of buffer condition, protein engineering, and deployment of accessory proteins and adapter-assisted sensing. Finally, outlooks for de novo design of nanopore and nanopore beyond sensing are discussed.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chen
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjing Zhang
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Geng
- Department of Laboratory Medicine, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Sandoval K, McCormack GP. Actinoporin-like Proteins Are Widely Distributed in the Phylum Porifera. Mar Drugs 2022; 20:md20010074. [PMID: 35049929 PMCID: PMC8778704 DOI: 10.3390/md20010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70–59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.
Collapse
|
42
|
Duncan-Lowey B, McNamara-Bordewick NK, Tal N, Sorek R, Kranzusch PJ. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense. Mol Cell 2021; 81:5039-5051.e5. [PMID: 34784509 DOI: 10.1016/j.molcel.2021.10.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded β-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.
Collapse
Affiliation(s)
- Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Donato M, Soto C, Lanio ME, Itri R, Álvarez C. The pore-forming activity of sticholysin I is enhanced by the presence of a phospholipid hydroperoxide in membrane. Toxicon 2021; 204:44-55. [PMID: 34736955 DOI: 10.1016/j.toxicon.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022]
Abstract
Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane. 1-palmitoyl-2-oleoylphosphatidylcholine hydroperoxide (POPC-OOH) is an oxidized phospholipid (OxPL) containing an -OOH moiety in the unsaturated hydrocarbon chain which orientates towards the bilayer interface. This orientation causes an increase in the lipid molecular area, lateral expansion and decrease in bilayer thickness, elastic and bending modulus, as well as modification of lipid packing. Taking advantage of membrane structural changes promoted by POPC-OOH, we investigated its influence on the permeabilizing ability of StI. Here we report the action of StI on Giant Unilamellar Vesicles (GUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and SM containing increasing amount of POPC-OOH to assess vesicle permeability changes when compared to OxPL-lacking membranes. Inclusion of POPC-OOH in membranes did not promote spontaneous vesicle leaking but resulted in increased membrane permeability due to StI action. StI activity did not modify the fluid-gel phase coexistence boundaries neither in POPC:SM or POPC-OOH:SM membranes. However, the StI insertion mechanism in membrane seems to differ between POPC:SM and POPC-OOH:SM mixtures as suggested by changes in the time course of monolayer surface tension measurements, even though a preferable binding of the toxin to OxPL-containing systems could not be here demonstrated. In summary, modifications in the membrane imposed by lipid hydroperoxidation favor StI permeabilizing activity.
Collapse
Affiliation(s)
- Maressa Donato
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Center for Laser and Applications, Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - Rosangela Itri
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | - Carlos Álvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba.
| |
Collapse
|
44
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen H, Huang S. Allosteric Switching of Calmodulin in a
Mycobacterium smegmatis
porin A (MspA) Nanopore‐Trap. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Tiezheng Pan
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| |
Collapse
|
45
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen HY, Huang S. Allosteric Switching of Calmodulin in a Mycobacterium smegmatis porin A (MspA) Nanopore-Trap. Angew Chem Int Ed Engl 2021; 60:23863-23870. [PMID: 34449124 DOI: 10.1002/anie.202110545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Indexed: 01/23/2023]
Abstract
Recent developments concerning large protein nanopores suggest a new approach to structure profiling of native folded proteins. In this work, the large vestibule of Mycobacterium smegmatis porin A (MspA) and calmodulin (CaM), a Ca2+ -binding protein, were used in the direct observation of the protein structure. Three conformers, including the Ca2+ -free, Ca2+ -bound, and target peptide-bound states of CaM, were unambiguously distinguished. A disease related mutant, CaM D129G was also discriminated by MspA, revealing how a single amino acid replacement can interfere with the Ca2+ -binding capacity of the whole protein. The binding capacity and aggregation effect of CaM induced by different ions (Mg2+ /Sr2+ /Ba2+ /Ca2+ /Pb2+ /Tb3+ ) were also investigated and the stability of MspA in extreme conditions was evaluated. This work demonstrates the most systematic single-molecule investigation of different allosteric conformers of CaM, acknowledging the high sensing resolution offered by the MspA nanopore trap.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Tiezheng Pan
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
46
|
Ugarte La Torre D, Takada S. Modeling lipid-protein interactions for coarse-grained lipid and Cα protein models. J Chem Phys 2021; 155:155101. [PMID: 34686048 DOI: 10.1063/5.0057278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biological membranes that play major roles in diverse functions are composed of numerous lipids and proteins, making them an important target for coarse-grained (CG) molecular dynamics (MD) simulations. Recently, we have developed the CG implicit solvent lipid force field (iSoLF) that has a resolution compatible with the widely used Cα protein representation [D. Ugarte La Torre and S. Takada, J. Chem. Phys. 153, 205101 (2020)]. In this study, we extended it and developed a lipid-protein interaction model that allows the combination of the iSoLF and the Cα protein force field, AICG2+. The hydrophobic-hydrophilic interaction is modeled as a modified Lennard-Jones potential in which parameters were tuned partly to reproduce the experimental transfer free energy and partly based on the free energy profile normal to the membrane surface from previous all-atom MD simulations. Then, the obtained lipid-protein interaction is tested for the configuration and placement of transmembrane proteins, water-soluble proteins, and peripheral proteins, showing good agreement with prior knowledge. The interaction is generally applicable and is implemented in the publicly available software, CafeMol.
