1
|
Zhang J, Shi M, Zhu C, Yang K, Li Q, Song X, Gao Z, Cao T, Zhu D, Song X. Stable isotope labelling and gene expression analysis reveal dynamic nitrogen-supply mechanisms for rapid growth of Moso bamboo. HORTICULTURE RESEARCH 2025; 12:uhaf062. [PMID: 40291829 PMCID: PMC12023858 DOI: 10.1093/hr/uhaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/16/2025] [Indexed: 04/30/2025]
Abstract
Rapid growth of Moso bamboo (Phyllostachys edulis) shoots (offspring ramet) is primarily fuelled by nitrogen (N) derived from parent ramet and absorbed by rhizome roots. However, the extent to which each N source supports the growth of offspring ramet and the underlying molecular mechanisms of N transport remain unclear. Here, clonal fragments consisting of a parent ramet, an offspring ramet, and an interconnected rhizome were established in a Moso bamboo forest. Additionally, 15N isotope tracing and transcriptome profiling were conducted concurrently to quantify the N contribution from the parent ramet and rhizome roots to the offspring ramet, and to reveal the molecular mechanisms underlying N transport during rapid growth (i.e. early, peak, branching, and leafing stages). The N acquisition strategy of offspring ramet shifted from being primarily provided by the parent ramet (72.53%) during early stage to being predominantly absorbed by rhizome roots (69.85%) during the leafing stage. Approximately equal N contributions (45.82%-54.18%) from the parent ramet and rhizome roots were observed during peak and branching stages. PeAAP29123 was identified as a key gene for N transport, being most closely correlated with 15N content. Biomolecular assays demonstrated that PeHDZ23987 could activate the expression of PeAAP29123 via two types of HD-motifs. Overexpression of PeHDZ23987 and PeAAP29123 significantly enhanced N starvation tolerance in transgenic rice with significantly improved N uptake efficiency. Our findings clarify the pattern and mechanisms of N supply for the rapid growth of Moso bamboo offspring ramet and provide transcriptomic evidence for long-distance N transport between clonal ramets.
Collapse
Affiliation(s)
- Junbo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Wusu Street No. 666, Lin'an District, Hangzhou 311300, China
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Jianggan District, Hangzhou 310021, China
| | - Man Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Wusu Street No. 666, Lin'an District, Hangzhou 311300, China
| | - Chenglei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Wusu Street No. 666, Lin'an District, Hangzhou 311300, China
| | - Kebin Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Changcheng Road No. 700, Chengyang District, Qingdao 266109, China
| | - Quan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Wusu Street No. 666, Lin'an District, Hangzhou 311300, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Bohai Avenue No. 21, Caofeidian District, Tangshan, Hebei 063210, China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, Futong East Street No. 8, Chaoyang District, Beijing 100102, China
| | - Tingting Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Wusu Street No. 666, Lin'an District, Hangzhou 311300, China
| | - Dezheng Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Wusu Street No. 666, Lin'an District, Hangzhou 311300, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Wusu Street No. 666, Lin'an District, Hangzhou 311300, China
| |
Collapse
|
2
|
Yang Z, Han X, Xing Z, He F, Qi T, Wang X, Fu R, Du C, Feng X, Wang Y, Yuan Q, Li F, Lan W, Xu Y. Combining transcriptomics and metabolomics to analyse the mechanism of allelopathy in Cyclachaena xanthiifolia. BMC PLANT BIOLOGY 2025; 25:660. [PMID: 40389813 PMCID: PMC12087043 DOI: 10.1186/s12870-025-06704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
As a vicious invasive plant, Cyclachaena xanthiifolia has caused severe ecological disruption and significant reductions in crop yield, necessitating urgent control measures. However, the underlying mechanisms of its allelopathic invasion remain unclear, representing the primary bottleneck in current management strategies. In this study, we used metabolomic and transcriptomic analyses to evaluate the differences in allelopathy and related physiological and biochemical indices among different extract fractions of C.xanthiifolia, and to investigate how the allelopathy of C.xanthiifolia inhibits seed germination and seedling growth by altering metabolic pathways. GC-MS results identified several compounds with allelopathic potential, including fatty acids, terpenes, esters, alkanes, and aldehydes. Among them, n-butanol phase extract (NE) treatment significantly inhibited the germination and water absorption of mustard (Brassica juncea) seeds, changed the balance of the endogenous hormones abscisic acid (ABA) and gibberellins (GA) in seeds, destroyed the antioxidant enzyme system, and caused plasma membrane damage. Moreover, transcriptomic and broadly targeted metabolomic analyses showed that NE treatment interfered with primary metabolism, significantly enriched the carotenoid biosynthetic pathway, and led to a significant accumulation of ABA. The quantitative real-time PCR (qRT-PCR) results showed that the expression levels of 7 key genes involved in ABA biosynthesis and metabolic pathways were relatively high. The results showed that C.xanthiifolia may exert its allelopathic effects by disrupting the antioxidant enzyme system and interfering with primary metabolism and hormone signalling, and that the modulation of the ABA signalling pathway appears to play a key role.
