1
|
Prizment A, Standafer A, Qu C, Beutel KM, Wang S, Huang WY, Lindblom A, Pearlman R, Van Guelpen B, Wolk A, Buchanan DD, Grant RC, Schmit SL, Platz EA, Joshu CE, Couper DJ, Peters U, Starr TK, Scott P, Pankratz N. Functional variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are associated with increased risk of colorectal cancer. Hum Mol Genet 2025; 34:617-625. [PMID: 39825500 PMCID: PMC11924186 DOI: 10.1093/hmg/ddaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Individuals with cystic fibrosis (CF; a recessive disorder) have an increased risk of colorectal cancer (CRC). Evidence suggests individuals with a single CFTR variant may also have increased CRC risk. METHODS Using population-based studies (GECCO, CORECT, CCFR, and ARIC; 53 785 CRC cases and 58 010 controls), we tested for an association between the most common CFTR variant (Phe508del) and CRC risk. For replication, we used whole exome sequencing data from UK Biobank (UKB; 5126 cases and 20 504 controls matched 4:1 based on genetic distance, age, and sex), and extended our analyses to all other heterozygous CFTR variants annotated as CF-causing. RESULTS In our meta-analysis of GECCO-CORECT-CCFR-ARIC, the odds ratio (OR) for CRC risk associated with Phe508del was 1.11 (P = 0.010). In our UKB replication, the OR for CRC risk associated with Phe508del was 1.28 (P = 0.002). The sequencing data from UKB also revealed an association between the presence of any other single CF-causing variant (excluding Phe508del) and CRC risk (OR = 1.33; P = 0.030). When stratifying CFTR variants by functional class, class I variants (no protein produced) had a stronger association (OR = 1.77; p = 0.002), while class II variants (misfolding and retention of the protein in the endoplasmic reticulum) other than Phe508del (OR = 1.75; p = 0.107) had similar effect size as Phe508del, and variants in classes III-VI had non-significant ORs less than 1.0 and/or were not present in cases. CONCLUSIONS CF-causing heterozygous variants, especially class I variants, are associated with a modest but statistically significant increased CRC risk. More research is needed to explain the biology underlying these associations.
Collapse
Affiliation(s)
- Anna Prizment
- Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Abby Standafer
- Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98019, USA
| | - Kathleen M Beutel
- Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Shuo Wang
- Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9776, Bethesda, MD, 20892, USA
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, K1 Molekylär medicin och kirurgi, K1 MMK Klinisk genetik, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Eugeniavägen 3, 171 64 Solna, Sweden
| | - Rachel Pearlman
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, 2012 Kenny Rd, Columbus, OH, 43221, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, 27C, Målpunkt QC11, NUS, Norrlands universitetssjukhus, Umeå University, 901 85 Umeå, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, C6 Institutet för miljömedicin, C6 CVD-NUT-EPI Wolk, 171 77 Stockholm, Sweden
| | - Daniel D Buchanan
- Department of Clinical Pathology, University of Melbourne Center for Cancer Research, University of Melbourne, 305 Grattan Street, Melbourne, Victoria, 3010, Australia
| | - Robert C Grant
- UHN-Princess Margaret Cancer Centre, University of Toronto, 7-811 700 University Ave, Toronto, Ontario, M5G 1X6, Canada
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Mail Code NE50, Cleveland, OH, 44195, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 615 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 615 N Wolfe Street, Baltimore, MD, 21205, USA
| | - David J Couper
- Department of Biostatistics, University of North Carolina at Chapel Hill, 123 W Franklin Street, Suite 450, CB #8030, Chapel Hill, NC, 27516, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98019, USA
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Department of Obstetrics and Gynecology, Medical School, University of Minnesota, 515 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Patricia Scott
- Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN, 55812, USA
| | - Nathan Pankratz
- Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Goldberg SR, Ko LK, Hsu L, Yin H, Kooperberg C, Peters U, Burnett-Hartman AN. Patient Perspectives on Personalized Risk Communication Using Polygenic Risk Scores to Inform Colorectal Cancer Screening Decisions. AJPM FOCUS 2025; 4:100308. [PMID: 39866161 PMCID: PMC11761838 DOI: 10.1016/j.focus.2024.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Introduction Colorectal cancer is increasingly diagnosed in people aged <50 years. New U.S. guidelines recommend screening initiation at age 45 years. Providing personalized risk for colorectal cancer using polygenic risk scores may be an opportunity to engage this younger population in colorectal cancer screening. There is limited research on patient understanding of polygenic risk scores results and use of polygenic risk scores to inform colorectal cancer screening decisions. Methods From May 2022 to June 2023, 20 Kaiser Permanente Colorado members aged 46-51 years who had been offered colorectal cancer screening but had never completed it signed consent to provide a saliva sample for colorectal cancer polygenic risk score analysis. After receiving personalized polygenic risk scores for colorectal cancer, participants completed a semistructured interview regarding the understanding of their polygenic risk scores, perceived colorectal cancer risk, and intention to screen. Thematic analysis was conducted using Atlas.ti, Version 8. Results Of the 19 participants who successfully completed polygenic risk score-related testing and a semistructured interview, 13 were female, 14 never smoked cigarettes, 6 were Hispanic, and 13 were non-Hispanic White. One participant had high risk for colorectal cancer on the basis of polygenic risk score results. Qualitative interviews showed participants' understanding of their results, trust in polygenic risk scores, perception of risk for colorectal cancer, plans to complete colorectal cancer screening, intent to share polygenic risk scores with healthcare providers, and concerns about genetic results impacting health care. Conclusions Qualitative analyses suggest that participants were interested in and understood their polygenic risk score results. Further study is needed to develop guidelines, effective calls to action, provider engagement, and health education materials on use of polygenic risk scores for health decision making.
Collapse
Affiliation(s)
- Shauna R. Goldberg
- Kaiser Permanente Colorado Institute for Health Research, Aurora, Colorado
| | - Linda K. Ko
- Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Health Systems and Population Health, University of Washington, Seattle, Washington
| | - Li Hsu
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hang Yin
- Fred Hutchinson Cancer Center, Seattle, Washington
| | | | | | - Andrea N. Burnett-Hartman
- Kaiser Permanente Colorado Institute for Health Research, Aurora, Colorado
- Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
3
|
Thomas CE, Lin Y, Kim M, Kawaguchi ES, Qu C, Um CY, Lynch BM, Van Guelpen B, Tsilidis K, Carreras-Torres R, van Duijnhoven FJB, Sakoda LC, Campbell PT, Tian Y, Chang-Claude J, Bézieau S, Budiarto A, Palmer JR, Newcomb PA, Casey G, Le Marchandz L, Giannakis M, Li CI, Gsur A, Newton C, Obón-Santacana M, Moreno V, Vodicka P, Brenner H, Hoffmeister M, Pellatt AJ, Schoen RE, Dimou N, Murphy N, Gunter MJ, Castellví-Bel S, Figueiredo JC, Chan AT, Song M, Li L, Bishop DT, Gruber SB, Baurley JW, Bien SA, Conti DV, Huyghe JR, Kundaje A, Su YR, Wang J, Keku TO, Woods MO, Berndt SI, Chanock SJ, Tangen CM, Wolk A, Burnett-Hartman A, Wu AH, White E, Devall MA, Díez-Obrero V, Drew DA, Giovannucci E, Hidaka A, Kim AE, Lewinger JP, Morrison J, Ose J, Papadimitriou N, Pardamean B, Peoples AR, Ruiz-Narvaez EA, Shcherbina A, Stern MC, Chen X, Thomas DC, Platz EA, Gauderman WJ, Peters U, Hsu L. Characterization of Additive Gene-environment Interactions For Colorectal Cancer Risk. Epidemiology 2025; 36:126-138. [PMID: 39316822 DOI: 10.1097/ede.0000000000001795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common, fatal cancer. Identifying subgroups who may benefit more from intervention is of critical public health importance. Previous studies have assessed multiplicative interaction between genetic risk scores and environmental factors, but few have assessed additive interaction, the relevant public health measure. METHODS Using resources from CRC consortia, including 45,247 CRC cases and 52,671 controls, we assessed multiplicative and additive interaction (relative excess risk due to interaction, RERI) using logistic regression between 13 harmonized environmental factors and genetic risk score, including 141 variants associated with CRC risk. RESULTS There was no evidence of multiplicative interaction between environmental factors and genetic risk score. There was additive interaction where, for individuals with high genetic susceptibility, either heavy drinking (RERI = 0.24, 95% confidence interval [CI] = 0.13, 0.36), ever smoking (0.11 [0.05, 0.16]), high body mass index (female 0.09 [0.05, 0.13], male 0.10 [0.05, 0.14]), or high red meat intake (highest versus lowest quartile 0.18 [0.09, 0.27]) was associated with excess CRC risk greater than that for individuals with average genetic susceptibility. Conversely, we estimate those with high genetic susceptibility may benefit more from reducing CRC risk with aspirin/nonsteroidal anti-inflammatory drugs use (-0.16 [-0.20, -0.11]) or higher intake of fruit, fiber, or calcium (highest quartile versus lowest quartile -0.12 [-0.18, -0.050]; -0.16 [-0.23, -0.09]; -0.11 [-0.18, -0.05], respectively) than those with average genetic susceptibility. CONCLUSIONS Additive interaction is important to assess for identifying subgroups who may benefit from intervention. The subgroups identified in this study may help inform precision CRC prevention.
Collapse
Affiliation(s)
- Claire E Thomas
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Yi Lin
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michelle Kim
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Eric S Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Conghui Qu
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Brigid M Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina, School of Medicine, Ioannina, Greece
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | | | - Lori C Sakoda
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA
| | - Polly A Newcomb
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | | | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Christopher I Li
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Christina Newton
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew J Pellatt
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert E Schoen
- Departments of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Departments of Epidemiology and Nutrition, Harvard TH Chan School of Public Health, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA
| | - D Timothy Bishop
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte CA
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA
| | - Stephanie A Bien
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jeroen R Huyghe
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA
- Department of Computer Science, Stanford University, Stanford, CA
| | - Yu-Ru Su
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jun Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna H Wu
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA
| | - Emily White
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Matthew A Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA
| | - Virginia Díez-Obrero
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Edward Giovannucci
- Harvard TH Chan School of Public Health
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Akihisa Hidaka
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA
- Department of Computer Science, Stanford University, Stanford, CA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ulrike Peters
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Li Hsu
- From the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
5
|
Tian J, Zhang M, Zhang F, Gao K, Lu Z, Cai Y, Chen C, Ning C, Li Y, Qian S, Bai H, Liu Y, Zhang H, Chen S, Li X, Wei Y, Li B, Zhu Y, Yang J, Jin M, Miao X, Chen K. Developing an optimal stratification model for colorectal cancer screening and reducing racial disparities in multi-center population-based studies. Genome Med 2024; 16:81. [PMID: 38872215 PMCID: PMC11170922 DOI: 10.1186/s13073-024-01355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Early detection of colorectal neoplasms can reduce the colorectal cancer (CRC) burden by timely intervention for high-risk individuals. However, effective risk prediction models are lacking for personalized CRC early screening in East Asian (EAS) population. We aimed to develop, validate, and optimize a comprehensive risk prediction model across all stages of the dynamic adenoma-carcinoma sequence in EAS population. METHODS To develop precision risk-stratification and intervention strategies, we developed three trans-ancestry PRSs targeting colorectal neoplasms: (1) using 148 previously identified CRC risk loci (PRS148); (2) SNPs selection from large-scale meta-analysis data by clumping and thresholding (PRS183); (3) PRS-CSx, a Bayesian approach for genome-wide risk prediction (PRSGenomewide). Then, the performance of each PRS was assessed and validated in two independent cross-sectional screening sets, including 4600 patients with advanced colorectal neoplasm, 4495 patients with non-advanced adenoma, and 21,199 normal individuals from the ZJCRC (Zhejiang colorectal cancer set; EAS) and PLCO (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; European, EUR) studies. The optimal PRS was further incorporated with lifestyle factors to stratify individual risk and ultimately tested in the PLCO and UK Biobank prospective cohorts, totaling 350,013 participants. RESULTS Three trans-ancestry PRSs achieved moderately improved predictive performance in EAS compared to EUR populations. Remarkably, the PRSs effectively facilitated a thorough risk assessment across all stages of the dynamic adenoma-carcinoma sequence. Among these models, PRS183 demonstrated the optimal discriminatory ability in both EAS and EUR validation datasets, particularly for individuals at risk of colorectal neoplasms. Using two large-scale and independent prospective cohorts, we further confirmed a significant dose-response effect of PRS183 on incident colorectal neoplasms. Incorporating PRS183 with lifestyle factors into a comprehensive strategy improves risk stratification and discriminatory accuracy compared to using PRS or lifestyle factors separately. This comprehensive risk-stratified model shows potential in addressing missed diagnoses in screening tests (best NPV = 0.93), while moderately reducing unnecessary screening (best PPV = 0.32). CONCLUSIONS Our comprehensive risk-stratified model in population-based CRC screening trials represents a promising advancement in personalized risk assessment, facilitating tailored CRC screening in the EAS population. This approach enhances the transferability of PRSs across ancestries and thereby helps address health disparity.
Collapse
Affiliation(s)
- Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Kai Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Sangni Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Xiangpan Li
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Jinhua Yang
- Jiashan Institute of Cancer Prevention and Treatment, Jiashan, China
| | - Mingjuan Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Kun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Gorfine M, Qu C, Peters U, Hsu L. Unveiling challenges in Mendelian randomization for gene-environment interaction. Genet Epidemiol 2024; 48:164-189. [PMID: 38420714 PMCID: PMC11197907 DOI: 10.1002/gepi.22552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Gene-environment (GxE) interactions play a crucial role in understanding the complex etiology of various traits, but assessing them using observational data can be challenging due to unmeasured confounders for lifestyle and environmental risk factors. Mendelian randomization (MR) has emerged as a valuable method for assessing causal relationships based on observational data. This approach utilizes genetic variants as instrumental variables (IVs) with the aim of providing a valid statistical test and estimation of causal effects in the presence of unmeasured confounders. MR has gained substantial popularity in recent years largely due to the success of genome-wide association studies. Many methods have been developed for MR; however, limited work has been done on evaluating GxE interaction. In this paper, we focus on two primary IV approaches: the two-stage predictor substitution and the two-stage residual inclusion, and extend them to accommodate GxE interaction under both the linear and logistic regression models for continuous and binary outcomes, respectively. Comprehensive simulation study and analytical derivations reveal that resolving the linear regression model is relatively straightforward. In contrast, the logistic regression model presents a considerably more intricate challenge, which demands additional effort.
