1
|
Frappaolo A, Zaccagnini G, Riparbelli MG, Colotti G, Callaini G, Giansanti MG. PACS deficiency disrupts Golgi architecture and causes cytokinesis failures and seizure-like phenotype in Drosophila melanogaster. Open Biol 2025; 15:240267. [PMID: 39999877 PMCID: PMC11858789 DOI: 10.1098/rsob.240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The PACS (phosphofurin acidic cluster sorting protein) proteins are membrane trafficking regulators, required for maintaining cellular homeostasis and preventing disease states. Mutations in human PACS1 and PACS2 cause human neurodevelopmental disorders, characterized by epileptic seizures and neurodevelopmental delay. In vertebrates, functional analysis of PACS proteins is complicated by the presence of two paralogues which can compensate for the loss of each other. Here, we characterize the unique fly homologue of human PACS proteins. We demonstrate that Drosophila PACS (dPACS) is required for cell division in dividing spermatocytes and neuroblasts. In primary spermatocytes, dPACS colocalizes with GOLPH3 at the Golgi stacks and is essential for maintaining Golgi architecture. In dividing cells, dPACS is necessary for central spindle stability and contractile ring constriction. dPACS and GOLPH3 proteins form a complex and are mutually dependent for localization to the cleavage site. We propose that dPACS, by associating with GOLPH3, mediates the flow of vesicle trafficking that supports furrow ingression during cytokinesis. Furthermore, loss of dPACS leads to defects in tubulin acetylation and severe bang sensitivity, a phenotype associated with seizures in flies. Together our findings suggest that a Drosophila PACS disease model may contribute to understanding the molecular mechanisms underpinning human PACS syndromes.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Gianluca Zaccagnini
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | | | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche ‘A. Rossi-Fanelli’, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Giuliano Callaini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
2
|
Zbikowski A, Kowalczyk T, Kasparek P, Prohazka J, Sedlacek R, Ciborowski M, Cysewski D, Łukasiewicz K. Understanding PACS2 syndrome's pathomechanism by studying E209K and E211K mutations. Mamm Genome 2024:10.1007/s00335-024-10098-5. [PMID: 39738582 DOI: 10.1007/s00335-024-10098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
Collapse
Affiliation(s)
- Arkadiusz Zbikowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prohazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Łukasiewicz
- Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
3
|
Gautam A, Lalande A, Ritter M, Freitas N, Lerolle S, Canus L, Amirache F, Lotteau V, Legros V, Cosset FL, Mathieu C, Boson B. The PACS-2 protein and trafficking motifs in CCHFV Gn and Gc cytoplasmic domains govern CCHFV assembly. Emerg Microbes Infect 2024; 13:2348508. [PMID: 38661085 PMCID: PMC11159592 DOI: 10.1080/22221751.2024.2348508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus that causes high mortality in humans. This enveloped virus harbors two surface glycoproteins (GP), Gn and Gc, that are released by processing of a glycoprotein precursor complex whose maturation takes place in the ER and is completed through the secretion pathway. Here, we characterized the trafficking network exploited by CCHFV GPs during viral assembly, envelopment, and/or egress. We identified membrane trafficking motifs in the cytoplasmic domains (CD) of CCHFV GPs and addressed how they impact these late stages of the viral life cycle using infection and biochemical assays, and confocal microscopy in virus-producing cells. We found that several of the identified CD motifs modulate GP transport through the retrograde trafficking network, impacting envelopment and secretion of infectious particles. Finally, we identified PACS-2 as a crucial host factor contributing to CCHFV GPs trafficking required for assembly and release of viral particles.
Collapse
Affiliation(s)
- Anupriya Gautam
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Lalande
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Solène Lerolle
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Lola Canus
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fouzia Amirache
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Vincent Legros
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Marcy-l’Etoile, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyrille Mathieu
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
4
|
Pereira VM, Pradhanang S, Prather JF, Nair S. Role of Metalloproteinases in Diabetes-associated Mild Cognitive Impairment. Curr Neuropharmacol 2024; 23:58-74. [PMID: 38963109 PMCID: PMC11519823 DOI: 10.2174/1570159x22666240517090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condition characterized by a subtle cognitive decline that may precede the development of dementia. The underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and release TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, suggesting a shared mechanism and implicating inflammation as a possible contributor to much broader forms of pathology and pointing to a possible link between inflammation and the emergence of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 and associated pathways may influence the emergence of mild cognitive impairment.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Suyasha Pradhanang
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Jonathan F. Prather
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Sreejayan Nair
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
5
|
Zang RX, Mumby MJ, Dikeakos JD. The Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) E209K Mutation Responsible for PACS-2 Syndrome Increases Susceptibility to Apoptosis. ACS OMEGA 2022; 7:34378-34388. [PMID: 36188273 PMCID: PMC9520720 DOI: 10.1021/acsomega.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional cytosolic membrane trafficking protein with distinct roles in maintaining cellular homeostasis. Recent clinical reports have described 28 individuals possessing a de novo PACS-2 E209K mutation that present with epileptic seizures and cerebellar dysgenesis. As the PACS-2 E209K missense mutation has become a marker for neurodevelopmental disorders, we sought to characterize its biochemical properties. Accordingly, we observed that the PACS-2 E209K protein exhibited a slower turnover rate relative to PACS-2 wild type (WT) upon cycloheximide treatment in 293T cells. The longer half-life of PACS-2 E209K suggests a disruption in its proteostasis, with the potential for altered protein-protein interactions. Indeed, a regulatory protein in neurodevelopment known as 14-3-3ε was identified as having an increased association with PACS-2 E209K. Subsequently, when comparing the effect of PACS-2 WT and E209K expression on the staurosporine-induced apoptosis response, we found that PACS-2 E209K increased susceptibility to staurosporine-induced apoptosis in HCT 116 cells. Overall, our findings suggest PACS-2 E209K alters PACS-2 proteostasis and favors complex formation with 14-3-3ε, leading to increased cell death in the presence of environmental stressors.
Collapse
|
6
|
Wang Q, Wei J, Jia X, Feng X, Ji Z, Ji X, Shao X. Downregulation of ADAM17 in pediatric immune thrombocytopenia impairs proplatelet formation. BMC Pediatr 2022; 22:164. [PMID: 35354403 PMCID: PMC8966352 DOI: 10.1186/s12887-022-03237-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is the most common etiology of acquired thrombocytopenia diseases in children. ITP is characterized by the immune-mediated decreased formation and excessive destruction of platelets. The pathogenesis and management of pediatric ITP are distinct from adult ITP. A disintegrin and metalloproteinase 17 (ADAM17) mediates the shedding of platelet receptor glycoprotein Ib α (GPIb α) in extracellular domain, functioning in the platelet activation and clearance. Our study aims to probe the roles and mechanisms of ADAM17 in pediatric ITP. METHODS The differently expressed ADAM17 in megakaryocytes was obtained from children with ITP through the next-generation RNA-Sequence. Hematoxylin-eosin and Giemsa staining were performed for cell morphology identification. Flow cytometry was applied to assess autoantibodies against platelets, subtypes of lymphocytes, the surface expression level of ADAM17 and polyploidization of megakaryocytes, as well as the full-length GP Ib α. RESULTS ADAM17 was significantly downregulated in megakaryocytes and platelets in children with ITP. Higher values of PDW and positive autoantibodies presence were observed in children with ITP. Loss of ADAM17 in mice led to defects in proplatelet formation and significantly elevated expression of phosphorylated myosin light chain (p-MLC) in megakaryocytes. CONCLUSIONS Our study indicated that the downregulation of ADAM17 might be an innate cause of inefficient platelet production in pediatric ITP.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China.