Collapse
Affiliation(s)
- Zelin Yang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoling Han
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhixiang Xing
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tianshuai Qi
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Xue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Rao Fu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yingnan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Yuan
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Academy of Green Food Science, Harbin, 150023, China.
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, P. R. China.
- Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, Fuyang, Anhui, 236037, P. R. China.
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Supriya L, Dake D, Woch N, Gupta P, Gopinath K, Padmaja G, Muthamilarasan M. Sugar sensors in plants: Orchestrators of growth, stress tolerance, and hormonal crosstalk. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154471. [PMID: 40048883 DOI: 10.1016/j.jplph.2025.154471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Sugars, vital metabolites for cellular health, play a central role in regulating diverse intracellular pathways that control plant growth and development. They also enhance stress responses, enabling plants to endure adverse conditions. A few intracellular molecules involved in sensing the intracellular sugar content and concomitantly facilitating appropriate response (growth or survivability) are known as sugar sensors. Among the numerous sugar sensors identified in plants, this review focuses on four extensively studied sugar sensors, namely hexokinase (HXK), Sucrose non-fermenting 1-related kinase-1 (Snf1-related kinase-1 or SnRK1), Target of rapamycin (TOR), and trehalose 6-phosphate (T6P). This review explores the multifaceted functions of these sugar sensors, highlighting their critical role in balancing energy metabolism and coordinating physiological processes under optimal and adverse conditions. By analyzing their involvement in plant growth, development, and stress response, this review underscores the significance of these sensors throughout the plant life cycle. Furthermore, this review highlights the intricate interplay among these sugar sensors, demonstrating how their activities are finely tuned and interdependent. We also examined the crosstalk between these sugar sensors and phytohormones, fine-tuning plant responses to environmental stimuli. Altogether, this review elucidates the significance of sugar sensors as integrators of metabolic and hormonal signals, providing a comprehensive understanding of their pivotal roles in plant biology. This knowledge paves the way for potential agricultural innovations to enhance crop productivity and resilience in the face of climate change.
Collapse
Affiliation(s)
- Laha Supriya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Dake
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Nyanthanglo Woch
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Prodosh Gupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Kodetham Gopinath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Gudipalli Padmaja
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
4
|
Liu C, Li Q, Shen Z, Xia R, Chen Q, Li X, Ding Y, Yang S, Serino G, Xie Q, Yu F. The Arabidopsis E3 ubiquitin ligase DOA10A promotes localization of abscisic acid (ABA) receptors to the membrane through mono-ubiquitination in ABA signaling. THE NEW PHYTOLOGIST 2025; 245:169-182. [PMID: 39497276 DOI: 10.1111/nph.20224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/26/2024] [Indexed: 12/06/2024]
Abstract
The endoplasmic reticulum-associated degradation (ERAD) system eliminates misfolded and short-lived proteins to maintain physiological homeostasis in the cell. We have previously reported that ERAD is involved in salt tolerance in Arabidopsis. Given the central role of the phytohormone abscisic acid (ABA) in plant stress responses, we sought to identify potential intersections between the ABA and the ERAD pathways in plant stress response. By screening for the ABA response of a wide array of ERAD mutants, we isolated a gain-of-function mutant, doa10a-1, which conferred ABA hypersensitivity to seedlings. Genetic and biochemical assays showed that DOA10A is a functional E3 ubiquitin ligase which, by acting in concert with specific E2 enzymes, mediates mono-ubiquitination of the ABA receptor, followed by their relocalization to the plasma membrane. This in turn leads to enhanced ABA perception. In summary, we report here the identification of a novel RING-type E3 ligase, DOA10A, which regulates ABA perception by affecting the localization and the activity of ABA receptors through their mono-ubiquitination.