Collapse
Affiliation(s)
- Malka Gorfine
- Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
7
|
Tian Y, Lin Y, Qu C, Arndt V, Baurley JW, Berndt SI, Bien SA, Bishop DT, Brenner H, Buchanan DD, Budiarto A, Campbell PT, Carreras-Torres R, Casey G, Chan AT, Chen R, Chen X, Conti DV, Díez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gunter MJ, Harlid S, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Joshi AD, Keku TO, Kawaguchi E, Kim AE, Kundaje A, Larsson SC, Marchand LL, Lewinger JP, Li L, Moreno V, Morrison J, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Prentice RL, Rennert G, Ruiz-Narvaez EA, Sakoda LC, Schoen RE, Shcherbina A, Stern MC, Su YR, Thibodeau SN, Thomas DC, Tsilidis KK, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, White E, Wolk A, Woods MO, Wu AH, Peters U, Gauderman WJ, Hsu L, Chang-Claude J. Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk. Br J Cancer 2024; 130:1687-1696. [PMID: 38561434 PMCID: PMC11091089 DOI: 10.1038/s41416-024-02638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
Collapse
Affiliation(s)
- Yu Tian
- School of Public Health, Capital Medical University, Beijing, China
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute Dr Josep Trueta (IDIBGI), Salt, 17190, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristina M Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indianapolis, IN, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Hochschule Hannover, University of Applied Sciences and Arts, Department III: Media, Information and Design, Hannover, Germany
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anna Shcherbina
- Biomedical Informatics Program, Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Hamburg (UCCH), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Gholami M. Novel genetic association between obesity, colorectal cancer, and inflammatory bowel disease. J Diabetes Metab Disord 2024; 23:739-744. [PMID: 38932827 PMCID: PMC11196566 DOI: 10.1007/s40200-023-01343-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 06/28/2024]
Abstract
Purpose Obesity/overweight is an important risk factor for CRC and IBD. The aim of this study was to investigate the role of common genetic factors and haplotypes associated with obesity, CRC and IBD. Methods Significant GWAS variants associated with CRC, IBD or obesity were extracted from the GWAS catalog. The common variants between CRC-IBD, CRC-obesity or IBD-obesity were identified. Finally, the haplotypic structure between these diseases was identified, and SNP function analysis, gene-gene expression, protein-protein interactions, gene survival analysis and pathway analysis were performed with the results. Results While the results showed several common variants between CRC and IBD, IBD and obesity, and CRC and obesity identified in previous GWAS, rs3184504 was the only common variant for CRC-IBD-obesity (P ≤ 5E-8). The result also identified a haplotypic block AGCAGT (r2 ≥ 0.8 and D'≥0.08) associated with the common variants of CRC-IBD-obesity. These variants are located on the SH2B3 gene, whose expression level decreases in both colon and rectal cancers (P ≤ 1E-3) and which has protein-protein interaction with inflammation- and cancer-associated genes. Conclusion The rs3184504 variant and the novel haplotype AGCAGT co-occurred in CRC, IBD, obesity, and inflammation. This novel haplotype could potentially be used in genetic panels to identify CRC/IBD susceptibility in obese patients.
Collapse
Affiliation(s)
- Morteza Gholami
- North Research Center, Pasteur Institute of Iran, Amol, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Drew DA, Kim AE, Lin Y, Qu C, Morrison J, Lewinger JP, Kawaguchi E, Wang J, Fu Y, Zemlianskaia N, Díez-Obrero V, Bien SA, Dimou N, Albanes D, Baurley JW, Wu AH, Buchanan DD, Potter JD, Prentice RL, Harlid S, Arndt V, Barry EL, Berndt SI, Bouras E, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Chang-Claude J, Conti DV, Devall MA, Figueiredo JC, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kundaje A, Le Marchand L, Li L, Lynch BM, Murphy N, Nassir R, Newcomb PA, Newton CC, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Stern MC, Su YR, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, Um CY, van Duijnhoven FJ, Van Guelpen B, White E, Hsu L, Moreno V, Peters U, Chan AT, Gauderman WJ. Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer. SCIENCE ADVANCES 2024; 10:eadk3121. [PMID: 38809988 PMCID: PMC11135391 DOI: 10.1126/sciadv.adk3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Regular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.
Collapse
Affiliation(s)
- David A. Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre E. Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yubo Fu
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natalia Zemlianskaia
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L. Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V. Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew A.M. Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jane C. Figueiredo
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen B. Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M. Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Brigid M. Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Mecca, Saudi Arabia
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J. Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariana C. Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Duncan C. Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Andrew T. Chan
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W. James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ohta R, Tanigawa Y, Suzuki Y, Kellis M, Morishita S. A polygenic score method boosted by non-additive models. Nat Commun 2024; 15:4433. [PMID: 38811555 PMCID: PMC11522481 DOI: 10.1038/s41467-024-48654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Dominance heritability in complex traits has received increasing recognition. However, most polygenic score (PGS) approaches do not incorporate non-additive effects. Here, we present GenoBoost, a flexible PGS modeling framework capable of considering both additive and non-additive effects, specifically focusing on genetic dominance. Building on statistical boosting theory, we derive provably optimal GenoBoost scores and provide its efficient implementation for analyzing large-scale cohorts. We benchmark it against seven commonly used PGS methods and demonstrate its competitive predictive performance. GenoBoost is ranked the best for four traits and second-best for three traits among twelve tested disease outcomes in UK Biobank. We reveal that GenoBoost improves prediction for autoimmune diseases by incorporating non-additive effects localized in the MHC locus and, more broadly, works best in less polygenic traits. We further demonstrate that GenoBoost can infer the mode of genetic inheritance without requiring prior knowledge. For example, GenoBoost finds non-zero genetic dominance effects for 602 of 900 selected genetic variants, resulting in 2.5% improvements in predicting psoriasis cases. Lastly, we show that GenoBoost can prioritize genetic loci with genetic dominance not previously reported in the GWAS catalog. Our results highlight the increased accuracy and biological insights from incorporating non-additive effects in PGS models.
Collapse
Affiliation(s)
- Rikifumi Ohta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| | - Yosuke Tanigawa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
11
|
Schmit SL, Tsai YY, Bonner JD, Sanz-Pamplona R, Joshi AD, Ugai T, Lindsey SS, Melas M, McDonnell KJ, Idos GE, Walker CP, Qu C, Kast WM, Da Silva DM, Glickman JN, Chan AT, Giannakis M, Nowak JA, Rennert HS, Robins HS, Ogino S, Greenson JK, Moreno V, Rennert G, Gruber SB. Germline genetic regulation of the colorectal tumor immune microenvironment. BMC Genomics 2024; 25:409. [PMID: 38664626 PMCID: PMC11046907 DOI: 10.1186/s12864-024-10295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE To evaluate the contribution of germline genetics to regulating the briskness and diversity of T cell responses in CRC, we conducted a genome-wide association study to examine the associations between germline genetic variation and quantitative measures of T cell landscapes in 2,876 colorectal tumors from participants in the Molecular Epidemiology of Colorectal Cancer Study (MECC). METHODS Germline DNA samples were genotyped and imputed using genome-wide arrays. Tumor DNA samples were extracted from paraffin blocks, and T cell receptor clonality and abundance were quantified by immunoSEQ (Adaptive Biotechnologies, Seattle, WA). Tumor infiltrating lymphocytes per high powered field (TILs/hpf) were scored by a gastrointestinal pathologist. Regression models were used to evaluate the associations between each variant and the three T-cell features, adjusting for sex, age, genotyping platform, and global ancestry. Three independent datasets were used for replication. RESULTS We identified a SNP (rs4918567) near RBM20 associated with clonality at a genome-wide significant threshold of 5 × 10- 8, with a consistent direction of association in both discovery and replication datasets. Expression quantitative trait (eQTL) analyses and in silico functional annotation for these loci provided insights into potential functional roles, including a statistically significant eQTL between the T allele at rs4918567 and higher expression of ADRA2A (P = 0.012) in healthy colon mucosa. CONCLUSIONS Our study suggests that germline genetic variation is associated with the quantity and diversity of adaptive immune responses in CRC. Further studies are warranted to replicate these findings in additional samples and to investigate functional genomic mechanisms.
Collapse
Affiliation(s)
- Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA.
| | - Ya-Yu Tsai
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph D Bonner
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebeca Sanz-Pamplona
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sidney S Lindsey
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Marilena Melas
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kevin J McDonnell
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Gregory E Idos
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Christopher P Walker
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Chenxu Qu
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - W Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hedy S Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | | | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Stephen B Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
12
|
Dixon P, Martin RM, Harrison S. Causal Estimation of Long-term Intervention Cost-effectiveness Using Genetic Instrumental Variables: An Application to Cancer. Med Decis Making 2024; 44:283-295. [PMID: 38426435 PMCID: PMC10988994 DOI: 10.1177/0272989x241232607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND This article demonstrates a means of assessing long-term intervention cost-effectiveness in the absence of data from randomized controlled trials and without recourse to Markov simulation or similar types of cohort simulation. METHODS Using a Mendelian randomization study design, we developed causal estimates of the genetically predicted effect of bladder, breast, colorectal, lung, multiple myeloma, ovarian, prostate, and thyroid cancers on health care costs and quality-adjusted life-years (QALYs) using outcome data drawn from the UK Biobank cohort. We then used these estimates in a simulation model to estimate the cost-effectiveness of a hypothetical population-wide preventative intervention based on a repurposed class of antidiabetic drugs known as sodium-glucose cotransporter-2 (SGLT2) inhibitors very recently shown to reduce the odds of incident prostate cancer. RESULTS Genetic liability to prostate cancer and breast cancer had material causal impacts on either or both health care costs and QALYs. Mendelian randomization results for the less common cancers were associated with considerable uncertainty. SGLT2 inhibition was unlikely to be a cost-effective preventative intervention for prostate cancer, although this conclusion depended on the price at which these drugs would be offered for a novel anticancer indication. IMPLICATIONS Our new causal estimates of cancer exposures on health economic outcomes may be used as inputs into decision-analytic models of cancer interventions such as screening programs or simulations of longer-term outcomes associated with therapies investigated in randomized controlled trials with short follow-ups. Our method allowed us to rapidly and efficiently estimate the cost-effectiveness of a hypothetical population-scale anticancer intervention to inform and complement other means of assessing long-term intervention value. HIGHLIGHTS The article demonstrates a novel method of assessing long-term intervention cost-effectiveness without relying on randomized controlled trials or cohort simulations.Mendelian randomization was used to estimate the causal effects of certain cancers on health care costs and quality-adjusted life-years (QALYs) using data from the UK Biobank cohort.Given causal data on the association of different cancer exposures on costs and QALYs, it was possible to simulate the cost-effectiveness of an anticancer intervention.Genetic liability to prostate cancer and breast cancer significantly affected health care costs and QALYs, but the hypothetical intervention using SGLT2 inhibitors for prostate cancer may not be cost-effective, depending on the drug's price for the new anticancer indication. The methods we propose and implement can be used to efficiently estimate intervention cost-effectiveness and to inform decision making in all manner of preventative and therapeutic contexts.
Collapse
Affiliation(s)
- Padraig Dixon
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Sean Harrison
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- UK Health Security Agency
| |
Collapse
|
13
|
Zhang M, Wang X, Yang N, Zhu X, Lu Z, Cai Y, Li B, Zhu Y, Li X, Wei Y, Zhang S, Tian J, Miao X. Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks. SCIENCE CHINA. LIFE SCIENCES 2024; 67:132-148. [PMID: 37747674 DOI: 10.1007/s11427-023-2439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023]
Abstract
Genome-wide association studies (GWASs) have identified over 140 colorectal cancer (CRC)-associated loci; however, target genes at the majority of loci and underlying molecular mechanisms are poorly understood. Here, we utilized a Bayesian approach, integrative risk gene selector (iRIGS), to prioritize risk genes at CRC GWAS loci by integrating multi-omics data. As a result, a total of 105 high-confidence risk genes (HRGs) were identified, which exhibited strong gene dependencies for CRC and enrichment in the biological processes implicated in CRC. Among the 105 HRGs, CEBPB, located at the 20q13.13 locus, acted as a transcription factor playing critical roles in cancer. Our subsequent assays indicated the tumor promoter function of CEBPB that facilitated CRC cell proliferation by regulating multiple oncogenic pathways such as MAPK, PI3K-Akt, and Ras signaling. Next, by integrating a fine-mapping analysis and three independent case-control studies in Chinese populations consisting of 8,039 cases and 12,775 controls, we elucidated that rs1810503, a putative functional variant regulating CEBPB, was associated with CRC risk (OR=0.90, 95%CI=0.86-0.93, P=1.07×10-7). The association between rs1810503 and CRC risk was further validated in three additional multi-ancestry populations consisting of 24,254 cases and 58,741 controls. Mechanistically, the rs1810503 A to T allele change weakened the enhancer activity in an allele-specific manner to decrease CEBPB expression via long-range promoter-enhancer interactions, mediated by the transcription factor, REST, and thus decreased CRC risk. In summary, our study provides a genetic resource and a generalizable strategy for CRC etiology investigation, and highlights the biological implications of CEBPB in CRC tumorigenesis, shedding new light on the etiology of CRC.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China
| | - Shaokai Zhang
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China.
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Tsai YY, Qu C, Bonner JD, Sanz-Pamplona R, Lindsey SS, Melas M, McDonnell KJ, Idos GE, Walker CP, Tsang KK, Da Silva DM, Moratalla-Navarro F, Maoz A, Rennert HS, Kast WM, Greenson JK, Moreno V, Rennert G, Gruber SB, Schmit SL. Heterozygote advantage at HLA class I and II loci and reduced risk of colorectal cancer. Front Immunol 2023; 14:1268117. [PMID: 37942321 PMCID: PMC10627840 DOI: 10.3389/fimmu.2023.1268117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Objective Reduced diversity at Human Leukocyte Antigen (HLA) loci may adversely affect the host's ability to recognize tumor neoantigens and subsequently increase disease burden. We hypothesized that increased heterozygosity at HLA loci is associated with a reduced risk of developing colorectal cancer (CRC). Methods We imputed HLA class I and II four-digit alleles using genotype data from a population-based study of 5,406 cases and 4,635 controls from the Molecular Epidemiology of Colorectal Cancer Study (MECC). Heterozygosity at each HLA locus and the number of heterozygous genotypes at HLA class -I (A, B, and C) and HLA class -II loci (DQB1, DRB1, and DPB1) were quantified. Logistic regression analysis was used to estimate the risk of CRC associated with HLA heterozygosity. Individuals with homozygous genotypes for all loci served as the reference category, and the analyses were adjusted for sex, age, genotyping platform, and ancestry. Further, we investigated associations between HLA diversity and tumor-associated T cell repertoire features, as measured by tumor infiltrating lymphocytes (TILs; N=2,839) and immunosequencing (N=2,357). Results Individuals with all heterozygous genotypes at all three class I genes had a reduced odds of CRC (OR: 0.74; 95% CI: 0.56-0.97, p= 0.031). A similar association was observed for class II loci, with an OR of 0.75 (95% CI: 0.60-0.95, p= 0.016). For class-I and class-II combined, individuals with all heterozygous genotypes had significantly lower odds of developing CRC (OR: 0.66, 95% CI: 0.49-0.87, p= 0.004) than those with 0 or one heterozygous genotype. HLA class I and/or II diversity was associated with higher T cell receptor (TCR) abundance and lower TCR clonality, but results were not statistically significant. Conclusion Our findings support a heterozygote advantage for the HLA class-I and -II loci, indicating an important role for HLA genetic variability in the etiology of CRC.