| | - Jia Wei
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Xi Jia
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Xiao Feng
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Zhenghua Ji
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Xueqiang Ji
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China.
| |
Collapse
|
7
|
Guo J, Liu X, Zeng Y, Liang T, Tang K, Guo J, Zheng W. Comprehensive Analysis of the Effects of Genetic Ancestry and Genetic Characteristics on the Clinical Evolution of Oral Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:678464. [PMID: 34950653 PMCID: PMC8689072 DOI: 10.3389/fcell.2021.678464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), a kind of malignant cancer, is associated with increasing morbidity and mortality. Patients with different genetic ancestries may respond differently to clinical treatment. The limited understanding of the influence of genetic ancestry and genetic characteristics on OSCC impedes the development of precision medicine. To provide a reference for clinical treatment, this study comprehensively analyzed multigenomic differences in OSCC patients with different genetic ancestries and their impact on prognosis. An analysis of data from OSCC patients with different genetic ancestries in The Cancer Genome Atlas (TCGA) showed that the overall survival (OS) of African (AFR) patients was lower than that of primarily European (EUR) patients, and differences were also observed in the tumor-stroma ratio (TSR) and tumor-infiltrating lymphocytes (TILs), which are associated with prognosis. FAT1 is a key mutant gene in OSCC, and it has inconsistent effects on clinical evolution for patients with diverse genetic characteristics. PIKfyve and CAPN9 showed a significant difference in mutation frequency between EUR and AFR; PIKfyve was related to Ki-67 expression, suggesting that it could promote tumor proliferation, and CAPN9 was related to the expression of Bcl-2, promoting tumor cell apoptosis. A variant methylation locus, cg20469139, was correlated with the levels of PD-L1 and Caspase-7 and modulated tumor cell apoptosis. A novel ceRNA model was constructed based on genetic ancestries, and it could accurately evaluate patient prognosis. More importantly, although T cell dysfunction scores could determine the potential of tumor immune escape, the efficacy was obviously affected by patients' genetic ancestries. To provide patients with more precise, personalized therapy and to further improve their quality of life and 5-year survival rate, the influence of genetic ancestry should be fully considered when selecting treatments.
Collapse
Affiliation(s)
- Junfeng Guo
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoping Liu
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Yi Zeng
- Department of Stomatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Taotao Liang
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kanglai Tang
- Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junfeng Guo
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Weiwei Zheng
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| |
Collapse
|
8
|
Shi W, Men L, Pi X, Jiang T, Peng D, Huo S, Luo P, Wang M, Guo J, Jiang Y, Peng L, Lin L, Li S, Lv J. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL‑6/STAT3 signaling pathway. Int J Oncol 2021; 59:99. [PMID: 34726248 PMCID: PMC8577797 DOI: 10.3892/ijo.2021.5279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) activation is associated with drug resistance induced by anti-epidermal growth factor receptor (anti-EGFR) therapy in the treatment of colon cancer. Thus, the combined inhibition of EGFR and STAT3 may prove beneficial for this type of cancer. STAT3 has been proven to play a critical role in colon cancer initiation and progression, and is considered the primary downstream effector driven by interleukin-6 (IL-6). A disintegrin and metalloproteinase 17 (ADAM17), documented as an oncogene, catalyzes the cleavage of both EGF and IL-6R, inducing EGFR signaling and enabling IL-6 trans-signaling to activate STAT3 in a wide range of cell types to promote inflammation and cancer development. As a natural product, shikonin (SKN) has been found to function as an antitumor agent; however, its role in the regulation of ADAM17 and IL-6/STAT3 signaling in colon cancer cells remains unknown. In the present study, it was found that SKN inhibited colon cancer cell growth, suppressed both constitutive and IL-6-induced STAT3 phosphorylation, and downregulated the expression of ADAM17. ADAM17 expression was not altered in response to STAT3 knockdown, while IL-6-induced STAT3 activation did not induce ADAM17 transcripts. Furthermore, it was demonstrated that SKN did not affect the expression of key proteins involved in the maturation and degradation of ADAM17. SKN decreased ADAM17 expression possibly through reactive oxygen species (ROS)-mediated translational inhibition, as evidenced by the increased ADAM17 mRNA and phosphorylation levels of eukaryotic initiation factor 2α (eIF2α). The expression of ADAM17 and p-eIF2α was reversed by N-acetylcysteine (NAC, a ROS scavenger). Taken together, these results indicate that the concurrent inhibition of ADAM17 and IL-6/STAT3 signaling by SKN may synergistically contribute to the suppression of colon cancer cell growth.
Collapse
Affiliation(s)
- Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiu Pi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tao Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
9
|
Lora J, Weskamp G, Li TM, Maretzky T, Shola DTN, Monette S, Lichtenthaler SF, Lu TT, Yang C, Blobel CP. Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. J Biol Chem 2021; 296:100733. [PMID: 33957124 PMCID: PMC8191336 DOI: 10.1016/j.jbc.2021.100733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a cell-surface metalloprotease that serves as the principle sheddase for tumor necrosis factor α (TNFα), interleukin-6 receptor (IL-6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17Δcyto). Homozygous Adam17Δcyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17Δcyto mice resembled Adam17−/− mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17Δcyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17Δcyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function.
Collapse
Affiliation(s)
- Jose Lora
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Thorsten Maretzky
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dorjee T N Shola
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Sloan-Kettering Institute, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Technical University of Munich, Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Technical University of Munich, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Chingwen Yang
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Carl P Blobel
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany; Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
10
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Yuan F, Li D, Li C, Zhang Y, Song H, Li S, Deng H, Gao GF, Zheng A. ADAM17 is an essential attachment factor for classical swine fever virus. PLoS Pathog 2021; 17:e1009393. [PMID: 33684175 PMCID: PMC7971878 DOI: 10.1371/journal.ppat.1009393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/18/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023] Open
Abstract
Classical swine fever virus (CSFV) is an important pathogen in the swine industry. Virion attachment is mediated by envelope proteins Erns and E2, and E2 is indispensable. Using a pull-down assay with soluble E2 as the bait, we demonstrated that ADAM17, a disintegrin and metalloproteinase 17, is essential for CSFV entry. Loss of ADAM17 in a permissive cell line eliminated E2 binding and viral entry, but compensation with pig ADAM17 cDNA completely rescued these phenotypes. Similarly, ADAM17 silencing in primary porcine fibroblasts significantly impaired virus infection. In addition, human and mouse ADAM17, which is highly homologous to pig ADAM17, also mediated CSFV entry. The metalloproteinase domain of ADAM17 bound directly to E2 protein in a zinc-dependent manner. A surface exposed region within this domain was mapped and shown to be critical for CSFV entry. These findings clearly demonstrate that ADAM17 serves as an essential attachment factor for CSFV.