Collapse
Affiliation(s)
- Cuixia Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Qingliang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengwei Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Xiao Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Giovanna Serino
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, 00185, Italy
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
5
|
Zhang Y, Wang W, Zhang M, Zhang B, Gao S, Hao M, Zhou D, Zhao L, Reitz G, Sun Y. Using single-sample networks and genetic algorithms to identify radiation-responsive genes in rice affected by heavy ions of the galactic cosmic radiation with different LET values. FRONTIERS IN PLANT SCIENCE 2024; 15:1457587. [PMID: 39582626 PMCID: PMC11581881 DOI: 10.3389/fpls.2024.1457587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Introduction Heavy ions of the galactic cosmic radiation dominate the radiation risks and biological effects for plants under spaceflight conditions. However, the biological effects and sensitive genes caused by heavy ions with different linear energy transfer (LET) values have not been thoroughly studied. Methods To comprehensively analyze the biological effects of heavy ions with different LET values on rice under spaceflight conditions, we utilized the Shijian-10 recoverable satellite (SJ-10) to transport the dehydrated rice seeds on a 12.5-day mission in a 252 km low Earth orbit (LEO), and obtained rice plants hit by individual heavy ions with LET values ranging from 18 keV/μm to 213 keV/μm. The transcriptome and methylation sequencing were conducted on above plants, and a bioinformatics pipeline based on single-sample networks (SSNs) and genetic algorithms (GA) was developed to analyze the multi-omics expression profiles in this work. Note that SSNs can depict the gene interaction patterns within a single sample. The LET regression models were constructed from both gene expression and interaction pattern perspectives respectively, and the radiation response genes that played significant roles in the models were identified. We designed a gene selection algorithm based on GA to enhance the performance of LET regression models. Results The experimental results demonstrate that all our models exhibit excellent regression performance (R2 values close to 1), which indicates that both gene expressions and interaction patterns can reflect the molecular changes caused by heavy ions with different LET values. LET-related genes (genes exhibiting strong correlation with LET values) and radiation-responsive genes were identified, primarily involved in DNA damage and repair, oxidative stress, photosynthesis, nucleic acid metabolism, energy metabolism, amino acid/protein metabolism, and lipid metabolism, etc. DNA methylation plays a crucial role in responding to heavy ions stressors and regulates the aforementioned processes. Discussion To the best of our knowledge, this is the first study to report the multi-omics changes in plants after exposure to heavy ions with different LET values under spaceflight conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Wei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Shuai Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Meng Hao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Dazhuang Zhou
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| | - Guenther Reitz
- Consultant German Aerospace Center, Aerospace Medicine, Radiobiology Department, Köln, Germany
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China
| |
Collapse
|
6
|