Collapse
Affiliation(s)
- Diego Ugarte La Torre
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Ker DS, Sha HX, Jonet MA, Hwang JS, Ng CL. Structural and functional analysis of Hydra Actinoporin-Like Toxin 1 (HALT-1). Sci Rep 2021; 11:20649. [PMID: 34667248 PMCID: PMC8526580 DOI: 10.1038/s41598-021-99879-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Actinoporins are a family of α-pore-forming toxins (α-PFTs) that have been identified in sea anemones. Recently, a freshwater Hydra Actinoporin-Like Toxin (HALT) gene family was found in Hydra magnipapillata. Unlike sea anemone actinoporins that use sphingomyelin as their main recognition target, the HALTs proteins may recognise alternative lipid molecules as their target. To unveil the structural insights into lipid preference of HALTs protein as compared to sea anemone actinoporins, we have determined the first crystal structure of actinoporin-like toxin, HALT-1 at 1.43 Å resolution with an acetylated lysine residue K76. Despite the overall structure of HALT-1 sharing a high structural similarity to sea anemone actinoporins, the atomic resolution structure revealed several unique structural features of HALT-1 that may influence the lipid preference and oligomerisation interface. The HALT-1 contains a RAG motif in place of the highly conserved RGD motif found in sea anemone actinoporins. The RAG motif contributed to a sharper β9-β10 turn, which may sway its oligomerisation interface in comparison to sea anemone actinoporins. In the lipid-binding region, the HALT-1 contains a shorter α2 helix and a longer α2-β9 loop due to deletion and subsequently an insertion of five amino acid residues in comparison to the sea anemone actinoporins. Structure comparison and molecular docking analysis further revealed that the HALT-1 lipid-binding site may favour sphingolipids with sulfate or phosphate head group more than the sphingomyelin. The structure of HALT-1 reported here provides a new insight for a better understanding of the evolution and lipid recognition mechanism of actinoporin.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Hong Xi Sha
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
48
|
Sannigrahi A, Chattopadhyay K. Pore formation by pore forming membrane proteins towards infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:79-111. [PMID: 35034727 DOI: 10.1016/bs.apcsb.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last 25 years, the biology of membrane proteins, including the PFPs-membranes interactions is seeking attention for the development of successful drug molecules against a number of infectious diseases. Pore forming toxins (PFTs), the largest family of PFPs are considered as a group of virulence factors produced in a large number of pathogenic systems which include streptococcus, pneumonia, Staphylococcus aureus, E. coli, Mycobacterium tuberculosis, group A and B streptococci, Corynebacterium diphtheria and many more. PFTs are generally utilized by the disease causing pathogens to disrupt the host first line of defense i.e. host cell membranes through pore formation strategy. Although, pore formation is the principal mode of action of the PFTs but they can have additional adverse effects on the hosts including immune evasion. Recently, structural investigation of different PFTs have imparted the molecular mechanistic insights into how PFTs get transformed from its inactive state to active toxic state. On the basis of their structural entity, PFTs have been classified in different types and their mode of actions alters in terms of pore formation and corresponding cellular toxicity. Although pathogen genome analysis can identify the probable PFTs depending upon their structural diversity, there are so many PFTs which utilize the local environmental conditions to generate their pore forming ability using a novel strategy which is known as "conformational switch" of a protein. This conformational switch is considered as characteristics of the phase shifting proteins which were often utilized by many pathogenic systems to protect them from the invaders through allosteric communication between distant regions of the protein. In this chapter, we discuss the structure function relationships of PFTs and how activity of PFTs varies with the change in the environmental conditions has been explored. Finally, we demonstrate these structural insights to develop therapeutic potential to treat the infections caused by multidrug resistant pathogens.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India.