Collapse
Affiliation(s)
- Fei Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dandan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Changyao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Suhua Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongkui Deng
- Peking University Stem Cell Research Center, Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- * E-mail: (HD); (GFG); (AZ)
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HD); (GFG); (AZ)
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
- College of Life Science, Henan Normal University, Xinxiang, China
- * E-mail: (HD); (GFG); (AZ)
| |
Collapse
|
12
|
Souza ILM, Oliveira NH, Huamaní PAM, Martin ATS, Borgonovo ZLM, Nakao LS, Zanata SM. Endocytosis of the non-catalytic ADAM23: Recycling and long half-life properties. Exp Cell Res 2020; 398:112415. [PMID: 33296662 DOI: 10.1016/j.yexcr.2020.112415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/15/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022]
Abstract
A Disintegrin And Metalloprotease 23 (ADAM23) is a member of the ADAMs family of transmembrane proteins, mostly expressed in nervous system, and involved in traffic and stabilization of Kv1-potassium channels, synaptic transmission, neurite outgrowth, neuronal morphology and cell adhesion. Also, ADAM23 has been linked to human pathological conditions, such as epilepsy, cancer metastasis and cardiomyopathy. ADAM23 functionality depends on the molecule presence at the cell surface and along the secretory pathway, as expected for a cell surface receptor. Because endocytosis is an important functional regulatory mechanism of plasma membrane receptors and no information is available about the traffic or turnover of non-catalytic ADAMs, we investigated ADAM23 internalization, recycling and half-life properties. Here, we show that ADAM23 undergoes constitutive internalization from the plasma membrane, a process that depends on lipid raft integrity, and is redistributed to intracellular vesicles, especially early and recycling endosomes. Furthermore, we observed that ADAM23 is recycled from intracellular compartments back to the plasma membrane and thus has longer half-life and higher cell surface stability compared with other ADAMs. Our findings suggest that regulation of ADAM23 endocytosis/stability could be exploited therapeutically in diseases in which ADAM23 is directly involved, such as epilepsy, cancer progression and cardiac hypertrophy.
Collapse
Affiliation(s)
- Ingrid L M Souza
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Natália H Oliveira
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Pierina A M Huamaní
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Anh-Tuan S Martin
- Institut für Molekulare Zellbiologie, University of Münster, Münster, Germany
| | - Zaine L M Borgonovo
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Lia S Nakao
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Silvio M Zanata
- Departments of Basic Pathology and Cell Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
13
|
Babendreyer A, Rojas-González DM, Giese AA, Fellendorf S, Düsterhöft S, Mela P, Ludwig A. Differential Induction of the ADAM17 Regulators iRhom1 and 2 in Endothelial Cells. Front Cardiovasc Med 2020; 7:610344. [PMID: 33335915 PMCID: PMC7736406 DOI: 10.3389/fcvm.2020.610344] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Endothelial function significantly depends on the proteolytic release of surface expressed signal molecules, their receptors and adhesion molecules via the metalloproteinase ADAM17. The pseudoproteases iRhom1 and 2 independently function as adapter proteins for ADAM17 and are essential for the maturation, trafficking, and activity regulation of ADAM17. Bioinformatic data confirmed that immune cells predominantly express iRhom2 while endothelial cells preferentially express iRhom1. Objective: Here, we investigate possible reasons for higher iRhom1 expression and potential inflammatory regulation of iRhom2 in endothelial cells and analyze the consequences for ADAM17 maturation and function. Methods: Primary endothelial cells were cultured in absence and presence of flow with and without inflammatory cytokines (TNFα and INFγ). Regulation of iRhoms was studied by qPCR, involved signaling pathways were studied with transcriptional inhibitors and consequences were analyzed by assessment of ADAM17 maturation, surface expression and cleavage of the ADAM17 substrate junctional adhesion molecule JAM-A. Results: Endothelial iRhom1 is profoundly upregulated by physiological shear stress. This is accompanied by a homeostatic phenotype driven by the transcription factor KLF2 which is, however, only partially responsible for regulation of iRhom1. By contrast, iRhom2 is most prominently upregulated by inflammatory cytokines. This correlates with an inflammatory phenotype driven by the transcription factors NFκB and AP-1 of which AP-1 is most relevant for iRhom2 regulation. Finally, shear stress exposure and inflammatory stimulation have independent and no synergistic effects on ADAM17 maturation, surface expression and JAM-A shedding. Conclusion: Conditions of shear stress and inflammation differentially upregulate iRhom1 and 2 in primary endothelial cells which then results in independent regulation of ADAM17.
Collapse
Affiliation(s)
- Aaron Babendreyer
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Diana M Rojas-González
- Department of Mechanical Engineering, Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Anja Adelina Giese
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sandra Fellendorf
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Petra Mela
- Department of Mechanical Engineering, Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
14
|
Lorenzen I, Eble JA, Hanschmann EM. Thiol switches in membrane proteins - Extracellular redox regulation in cell biology. Biol Chem 2020; 402:253-269. [PMID: 33108336 DOI: 10.1515/hsz-2020-0266] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Redox-mediated signal transduction depends on the enzymatic production of second messengers such as hydrogen peroxide, nitric oxide and hydrogen sulfite, as well as specific, reversible redox modifications of cysteine-residues in proteins. So-called thiol switches induce for instance conformational changes in specific proteins that regulate cellular pathways e.g., cell metabolism, proliferation, migration, gene expression and inflammation. Reduction, oxidation and disulfide isomerization are controlled by oxidoreductases of the thioredoxin family, including thioredoxins, glutaredoxins, peroxiredoxins and protein dsisulfide isomerases. These proteins are located in different cellular compartments, interact with substrates and catalyze specific reactions. Interestingly, some of these proteins are released by cells. Their extracellular functions and generally extracellular redox control have been widely underestimated. Here, we give an insight into extracellular redox signaling, extracellular thiol switches and their regulation by secreted oxidoreductases and thiol-isomerases, a topic whose importance has been scarcely studied so far, likely due to methodological limitations. We focus on the secreted redox proteins and characterized thiol switches in the ectodomains of membrane proteins, such as integrins and the metalloprotease ADAM17, which are among the best-characterized proteins and discuss their underlying mechanisms and biological implications.