Xie X, Hu S, Liu L, Pan H, Huang H, Cao X, Qiao G, Han X, Qiu W, Lu Z, Zhuo R, Xu J. Genome-Wide Analysis of HECT E3 Ligases Members in Phyllostachys edulis Provides Insights into the Role of PeHECT1 in Plant Abiotic Stress Response. Int J Mol Sci 2024; 25:11896. [PMID: 39595966 PMCID: PMC11593785 DOI: 10.3390/ijms252211896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Homology to E6-AP Carboxy Terminus (HECT) E3 ubiquitin ligases play pivotal roles in plant growth, development, and responses to abiotic stresses. However, the function of HECT genes in Phyllostachys edulis (P. edulis) remains largely uninvestigated. In this study, a comprehensive genome-wide analysis of the HECT E3 ubiquitin ligases gene family in P. edulis was conducted, aiming to elucidate its evolutionary relationships and gene expansion. Analysis of gene structure, conserved motifs and domains, and synteny genome regions were performed. Furthermore, cis-elements in HECT gene promoters that respond to plant hormones and environmental stresses were identified and corroborated by expression data from diverse abiotic stress conditions and hormone treatments. Based on the co-expression network of PeHECTs under cold and dehydration stresses, PeHECT1 was identified as a key candidate gene associated with abiotic stress tolerance. Overexpression of PeHECT1 in tobacco leaves significantly upregulated genes related to reactive oxygen species (ROS) detoxification and polyamine biosynthesis. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase (dual-LUC) assays suggested that the transcription factor ETHYLENE RESPONSE FACTOR 3 (PeERF3) bound to the dehydration-responsive element (DRE) of the promoter of PeHECT1 and activated its transcription activity. Phylogenetic analysis indicated that PeHECT1 in P. edulis exhibited a close association with the diploid herbaceous bamboo Olyra latifolia, followed by the divergence of rice and bamboo. In summary, this study enhances our comprehensive understanding of the HECT E3 ubiquitin ligases gene family in P. edulis and highlights the potential role of PeHECT1 in plant abiotic stress response.
Collapse
Affiliation(s)
- Xinru Xie
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Songping Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Linxiu Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Huanhuan Pan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Hu Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Xun Cao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (X.X.); (L.L.); (H.P.); (H.H.); (X.C.); (G.Q.); (X.H.); (W.Q.); (Z.L.); (R.Z.)
| |
Collapse
|
7
|
Qin C, Fan X, Fang Q, Yu H, Ni L, Jiang M. Abscisic acid-induced H 2O 2 production positively regulates the activity of SAPK8/9/10 through oxidation of the type one protein phosphatase OsPP47. THE NEW PHYTOLOGIST 2024; 244:1345-1361. [PMID: 39219038 DOI: 10.1111/nph.20092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Subclass III sucrose nonfermenting1-related protein kinase 2s (SnRK2s) are positive regulators of abscisic acid (ABA) signaling and abiotic stress responses. However, the underlying activation mechanisms of osmotic stress/ABA-activated protein kinase 8/9/10 (SAPK8/9/10) of rice (Oryza sativa) subclass III SnRK2s in ABA signaling remain to be elucidated. In this study, we employed biochemical, molecular biology, cell biology, and genetic approaches to identify the molecular mechanism by which OsPP47, a type one protein phosphatase in rice, regulates SAPK8/9/10 activity in ABA signaling. We found that OsPP47 not only physically interacted with SAPK8/9/10 but also interacted with ABA receptors PYLs. OsPP47 negatively regulated ABA sensitivity in seed germination and root growth. In the absence of ABA, OsPP47 directly inactivated SAPK8/9/10 by dephosphorylation. In the presence of ABA, ABA-bound OsPYL2 formed complexes with OsPP47 and inhibited its phosphatase activity, partially releasing the inhibition of SAPK8/9/10. SAPK8/9/10-mediated H2O2 production inhibited OsPP47 activity by oxidizing Cys-116 and Cys-256 to form OsPP47 oligomers, resulting in not only preventing the OsPP47-SAPK8/9/10 interaction but also blocking the inhibition of SAPK8/9/10 activity by OsPP47. Our results reveal novel pathways for the inhibition of SAPK8/9/10 in the basal state and for the activation of SAPK8/9/10 induced by ABA in rice.