Collapse
Affiliation(s)
- Ya-Yu Tsai
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chenxu Qu
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Joseph D. Bonner
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Rebeca Sanz-Pamplona
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Hospital Universitario Lozano Blesa, Aragon Health Research Institute (IISA), ARAID Foundation, Aragon Government, Zaragoza, Spain
| | - Sidney S. Lindsey
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Marilena Melas
- Molecular Diagnostics, New York Genome Center, New York, NY, United States
| | - Kevin J. McDonnell
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Gregory E. Idos
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Christopher P. Walker
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Kevin K. Tsang
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Ferran Moratalla-Navarro
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Asaf Maoz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Hedy S. Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - W. Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Joel K. Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Gad Rennert
- B. Rappaport Faculty of Medicine, Technion and the Association for Promotion of Research in Precision Medicine (APRPM), Haifa, Israel
| | - Stephen B. Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, United States
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| |
Collapse
|
15
|
Mahmood K, Thomas M, Qu C, Hsu L, Buchanan DD, Peters U. Elucidating the Risk of Colorectal Cancer for Variants in Hereditary Colorectal Cancer Genes. Gastroenterology 2023; 165:1070-1076.e3. [PMID: 37453563 PMCID: PMC10866455 DOI: 10.1053/j.gastro.2023.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Biostatistics, University of Washington, Seattle, Washington.
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington.
| |
Collapse
|
16
|
Ying P, Chen C, Lu Z, Chen S, Zhang M, Cai Y, Zhang F, Huang J, Fan L, Ning C, Li Y, Wang W, Geng H, Liu Y, Tian W, Yang Z, Liu J, Huang C, Yang X, Xu B, Li H, Zhu X, Li N, Li B, Wei Y, Zhu Y, Tian J, Miao X. Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk. Nat Commun 2023; 14:5958. [PMID: 37749132 PMCID: PMC10520073 DOI: 10.1038/s41467-023-41690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.
Collapse
Grants
- Distinguished Young Scholars of China (NSFC-81925032), Key Program of National Natural Science Foundation of China (NSFC-82130098), the Fundamental Research Funds for the Central Universities (2042022rc0026, 2042023kf1005),Knowledge Innovation Program of Wuhan (2023020201010060).
- Youth Program of National Natural Science Foundation of China (NSFC-82003547), Program of Health Commission of Hubei Province (WJ2023M045) and Fundamental Research Funds for the Central Universities (WHU: 2042022kf1031).
- The National Science Fund for Excellent Young Scholars (NSFC-82322058), Program of National Natural Science Foundation of China (NSFC-82103929, NSFC-82273713), Young Elite Scientists Sponsorship Program by cst(2022QNRC001), National Science Fund for Distinguished Young Scholars of Hubei Province of China (2023AFA046), Fundamental Research Funds for the Central Universities (WHU:2042022kf1205) and Knowledge Innovation Program of Wuhan (whkxjsj011, 2023020201010073).
Collapse
Affiliation(s)
- Pingting Ying
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuoni Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jinyu Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wenzhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yizhuo Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Wen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Lai J, Wong CK, Schmidt DF, Kapuscinski MK, Alpen K, MacInnis RJ, Buchanan DD, Win AK, Figueiredo JC, Chan AT, Harrison TA, Hoffmeister M, White E, Le Marchand L, Pai RK, Peters U, Hopper JL, Jenkins MA, Makalic E. Using DEPendency of Association on the Number of Top Hits (DEPTH) as a Complementary Tool to Identify Novel Colorectal Cancer Susceptibility Loci. Cancer Epidemiol Biomarkers Prev 2023; 32:1153-1159. [PMID: 37364297 PMCID: PMC10529807 DOI: 10.1158/1055-9965.epi-22-1209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/27/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND DEPendency of association on the number of Top Hits (DEPTH) is an approach to identify candidate susceptibility regions by considering the risk signals from overlapping groups of sequential variants across the genome. METHODS We applied a DEPTH analysis using a sliding window of 200 SNPs to colorectal cancer data from the Colon Cancer Family Registry (CCFR; 5,735 cases and 3,688 controls), and Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO; 8,865 cases and 10,285 controls) studies. A DEPTH score > 1 was used to identify candidate susceptibility regions common to both analyses. We compared DEPTH results against those from conventional genome-wide association study (GWAS) analyses of these two studies as well as against 132 published susceptibility regions. RESULTS Initial DEPTH analysis revealed 2,622 (CCFR) and 3,686 (GECCO) candidate susceptibility regions, of which 569 were common to both studies. Bootstrapping revealed 40 and 49 candidate susceptibility regions in the CCFR and GECCO data sets, respectively. Notably, DEPTH identified at least 82 regions that would not be detected using conventional GWAS methods, nor had they been identified by previous colorectal cancer GWASs. We found four reproducible candidate susceptibility regions (2q22.2, 2q33.1, 6p21.32, 13q14.3). The highest DEPTH scores were in the human leukocyte antigen locus at 6p21 where the strongest associated SNPs were rs762216297, rs149490268, rs114741460, and rs199707618 for the CCFR data, and rs9270761 for the GECCO data. CONCLUSIONS DEPTH can identify candidate susceptibility regions for colorectal cancer not identified using conventional analyses of larger datasets. IMPACT DEPTH has potential as a powerful complementary tool to conventional GWAS analyses for discovering susceptibility regions within the genome.
Collapse
Affiliation(s)
- John Lai
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Australian Genome Research Facility, Brisbane, Australia
| | - Chi Kuen Wong
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Genetic Technologies Limited, Melbourne, Australia
| | - Daniel F. Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Miroslaw K. Kapuscinski
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Karen Alpen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Robert J. MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Aung K. Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jane C. Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Rish K. Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Dimou N, Kim AE, Flanagan O, Murphy N, Diez-Obrero V, Shcherbina A, Aglago EK, Bouras E, Campbell PT, Casey G, Gallinger S, Gruber SB, Jenkins MA, Lin Y, Moreno V, Ruiz-Narvaez E, Stern MC, Tian Y, Tsilidis KK, Arndt V, Barry EL, Baurley JW, Berndt SI, Bézieau S, Bien SA, Bishop DT, Brenner H, Budiarto A, Carreras-Torres R, Cenggoro TW, Chan AT, Chang-Claude J, Chanock SJ, Chen X, Conti DV, Dampier CH, Devall M, Drew DA, Figueiredo JC, Giles GG, Gsur A, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jordahl K, Kawaguchi E, Keku TO, Larsson SC, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Morrison J, Newcomb PA, Newton CC, Obon-Santacana M, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Potter JD, Rennert G, Scacheri PC, Schoen RE, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Ulrich CM, Um CY, van Duijnhoven FJB, Visvanathan K, Vodicka P, Vodickova L, White E, Wolk A, Woods MO, Qu C, Kundaje A, Hsu L, Gauderman WJ, Gunter MJ, Peters U. Probing the diabetes and colorectal cancer relationship using gene - environment interaction analyses. Br J Cancer 2023; 129:511-520. [PMID: 37365285 PMCID: PMC10403521 DOI: 10.1038/s41416-023-02312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
Collapse
Affiliation(s)
- Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Orlagh Flanagan
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona, 08908, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Elom K Aglago
- School of Public Health, Imperial College London, London, United Kingdom
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Center for Precision Medicine, Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victor Moreno
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Kostas K Tsilidis
- School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 8908, Barcelona, Spain
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher H Dampier
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
- Department of General Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kristina Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mireia Obon-Santacana
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, 08908L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Kala Visvanathan
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- School of Public Health, Imperial College London, London, United Kingdom
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Al-Harbi N, Abdulla MH, Vaali-Mohammed MA, Bin Traiki T, Alswayyed M, Al-Obeed O, Abid I, Al-Omar S, Mansour L. Evidence of Association between CTLA-4 Gene Polymorphisms and Colorectal Cancers in Saudi Patients. Genes (Basel) 2023; 14:genes14040874. [PMID: 37107632 PMCID: PMC10138150 DOI: 10.3390/genes14040874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) has been identified as an immunosuppressive molecule involved in the negative regulation of T cells. It is highly expressed in several types of autoimmune diseases and cancers including colorectal cancer (CRC). (1) Objective: To explore the association between CTLA-4 single nucleotide polymorphisms (SNP) and risk to (CRC) in the Saudi population. (2) Methods: In this case-control study, 100 patients with CRC and 100 matched healthy controls were genotyped for three CTLA-4 SNPs: rs11571317 (-658C > T), rs231775 (+49A > G) and rs3087243 (CT60 G > A), using TaqMan assay method. Associations were evaluated using odds ratios (ORs) and 95% confidence intervals (95% CIs) for five inheritance models (co-dominant, dominant, recessive, over-dominant and log-additive). Furthermore, CTLA-4 expression levels were evaluated using quantitative real-time PCR (Q-RT-PCR) in colon cancer and adjacent colon tissues. (3) Results: Our result showed a significant association of the G allele (OR = 2.337, p < 0.0001) and GG genotype of the missense SNP +49A > G with increased risk of developing CRC in codominant (OR = 8.93, p < 0.0001) and recessive (OR = 16.32, p < 0.0001) models. Inversely, the AG genotype was significantly associated with decreased risk to CRC in the codominant model (OR = 0.23, p < 0.0001). In addition, the CT60 G > A polymorphism exhibited a strong association with a high risk of developing CRC for the AA genotype in codominant (OR = 3.323, p = 0.0053) and in allele models (OR = 1.816, p = 0.005). No significant association was found between -658C > T and CRC. The haplotype analysis showed that the G-A-G haplotype of the rs11571317, rs231775 and rs3087243 was associated with high risk for CRC (OR = 57.66; p < 0.001). The CTLA-4 mRNA gene expression was found significantly higher in tumors compared to normal adjacent colon samples (p < 0.001). (4) Conclusions: Our findings support an association between the CTLA-4 rs231775 (+49A > G) and rs3087243 (CT60 G > A) polymorphisms and CRC risk in the Saudi population. Further validation in a larger cohort size is needed prior to utilizing these SNPs as a potential screening marker in the Saudi population.
Collapse
Affiliation(s)
- Nouf Al-Harbi
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | | | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
| | - Omar Al-Obeed
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Islem Abid
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Suliman Al-Omar
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| |
Collapse
|
20
|
Kawaguchi ES, Kim AE, Pablo Lewinger J, Gauderman WJ. Improved two-step testing of genome-wide gene-environment interactions. Genet Epidemiol 2023; 47:152-166. [PMID: 36571162 PMCID: PMC9974838 DOI: 10.1002/gepi.22509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 12/27/2022]
Abstract
Two-step tests for gene-environment (G × E $G\times E$ ) interactions exploit marginal single-nucleotide polymorphism (SNP) effects to improve the power of a genome-wide interaction scan. They combine a screening step based on marginal effects used to "bin" SNPs for weighted hypothesis testing in the second step to deliver greater power over single-step tests while preserving the genome-wide Type I error. However, the presence of many SNPs with detectable marginal effects on the trait of interest can reduce power by "displacing" true interactions with weaker marginal effects and by adding to the number of tests that need to be corrected for multiple testing. We introduce a new significance-based allocation into bins for Step-2G × E $G\times E$ testing that overcomes the displacement issue and propose a computationally efficient approach to account for multiple testing within bins. Simulation results demonstrate that these simple improvements can provide substantially greater power than current methods under several scenarios. An application to a multistudy collaboration for understanding colorectal cancer reveals a G × Sex interaction located near the SMAD7 gene.
Collapse
Affiliation(s)
- Eric S. Kawaguchi
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| | - Andre E. Kim
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| | - W. James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, California, USA
| |
Collapse
|
21
|
Wang J, Millstein J, Yang Y, Stintzing S, Arai H, Battaglin F, Kawanishi N, Soni S, Zhang W, Mancao C, Cremolini C, Liu T, Heinemann V, Falcone A, Shen L, Lenz HJ. Impact of genetic variants involved in the lipid metabolism pathway on progression free survival in patients receiving bevacizumab-based chemotherapy in metastatic colorectal cancer: a retrospective analysis of FIRE-3 and MAVERICC trials. EClinicalMedicine 2023; 57:101827. [PMID: 36816347 PMCID: PMC9932345 DOI: 10.1016/j.eclinm.2023.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Antiangiogenic drug (AAD)-triggered oxygen and nutrient depletion through suppression of angiogenesis switches glucose-dependent to lipid-dependent metabolism. Blocking fatty acid oxidation can enhance AAD-mediated anti-tumor effects in colorectal cancer (CRC). Therefore, we hypothesised that genetic variants in the lipid metabolism pathway may predict clinical outcomes [overall response rate (ORR), overall survival (OS) and progression-free survival (PFS)] in metastatic CRC (mCRC) patients receiving bevacizumab-based first-line treatment. METHODS Genomic DNA from blood samples of patients enrolled in FIRE-3 (a global, randomised, open-label, phase 3 trial, between 2007-6-23 and 2012-9-19, discovery cohort: FOLFIRI/bevacizumab arm, n = 107; control cohort: FOLFIRI/cetuximab arm, n = 129) and MAVERICC (a global, randomised, open-label, phase II study, between 2011-8 and 2015-7, in United States, Canada, Estonia, Ireland, Switzerland, Norway, and Portugal. Validation cohort: FOLFIRI/bevacizumab arm, n = 163) trials, was genotyped using the OncoArray-500 K beadchip panel. The impact on OS and PFS of 17 selected SNPs in 7 genes involved in the lipid metabolism pathway (CD36, FABP4, LPCAT1/2, CPT1A, FASN, ACACA) was analysed using Kaplan-Meier curves, the log-rank test for univariate analyses and likelihood ratio tests of Cox proportional hazards regression parameters for multivariable analyses. ORR and SNP associations were evaluated using Chi-square or Fisher's exact tests. FINDINGS In the discovery cohort, patients with FASN rs4485435 any C allele (n = 21) showed significantly shorter PFS (median PFS: 8.69 vs 13.48 months) compared to carriers of G/G (n = 62) in multivariable (HR = 2.87; 95%CI 1.4-5.9; p = 0.00675) analysis. These data were confirmed in the validation cohort in multivariable analysis (HR = 2.07, 95%CI: 1.15-3.74; p = 0.02), but no association was observed in the cetuximab cohort of FIRE-3. In the comparison of bevacizumab vs cetuximab arm in FIRE-3, a significant interaction was shown with FASN rs4485435 (p = 0.017) on PFS. INTERPRETATION Our study demonstrates for the first time, to our knowledge, that FASN polymorphisms may predict outcome of bevacizumab-based treatment in patients with mCRC. These findings support a possible role of the lipid metabolism pathway in contributing to resistance to anti-VEGF treatment. FUNDING This work was supported by the National Cancer Institute [P30CA 014089 to H.-J.L.], Gloria Borges WunderGlo Foundation, Dhont Family Foundation, Victoria and Philip Wilson Research Fund, San Pedro Peninsula Cancer Guild, Ming Hsieh Research Fund, Eddie Mahoney Memorial Research Fund, Shanghai Sailing Program (22YF1407000), China National Postdoctoral Program for Innovative Talents (BX20220084), China Postdoctoral Science Foundation (2022M710768), National Natural Science Foundation of China (82202892).