Collapse
Affiliation(s)
- Inken Lorenzen
- Centre of Biochemistry and Molecular Biology, Structural Biology, Christian-Albrecht University of Kiel, Am Botanischen Garten 1-9, D-24118Kiel, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, D-48149Münster, Germany
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Life Science Center, Merowingerplatz 1a, D-40225Düsseldorf, Germany
| |
Collapse
|
15
|
Li C, Li L, Yang M, Zeng L, Sun L. PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res 2020; 160:105080. [DOI: 10.1016/j.phrs.2020.105080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
16
|
Kajanova I, Zatovicova M, Jelenska L, Sedlakova O, Barathova M, Csaderova L, Debreova M, Lukacikova L, Grossmannova K, Labudova M, Golias T, Svastova E, Ludwig A, Muller P, Vojtesek B, Pastorek J, Pastorekova S. Impairment of carbonic anhydrase IX ectodomain cleavage reinforces tumorigenic and metastatic phenotype of cancer cells. Br J Cancer 2020; 122:1590-1603. [PMID: 32210366 PMCID: PMC7250822 DOI: 10.1038/s41416-020-0804-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/30/2019] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbonic anhydrase IX (CA IX) is a hypoxia-induced enzyme regulating tumour pH and facilitating cell migration/invasion. It is primarily expressed as a transmembrane cell-surface protein, but its ectodomain can be shed by ADAM17 to extracellular space. This study aims to elucidate the impact of CA IX shedding on cancer cells. METHODS We generated a non-shed CA IX mutant by deletion of amino acids 393-402 from the stalk region and studied its phenotypic effects compared to full-length, shedding-competent CA IX using a range of assays based on immunodetection, confocal microscopy, in vitro real-time cell monitoring and in vivo tumour cell inoculation using xenografted NMRI and C57BL/6J female mice. RESULTS We demonstrated that the impairment of shedding does not alter the ability of CA IX to bind ADAM17, internalise, form oligomers and regulate pH, but induces cancer-promoting changes in extracellular proteome. Moreover, it affects intrinsic properties of cells expressing the non-shed variant, in terms of their increased ability to migrate, generate primary tumours and form metastatic lesions in lungs. CONCLUSIONS Our results show that the ectodomain shedding controls pro-tumorigenic and pro-metastatic roles of the cell-associated CA IX and suggest that this phenomenon should be considered when developing CA IX-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ivana Kajanova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Miriam Zatovicova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lenka Jelenska
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Olga Sedlakova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Monika Barathova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lucia Csaderova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Michaela Debreova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lubomira Lukacikova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Katarina Grossmannova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Martina Labudova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Tereza Golias
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Eliska Svastova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Andreas Ludwig
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Petr Muller
- grid.419466.8RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Borivoj Vojtesek
- grid.419466.8RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Jaromir Pastorek
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- 0000 0001 2180 9405grid.419303.cDepartment of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
17
|
Genes dysregulated in the blood of people with Williams syndrome are enriched in protein-coding genes positively selected in humans. Eur J Med Genet 2020; 63:103828. [DOI: 10.1016/j.ejmg.2019.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
|
18
|
Regulation of Fibrotic Processes in the Liver by ADAM Proteases. Cells 2019; 8:cells8101226. [PMID: 31601007 PMCID: PMC6830092 DOI: 10.3390/cells8101226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Fibrosis in the liver is mainly associated with the activation of hepatic stellate cells (HSCs). Both activation and clearance of HSCs can be mediated by ligand–receptor interactions. Members of the a disintegrin and metalloprotease (ADAM) family are involved in the proteolytic release of membrane-bound ligands and receptor ectodomains and the remodelling of the extracellular matrix. ADAM proteases are therefore major regulators of intercellular signalling pathways. In the present review we discuss how ADAM proteases modulate pro- and anti-fibrotic processes and how ADAM proteases might be harnessed therapeutically in the future.
Collapse
|
19
|
|
20
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
21
|
Düsterhöft S, Lokau J, Garbers C. The metalloprotease ADAM17 in inflammation and cancer. Pathol Res Pract 2019; 215:152410. [PMID: 30992230 DOI: 10.1016/j.prp.2019.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/23/2022]
Abstract
Proteolytic cleavage of transmembrane proteins is an important post-translational modification that regulates the biological function of numerous transmembrane proteins. Among the 560 proteases encoded in the human genome, the metalloprotease A Disintegrin and Metalloprotease 17 (ADAM17) has gained much attention in recent years and has emerged as a central regulatory hub in inflammation, immunity and cancer development. In order to do so, ADAM17 cleaves a variety of substrates, among them the interleukin-6 receptor (IL-6R), the pro-inflammatory cytokine tumor necrosis factor α (TNFα) and most ligands of the epidermal growth factor receptor (EGFR). This review article provides an overview of the functions of ADAM17 with a special focus on its cellular regulation. It highlights the importance of ADAM17 to understand the biology of IL-6 and TNFα and their role in inflammatory diseases. Finally, the role of ADAM17 in the formation and progression of different tumor entities is discussed.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute for Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
22
|
Schubert K, Collins LE, Green P, Nagase H, Troeberg L. LRP1 Controls TNF Release via the TIMP-3/ADAM17 Axis in Endotoxin-Activated Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:1501-1509. [PMID: 30659107 DOI: 10.4049/jimmunol.1800834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.
Collapse
Affiliation(s)
- Kristin Schubert
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Laura E Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Patricia Green
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
23
|
Merilahti JAM, Elenius K. Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene 2018; 38:151-163. [PMID: 30166589 PMCID: PMC6756091 DOI: 10.1038/s41388-018-0465-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022]
Abstract
Human genome harbors 55 receptor tyrosine kinases (RTK). At least half of the RTKs have been reported to be cleaved by gamma-secretase-mediated regulated intramembrane proteolysis. The two-step process involves releasing the RTK ectodomain to the extracellular space by proteolytic cleavage called shedding, followed by cleavage in the RTK transmembrane domain by the gamma-secretase complex resulting in release of a soluble RTK intracellular domain. This intracellular domain, including the tyrosine kinase domain, can in turn translocate to various cellular compartments, such as the nucleus or proteasome. The soluble intracellular domain may interact with transcriptional regulators and other proteins to induce specific effects on cell survival, proliferation, and differentiation, establishing an additional signaling mode for the cleavable RTKs. On the other hand, the same process can facilitate RTK turnover and proteasomal degradation. In this review we focus on the regulation of RTK shedding and gamma-secretase cleavage, as well as signaling promoted by the soluble RTK ICDs. In addition, therapeutic implications of increased knowledge on RTK cleavage on cancer drug development are discussed.