Collapse
Affiliation(s)
- Caihua Qin
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Fan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianqian Fang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honghua Yu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Wang ZZ, Cao MJ, Yan J, Dong J, Chen MX, Yang JF, Li JH, Ying RN, Gao YY, Li L, Leng YN, Tian Y, Hewage KAH, Pei RJ, Huang ZY, Yin P, Zhu JK, Hao GF, Yang GF. Stabilization of dimeric PYR/PYL/RCAR family members relieves abscisic acid-induced inhibition of seed germination. Nat Commun 2024; 15:8077. [PMID: 39277642 PMCID: PMC11401921 DOI: 10.1038/s41467-024-52426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Min-Jie Cao
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junjie Yan
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Dong
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jing-Fang Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Rui-Ning Ying
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Li Li
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya-Nan Leng
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kamalani Achala H Hewage
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Rong-Jie Pei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Zhi-You Huang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Ping Yin
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China.
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
9
|
Jie Y, Wang W, Wu Z, Ren Z, Li L, Zhou Y, Zhang M, Li Z, Yi F, Duan L. Deciphering physiological and transcriptional mechanisms of maize seed germination. PLANT MOLECULAR BIOLOGY 2024; 114:94. [PMID: 39210007 DOI: 10.1007/s11103-024-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024]
Abstract
Maize is a valuable raw material for feed and food production. Healthy seed germination is important for improving the yield and quality of maize. Seed aging occurs relatively fast in crops and it is a process that delays germination as well as reduces its rate and even causes total loss of seed viability. However, the physiological and transcriptional mechanisms that regulate maize seeds, especially aging seed germination remain unclear. Coronatine (COR) which is a phytotoxin produced by Pseudomonas syringae and a new type of plant growth regulator can effectively regulate plant growth and development, and regulate seed germination. In this study, the physiological and transcriptomic mechanisms of COR-induced maize seed germination under different aging degrees were analyzed. The results showed that 0.001-0.01 μmol/L COR could promote the germination of aging maize seed and the growth of primary roots and shoots. COR treatment increased the content of gibberellins (GA3) and decreased the content of abscisic acid (ABA) in B73 seeds before germination. The result of RNA-seq analysis showed 497 differentially expressed genes in COR treatment compared with the control. Three genes associated with GA biosynthesis (ZmCPPS2, ZmD3, and ZmGA2ox2), and two genes associated with GA signaling transduction (ZmGID1 and ZmBHLH158) were up-regulated. Three genes negatively regulating GA signaling transduction (ZmGRAS48, ZmGRAS54, and Zm00001d033369) and two genes involved in ABA biosynthesis (ZmVP14 and ZmPCO14472) were down-regulated. The physiological test results also showed that the effects of GA and ABA on seed germination were similar to those of high and low-concentration COR, respectively, which indicated that the effect of COR on seed germination may be carried out through GA and ABA pathways. In addition, GO and KEGG analysis suggested that COR is also highly involved in antioxidant enzyme systems and secondary metabolite synthesis to regulate maize seed germination processes. These findings provide a valuable reference for further research on the mechanisms of maize seed germination.
Collapse
Affiliation(s)
- Yaqi Jie
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zishan Wu
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Lu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
10
|
Zhu C, Lin Z, Yang K, Lou Y, Liu Y, Li T, Li H, Di X, Wang J, Sun H, Li Y, Li X, Gao Z. A bamboo 'PeSAPK4-PeMYB99-PeTIP4-3' regulatory model involved in water transport. THE NEW PHYTOLOGIST 2024; 243:195-212. [PMID: 38708439 DOI: 10.1111/nph.19787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Water plays crucial roles in expeditious growth and osmotic stress of bamboo. Nevertheless, the molecular mechanism of water transport remains unclear. In this study, an aquaporin gene, PeTIP4-3, was identified through a joint analysis of root pressure and transcriptomic data in moso bamboo (Phyllostachys edulis). PeTIP4-3 was highly expressed in shoots, especially in the vascular bundle sheath cells. Overexpression of PeTIP4-3 could increase drought and salt tolerance in transgenic yeast and rice. A co-expression pattern of PeSAPK4, PeMYB99 and PeTIP4-3 was revealed by WGCNA. PeMYB99 exhibited an ability to independently bind to and activate PeTIP4-3, which augmented tolerance to drought and salt stress. PeSAPK4 could interact with and phosphorylate PeMYB99 in vivo and in vitro, wherein they synergistically accelerated PeTIP4-3 transcription. Overexpression of PeMYB99 and PeSAPK4 also conferred drought and salt tolerance in transgenic rice. Further ABA treatment analysis indicated that PeSAPK4 enhanced water transport in response to stress via ABA signaling. Collectively, an ABA-mediated cascade of PeSAPK4-PeMYB99-PeTIP4-3 is proposed, which governs water transport in moso bamboo.