Collapse
Key Words
- 3' UTR, 3′ untranslated regions
- ACACA, acetyl-coA carboxylase
- ADD, antiangiogenic drug
- AIM, ancestry informative markers
- Bevacizumab
- Biomarker
- CEU, Utah residents with Northern and Western European ancestry from the CEPH collection
- CORECT, Colorectal Cancer Transdisciplinary
- CPT1A, carnitine palmitoyl transferase 1A
- CRC, colorectal cancer
- Colorectal cancer
- ECOG PS, Eastern Cooperative Oncology Group performance status
- FAO, fatty acids β-oxidation
- FASN, fatty acid synthase
- LPCAT1, lysolecithin acyltransferase 1
- LPCAT2, lysolecithin acyltransferase 2
- Lipid metabolism
- MAF, minor allele frequency
- MUFA, monounsaturated fatty acids
- ORR, overall response rate
- OS, overall survival
- PFS, progression-free survival
- SNP, single nucleotide polymorphisms
- mCRC, metastatic colorectal cancer
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, 200032, China
- Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
- Cancer Centre, Zhongshan Hospital Fudan University, Xuhui District, Shanghai, 200032, China
| | - Joshua Millstein
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Yan Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology (CCM), Charité- Universitaetsmedizin Berlin, Germany
| | - Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christoph Mancao
- Oncology Biomarker Development, Genentech Inc., Basel, Switzerland
| | | | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Xuhui District, Shanghai, 200032, China
| | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Translational Medicine, University of Pisa, Italy
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Corresponding author. Division of Medical Oncology, Norris Comprehensive Cancer Centre, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
22
|
Sha Z, Chen Y, Hu T. NSPA: characterizing the disease association of multiple genetic interactions at single-subject resolution. BIOINFORMATICS ADVANCES 2023; 3:vbad010. [PMID: 36818729 PMCID: PMC9927570 DOI: 10.1093/bioadv/vbad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Motivation The interaction between genetic variables is one of the major barriers to characterizing the genetic architecture of complex traits. To consider epistasis, network science approaches are increasingly being used in research to elucidate the genetic architecture of complex diseases. Network science approaches associate genetic variables' disease susceptibility to their topological importance in the network. However, this network only represents genetic interactions and does not describe how these interactions attribute to disease association at the subject-scale. We propose the Network-based Subject Portrait Approach (NSPA) and an accompanying feature transformation method to determine the collective risk impact of multiple genetic interactions for each subject. Results The feature transformation method converts genetic variants of subjects into new values that capture how genetic variables interact with others to attribute to a subject's disease association. We apply this approach to synthetic and genetic datasets and learn that (1) the disease association can be captured using multiple disjoint sets of genetic interactions and (2) the feature transformation method based on NSPA improves predictive performance comparing with using the original genetic variables. Our findings confirm the role of genetic interaction in complex disease and provide a novel approach for gene-disease association studies to identify genetic architecture in the context of epistasis. Availability and implementation The codes of NSPA are now available in: https://github.com/MIB-Lab/Network-based-Subject-Portrait-Approach. Contact ting.hu@queensu.ca. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Zhendong Sha
- School of Computing, Queen’s University, Kingston, Ontario, Canada K7L 2N8
| | - Yuanzhu Chen
- School of Computing, Queen’s University, Kingston, Ontario, Canada K7L 2N8
| | - Ting Hu
- To whom correspondence should be addressed.
| |
Collapse
|
23
|
Machiela MJ, Huang WY, Wong W, Berndt SI, Sampson J, De Almeida J, Abubakar M, Hislop J, Chen KL, Dagnall C, Diaz-Mayoral N, Ferrell M, Furr M, Gonzalez A, Hicks B, Hubbard AK, Hutchinson A, Jiang K, Jones K, Liu J, Loftfield E, Loukissas J, Mabie J, Merkle S, Miller E, Minasian LM, Nordgren E, Park B, Pinsky P, Riley T, Sandoval L, Saxena N, Vogt A, Wang J, Williams C, Wright P, Yeager M, Zhu B, Zhu C, Chanock SJ, Garcia-Closas M, Freedman ND. GWAS Explorer: an open-source tool to explore, visualize, and access GWAS summary statistics in the PLCO Atlas. Sci Data 2023; 10:25. [PMID: 36635305 PMCID: PMC9837135 DOI: 10.1038/s41597-022-01921-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial is a prospective cohort study of nearly 155,000 U.S. volunteers aged 55-74 at enrollment in 1993-2001. We developed the PLCO Atlas Project, a large resource for multi-trait genome-wide association studies (GWAS), by genotyping participants with available DNA and genomic consent. Genotyping on high-density arrays and imputation was performed, and GWAS were conducted using a custom semi-automated pipeline. Association summary statistics were generated from a total of 110,562 participants of European, African and Asian ancestry. Application programming interfaces (APIs) and open-source software development kits (SKDs) enable exploring, visualizing and open data access through the PLCO Atlas GWAS Explorer website, promoting Findable, Accessible, Interoperable, and Re-usable (FAIR) principles. Currently the GWAS Explorer hosts association data for 90 traits and >78,000,000 genomic markers, focusing on cancer and cancer-related phenotypes. New traits will be posted as association data becomes available. The PLCO Atlas is a FAIR resource of high-quality genetic and phenotypic data with many potential reuse opportunities for cancer research and genetic epidemiology.
Collapse
Affiliation(s)
- Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA.
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Wendy Wong
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jonas De Almeida
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jada Hislop
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Kai-Ling Chen
- Essential Software Inc., Center for Biomedical Informatics and Information Technology, NCI, Rockville, USA
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Norma Diaz-Mayoral
- BioProcessing and Trial Logistics Laboratory, FNLCR, Leidos Biomedical Research, Inc. Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Mary Ferrell
- NCI at Frederick Central Repository, American Type Culture Collection, Rockville, USA
| | - Michael Furr
- Information Management Services, Inc., Danbury, USA
| | - Alex Gonzalez
- NCI at Frederick Central Repository, American Type Culture Collection, Rockville, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Kevin Jiang
- Essential Software Inc., Center for Biomedical Informatics and Information Technology, NCI, Rockville, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jennifer Loukissas
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Jerome Mabie
- Information Management Services, Inc., Danbury, USA
| | | | - Eric Miller
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | | | - Ellen Nordgren
- NCI at Frederick Central Repository, American Type Culture Collection, Rockville, USA
| | - Brian Park
- Essential Software Inc., Center for Biomedical Informatics and Information Technology, NCI, Rockville, USA
| | - Paul Pinsky
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Thomas Riley
- Information Management Services, Inc., Danbury, USA
| | - Lorena Sandoval
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Neeraj Saxena
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Aurelie Vogt
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Jiahui Wang
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | | | | | - Meredith Yeager
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, DCEG, NCI, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Rockville, USA
| | - Claire Zhu
- Division of Cancer Prevention, NCI, NIH, Rockville, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), Rockville, USA
| |
Collapse
|
24
|
Zhang Z, Chen Y, Zhuo Q, Deng C, Yang Y, Luo W, Lai S, Rao H. ALDH2 gene rs671 G > a polymorphism and the risk of colorectal cancer: A hospital-based study. J Clin Lab Anal 2022; 36:e24789. [PMID: 36426922 PMCID: PMC9757017 DOI: 10.1002/jcla.24789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The susceptibility to some cancers is linked to genetic factors, such as aldehyde dehydrogenase 2 (ALDH2) polymorphisms. The relationship between ALDH2 rs671 and colorectal cancer (CRC) is not clear in Hakka population. METHODS Between October 2015 and December 2020, a total of 178 CRC patients and 261 controls were recruited. ALDH2 rs671 was genotyped in these subjects, medical records (smoking history, drinking history and blood cell parameters) were collected, and the relationship between these information and CRC was analyzed. RESULTS The proportion of the ALDH2 rs671 G/G, G/A, and A/A genotype was 48.3%, 44.4%, and 7.3% in patients; 62.1%, 34.1%, and 3.8% in controls, respectively. The difference of ALDH2 genotypes distribution between cases and controls was statistically significant (p = 0.011). The higher percentage of smokers and alcoholics, higher level of neutrophil to lymphocyte ratio (NLR), platelet count, and platelet to lymphocyte ratio (PLR), and lower level of lymphocyte count, lymphocyte to monocyte ratio (LMR), and mean hemoglobin concentration were observed in patients. Logistic regression analysis indicated that ALDH2 rs671 G/A genotype (G/A vs. G/G) (adjusted OR 1.801, 95% CI 1.160-2.794, p = 0.009) and A/A genotype (A/A vs. G/G) (adjusted OR 2.630, 95% CI 1.041-6.645, p = 0.041) in the co-dominant model, while G/A + A/A genotypes (G/A + A/A vs. G/G) (adjusted OR 1.883, 95% CI 1.230-2.881, p = 0.004) in the dominant model were risk factors for CRC. CONCLUSIONS Individuals carrying ALDH2 rs671 A allele (G/A, A/A genotypes) may be at increased risk of colorectal cancer.
Collapse
Affiliation(s)
- Zhuoxin Zhang
- Department of Gastrointestinal Surgery, Meizhou People's HospitalMeizhou Academy of Medical SciencesMeizhouChina
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| | - Yijin Chen
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
- Department of GastroenterologyMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| | - Qingqing Zhuo
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
- Department of GastroenterologyMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| | - Changqing Deng
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
- Department of GastroenterologyMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
- Department of GastroenterologyMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| | - Wen Luo
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
- Department of GastroenterologyMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| | - Shixun Lai
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka PopulationMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
- Department of GastroenterologyMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| | - Hui Rao
- Department of GastroenterologyMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
- Department of Laboratory MedicineMeizhou People's Hospital, Meizhou Academy of Medical SciencesMeizhouChina
| |
Collapse
|
25
|
Al-Harbi N, Vaali-Mohammed MA, Al-Omar S, Zubaidi A, Al-Obeed O, Abdulla MH, Mansour L. Rs10204525 Polymorphism of the Programmed Death (PD-1) Gene Is Associated with Increased Risk in a Saudi Arabian Population with Colorectal Cancer. Medicina (B Aires) 2022; 58:medicina58101439. [PMID: 36295599 PMCID: PMC9607617 DOI: 10.3390/medicina58101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Checkpoint programmed death-1 (PD-1) has been identified as an immunosuppressive molecule implicated in the immune evasion of transformed cells. It is highly expressed in tumor cells in order to evade host immunosurveillance. In this study, we aimed to assess the association between single nucleotide polymorphisms (SNP) of PD-1 and the risk of colorectal cancer (CRC) in the Saudi population. For this case-control study, the TaqMan assay method was used for genotyping three SNPs in the PD-1 gene in 100 CRC patients and 100 healthy controls. Associations were estimated using odds ratios (ORs) and 95% confidence intervals (95% CIs) for multiple inheritance models (codominant, dominant, recessive, over-dominant, and log-additive). Moreover, PD-1 gene expression levels were evaluated using quantitative real-time PCR in colon cancer tissue and adjacent colon tissues. We found that the PD-1 rs10204525 A allele was associated with an increased risk of developing CRC (OR = 2.35; p = 0.00657). In addition, the PD-1 rs10204525 AA homozygote genotype was associated with a high risk of developing CRC in the codominant (OR = 21.65; p = 0.0014), recessive (OR = 10.97; p = 0.0015), and additive (OR = 1.98; p = 0.012) models. A weak protective effect was found for the rs2227981 GG genotype (OR = 2.52; p = 0.034), and no significant association was found between the rs2227982 and CRC. Haplotype analysis showed that the rs10204525, rs2227981, rs2227982 A-A-G haplotype was associated with a significantly increased risk of CRC (OR = 6.79; p =0.031).
Collapse
Affiliation(s)
- Nouf Al-Harbi
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia
| | | | - Suliman Al-Omar
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia
| | - Ahmed Zubaidi
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Omar Al-Obeed
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
- Correspondence: (M.-H.A.); or (L.M.)