Collapse
Affiliation(s)
- Johannes A M Merilahti
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland.,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520, Turku, Finland
| | - Klaus Elenius
- Institute of Biomedicine, University of Turku, 20520, Turku, Finland. .,Medicity Research Laboratory, University of Turku, 20520, Turku, Finland. .,Department of Oncology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
24
|
Oikonomidi I, Burbridge E, Cavadas M, Sullivan G, Collis B, Naegele H, Clancy D, Brezinova J, Hu T, Bileck A, Gerner C, Bolado A, von Kriegsheim A, Martin SJ, Steinberg F, Strisovsky K, Adrain C. iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. eLife 2018; 7:35032. [PMID: 29897333 PMCID: PMC6042963 DOI: 10.7554/elife.35032] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022] Open
Abstract
The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation. Inflammation forms part of the body's defense system against pathogens, but if the system becomes faulty, it can cause problems linked to inflammatory and autoimmune diseases. Immune cells coordinate their activity using specific signaling molecules called cytokines. For example, the cytokine TNF is an important trigger of inflammation and is produced at the surface of immune cells. A specific enzyme called TACE is needed to release TNF, as well as other signaling molecules, including proteins that trigger healing. Previous work revealed that TACE works with proteins called iRhoms, which regulate its activity and help TACE to reach the surface of the cell to release TNF. To find out how, Oikonomidi et al. screened human cells to see what other proteins interact with iRhoms. The results revealed a new protein named iTAP, which is required to release TNF from the surface of cells. It also protects the TACE-iRhom complex from being destroyed by the cell’s waste disposal system. When iTAP was experimentally removed in human immune cells, the cells were unable to release TNF. Instead, iRhom and TACE travelled to the cell's garbage system, the lysosome, where the proteins were destroyed. Removing the iTAP gene in mice had the same effect, and the TACE-iRhom complex was no longer found on the surface of the cell, but instead degraded in lysosomes. This suggests that in healthy cells, the iTAP protein prevents the cell from destroying this protein complex. TNF controls many beneficial processes, including fighting infection and cancer. However, when the immune system releases too many cytokines, it can lead to inflammatory diseases or even cause cancer. Specific drugs that target TNF are not always effective administered on their own, and sometimes, patients stop responding to the drugs. Since the new protein iTAP works as a switch to turn TNF release on or off, it could provide a target for the development of new treatments.
Collapse
Affiliation(s)
- Ioanna Oikonomidi
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Emma Burbridge
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Miguel Cavadas
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Graeme Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Blanka Collis
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Heike Naegele
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Danielle Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Jana Brezinova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tianyi Hu
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrea Bileck
- Institut für Analytische Chemie, Universität Wien, Vienna, Austria
| | | | - Alfonso Bolado
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Florian Steinberg
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
25
|
Mygind KJ, Störiko T, Freiberg ML, Samsøe-Petersen J, Schwarz J, Andersen OM, Kveiborg M. Sorting nexin 9 (SNX9) regulates levels of the transmembrane ADAM9 at the cell surface. J Biol Chem 2018; 293:8077-8088. [PMID: 29622675 DOI: 10.1074/jbc.ra117.001077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
ADAM9 is an active member of the family of transmembrane ADAMs (a disintegrin and metalloproteases). It plays a role in processes such as bone formation and retinal neovascularization, and importantly, its expression in human cancers correlates with disease stage and poor prognosis. Functionally, ADAM9 can cleave several transmembrane proteins, thereby shedding their ectodomains from the cell surface. Moreover, ADAM9 regulates cell behavior by binding cell-surface receptors such as integrin and membrane-type matrix metalloproteases. Because these functions are mainly restricted to the cell surface, understanding the mechanisms regulating ADAM9 localization and activity at this site is highly important. To this end, we here investigated how intracellular trafficking regulates ADAM9 availability at the cell surface. We found that ADAM9 undergoes constitutive clathrin-dependent internalization and subsequent degradation or recycling to the plasma membrane. We confirmed previous findings of an interaction between ADAM9 and the intracellular sorting protein, sorting nexin 9 (SNX9), as well as its close homolog SNX18. Knockdown of either SNX9 or SNX18 had no apparent effects on ADAM9 internalization or recycling. However, double knockdown of SNX9 and SNX18 decreased ADAM9 internalization significantly, demonstrating a redundant role in this process. Moreover, SNX9 knockdown revealed a nonredundant effect on overall ADAM9 protein levels, resulting in increased ADAM9 levels at the cell surface, and a corresponding increase in the shedding of Ephrin receptor B4, a well-known ADAM9 substrate. Together, our findings demonstrate that intracellular SNX9-mediated trafficking constitutes an important ADAM9 regulatory pathway.
Collapse
Affiliation(s)
- Kasper J Mygind
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Theresa Störiko
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Marie L Freiberg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Ole Worms Alle 3, 8000 Aarhus C, Denmark
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
26
|
Nakayama H, Sakaue T, Maekawa M, Fujisaki A, Higashiyama S. Cullin 3 regulates ADAMs-mediated ectodomain shedding of amphiregulin. Biochem Biophys Res Commun 2018; 499:17-23. [DOI: 10.1016/j.bbrc.2018.03.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
|
27
|
Hedemann N, Rogmans C, Sebens S, Wesch D, Reichert M, Schmidt-Arras D, Oberg HH, Pecks U, van Mackelenbergh M, Weimer J, Arnold N, Maass N, Bauerschlag DO. ADAM17 inhibition enhances platinum efficiency in ovarian cancer. Oncotarget 2018; 9:16043-16058. [PMID: 29662625 PMCID: PMC5882316 DOI: 10.18632/oncotarget.24682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022] Open
Abstract
Chemotherapeutic resistance evolves in about 70 % of ovarian cancer patients and is a major cause of death in this tumor entity. Novel approaches to overcome these therapeutic limitations are therefore highly warranted. A disintegrin and metalloprotease 17 (ADAM17) is highly expressed in ovarian cancer and required for releasing epidermal growth factor receptor (EGFR) ligands like amphiregulin (AREG). This factor has recently been detected in ascites of advanced stage ovarian cancer patients. However, it is not well understood, whether and how ADAM17 might contribute to chemo resistance of ovarian cancer. In this study, we identified ADAM17 as an essential upstream regulator of AREG release under chemotherapeutic treatment in ovarian cancer cell lines and patient derived cells. In the majority of ovarian cancer cells cisplatin treatment resulted in enhanced ADAM17 activity, as shown by an increased shedding of AREG. Moreover, both mRNA and the protein content of AREG were dose-dependently increased by cisplatin exposure. Consequently, cisplatin strongly induced phosphorylation of ADAM17-downstream mediators, the EGFR and extracellular signal-regulated kinases (ERK). Phorbol 12-myristate 13-acetate (PMA), similarly to cisplatin, mediated AREG shedding and membrane fading of surface ADAM17. Inhibition of ADAM17 with either GW280264X or the anti-ADAM17 antibody D1 (A12) as well as silencing of ADAM17 by siRNA selectively reduced AREG release. Thus, ADAM17 inhibition sensitized cancer cells to cisplatin-induced apoptosis, and significantly reduced cell viability. Based on these findings, we propose that targeting of ADAM17 in parallel to chemotherapeutic treatment suppresses survival pathways and potentially diminish evolving secondary chemo resistance mechanisms.
Collapse
Affiliation(s)
- Nina Hedemann
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christoph Rogmans
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Manuel Reichert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ulrich Pecks
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Marion van Mackelenbergh
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jörg Weimer
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
28
|
Fine-Tuning Limited Proteolysis: A Major Role for Regulated Site-Specific O-Glycosylation. Trends Biochem Sci 2018; 43:269-284. [PMID: 29506880 DOI: 10.1016/j.tibs.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Limited proteolytic processing is an essential and ubiquitous post-translational modification (PTM) affecting secreted proteins; failure to regulate the process is often associated with disease. Glycosylation is also a ubiquitous protein PTM and site-specific O-glycosylation in close proximity to sites of proteolysis can regulate and direct the activity of proprotein convertases, a disintegrin and metalloproteinases (ADAMs), and metalloproteinases affecting the activation or inactivation of many classes of proteins, including G-protein-coupled receptors (GPCRs). Here, we summarize the emerging data that suggest O-glycosylation to be a key regulator of limited proteolysis, and highlight the potential for crosstalk between multiple PTMs.