Collapse
Affiliation(s)
- Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zeming Lin
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Kebin Yang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Yongfeng Lou
- Jiangxi Provincial Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Tiankuo Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Jiangfei Wang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Huayu Sun
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ying Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xueping Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| |
Collapse
|
11
|
Kou H, Zhang X, Jia J, Xin M, Wang J, Mao L, Baltaevich AM, Song X. Research Progress in the Regulation of the ABA Signaling Pathway by E3 Ubiquitin Ligases in Plants. Int J Mol Sci 2024; 25:7120. [PMID: 39000226 PMCID: PMC11241352 DOI: 10.3390/ijms25137120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
E3 ubiquitin ligases (UBLs), as enzymes capable of specifically recognizing target proteins in the process of protein ubiquitination, play crucial roles in regulating responses to abiotic stresses such as drought, salt, and temperature. Abscisic acid (ABA), a plant endogenous hormone, is essential to regulating plant growth, development, disease resistance, and defense against abiotic stresses, and acts through a complex ABA signaling pathway. Hormone signaling transduction relies on protein regulation, and E3 ubiquitin ligases play important parts in regulating the ABA pathway. Therefore, this paper reviews the ubiquitin-proteasome-mediated protein degradation pathway, ABA-related signaling pathways, and the regulation of ABA-signaling-pathway-related genes by E3 ubiquitin ligases, aiming to provide references for further exploration of the relevant research on how plant E3 ubiquitin ligases regulate the ABA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
12
|
Tang L, Li G, Wang H, Zhao J, Li Z, Liu X, Shu Y, Liu W, Wang S, Huang J, Ying J, Tong X, Yuan W, Wei X, Tang S, Wang Y, Bu Q, Zhang J. Exogenous abscisic acid represses rice flowering via SAPK8-ABF1-Ehd1/Ehd2 pathway. J Adv Res 2024; 59:35-47. [PMID: 37399924 PMCID: PMC11081964 DOI: 10.1016/j.jare.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Rice flowering is a major agronomic trait, determining yield and ecological adaptability in particular regions. ABA plays an essential role in rice flowering, but the underlying molecular mechanism remains largely elusive. OBJECTIVES In this study, we demonstrated a "SAPK8-ABF1-Ehd1/Ehd2" pathway, through which exogenous ABA represses rice flowering in a photoperiod-independent manner. METHODS We generated abf1 and sapk8 mutants using the CRISPR-Cas9 method. Using yeast two-hybrid, Pull down, BiFC and kinase assays, SAPK8 interacted and phosphorylated ABF1. ABF1 directly bound to the promoters of Ehd1 and Ehd2 using ChIP-qPCR, EMSA, and LUC transient transcriptional activity assay, and suppressed the transcription of these genes. RESULTS Under both long day and short day conditions, simultaneous knock-out of ABF1 and its homolog bZIP40 accelerated flowering, while SAPK8 and ABF1 over-expression lines exhibited delayed flowering and hypersensitivity to ABA-mediated flowering repression. After perceiving the ABA signal, SAPK8 physically binds to and phosphorylates ABF1 to enhance its binding to the promoters of master positive flowering regulators Ehd1 and Ehd2. Upon interacting with FIE2, ABF1 recruited PRC2 complex to deposit H3K27me3 suppressive histone modification on Ehd1 and Ehd2 to suppress these genes transcription, thereby leading to later flowering. CONCLUSION Our work highlighted the biological functions of SAPK8 and ABF1 in ABA signaling, flowering control and the involvement of a PRC2-mediated epigenetic repression mechanism in the transcription regulation governed by ABF1 on ABA-mediated rice flowering repression.