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh 11451, Saudi Arabia
- Correspondence: (M.-H.A.); or (L.M.)
| |
Collapse
|
26
|
Byun J, Han Y, Li Y, Xia J, Long E, Choi J, Xiao X, Zhu M, Zhou W, Sun R, Bossé Y, Song Z, Schwartz A, Lusk C, Rafnar T, Stefansson K, Zhang T, Zhao W, Pettit RW, Liu Y, Li X, Zhou H, Walsh KM, Gorlov I, Gorlova O, Zhu D, Rosenberg SM, Pinney S, Bailey-Wilson JE, Mandal D, de Andrade M, Gaba C, Willey JC, You M, Anderson M, Wiencke JK, Albanes D, Lam S, Tardon A, Chen C, Goodman G, Bojeson S, Brenner H, Landi MT, Chanock SJ, Johansson M, Muley T, Risch A, Wichmann HE, Bickeböller H, Christiani DC, Rennert G, Arnold S, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Andrew AS, Kiemeney LA, Shen H, Zienolddiny S, Grankvist K, Johansson M, Caporaso N, Cox A, Hong YC, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Patel A, Lan Q, Rothman N, Taylor F, Kachuri L, Witte JS, Sakoda LC, Spitz M, Brennan P, Lin X, McKay J, Hung RJ, Amos CI. Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer. Nat Genet 2022; 54:1167-1177. [PMID: 35915169 PMCID: PMC9373844 DOI: 10.1038/s41588-022-01115-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
Collapse
Affiliation(s)
- Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Wen Zhou
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Zhuoyi Song
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ann Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Christine Lusk
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rowland W Pettit
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xihao Li
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Olga Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Susan Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Colette Gaba
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - James C Willey
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, Houston, TX, USA
| | | | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephan Lam
- Department of Integrative Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stig Bojeson
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thomas Muley
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - David C Christiani
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Susanne Arnold
- University of Kentucky, Markey Cancer Center, Lexington, KY, USA
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjay Shete
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alpa Patel
- American Cancer Society, Atlanta, GA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Margaret Spitz
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Xihong Lin
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - James McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
Ahmad S, Ashktorab H, Brim H, Housseau F. Inflammation, microbiome and colorectal cancer disparity in African-Americans: Are there bugs in the genetics? World J Gastroenterol 2022; 28:2782-2801. [PMID: 35978869 PMCID: PMC9280725 DOI: 10.3748/wjg.v28.i25.2782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulated interactions between host inflammation and gut microbiota over the course of life increase the risk of colorectal cancer (CRC). While environmental factors and socio-economic realities of race remain predominant contributors to CRC disparities in African-Americans (AAs), this review focuses on the biological mediators of CRC disparity, namely the under-appreciated influence of inherited ancestral genetic regulation on mucosal innate immunity and its interaction with the microbiome. There remains a poor understanding of mechanisms linking immune-related genetic polymorphisms and microbiome diversity that could influence chronic inflammation and exacerbate CRC disparities in AAs. A better understanding of the relationship between host genetics, bacteria, and CRC pathogenesis will improve the prediction of cancer risk across race/ethnicity groups overall.
Collapse
Affiliation(s)
- Sami Ahmad
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, United States
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20060, United States
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC 20060, United States
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, United States
| |
Collapse
|
28
|
Shu X, Chen Z, Long J, Guo X, Yang Y, Qu C, Ahn YO, Cai Q, Casey G, Gruber SB, Huyghe JR, Jee SH, Jenkins MA, Jia WH, Jung KJ, Kamatani Y, Kim DH, Kim J, Kweon SS, Le Marchand L, Matsuda K, Matsuo K, Newcomb PA, Oh JH, Ose J, Oze I, Pai RK, Pan ZZ, Pharoah PD, Playdon MC, Ren ZF, Schoen RE, Shin A, Shin MH, Shu XO, Sun X, Tangen CM, Tanikawa C, Ulrich CM, van Duijnhoven FJ, Van Guelpen B, Wolk A, Woods MO, Wu AH, Peters U, Zheng W. Large-scale Integrated Analysis of Genetics and Metabolomic Data Reveals Potential Links Between Lipids and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2022; 31:1216-1226. [PMID: 35266989 PMCID: PMC9354799 DOI: 10.1158/1055-9965.epi-21-1008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The etiology of colorectal cancer is not fully understood. METHODS Using genetic variants and metabolomics data including 217 metabolites from the Framingham Heart Study (n = 1,357), we built genetic prediction models for circulating metabolites. Models with prediction R2 > 0.01 (Nmetabolite = 58) were applied to predict levels of metabolites in two large consortia with a combined sample size of approximately 46,300 cases and 59,200 controls of European and approximately 21,700 cases and 47,400 controls of East Asian (EA) descent. Genetically predicted levels of metabolites were evaluated for their associations with colorectal cancer risk in logistic regressions within each racial group, after which the results were combined by meta-analysis. RESULTS Of the 58 metabolites tested, 24 metabolites were significantly associated with colorectal cancer risk [Benjamini-Hochberg FDR (BH-FDR) < 0.05] in the European population (ORs ranged from 0.91 to 1.06; P values ranged from 0.02 to 6.4 × 10-8). Twenty one of the 24 associations were replicated in the EA population (ORs ranged from 0.26 to 1.69, BH-FDR < 0.05). In addition, the genetically predicted levels of C16:0 cholesteryl ester was significantly associated with colorectal cancer risk in the EA population only (OREA: 1.94, 95% CI, 1.60-2.36, P = 2.6 × 10-11; OREUR: 1.01, 95% CI, 0.99-1.04, P = 0.3). Nineteen of the 25 metabolites were glycerophospholipids and triacylglycerols (TAG). Eighteen associations exhibited significant heterogeneity between the two racial groups (PEUR-EA-Het < 0.005), which were more strongly associated in the EA population. This integrative study suggested a potential role of lipids, especially certain glycerophospholipids and TAGs, in the etiology of colorectal cancer. CONCLUSIONS This study identified potential novel risk biomarkers for colorectal cancer by integrating genetics and circulating metabolomics data. IMPACT The identified metabolites could be developed into new tools for risk assessment of colorectal cancer in both European and EA populations.
Collapse
Affiliation(s)
- Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen B. Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | | | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan,Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,School of Public Health, University of Washington, Seattle, Washington, USA
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Jennifer Ose
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Paul D.P. Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mary C. Playdon
- Cancer Control and Population Sciences, Huntsman Cancer Institute and Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Xiao-ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Epidemiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Catherine M. Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Cornelia M. Ulrich
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O. Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Anna H. Wu
- University of Southern California, Preventative Medicine, Los Angeles, California, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
29
|
Jordahl KM, Shcherbina A, Kim AE, Su YR, Lin Y, Wang J, Qu C, Albanes D, Arndt V, Baurley JW, Berndt SI, Bien SA, Bishop DT, Bouras E, Brenner H, Buchanan DD, Budiarto A, Campbell PT, Carreras-Torres R, Casey G, Cenggoro TW, Chan AT, Conti DV, Dampier CH, Devall MA, Díez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gsur A, Gunter MJ, Hampel H, Harlid S, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Joshi AD, Keku TO, Larsson SC, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Moreno V, Morrison JL, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Potter JD, Prentice RL, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Slattery ML, Stern MC, Tangen CM, Thibodeau SN, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, Vodicka P, White E, Wolk A, Woods MO, Wu AH, Zemlianskaia N, Chang-Claude J, Gauderman WJ, Hsu L, Kundaje A, Peters U. Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region. Cancer Epidemiol Biomarkers Prev 2022; 31:1077-1089. [PMID: 35438744 PMCID: PMC9081195 DOI: 10.1158/1055-9965.epi-21-1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/30/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Currently known associations between common genetic variants and colorectal cancer explain less than half of its heritability of 25%. As alcohol consumption has a J-shape association with colorectal cancer risk, nondrinking and heavy drinking are both risk factors for colorectal cancer. METHODS Individual-level data was pooled from the Colon Cancer Family Registry, Colorectal Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to compare nondrinkers (≤1 g/day) and heavy drinkers (>28 g/day) with light-to-moderate drinkers (1-28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a novel two-step method that modifies the weighted hypothesis testing framework. We prioritized putative causal variants by predicting allelic effects using support vector machine models. RESULTS For nondrinking as compared with light-to-moderate drinking, the hybrid two-step approach identified 13 significant SNPs with pairwise r2 > 0.9 in the 10q24.2/COX15 region. When stratified by alcohol intake, the A allele of lead SNP rs2300985 has a dose-response increase in risk of colorectal cancer as compared with the G allele in light-to-moderate drinkers [OR for GA genotype = 1.11; 95% confidence interval (CI), 1.06-1.17; OR for AA genotype = 1.22; 95% CI, 1.14-1.31], but not in nondrinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 region, rs1318920 was predicted to disrupt an HNF4 transcription factor binding motif. CONCLUSIONS Our study suggests that the association with colorectal cancer in 10q24.2/COX15 observed in genome-wide association study is strongest in nondrinkers. We also identified rs1318920 as the putative causal regulatory variant for the region. IMPACT The study identifies multifaceted evidence of a possible functional effect for rs1318920.
Collapse
Affiliation(s)
- Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, California
- Department of Computer Science, Stanford University, Stanford, California
| | - Andre E Kim
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jun Wang
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, California
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - David V Conti
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christopher H Dampier
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Matthew A Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - John L Morrison
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indiana
- IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Saudi Arabia
| | - Polly A Newcomb
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mireia Obón-Santacana
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, 08908L'Hospitalet de Llobregat, Barcelona, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mariana C Stern
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Duncan C Thomas
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom
| | - Cornelia M Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, Salt Lake City, Utah
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Emily White
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Natalia Zemlianskaia
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - W James Gauderman
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California
- Department of Computer Science, Stanford University, Stanford, California
| | - Ulrike Peters
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
30
|
Barfield R, Huyghe JR, Lemire M, Dong X, Su YR, Brezina S, Buchanan DD, Figueiredo JC, Gallinger S, Giannakis M, Gsur A, Gunter MJ, Hampel H, Harrison TA, Hopper JL, Hudson TJ, Li CI, Moreno V, Newcomb PA, Pai RK, Pharoah PDP, Phipps AI, Qu C, Steinfelder RS, Sun W, Win AK, Zaidi SH, Campbell PT, Peters U, Hsu L. Genetic Regulation of DNA Methylation Yields Novel Discoveries in GWAS of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2022; 31:1068-1076. [PMID: 35247911 PMCID: PMC9081265 DOI: 10.1158/1055-9965.epi-21-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/05/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Colorectal cancer has a strong epigenetic component that is accompanied by frequent DNA methylation (DNAm) alterations in addition to heritable genetic risk. It is of interest to understand the interrelationship of germline genetics, DNAm, and colorectal cancer risk. METHODS We performed a genome-wide methylation quantitative trait locus (meQTL) analysis in 1,355 people, assessing the pairwise associations between genetic variants and lymphocytes methylation data. In addition, we used penalized regression with cis-genetic variants ± 1 Mb of methylation to identify genome-wide heritable DNAm. We evaluated the association of genetically predicted methylation with colorectal cancer risk based on genome-wide association studies (GWAS) of over 125,000 cases and controls using the multivariate sMiST as well as univariately via examination of marginal association with colorectal cancer risk. RESULTS Of the 142 known colorectal cancer GWAS loci, 47 were identified as meQTLs. We identified four novel colorectal cancer-associated loci (NID2, ATXN10, KLHDC10, and CEP41) that reside over 1 Mb outside of known colorectal cancer loci and 10 secondary signals within 1 Mb of known loci. CONCLUSIONS Leveraging information of DNAm regulation into genetic association of colorectal cancer risk reveals novel pathways in colorectal cancer tumorigenesis. Our summary statistics-based framework sMiST provides a powerful approach by combining information from the effect through methylation and residual direct effects of the meQTLs on disease risk. Further validation and functional follow-up of these novel pathways are needed. IMPACT Using genotype, DNAm, and GWAS, we identified four new colorectal cancer risk loci. We studied the landscape of genetic regulation of DNAm via single-SNP and multi-SNP meQTL analyses.
Collapse
Affiliation(s)
- Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University, Durham NC USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mathieu Lemire
- Neurosciences & Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Xinyuan Dong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Yu-Ru Su
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Marc J Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aung Ko Win
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, Georgia, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
Archambault AN, Jeon J, Lin Y, Thomas M, Harrison TA, Bishop DT, Brenner H, Casey G, Chan AT, Chang-Claude J, Figueiredo JC, Gallinger S, Gruber SB, Gunter MJ, Guo F, Hoffmeister M, Jenkins MA, Keku TO, Le Marchand L, Li L, Moreno V, Newcomb PA, Pai R, Parfrey PS, Rennert G, Sakoda LC, Lee JK, Slattery ML, Song M, Win AK, Woods MO, Murphy N, Campbell PT, Su YR, Lansdorp-Vogelaar I, Peterse EFP, Cao Y, Zeleniuch-Jacquotte A, Liang PS, Du M, Corley DA, Hsu L, Peters U, Hayes RB. Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study. J Natl Cancer Inst 2022; 114:528-539. [PMID: 35026030 PMCID: PMC9002285 DOI: 10.1093/jnci/djac003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/04/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The incidence of colorectal cancer (CRC) among individuals aged younger than 50 years has been increasing. As screening guidelines lower the recommended age of screening initiation, concerns including the burden on screening capacity and costs have been recognized, suggesting that an individualized approach may be warranted. We developed risk prediction models for early-onset CRC that incorporate an environmental risk score (ERS), including 16 lifestyle and environmental factors, and a polygenic risk score (PRS) of 141 variants. METHODS Relying on risk score weights for ERS and PRS derived from studies of CRC at all ages, we evaluated risks for early-onset CRC in 3486 cases and 3890 controls aged younger than 50 years. Relative and absolute risks for early-onset CRC were assessed according to values of the ERS and PRS. The discriminatory performance of these scores was estimated using the covariate-adjusted area under the receiver operating characteristic curve. RESULTS Increasing values of ERS and PRS were associated with increasing relative risks for early-onset CRC (odds ratio per SD of ERS = 1.14, 95% confidence interval [CI] = 1.08 to 1.20; odds ratio per SD of PRS = 1.59, 95% CI = 1.51 to 1.68), both contributing to case-control discrimination (area under the curve = 0.631, 95% CI = 0.615 to 0.647). Based on absolute risks, we can expect 26 excess cases per 10 000 men and 21 per 10 000 women among those scoring at the 90th percentile for both risk scores. CONCLUSIONS Personal risk scores have the potential to identify individuals at differential relative and absolute risk for early-onset CRC. Improved discrimination may aid in targeted CRC screening of younger, high-risk individuals, potentially improving outcomes.
Collapse
Affiliation(s)
- Alexi N Archambault
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Medical Research, St. James’s University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Rish Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jeffrey K Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St John’s, NL, Canada
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Yu-Ru Su
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Iris Lansdorp-Vogelaar
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabeth F P Peterse
- Department of Public Health, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Anne Zeleniuch-Jacquotte
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Peter S Liang
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
32
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
33
|
Chen X, Hoffmeister M, Brenner H. Red and Processed Meat Intake, Polygenic Risk Score, and Colorectal Cancer Risk. Nutrients 2022; 14:nu14051077. [PMID: 35268052 PMCID: PMC8912739 DOI: 10.3390/nu14051077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
High red and processed meat intake (RPMI) is an established risk factor for colorectal cancer (CRC). We aimed to assess the impact of RPMI on CRC risk according to and in comparison with genetically determined risk, which was quantified by a polygenic risk score (PRS). RPMI and potential confounders (ascertained by questionnaire) and a PRS (based on 140 CRC-related loci) were obtained from 5109 CRC cases and 4134 controls in a population-based case−control study. Associations of RPMI with CRC risk across PRS levels were assessed using logistic regression models and compared to effect estimates of PRS using “genetic risk equivalent” (GRE), a novel metric for effective risk communication. RPMI multiple times/week, 1 time/day, and >1 time/day was associated with 19% (95% CI 1% to 41%), 41% (18% to 70%), and 73% (30% to 132%) increased CRC risk, respectively, when compared to RPMI ≤ 1 time/week. Associations were independent of PRS levels (pinteraction = 0.97). The effect of RPMI > 1 time/day was equivalent to the effect of having 42 percentiles higher PRS level (GRE 42, 95% CI 20−65). RPMI increases CRC risk regardless of PRS levels. Avoiding RPMI can compensate for a substantial proportion of polygenic risk for CRC.