Collapse
|
29
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
30
|
Li R, Wang T, Walia K, Gao B, Krepinsky JC. ADAM17 activation and regulation of profibrotic responses by high glucose requires its C-terminus and FAK kinase. J Cell Sci 2018; 131:jcs.208629. [DOI: 10.1242/jcs.208629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/28/2017] [Indexed: 12/23/2022] Open
Abstract
Glomerular matrix accumulation is the hallmark of diabetic nephropathy. The metalloprotease ADAM17 mediates high glucose (HG)-induced matrix production by kidney mesangial cells through release of ligands for the epidermal growth factor receptor. Here we study the mechanism by which HG activates ADAM17. We find that the C-terminus is essential for ADAM17 activation and the profibrotic response to HG. In the C-terminus, Src-mediated Y702 phosphorylation and PI3K/MEK/Erk-mediated T735 phosphorylation are critical to ADAM17 activation, but play divergent roles in ADAM17 trafficking in response to HG. While T735 phosphorylation is required for the HG-induced increase in cell surface mature ADAM17, Y702 phosphorylation is dispensable. Src, however, enables trafficking independently of its phosphorylation of ADAM17. The nonreceptor tyrosine kinase FAK is a central mediator of these processes. These data not only support a critical role for the C-terminus in ADAM17 activation and downstream profibrotic responses to HG, but also highlight FAK as a potential alternate therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Renzhong Li
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Tony Wang
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Khyati Walia
- Division of Nephrology, McMaster University, Hamilton, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
31
|
Wilson JL, Kefaloyianni E, Stopfer L, Harrison C, Sabbisetti VS, Fraenkel E, Lauffenburger DA, Herrlich A. Functional Genomics Approach Identifies Novel Signaling Regulators of TGFα Ectodomain Shedding. Mol Cancer Res 2018; 16:147-161. [PMID: 29018056 PMCID: PMC5859574 DOI: 10.1158/1541-7786.mcr-17-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/16/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Ectodomain shedding of cell-surface precursor proteins by metalloproteases generates important cellular signaling molecules. Of importance for disease is the release of ligands that activate the EGFR, such as TGFα, which is mostly carried out by ADAM17 [a member of the A-disintegrin and metalloprotease (ADAM) domain family]. EGFR ligand shedding has been linked to many diseases, in particular cancer development, growth and metastasis, as well as resistance to cancer therapeutics. Excessive EGFR ligand release can outcompete therapeutic EGFR inhibition or the inhibition of other growth factor pathways by providing bypass signaling via EGFR activation. Drugging metalloproteases directly have failed clinically because it indiscriminately affected shedding of numerous substrates. It is therefore essential to identify regulators for EGFR ligand cleavage. Here, integration of a functional shRNA genomic screen, computational network analysis, and dedicated validation tests succeeded in identifying several key signaling pathways as novel regulators of TGFα shedding in cancer cells. Most notably, a cluster of genes with NFκB pathway regulatory functions was found to strongly influence TGFα release, albeit independent of their NFκB regulatory functions. Inflammatory regulators thus also govern cancer cell growth-promoting ectodomain cleavage, lending mechanistic understanding to the well-known connection between inflammation and cancer.Implications: Using genomic screens and network analysis, this study defines targets that regulate ectodomain shedding and suggests new treatment opportunities for EGFR-driven cancers. Mol Cancer Res; 16(1); 147-61. ©2017 AACR.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Eirini Kefaloyianni
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christina Harrison
- Department of Biology, University of Massachusetts, Boston, Massachusetts
| | | | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Andreas Herrlich
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
32
|
Wewer Albrechtsen NJ, Albrechtsen R, Bremholm L, Svendsen B, Kuhre RE, Poulsen SS, Christiansen CB, Jensen EP, Janus C, Hilsted L, Deacon CF, Hartmann B, Holst JJ. Glucagon-like Peptide 1 Receptor Signaling in Acinar Cells Causes Growth-Dependent Release of Pancreatic Enzymes. Cell Rep 2017; 17:2845-2856. [PMID: 27974199 DOI: 10.1016/j.celrep.2016.11.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Incretin-based therapies are widely used for type 2 diabetes and now also for obesity, but they are associated with elevated plasma levels of pancreatic enzymes and perhaps a modestly increased risk of acute pancreatitis. However, little is known about the effects of the incretin hormone glucagon-like peptide 1 (GLP-1) on the exocrine pancreas. Here, we identify GLP-1 receptors on pancreatic acini and analyze the impact of receptor activation in humans, rodents, isolated acini, and cell lines from the exocrine pancreas. GLP-1 did not directly stimulate amylase or lipase release. However, we saw that GLP-1 induces phosphorylation of the epidermal growth factor receptor and activation of Foxo1, resulting in cell growth with concomitant enzyme release. Our work uncovers GLP-1-induced signaling pathways in the exocrine pancreas and suggests that increases in amylase and lipase levels in subjects treated with GLP-1 receptor agonists reflect adaptive growth rather than early-stage pancreatitis.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reidar Albrechtsen
- Department of Biomedical Sciences and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lasse Bremholm
- Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark
| | - Berit Svendsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte B Christiansen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
33
|
Dombernowsky SL, Schwarz J, Samsøe-Petersen J, Albrechtsen R, Jensen KB, Thomas G, Kveiborg M. Loss of PACS-2 delays regeneration in DSS-induced colitis but does not affect the ApcMin model of colorectal cancer. Oncotarget 2017; 8:108303-108315. [PMID: 29312533 PMCID: PMC5752446 DOI: 10.18632/oncotarget.22661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/28/2017] [Indexed: 01/25/2023] Open
Abstract
PACS-2 is a multifunctional sorting protein that mediates cell homeostasis. We recently identified PACS-2 in a functional genome-wide siRNA screen for novel regulators of the metalloproteinase ADAM17, the main sheddase for ligands of the ErbB receptor family. Of note, we showed that Pacs2-/- mice have significantly reduced EGFR activity and proliferative index in the intestinal epithelium. As EGFR signaling is highly mitogenic for intestinal epithelial stem cells, and plays essential roles in intestinal epithelial regeneration and tumor development, we have now examined the role of PACS-2 in these processes. Specifically, we analyzed the role of Pacs2-deficiency in a DSS-induced colitis model as well as in the genetic ApcMin colon cancer model. We now report that loss of PACS-2 delays tissue regeneration after colonic injury with little effect on key inflammatory parameters. We did however not observe any apparent effects on tumor formation driven by excessive proliferative signaling downstream from APC-deficiency. Our findings reveal that the role of PACS-2 in regulating ADAM17-mediated shedding is not an obligate requirement for the epithelium to respond to the strong inflammatory or tumorigenic inducers in the models assessed here.