| |
Collapse
|
49
|
Cosentino K, Hermann E, von Kügelgen N, Unsay JD, Ros U, García-Sáez AJ. Force Mapping Study of Actinoporin Effect in Membranes Presenting Phase Domains. Toxins (Basel) 2021; 13:toxins13090669. [PMID: 34564674 PMCID: PMC8473010 DOI: 10.3390/toxins13090669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Equinatoxin II (EqtII) and Fragaceatoxin C (FraC) are pore-forming toxins (PFTs) from the actinoporin family that have enhanced membrane affinity in the presence of sphingomyelin (SM) and phase coexistence in the membrane. However, little is known about the effect of these proteins on the nanoscopic properties of membrane domains. Here, we used combined confocal microscopy and force mapping by atomic force microscopy to study the effect of EqtII and FraC on the organization of phase-separated phosphatidylcholine/SM/cholesterol membranes. To this aim, we developed a fast, high-throughput processing tool to correlate structural and nano-mechanical information from force mapping. We found that both proteins changed the lipid domain shape. Strikingly, they induced a reduction in the domain area and circularity, suggesting a decrease in the line tension due to a lipid phase height mismatch, which correlated with proteins binding to the domain interfaces. Moreover, force mapping suggested that the proteins affected the mechanical properties at the edge, but not in the bulk, of the domains. This effect could not be revealed by ensemble force spectroscopy measurements supporting the suitability of force mapping to study local membrane topographical and mechanical alterations by membranotropic proteins.
Collapse
|
50
|
Bacle A, Buslaev P, Garcia-Fandino R, Favela-Rosales F, Mendes Ferreira T, Fuchs PFJ, Gushchin I, Javanainen M, Kiirikki AM, Madsen JJ, Melcr J, Milán Rodríguez P, Miettinen MS, Ollila OHS, Papadopoulos CG, Peón A, Piggot TJ, Piñeiro Á, Virtanen SI. Inverse Conformational Selection in Lipid-Protein Binding. J Am Chem Soc 2021; 143:13701-13709. [PMID: 34465095 DOI: 10.1021/jacs.1c05549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions. We find that lipid headgroups sample a wide range of overlapping conformations in both neutral and charged cellular membranes, and that differences in the headgroup chemistry manifest only in probability distributions of conformations. Furthermore, the analysis of 894 protein-bound lipid structures from the Protein Data Bank suggests that lipids can bind to proteins in a wide range of conformations, which are not limited by the headgroup chemistry. We propose that lipids can select a suitable headgroup conformation from the wide range available to them to fit the various binding sites in proteins. The proposed inverse conformational selection model will extend also to lipid binding to targets other than proteins, such as drugs, RNA, and viruses.
Collapse
Affiliation(s)
- Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1 rue Georges Bonnet, Poitiers 86000, France
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain.,CIQUP, Centro de Investigao em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Fernando Favela-Rosales
- Departamento de Ciencias Básicas, Tecnológico Nacional de México - ITS Zacatecas Occidente, Sombrerete, Zacatecas 99102, México
| | - Tiago Mendes Ferreira
- NMR group - Institute for Physics, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Patrick F J Fuchs
- Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), Sorbonne Université, Paris 75005, France.,UFR Sciences du Vivant, Université de Paris, Paris 75013, France
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, Prague CZ-16610, Czech Republic
| | - Anne M Kiirikki
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Jesper J Madsen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, Groningen9747 AG, The Netherlands
| | - Paula Milán Rodríguez
- Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), Sorbonne Université, Paris 75005, France
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Chris G Papadopoulos
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Antonio Peón
- CIQUP, Centro de Investigao em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Thomas J Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Salla I Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|