Collapse
Affiliation(s)
- Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (X.C.); (M.H.)
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (X.C.); (M.H.)
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (X.C.); (M.H.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
34
|
Tängdén T, Gustafsson S, Rao AS, Ingelsson E. A genome-wide association study in a large community-based cohort identifies multiple loci associated with susceptibility to bacterial and viral infections. Sci Rep 2022; 12:2582. [PMID: 35173190 PMCID: PMC8850418 DOI: 10.1038/s41598-022-05838-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
There is limited data on host-specific genetic determinants of susceptibility to bacterial and viral infections. Genome-wide association studies using large population cohorts can be a first step towards identifying patients prone to infectious diseases and targets for new therapies. Genetic variants associated with clinically relevant entities of bacterial and viral infections (e.g., abdominal infections, respiratory infections, and sepsis) in 337,484 participants of the UK Biobank cohort were explored by genome-wide association analyses. Cases (n = 81,179) were identified based on ICD-10 diagnosis codes of hospital inpatient and death registries. Functional annotation was performed using gene expression (eQTL) data. Fifty-seven unique genome-wide significant loci were found, many of which are novel in the context of infectious diseases. Some of the detected genetic variants were previously reported associated with infectious, inflammatory, autoimmune, and malignant diseases or key components of the immune system (e.g., white blood cells, cytokines). Fine mapping of the HLA region revealed significant associations with HLA-DQA1, HLA-DRB1, and HLA-DRB4 locus alleles. PPP1R14A showed strong colocalization with abdominal infections and gene expression in sigmoid and transverse colon, suggesting causality. Shared significant loci across infections and non-infectious phenotypes in the UK Biobank cohort were found, suggesting associations for example between SNPs identified for abdominal infections and CRP, rheumatoid arthritis, and diabetes mellitus. We report multiple loci associated with bacterial and viral infections. A better understanding of the genetic determinants of bacterial and viral infections can be useful to identify patients at risk and in the development of new drugs.
Collapse
Affiliation(s)
- Thomas Tängdén
- Infection Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Stefan Gustafsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abhiram S Rao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Erik Ingelsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
35
|
Niedermaier T, Balavarca Y, Gies A, Weigl K, Guo F, Alwers E, Hoffmeister M, Brenner H. Variation of Positive Predictive Values of Fecal Immunochemical Tests by Polygenic Risk Score in a Large Screening Cohort. Clin Transl Gastroenterol 2022; 13:e00458. [PMID: 35060941 PMCID: PMC8963839 DOI: 10.14309/ctg.0000000000000458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Prevalence of colorectal neoplasms varies by polygenic risk scores (PRS). We aimed to assess to what extent a PRS might be relevant for defining personalized cutoff values for fecal immunochemical tests (FITs) in colorectal cancer screening. METHODS Among 5,306 participants of screening colonoscopy who provided a stool sample for a quantitative FIT (Ridascreen Hemoglobin or FOB Gold) before colonoscopy, a PRS was determined, based on the number of risk alleles in 140 single nucleotide polymorphisms. Subjects were classified into low, medium, and high genetic risk of colorectal neoplasms according to PRS tertiles. We calculated positive predictive values (PPVs) and numbers needed to scope (NNS) to detect 1 advanced neoplasm (AN) by the risk group, and cutoff variation needed to achieve comparable PPVs across risk groups in the samples tested with Ridascreen (N = 1,271) and FOB Gold (N = 4,035) independently, using cutoffs yielding 85%, 90%, or 95% specificity. RESULTS Performance of both FITs was very similar within each PRS group. For a given cutoff, PPVs were consistently higher by 11%-15% units in the high-risk PRS group compared with the low-risk group (all P values < 0.05). Correspondingly, NNS to detect 1 advanced neoplasm varied from 2 (high PRS, high cutoff) to 5 (low PRS, low cutoff). Conversely, very different FIT cutoffs would be needed to ensure comparable PPVs across PRS groups. DISCUSSION PPVs and NNS of FITs varied widely across people with high and low genetic risk score. Further research should evaluate the relevance of these differences for personalized colorectal cancer screening.
Collapse
Affiliation(s)
- Tobias Niedermaier
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany;
| | - Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany;
| | - Anton Gies
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany;
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany;
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany;
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany;
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany;
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany;
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Nounu A, Richmond RC, Stewart ID, Surendran P, Wareham NJ, Butterworth A, Weinstein SJ, Albanes D, Baron JA, Hopper JL, Figueiredo JC, Newcomb PA, Lindor NM, Casey G, Platz EA, Marchand LL, Ulrich CM, Li CI, van Dujinhoven FJB, Gsur A, Campbell PT, Moreno V, Vodicka P, Vodickova L, Amitay E, Alwers E, Chang-Claude J, Sakoda LC, Slattery ML, Schoen RE, Gunter MJ, Castellví-Bel S, Kim HR, Kweon SS, Chan AT, Li L, Zheng W, Bishop DT, Buchanan DD, Giles GG, Gruber SB, Rennert G, Stadler ZK, Harrison TA, Lin Y, Keku TO, Woods MO, Schafmayer C, Van Guelpen B, Gallinger S, Hampel H, Berndt SI, Pharoah PDP, Lindblom A, Wolk A, Wu AH, White E, Peters U, Drew DA, Scherer D, Bermejo JL, Brenner H, Hoffmeister M, Williams AC, Relton CL. Salicylic Acid and Risk of Colorectal Cancer: A Two-Sample Mendelian Randomization Study. Nutrients 2021; 13:4164. [PMID: 34836419 PMCID: PMC8620763 DOI: 10.3390/nu13114164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Salicylic acid (SA) has observationally been shown to decrease colorectal cancer (CRC) risk. Aspirin (acetylsalicylic acid, that rapidly deacetylates to SA) is an effective primary and secondary chemopreventive agent. Through a Mendelian randomization (MR) approach, we aimed to address whether levels of SA affected CRC risk, stratifying by aspirin use. A two-sample MR analysis was performed using GWAS summary statistics of SA (INTERVAL and EPIC-Norfolk, N = 14,149) and CRC (CCFR, CORECT, GECCO and UK Biobank, 55,168 cases and 65,160 controls). The DACHS study (4410 cases and 3441 controls) was used for replication and stratification of aspirin-use. SNPs proxying SA were selected via three methods: (1) functional SNPs that influence the activity of aspirin-metabolising enzymes; (2) pathway SNPs present in enzymes' coding regions; and (3) genome-wide significant SNPs. We found no association between functional SNPs and SA levels. The pathway and genome-wide SNPs showed no association between SA and CRC risk (OR: 1.03, 95% CI: 0.84-1.27 and OR: 1.08, 95% CI: 0.86-1.34, respectively). Results remained unchanged upon aspirin use stratification. We found little evidence to suggest that an SD increase in genetically predicted SA protects against CRC risk in the general population and upon stratification by aspirin use.
Collapse
Affiliation(s)
- Aayah Nounu
- Integrative Cancer Epidemiology Programme (ICEP), Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (R.C.R.); (C.L.R.)
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Rebecca C. Richmond
- Integrative Cancer Epidemiology Programme (ICEP), Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (R.C.R.); (C.L.R.)
| | - Isobel D. Stewart
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK; (I.D.S.); (N.J.W.)
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (P.S.); (A.B.)
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK; (I.D.S.); (N.J.W.)
| | - Adam Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (P.S.); (A.B.)
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB2 1TN, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
| | - Stephanie J. Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (S.J.W.); (D.A.); (S.I.B.)
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (S.J.W.); (D.A.); (S.I.B.)
| | - John A. Baron
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27516, USA;
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3053, Australia; (J.L.H.); (G.G.G.)
- Department of Epidemiology, Institute of Health and Environment, School of Public Health, Seoul National University, Seoul 08826, Korea
| | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; (P.A.N.); (C.I.L.); (L.C.S.)
- School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA;
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA;
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84112, USA;
| | - Christopher I. Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; (P.A.N.); (C.I.L.); (L.C.S.)
| | - Fränzel J. B. van Dujinhoven
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, 1090 Vienna, Austria;
| | - Peter T. Campbell
- Department of Population Science, American Cancer Society, Atlanta, GA 30303, USA;
| | - Víctor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, 08908 Barcelona, Spain;
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08007 Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (P.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Nové Město, 121 08 Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (P.V.); (L.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Nové Město, 121 08 Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Efrat Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (E.A.); (E.A.)
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (E.A.); (E.A.)
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.C.-C.); (H.B.); (M.H.)
- Department of Oncology, Haematology and BMT, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), 20251 Hamburg, Germany
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA; (P.A.N.); (C.I.L.); (L.C.S.)
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Martha L. Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA;
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, 08036 Barcelona, Spain;
| | - Hyeong-Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun 58128, Korea;
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 61186, Korea;
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea
| | - Andrew T. Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia;
- Melbourne Medical School, University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3053, Australia; (J.L.H.); (G.G.G.)
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Stephen B. Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa 3448516, Israel;
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Clalit National Cancer Control Center, Haifa 3436212, Israel
| | - Zsofia K. Stadler
- Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY 10065, USA;
| | - Tabitha A. Harrison
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
| | - Yi Lin
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
| | - Temitope O. Keku
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7555, USA;
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada;
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, 18057 Rostock, Germany;
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, 901 87 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine, Department of Biomedical and Clinical Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X5, Canada;
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (S.J.W.); (D.A.); (S.I.B.)
| | - Paul D. P. Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, 171 64 Solna, Sweden;
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 64 Solna, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 171 64 Solna, Sweden;
- Department of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA;
| | - Emily White
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA
| | - Ulrike Peters
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6700 HB Wageningen, The Netherlands; (F.J.B.v.D.); (T.A.H.); (Y.L.); (E.W.); (U.P.)
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA
| | - David A. Drew
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (D.S.); (J.L.B.)
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany; (D.S.); (J.L.B.)
| | - Hermann Brenner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.C.-C.); (H.B.); (M.H.)
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.C.-C.); (H.B.); (M.H.)
| | - Ann C. Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Caroline L. Relton
- Integrative Cancer Epidemiology Programme (ICEP), Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK; (R.C.R.); (C.L.R.)
| |
Collapse
|
37
|
Liu W, Mahdessian H, Helgadottir H, Zhou X, Thutkawkorapin J, Jiao X, Wolk A, Lindblom A. Colorectal cancer risk susceptibility loci in a Swedish population. Mol Carcinog 2021; 61:288-300. [PMID: 34758156 DOI: 10.1002/mc.23366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
To search for colorectal cancer (CRC) risk loci, Swedish samples were used for a genome-wide haplotype analysis. A logistic regression model was employed in 2663 CRC cases and 1642 controls in the discovery analysis. Three analyses were done, on all, familial-, and nonfamilial CRC samples and only results with odds ratio (OR) > 1 were analyzed. single nucleotide polymorphism (SNP) analysis did not generate any statistically significant results. Haplotype analysis suggested novel loci, on chromosome 2q36.1 (OR = 1.71, p value = 5.6924 × 10-8 ) in all CRC samples, chromosome 1q43 (OR = 4.04 p value = 3.24 × 10-8 ) in familial CRC samples, and two hits in nonfamilial CRC samples, chromosomes 2q36.1 (OR = 1.71 p value = 5.69 × 10-8 ) and 3p24.3 (OR = 1.62 p value = 6.21 × 10-9 ). Moreover, one locus on chromosome 20q13.33 was suggested in analyses of all samples, and five more novel loci were suggested on chromosomes 10q25.3, 15q,22.31, 17p11.2, 1p34.2, and 3q24. The haplotypes from the analysis of all samples were replicated in a second study of CRC cases and controls from the same part of Sweden. In summary, using haplotype analysis in Swedish CRC samples, the best hits were novel loci and the locus on chromosomes 2q36.1 and 20q13.33 suggested in the analysis of all samples were confirmed in a second cohort. The ORs were often higher than ORs from published genome-wide association study (GWAS). The study suggested it was possible that a risk locus could involve more than one gene, and that haplotypes could give information on the gene or genes possibly involved in the risk at specific locus.
Collapse
Affiliation(s)
- Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Hovsep Mahdessian
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hafdis Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Xingwu Zhou
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Xiang Jiao
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Hikino K, Koido M, Otomo N, Tomizuka K, Ikegawa S, Matsuda K, Momozawa Y, Mushiroda T, Terao C. Genome-wide association study of colorectal polyps identified highly overlapping polygenic architecture with colorectal cancer. J Hum Genet 2021; 67:149-156. [PMID: 34671089 DOI: 10.1038/s10038-021-00980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
No genome-wide association studies (GWAS) were reported for colorectal polyps and the overlap in polygenic backgrounds conferring risk of colorectal cancer and polyps remains unclear. We performed GWAS on subjects with colorectal polyps using the BioBank Japan data with 4447 cases and 157,226 controls. We evaluated genetic correlations between colorectal polyps and cancer, and effects on colorectal polyps of single nucleotide polymorphisms (SNPs) known to be associated with colorectal cancer. We identified CUX2, a known genetic locus to colorectal cancer, as a susceptibility locus to colorectal polyps (p value = 1.1 × 10-15). Subsequent fine-mapping analysis indicated that rs11065828 in CUX2 is the causal variant for colorectal polyps. We found that known colorectal cancer-susceptible SNPs were also associated with colorectal polyps. The genetic correlation between colorectal cancer and polyps is very high (r = 0.98 and p value = 0.0006). We additionally identified 14 significant loci of colorectal polyps and three significant loci of colorectal cancer by applying the multi-trait analysis of GWAS of colorectal cancer and colorectal polyps. We showed very similar germline polygenic features, which gives us the additional insight into potential cancers at polygenic levels for patients with polyps who are followed up at outpatients' clinic; thus, close observation and polypectomy is critical to prevent colorectal cancers.