Collapse
Affiliation(s)
- Sarah L Dombernowsky
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kim B Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marie Kveiborg
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Schäfer M, Granato DC, Krossa S, Bartels AK, Yokoo S, Düsterhöft S, Koudelka T, Scheidig AJ, Tholey A, Paes Leme AF, Grötzinger J, Lorenzen I. GRP78 protects a disintegrin and metalloprotease 17 against protein-disulfide isomerase A6 catalyzed inactivation. FEBS Lett 2017; 591:3567-3587. [PMID: 28949004 DOI: 10.1002/1873-3468.12858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
The shedding of ectodomains is a crucial mechanism in many physiological and pathological events. A disintegrin and metalloprotease-17 (ADAM17) is a key sheddase involved in essential processes, such as development, regeneration, and immune defense. ADAM17 exists in two conformations which differ in their disulfide connection in the membrane-proximal domain (MPD). Protein-disulfide isomerases (PDIs) on the cell surface convert the open MPD into a rigid closed form, which corresponds to inactive ADAM17. ADAM17 is expressed in its open activatable form in the endoplasmic reticulum (ER) and consequently must be protected against ER-resident PDI activity. Here, we show that the chaperone 78-kDa glucose-regulated protein (GRP78) protects the MPD against PDI-dependent disulfide-bond isomerization by binding to this domain and, thereby, preventing ADAM17 inhibition.
Collapse
Affiliation(s)
- Miriam Schäfer
- Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany
| | - Daniela C Granato
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Sebastian Krossa
- Department of Structural Biology, Institute of Zoology, Kiel, Germany
| | | | - Sami Yokoo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | - Tomas Koudelka
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Axel J Scheidig
- Department of Structural Biology, Institute of Zoology, Kiel, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Adriana F Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany
| | - Inken Lorenzen
- Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany.,Department of Structural Biology, Institute of Zoology, Kiel, Germany
| |
Collapse
|
35
|
Reiss K, Bhakdi S. The plasma membrane: Penultimate regulator of ADAM sheddase function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624437 DOI: 10.1016/j.bbamcr.2017.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. SCOPE OF REVIEW Membrane events that could contribute to regulation of ADAM-function are summarized. MAJOR CONCLUSIONS Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. GENERAL SIGNIFICANCE The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Karina Reiss
- Dept. of Dermatology, University of Kiel, 24105 Kiel, Germany.
| | - Sucharit Bhakdi
- Dept. of Dermatology, University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
36
|
Thomas G, Aslan JE, Thomas L, Shinde P, Shinde U, Simmen T. Caught in the act - protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease. J Cell Sci 2017; 130:1865-1876. [PMID: 28476937 PMCID: PMC5482974 DOI: 10.1242/jcs.199463] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vertebrate proteins that fulfill multiple and seemingly disparate functions are increasingly recognized as vital solutions to maintaining homeostasis in the face of the complex cell and tissue physiology of higher metazoans. However, the molecular adaptations that underpin this increased functionality remain elusive. In this Commentary, we review the PACS proteins - which first appeared in lower metazoans as protein traffic modulators and evolved in vertebrates to integrate cytoplasmic protein traffic and interorganellar communication with nuclear gene expression - as examples of protein adaptation 'caught in the act'. Vertebrate PACS-1 and PACS-2 increased their functional density and roles as metabolic switches by acquiring phosphorylation sites and nuclear trafficking signals within disordered regions of the proteins. These findings illustrate one mechanism by which vertebrates accommodate their complex cell physiology with a limited set of proteins. We will also highlight how pathogenic viruses exploit the PACS sorting pathways as well as recent studies on PACS genes with mutations or altered expression that result in diverse diseases. These discoveries suggest that investigation of the evolving PACS protein family provides a rich opportunity for insight into vertebrate cell and organ homeostasis.
Collapse
Affiliation(s)
- Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15239, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15239, USA
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15239, USA
| | - Pushkar Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G2H7
| |
Collapse
|
37
|
Grötzinger J, Lorenzen I, Düsterhöft S. Molecular insights into the multilayered regulation of ADAM17: The role of the extracellular region. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2088-2095. [PMID: 28571693 DOI: 10.1016/j.bbamcr.2017.05.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022]
Abstract
In contrast to many other signalling mechanisms shedding of membrane-anchored proteins is an irreversible process. A Disintegrin And Metalloproteinase (ADAM) 17 is one of the major sheddases involved in a variety of physiological and pathophysiological processes including regeneration, differentiation, and cancer progression. Due to its central role in signalling the shedding activity of ADAM17 is tightly regulated, especially on the cell surface, where shedding events take place. The activity of ADAM17 can be subdivided into a catalytic activity and the actual shedding activity. Whereas the catalytic activity is constitutively present, the shedding activity has to be induced and is tightly controlled to prevent pathological situations induced by the release of its substrates. The regulation of the shedding activity of ADAM17 is multilayered and different regions of the protease are involved. Intriguingly, its extracellular domains play crucial roles in different regulatory mechanisms. We will discuss the role of these domains in the control of ADAM17 activity. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-University, Olshausenstr. 40, 24118 Kiel, Germany.
| | - Inken Lorenzen
- Centre of Biochemistry and Molecular Biology, Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stefan Düsterhöft
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
38
|
Grieve AG, Xu H, Künzel U, Bambrough P, Sieber B, Freeman M. Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling. eLife 2017; 6. [PMID: 28432785 PMCID: PMC5436907 DOI: 10.7554/elife.23968] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling. DOI:http://dx.doi.org/10.7554/eLife.23968.001 Injury or infection can cause tissues in the body to become inflamed. The immune system triggers this inflammation to help repair the injury or fight the infection. A signal molecule known as TNF – which is produced by immune cells called macrophages – triggers inflammation. This protein is normally attached to the surface of the macrophage, and it only activates inflammation once it has been cut free. An enzyme called TACE cuts and releases TNF from the surface of macrophages. This enzyme is made inside the cell and is then transported to the surface. On the way, TACE matures from an inactive form to a fully functional enzyme. Previous work revealed that a protein called iRhom2 controls TACE maturation, but it has been unclear whether iRhom2 affects TACE in any additional ways. Grieve et al. studied the relationship between iRhom2 and TACE in more detail. The experiments show two new roles for iRhom2: in protecting TACE from being destroyed at the cell surface, and prompting TACE to release TNF to trigger inflammation. Injury or infection causes small molecules called phosphate groups to be attached to iRhom2 in macrophages, which causes TACE to release TNF. The findings of Grieve et al. provide the first evidence that iRhom2 influences the activity of TACE throughout the enzyme’s lifetime. Excessive inflammation, often triggered by the uncontrolled release of TNF, can lead to rheumatoid arthritis, cancer and many other diseases. Therefore, iRhom2 could be a promising new target for anti-inflammatory drugs that may help to treat these conditions. DOI:http://dx.doi.org/10.7554/eLife.23968.002
Collapse
Affiliation(s)
- Adam Graham Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hongmei Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ulrike Künzel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul Bambrough
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Kerkhofs M, Giorgi C, Marchi S, Seitaj B, Parys JB, Pinton P, Bultynck G, Bittremieux M. Alterations in Ca 2+ Signalling via ER-Mitochondria Contact Site Remodelling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:225-254. [PMID: 28815534 DOI: 10.1007/978-981-10-4567-7_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inter-organellar contact sites establish microdomains for localised Ca2+-signalling events. One of these microdomains is established between the ER and the mitochondria. Importantly, the so-called mitochondria-associated ER membranes (MAMs) contain, besides structural proteins and proteins involved in lipid exchange, several Ca2+-transport systems, mediating efficient Ca2+ transfer from the ER to the mitochondria. These Ca2+ signals critically control several mitochondrial functions, thereby impacting cell metabolism, cell death and survival, proliferation and migration. Hence, the MAMs have emerged as critical signalling hubs in physiology, while their dysregulation is an important factor that drives or at least contributes to oncogenesis and tumour progression. In this book chapter, we will provide an overview of the role of the MAMs in cell function and how alterations in the MAM composition contribute to oncogenic features and behaviours.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Bruno Seitaj
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Jan B Parys
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Geert Bultynck
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium.