Collapse
Affiliation(s)
- Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 108-8639, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 108-8639, Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Tokyo, 108-8639, Japan
| | | | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan. .,The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
39
|
Forgacova N, Gazdarica J, Budis J, Radvanszky J, Szemes T. Repurposing non-invasive prenatal testing data: Population study of single nucleotide variants associated with colorectal cancer and Lynch syndrome. Oncol Lett 2021; 22:779. [PMID: 34594420 PMCID: PMC8456492 DOI: 10.3892/ol.2021.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
In our previous work, genomic data generated through non-invasive prenatal testing (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA of pregnant women in Slovakia was described as a valuable source of population specific data. In the present study, these data were used to determine the population allele frequency of common risk variants located in genes associated with colorectal cancer (CRC) and Lynch syndrome (LS). Allele frequencies of identified variants were compared with six world populations to detect significant differences between populations. Finally, variants were interpreted, functional consequences were searched for and clinical significance of variants was investigated using publicly available databases. Although the present study did not identify any pathogenic variants associated with CRC or LS in the Slovak population using NIPT data, significant differences were observed in the allelic frequency of risk CRC variants previously reported in genome-wide association studies and common variants located in genes associated with LS. As Slovakia is one of the leading countries with the highest incidence of CRC among male patients in the world, there is a need for studies dedicated to investigating the cause of such a high incidence of CRC in Slovakia. The present study also assumed that extensive cross-country data aggregation of NIPT results would represent an unprecedented source of information concerning human genome variation in cancer research.
Collapse
Affiliation(s)
- Natalia Forgacova
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Juraj Gazdarica
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Science Support Section, Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Science Support Section, Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Jan Radvanszky
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Tomas Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| |
Collapse
|
40
|
Mur P, Bonifaci N, Díez-Villanueva A, Munté E, Alonso MH, Obón-Santacana M, Aiza G, Navarro M, Piñol V, Brunet J, Tomlinson I, Capellá G, Moreno V, Valle L. Non-Lynch Familial and Early-Onset Colorectal Cancer Explained by Accumulation of Low-Risk Genetic Variants. Cancers (Basel) 2021; 13:3857. [PMID: 34359758 PMCID: PMC8345397 DOI: 10.3390/cancers13153857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
A large proportion of familial and/or early-onset cancer patients do not carry pathogenic variants in known cancer predisposing genes. We aimed to assess the contribution of previously validated low-risk colorectal cancer (CRC) alleles to familial/early-onset CRC (fCRC) and to serrated polyposis. We estimated the association of CRC with a 92-variant-based weighted polygenic risk score (wPRS) using 417 fCRC patients, 80 serrated polyposis patients, 1077 hospital-based incident CRC patients, and 1642 controls. The mean wPRS was significantly higher in fCRC than in controls or sporadic CRC patients. fCRC patients in the highest (20th) wPRS quantile were at four-fold greater CRC risk than those in the middle quantile (10th). Compared to low-wPRS fCRC, a higher number of high-wPRS fCRC patients had developed multiple primary CRCs, had CRC family history, and were diagnosed at age ≥50. No association with wPRS was observed for serrated polyposis. In conclusion, a relevant proportion of mismatch repair (MMR)-proficient fCRC cases might be explained by the accumulation of low-risk CRC alleles. Validation in independent cohorts and development of predictive models that include polygenic risk score (PRS) data and other CRC predisposing factors will determine the implementation of PRS into genetic testing and counselling in familial and early-onset CRC.
Collapse
Affiliation(s)
- Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Nuria Bonifaci
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
| | - Anna Díez-Villanueva
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Elisabet Munté
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
| | - Maria Henar Alonso
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Mireia Obón-Santacana
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Gemma Aiza
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Virginia Piñol
- Gastroenterology Unit, Hospital Universitario de Girona Dr Josep Trueta, 17007 Girona, Spain;
- School of Medicine, University of Girona, 17071 Girona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- School of Medicine, University of Girona, 17071 Girona, Spain
- Catalan Institute of Oncology, IDIBGi, 17007 Girona, Spain
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh EH4 2XR, UK;
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Victor Moreno
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology, IDIBELL, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08907 Barcelona, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, 08908 Barcelona, Spain; (P.M.); (N.B.); (E.M.); (G.A.); (M.N.); (J.B.); (G.C.)
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain; (A.D.-V.); (M.H.A.); (M.O.-S.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
41
|
Huyghe JR, Harrison TA, Bien SA, Hampel H, Figueiredo JC, Schmit SL, Conti DV, Chen S, Qu C, Lin Y, Barfield R, Baron JA, Cross AJ, Diergaarde B, Duggan D, Harlid S, Imaz L, Kang HM, Levine DM, Perduca V, Perez-Cornago A, Sakoda LC, Schumacher FR, Slattery ML, Toland AE, van Duijnhoven FJB, Van Guelpen B, Agudo A, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Banbury BL, Bassik MC, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Boutron-Ruault MC, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Caan BJ, Campbell PT, Carr PR, Castells A, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Curtis KR, de la Chapelle A, Easton DF, English DR, Feskens EJM, Gala M, Gallinger SJ, Gauderman WJ, Giles GG, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Jenab M, Jenkins MA, Joshi AD, Keku TO, Kooperberg C, Kühn T, Küry S, Le Marchand L, Lejbkowicz F, Li CI, Li L, Lieb W, Lindblom A, Lindor NM, Männistö S, Markowitz SD, Milne RL, Moreno L, Murphy N, Nassir R, Offit K, Ogino S, Panico S, Parfrey PS, Pearlman R, et alHuyghe JR, Harrison TA, Bien SA, Hampel H, Figueiredo JC, Schmit SL, Conti DV, Chen S, Qu C, Lin Y, Barfield R, Baron JA, Cross AJ, Diergaarde B, Duggan D, Harlid S, Imaz L, Kang HM, Levine DM, Perduca V, Perez-Cornago A, Sakoda LC, Schumacher FR, Slattery ML, Toland AE, van Duijnhoven FJB, Van Guelpen B, Agudo A, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Banbury BL, Bassik MC, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Boutron-Ruault MC, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Caan BJ, Campbell PT, Carr PR, Castells A, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Curtis KR, de la Chapelle A, Easton DF, English DR, Feskens EJM, Gala M, Gallinger SJ, Gauderman WJ, Giles GG, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Jenab M, Jenkins MA, Joshi AD, Keku TO, Kooperberg C, Kühn T, Küry S, Le Marchand L, Lejbkowicz F, Li CI, Li L, Lieb W, Lindblom A, Lindor NM, Männistö S, Markowitz SD, Milne RL, Moreno L, Murphy N, Nassir R, Offit K, Ogino S, Panico S, Parfrey PS, Pearlman R, Pharoah PDP, Phipps AI, Platz EA, Potter JD, Prentice RL, Qi L, Raskin L, Rennert G, Rennert HS, Riboli E, Schafmayer C, Schoen RE, Seminara D, Song M, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Trichopoulou A, Ulrich CM, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Weigl K, Weinstein SJ, White E, Wolk A, Woods MO, Wu AH, Abecasis GR, Nickerson DA, Scacheri PC, Kundaje A, Casey G, Gruber SB, Hsu L, Moreno V, Hayes RB, Newcomb PA, Peters U. Genetic architectures of proximal and distal colorectal cancer are partly distinct. Gut 2021; 70:1325-1334. [PMID: 33632709 PMCID: PMC8223655 DOI: 10.1136/gutjnl-2020-321534] [Show More Authors] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined. DESIGN To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling. RESULTS We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer. CONCLUSION Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.
Collapse
Affiliation(s)
- Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - David V Conti
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Sai Chen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Richard Barfield
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - David Duggan
- Translational Genomics Research Institute - An Affiliate of City of Hope, Phoenix, Arizona, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Liher Imaz
- Public Health Division of Gipuzkoa, Health Department of Basque Country, San Sebastian, Spain
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David M Levine
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Vittorio Perduca
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
- Centre for Research in Epidemiology and Population Health (CESP), Institut pour la Santé et la Recherche Médicale (INSERM) U1018, Université Paris-Saclay, Villejuif, France
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - M Henar Alonso
- Cancer Prevention and Control Program, Catalan Institute of Oncology - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Kristin Anderson
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Juergen Boehm
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Marie-Christine Boutron-Ruault
- Centre for Research in Epidemiology and Population Health (CESP), Institut pour la Santé et la Recherche Médicale (INSERM) U1018, Université Paris-Saclay, Villejuif, France
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Centre (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Daniel D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | | - Bette J Caan
- Division of Research, Kaiser Permanente Medical Care Program, Oakland, California, USA
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, USA
| | - Prudence R Carr
- Division of Clinical Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Keith R Curtis
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven J Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - W James Gauderman
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - John S Grove
- University of Hawai'i Cancer Center, Honolulu, Hawaii, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robert W Haile
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Wan-Ling Hsu
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mazda Jenab
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | | | - Flavio Lejbkowicz
- The Clalit Health Services, Personalized Genomic Service, Carmel Medical Center, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Wolfgang Lieb
- Institute of Epidemiology, PopGen Biobank, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, Arizona, USA
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanford D Markowitz
- Departments of Medicine and Genetics, Case Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Lorena Moreno
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, University of Naples Federico II, Naples, Italy
| | - Patrick S Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lihong Qi
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, California, USA
| | - Leon Raskin
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hedy S Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Daniela Seminara
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland, USA
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, MayoClinic, Rochester, Minnesota, USA
| | - Duncan C Thomas
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Anna H Wu
- Department of Preventive Medicine and USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
- City of Hope National Medical Center, Duarte, California, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Hua X, Dai JY, Lindström S, Harrison TA, Lin Y, Alberts SR, Alwers E, Berndt SI, Brenner H, Buchanan DD, Campbell PT, Casey G, Chang-Claude J, Gallinger S, Giles GG, Goldberg RM, Gunter MJ, Hoffmeister M, Jenkins MA, Joshi AD, Ma W, Milne RL, Murphy N, Pai RK, Sakoda LC, Schoen RE, Shi Q, Slattery ML, Song M, White E, Marchand LL, Chan AT, Peters U, Newcomb PA. Genetically Predicted Circulating C-Reactive Protein Concentration and Colorectal Cancer Survival: A Mendelian Randomization Consortium Study. Cancer Epidemiol Biomarkers Prev 2021; 30:1349-1358. [PMID: 33972368 PMCID: PMC8254760 DOI: 10.1158/1055-9965.epi-20-1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/17/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A positive association between circulating C-reactive protein (CRP) and colorectal cancer survival was reported in observational studies, which are susceptible to unmeasured confounding and reverse causality. We used a Mendelian randomization approach to evaluate the association between genetically predicted CRP concentrations and colorectal cancer-specific survival. METHODS We used individual-level data for 16,918 eligible colorectal cancer cases of European ancestry from 15 studies within the International Survival Analysis of Colorectal Cancer Consortium. We calculated a genetic-risk score based on 52 CRP-associated genetic variants identified from genome-wide association studies. Because of the non-collapsibility of hazard ratios from Cox proportional hazards models, we used the additive hazards model to calculate hazard differences (HD) and 95% confidence intervals (CI) for the association between genetically predicted CRP concentrations and colorectal cancer-specific survival, overall and by stage at diagnosis and tumor location. Analyses were adjusted for age at diagnosis, sex, body mass index, genotyping platform, study, and principal components. RESULTS Of the 5,395 (32%) deaths accrued over up to 10 years of follow-up, 3,808 (23%) were due to colorectal cancer. Genetically predicted CRP concentration was not associated with colorectal cancer-specific survival (HD, -1.15; 95% CI, -2.76 to 0.47 per 100,000 person-years; P = 0.16). Similarly, no associations were observed in subgroup analyses by stage at diagnosis or tumor location. CONCLUSIONS Despite adequate power to detect moderate associations, our results did not support a causal effect of circulating CRP concentrations on colorectal cancer-specific survival. IMPACT Future research evaluating genetically determined levels of other circulating inflammatory biomarkers (i.e., IL6) with colorectal cancer survival outcomes is needed.
Collapse
Affiliation(s)
- Xinwei Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - James Y Dai
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Sara Lindström
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Department of Clinical Pathology, Colorectal Oncogenomics Group, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Center for Cancer Research, Victorian Comprehensive Cancer Center, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Peter T Campbell
- Department of Population Science, American Cancer Society, Atlanta, Geogia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | | | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark A Jenkins
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Qian Shi
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Andrew T Chan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- University of Washington, Seattle, Washington
| |
Collapse
|
43
|
Genetic risk factors for colorectal cancer in multiethnic Indonesians. Sci Rep 2021; 11:9988. [PMID: 33976257 PMCID: PMC8113452 DOI: 10.1038/s41598-021-88805-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/14/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer is a common cancer in Indonesia, yet it has been understudied in this resource-constrained setting. We conducted a genome-wide association study focused on evaluation and preliminary discovery of colorectal cancer risk factors in Indonesians. We administered detailed questionnaires and collecting blood samples from 162 colorectal cancer cases throughout Makassar, Indonesia. We also established a control set of 193 healthy individuals frequency matched by age, sex, and ethnicity. A genome-wide association analysis was performed on 84 cases and 89 controls passing quality control. We evaluated known colorectal cancer genetic variants using logistic regression and established a genome-wide polygenic risk model using a Bayesian variable selection technique. We replicate associations for rs9497673, rs6936461 and rs7758229 on chromosome 6; rs11255841 on chromosome 10; and rs4779584, rs11632715, and rs73376930 on chromosome 15. Polygenic modeling identified 10 SNP associated with colorectal cancer risk. This work helps characterize the relationship between variants in the SCL22A3, SCG5, GREM1, and STXBP5-AS1 genes and colorectal cancer in a diverse Indonesian population. With further biobanking and international research collaborations, variants specific to colorectal cancer risk in Indonesians will be identified.
Collapse
|
44
|
Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts. Cancers (Basel) 2021; 13:cancers13061258. [PMID: 33809172 PMCID: PMC7998818 DOI: 10.3390/cancers13061258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary We investigated the influence of autophagy-related variants in modulating colorectal cancer (CRC) risk through a meta-analysis of genome-wide association study (GWAS) data from four large European cohorts. We found that genetic variants within the DAPK2 and ATG5 loci were associated with CRC risk. This study also shed some light onto the functional mechanisms behind the observed associations and demonstrated the impact of DAPK2rs11631973 and ATG5rs546456 polymorphisms on the modulation of host immune responses, blood derived-cell counts and serum inflammatory protein levels, which might be involved in promoting cancer development. No effect of the DAPK2 and ATG5 polymorphisms on the autophagy flux was observed. Abstract The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10−5) and ATG5 (p = 6.28 × 10−4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 β levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 β levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16− cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.
Collapse
|
45
|
Nounu A, Greenhough A, Heesom KJ, Richmond RC, Zheng J, Weinstein SJ, Albanes D, Baron JA, Hopper JL, Figueiredo JC, Newcomb PA, Lindor NM, Casey G, Platz EA, Le Marchand L, Ulrich CM, Li CI, van Duijnhoven FJB, Gsur A, Campbell PT, Moreno V, Vodicka P, Vodickova L, Brenner H, Chang-Claude J, Hoffmeister M, Sakoda LC, Slattery ML, Schoen RE, Gunter MJ, Castellví-Bel S, Kim HR, Kweon SS, Chan AT, Li L, Zheng W, Bishop DT, Buchanan DD, Giles GG, Gruber SB, Rennert G, Stadler ZK, Harrison TA, Lin Y, Keku TO, Woods MO, Schafmayer C, Van Guelpen B, Gallinger S, Hampel H, Berndt SI, Pharoah PDP, Lindblom A, Wolk A, Wu AH, White E, Peters U, Drew DA, Scherer D, Bermejo JL, Williams AC, Relton CL. A Combined Proteomics and Mendelian Randomization Approach to Investigate the Effects of Aspirin-Targeted Proteins on Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:564-575. [PMID: 33318029 PMCID: PMC8086774 DOI: 10.1158/1055-9965.epi-20-1176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Evidence for aspirin's chemopreventative properties on colorectal cancer (CRC) is substantial, but its mechanism of action is not well-understood. We combined a proteomic approach with Mendelian randomization (MR) to identify possible new aspirin targets that decrease CRC risk. METHODS Human colorectal adenoma cells (RG/C2) were treated with aspirin (24 hours) and a stable isotope labeling with amino acids in cell culture (SILAC) based proteomics approach identified altered protein expression. Protein quantitative trait loci (pQTLs) from INTERVAL (N = 3,301) and expression QTLs (eQTLs) from the eQTLGen Consortium (N = 31,684) were used as genetic proxies for protein and mRNA expression levels. Two-sample MR of mRNA/protein expression on CRC risk was performed using eQTL/pQTL data combined with CRC genetic summary data from the Colon Cancer Family Registry (CCFR), Colorectal Transdisciplinary (CORECT), Genetics and Epidemiology of Colorectal Cancer (GECCO) consortia and UK Biobank (55,168 cases and 65,160 controls). RESULTS Altered expression was detected for 125/5886 proteins. Of these, aspirin decreased MCM6, RRM2, and ARFIP2 expression, and MR analysis showed that a standard deviation increase in mRNA/protein expression was associated with increased CRC risk (OR: 1.08, 95% CI, 1.03-1.13; OR: 3.33, 95% CI, 2.46-4.50; and OR: 1.15, 95% CI, 1.02-1.29, respectively). CONCLUSIONS MCM6 and RRM2 are involved in DNA repair whereby reduced expression may lead to increased DNA aberrations and ultimately cancer cell death, whereas ARFIP2 is involved in actin cytoskeletal regulation, indicating a possible role in aspirin's reduction of metastasis. IMPACT Our approach has shown how laboratory experiments and population-based approaches can combine to identify aspirin-targeted proteins possibly affecting CRC risk.
Collapse
Affiliation(s)
- Aayah Nounu
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Alexander Greenhough
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Centre for Research in Biosciences, The Faculty of Health and Applied Sciences, The University of the West of England, Bristol, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Rebecca C Richmond
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Víctor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Stephen B Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Canada
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna H Wu
- University of Southern California, Preventative Medicine, Los Angeles, California
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - David A Drew
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Boston, Massachusetts
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Ann C Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Caroline L Relton
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
46
|
Kuo CL, Joaquim M, Kuchel GA, Ferrucci L, Harries LW, Pilling LC, Melzer D. The Longevity-Associated SH2B3 (LNK) Genetic Variant: Selected Aging Phenotypes in 379,758 Subjects. J Gerontol A Biol Sci Med Sci 2021; 75:1656-1662. [PMID: 31428775 DOI: 10.1093/gerona/glz191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Human SH2B3 is involved in growth factor and inflammation signaling. A SH2B3 missense variant (rs3184504) is associated with cardiovascular diseases plus breast, colorectal, and lung cancers, with highly correlated variants across the ATXN2/SH2B3/BRAP locus linked to parental age at death, suggesting a geroscience common mechanism of aging and disease. To better understand the SH2B3-related aging pathway and its potential as an intervention target, we undertook a phenotype-wide association study (PheWAS) of 52 aging traits. Data were obtained from 379,758 European-descent UK Biobank participants, aged 40-70 at baseline: 27% of participants were CC homozygotes and 23% TT at rs3184504. Parental extreme longevity (mothers aged ≥98 years, fathers aged ≥96 years) was more common in CC versus TT (odds ratio [OR] = 1.18, 95% confidence interval [CI]: 1.07 to 1.29) with an additive per allele effect. The C allele associated with better cognitive function and white blood cell counts were more likely to be normal. The C allele reduced risks of coronary heart disease (OR = 0.95, 95% CI: 0.93 to 0.96) but was also associated with a modestly higher cancer rate (OR = 1.03, 95% CI: 1.02 to 1.04), suggesting a trade-off across aging outcomes and limiting its potential as an anti-aging target.
Collapse
Affiliation(s)
- Chia-Ling Kuo
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington
| | | | - George A Kuchel
- Center on Aging, University of Connecticut Health School of Medicine, Farmington
| | | | | | - Luke C Pilling
- College of Medicine and Health, University of Exeter, UK.,Center on Aging, University of Connecticut Health School of Medicine, Farmington
| | - David Melzer
- College of Medicine and Health, University of Exeter, UK.,Center on Aging, University of Connecticut Health School of Medicine, Farmington
| |
Collapse
|
47
|
Yu H, Hemminki K. Genetic epidemiology of colorectal cancer and associated cancers. Mutagenesis 2021; 35:207-219. [PMID: 31424514 DOI: 10.1093/mutage/gez022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
We review here data on familial risk in colorectal cancer (CRC) generated from the Swedish Family-Cancer Database, the largest resource of its kind in the world. Although the concordant familial risk for CRC (i.e. CRC risk in families of CRC patients) has been reasonably well established, the studies on discordant familial risks (i.e. CRC risk in families with any other cancers) are rare. Because different cancers could be caused by shared genetic susceptibility or shared environment, data of associations of discordant cancers may provide useful information for identifying common risk factors. In analyses between any of 33 discordant cancers relative risks (RRs) for discordant cancers were estimated in families with increasing numbers of probands with CRC; in the reverse analyses, RRs for CRC were estimated in families with increasing numbers of probands with discordant cancers. In separate analyses, hereditary non-polyposis colorectal cancer (HNPCC) families were excluded from the study, based on HNPCC related double primary cancers, to assess the residual familial RRs. We further reviewed familial risks of colon and rectal cancers separately in search for distinct discordant associations. The reviewed data suggested that colon cancer was associated with a higher familial risk for CRC compared to rectal cancer. The previous data had reported associations of CRC with melanoma, thyroid and eye cancers. Nervous system cancer was only associated with colon cancer, and lung cancer only associated with rectal cancer. The reviewed data on discordant association may provide guidance to gene identification and may help genetic counseling.
Collapse
Affiliation(s)
- Hongyao Yu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany.,Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
48
|
Gargallo-Puyuelo CJ, Lanas Á, Carrera-Lasfuentes P, Ferrández Á, Quintero E, Carrillo M, Alonso-Abreu I, García-González MA. Familial Colorectal Cancer and Genetic Susceptibility: Colorectal Risk Variants in First-Degree Relatives of Patients With Colorectal Cancer. Clin Transl Gastroenterol 2021; 12:e00301. [PMID: 33534415 PMCID: PMC7861964 DOI: 10.14309/ctg.0000000000000301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Epidemiological studies estimate that having a first-degree relative (FDR) with colorectal cancer (CRC) increases 2-fold to 3-fold the risk of developing the disease. Because FDRs of CRC patients are more likely to co-inherit CRC risk variants, we aimed to evaluate potential differences in genotype distribution of single nucleotide polymorphisms (SNPs) related to CRC risk between FDRs of patients with nonsyndromic CRC (cases) and individuals with no family history of CRC (controls). METHODS We designed a case-control study comprising 750 cases and 750 Spanish Caucasian controls matched by sex, age, and histological findings after colonoscopy. Genomic DNA from all participants was genotyped for 88 SNPs associated with CRC risk using the MassArray (Sequenom) platform. RESULTS Ten of the 88 SNPs analyzed revealed significant associations (P < 0.05) with a family history of CRC in our population. The most robust associations were found for the rs17094983G>A SNP in the long noncoding RNA LINC01500 (odds ratio = 0.72; 95% confidence interval: 0.58-0.88, log-additive model), and the rs11255841T>A SNP in the long noncoding RNA LINC00709 (odds ratio = 2.04; 95% confidence interval: 1.19-3.51, dominant model). Of interest, the observed associations were in the same direction than those reported for CRC risk. DISCUSSION FDRs of CRC patients show significant differences in genotype distribution of SNPs related to CRC risk as compared to individuals with no family history of CRC. Genotyping of CRC risk variants in FDRs of CRC patients may help to identify subjects at risk that would benefit from stricter surveillance and CRC screening programs.
Collapse
Affiliation(s)
- Carla J. Gargallo-Puyuelo
- Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- University of Zaragoza School of Medicine, Zaragoza, Spain
| | - Ángel Lanas
- Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- University of Zaragoza School of Medicine, Zaragoza, Spain
- CIBERehd, Zaragoza, Spain
| | | | - Ángel Ferrández
- Department of Gastroenterology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Enrique Quintero
- Department of Gastroenterology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
- University of La Laguna, School of Medicine, Canary Islands, Spain
| | - Marta Carrillo
- Department of Gastroenterology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - Inmaculada Alonso-Abreu
- Department of Gastroenterology, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - María Asunción García-González
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- CIBERehd, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| |
Collapse
|
49
|
Guo F, Chen X, Chang-Claude J, Hoffmeister M, Brenner H. Colorectal Cancer Risk by Genetic Variants in Populations With and Without Colonoscopy History. JNCI Cancer Spectr 2021; 5:pkab008. [PMID: 33644683 PMCID: PMC7898082 DOI: 10.1093/jncics/pkab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background Polygenic risk scores (PRS), which are derived from results of large genome-wide association studies, are increasingly propagated for colorectal cancer (CRC) risk stratification. The majority of studies included in the large genome-wide association studies consortia were conducted in the United States and Germany, where colonoscopy with detection and removal of polyps has been widely practiced over the last decades. We aimed to assess if and to what extent the history of colonoscopy with polypectomy may alter metrics of the predictive ability of PRS for CRC risk. Methods A PRS based on 140 single nucleotide polymorphisms was compared between 4939 CRC patients and 3797 control persons of the Darmkrebs: Chancen der Verhütung durch Screening (DACHS) study, a population-based case-control study conducted in Germany. Risk discrimination was quantified according to the history of colonoscopy and polypectomy by areas under the curves (AUCs) and their 95% confidence intervals (CIs). All statistical tests were 2-sided. Results AUCs and 95% CIs were higher among subjects without previous colonoscopy (AUC = 0.622, 95% CI = 0.606 to 0.639) than among those with previous colonoscopy and polypectomy (AUC = 0.568, 95% CI = 0.536 to 0.601; difference [Δ AUC] = 0.054, P = .004). Such differences were consistently seen in sex-specific groups (women: Δ AUC = 0.073, P = .02; men: Δ AUC = 0.046, P = .048) and age-specific groups (younger than 70 years: Δ AUC = 0.052, P = .07; 70 years or older: Δ AUC = 0.049, P = .045). Conclusions Predictive performance of PRS may be underestimated in populations with widespread use of colonoscopy. Future studies using PRS to develop CRC prediction models should carefully consider colonoscopy history to provide more accurate estimates.
Collapse
Affiliation(s)
- Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Neumeyer S, Hua X, Seibold P, Jansen L, Benner A, Burwinkel B, Halama N, Berndt SI, Phipps AI, Sakoda LC, Schoen RE, Slattery ML, Chan AT, Gala M, Joshi AD, Ogino S, Song M, Herpel E, Bläker H, Kloor M, Scherer D, Ulrich A, Ulrich CM, Win AK, Figueiredo JC, Hopper JL, Macrae F, Milne RL, Giles GG, Buchanan DD, Peters U, Hoffmeister M, Brenner H, Newcomb PA, Chang-Claude J. Genetic Variants in the Regulatory T cell-Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiol Biomarkers Prev 2020; 29:2719-2728. [PMID: 33008876 PMCID: PMC7976673 DOI: 10.1158/1055-9965.epi-20-0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High numbers of lymphocytes in tumor tissue, including T regulatory cells (Treg), have been associated with better colorectal cancer survival. Tregs, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and therefore variants in genes related to Treg differentiation and function could be associated with colorectal cancer prognosis. METHODS In a prospective German cohort of 3,593 colorectal cancer patients, we assessed the association of 771 single-nucleotide polymorphisms (SNP) in 58 Treg-related genes with overall and colorectal cancer-specific survival using Cox regression models. Effect modification by microsatellite instability (MSI) status was also investigated because tumors with MSI show greater lymphocytic infiltration and have been associated with better prognosis. Replication of significant results was attempted in 2,047 colorectal cancer patients of the International Survival Analysis in Colorectal Cancer Consortium (ISACC). RESULTS A significant association of the TGFBR3 SNP rs7524066 with more favorable colorectal cancer-specific survival [hazard ratio (HR) per minor allele: 0.83; 95% confidence interval (CI), 0.74-0.94; P value: 0.0033] was replicated in ISACC (HR: 0.82; 95% CI, 0.68-0.98; P value: 0.03). Suggestive evidence for association was found with two IL7 SNPs, rs16906568 and rs7845577. Thirteen SNPs with differential associations with overall survival according to MSI in the discovery analysis were not confirmed. CONCLUSIONS Common genetic variation in the Treg pathway implicating genes such as TGFBR3 and IL7 was shown to be associated with prognosis of colorectal cancer patients. IMPACT The implicated genes warrant further investigation.
Collapse
Affiliation(s)
- Sonja Neumeyer
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xinwei Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Molecular Biology of Breast Cancer, University of Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Imaging and Analysis Center, National Center for Tumor Diseases, BIOQUANT, University of Heidelberg, Heidelberg, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Epidemiology Department, University of Washington, Seattle, Washington
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Esther Herpel
- NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University of Heidelberg, Germany
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles California
| | - John L Hopper
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Finlay Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Victoria, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, DKFZ, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Polly A Newcomb
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|