| | - Mart Bittremieux
- Laboratory Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), KU Leuven, Campus Gasthuisberg O&N 1 Box 802, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
40
|
Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep 2016; 6:35067. [PMID: 27731361 PMCID: PMC5059621 DOI: 10.1038/srep35067] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022] Open
Abstract
An important, irreversible step in many signalling pathways is the shedding of membrane-anchored proteins. A Disintegrin And Metalloproteinase (ADAM) 17 is one of the major sheddases involved in a variety of physiological and pathophysiological processes including regeneration, differentiation, and cancer progression. This central role in signalling implies that ADAM17 activity has to be tightly regulated, including at the level of localisation. Most mature ADAM17 is localised intracellularly, with only a small amount at the cell surface. We found that ADAM17 is constitutively internalised by clathrin-coated pits and that physiological stimulators such as GPCR ligands induce ADAM17-mediated shedding, but do not alter the cell-surface abundance of the protease. In contrast, the PKC-activating phorbol ester PMA, often used as a strong inducer of ADAM17, causes not only proteolysis by ADAM17 but also a rapid increase of the mature protease at the cell surface. This is followed by internalisation and subsequent degradation of the protease. Eventually, this leads to a substantial downregulation of mature ADAM17. Our results therefore imply that physiological activation of ADAM17 does not rely on its relocalisation, but that PMA-induced PKC activity drastically dysregulates the localisation of ADAM17.
Collapse
|
41
|
Stolarczyk M, Amatngalim GD, Yu X, Veltman M, Hiemstra PS, Scholte BJ. ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD). Physiol Rep 2016; 4:e12878. [PMID: 27561911 PMCID: PMC5002905 DOI: 10.14814/phy2.12878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 01/31/2023] Open
Abstract
Aberrant activity of a disintegrin and metalloprotease 17 (ADAM17), also known as TACE, and epidermal growth factor receptor (EGFR) has been suggested to contribute to chronic obstructive pulmonary disease (COPD) development and progression. The aim of this study was to investigate the role of these proteins in activation of primary bronchial epithelial cells differentiated at the air-liquid interface (ALI-PBEC) by whole cigarette smoke (CS), comparing cells from COPD patients with non-COPD CS exposure of ALI-PBEC enhanced ADAM17-mediated shedding of the IL-6 receptor (IL6R) and the EGFR agonist amphiregulin (AREG) toward the basolateral compartment, which was more pronounced in cells from COPD patients than in non-COPD controls. CS transiently increased IL6R and AREG mRNA in ALI-PBEC to a similar extent in cultures from both groups, suggesting that posttranslational events determine differential shedding between COPD and non-COPD cultures. We show for the first time by in situ proximity ligation (PLA) that CS strongly enhances interactions of phosphorylated ADAM17 with AREG and IL-6R in an intracellular compartment, suggesting that CS-induced intracellular trafficking events precede shedding to the extracellular compartment. Both EGFR and ADAM17 activity contribute to CS-induced IL-6R and AREG protein shedding and to mRNA expression, as demonstrated using selective inhibitors (AG1478 and TMI-2). Our data are consistent with an autocrine-positive feedback mechanism in which CS triggers shedding of EGFR agonists evoking EGFR activation, in ADAM17-dependent manner, and subsequently transduce paracrine signaling toward myeloid cells and connective tissue. Reducing ADAM17 and EGFR activity could therefore be a therapeutic approach for the tissue remodeling and inflammation observed in COPD.
Collapse
Affiliation(s)
| | - Gimano D Amatngalim
- Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Xiao Yu
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mieke Veltman
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter S Hiemstra
- Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Bob J Scholte
- Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Sommer A, Kordowski F, Büch J, Maretzky T, Evers A, Andrä J, Düsterhöft S, Michalek M, Lorenzen I, Somasundaram P, Tholey A, Sönnichsen FD, Kunzelmann K, Heinbockel L, Nehls C, Gutsmann T, Grötzinger J, Bhakdi S, Reiss K. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun 2016; 7:11523. [PMID: 27161080 PMCID: PMC4866515 DOI: 10.1038/ncomms11523] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 02/07/2023] Open
Abstract
ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.
Collapse
Affiliation(s)
- Anselm Sommer
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Felix Kordowski
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Joscha Büch
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Thorsten Maretzky
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Astrid Evers
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Medical College of Cornell University, New York, New York 10021, USA
| | - Jörg Andrä
- Hamburg University of Applied Science, Ulmenliet 20, Hamburg 21033, Germany
| | - Stefan Düsterhöft
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Matthias Michalek
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Inken Lorenzen
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Prasath Somasundaram
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel 24105, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, University of Kiel, Kiel 24118, Germany
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
| | - Lena Heinbockel
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Christian Nehls
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Leibniz-Zentrum für Medizin and Biowissenschaften, Borstel 23845, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Sucharit Bhakdi
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| | - Karina Reiss
- Department of Dermatology, University of Kiel, Schittenhelmstrasse 7, Kiel 24105, Germany
| |
Collapse
|
43
|
PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ 2016; 23:1448-57. [PMID: 26943323 DOI: 10.1038/cdd.2016.23] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 01/26/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) promotes cell survival in response to genotoxic stress by inducing the expression of anti-apoptotic proteins including Bcl-xL, which protects mitochondria from stress-induced mitochondrial outer membrane permeabilization (MOMP). Here we show that the multifunctional sorting protein Pacs-2 (phosphofurin acidic cluster sorting protein-2) is required for Bcl-xL induction following DNA damage in primary mouse thymocytes. Consequently, in response to DNA damage, Pacs-2(-/-) thymocytes exhibit a blunted induction of Bcl-xL, increased MOMP and accelerated apoptosis. Biochemical studies show that cytoplasmic PACS-2 promotes this DNA damage-induced anti-apoptotic pathway by interacting with ataxia telangiectasia mutated (ATM) to drive NF-κB activation and induction of Bcl-xL. However, Pacs-2 was not required for tumor necrosis factor-α-induced NF-κB activation, suggesting a role for PACS-2 selectively in NF-κB activation in response to DNA damage. These findings identify PACS-2 as an in vivo mediator of the ATM and NF-κB-dependent induction of Bcl-xL that promotes cell survival in response to DNA damage.
Collapse
|