Collapse
Affiliation(s)
- Liqun Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guanghao Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Huimei Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Juan Zhao
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhiyong Li
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xixi Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yazhou Shu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wanning Liu
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shuang Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jie Huang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jiezheng Ying
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Xiaohong Tong
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Wenya Yuan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiangjin Wei
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Shaoqing Tang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yifeng Wang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin 150081, China; The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Zhang
- State key laboratory of rice biology and breeding, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
13
|
Yan Z, Zhang F, Mu C, Ma C, Yao G, Sun Y, Hou J, Leng B, Liu X. The ZmbHLH47-ZmSnRK2.9 Module Promotes Drought Tolerance in Maize. Int J Mol Sci 2024; 25:4957. [PMID: 38732175 PMCID: PMC11084430 DOI: 10.3390/ijms25094957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| |
Collapse
|
14
|
Xie Z, Jin L, Sun Y, Zhan C, Tang S, Qin T, Liu N, Huang J. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. PLANT COMMUNICATIONS 2024; 5:100782. [PMID: 38148603 PMCID: PMC10943586 DOI: 10.1016/j.xplc.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The crosstalk between gibberellin (GA) and abscisic acid (ABA) signaling is crucial for balancing plant growth and adaption to environmental stress. Nevertheless, the molecular mechanism of their mutual antagonism still remains to be fully clarified. In this study, we found that knockout of the rice NAC (NAM, ATAF1/2, CUC2) transcription factor gene OsNAC120 inhibits plant growth but enhances drought tolerance, whereas OsNAC120 overexpression produces the opposite results. Exogenous GA can rescue the semi-dwarf phenotype of osnac120 mutants, and further study showed that OsNAC120 promotes GA biosynthesis by transcriptionally activating the GA biosynthetic genes OsGA20ox1 and OsGA20ox3. The DELLA protein SLENDER RICE1 (SLR1) interacts with OsNAC120 and impedes its transactivation ability, and GA treatment can remove the inhibition of transactivation activity caused by SLR1. On the other hand, OsNAC120 negatively regulates rice drought tolerance by repressing ABA-induced stomatal closure. Mechanistic investigation revealed that OsNAC120 inhibits ABA biosynthesis via transcriptional repression of the ABA biosynthetic genes OsNCED3 and OsNCED4. Rice OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (OsSAPK9) physically interacts with OsNAC120 and mediates its phosphorylation, which results in OsNAC120 degradation. ABA treatment accelerates OsNAC120 degradation and reduces its transactivation activity. Together, our findings provide evidence that OsNAC120 plays critical roles in balancing GA-mediated growth and ABA-induced drought tolerance in rice. This research will help us to understand the mechanisms underlying the trade-off between plant growth and stress tolerance and to engineer stress-resistant, high-yielding crops.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Siqi Tang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Nian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
15
|
Zheng H, Xie Y, Mu C, Cheng W, Bai Y, Gao J. Deciphering the regulatory role of PheSnRK genes in Moso bamboo: insights into hormonal, energy, and stress responses. BMC Genomics 2024; 25:252. [PMID: 38448813 PMCID: PMC10916206 DOI: 10.1186/s12864-024-10176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
The SnRK (sucrose non-fermentation-related protein kinase) plays an important role in regulating various signals in plants. However, as an important bamboo shoot and wood species, the response mechanism of PheSnRK in Phyllostachys edulis to hormones, low energy and stress remains unclear. In this paper, we focused on the structure, expression, and response of SnRK to hormones and sugars. In this study, we identified 75 PheSnRK genes from the Moso bamboo genome, which can be divided into three groups according to the evolutionary relationship. Cis-element analysis has shown that the PheSnRK gene can respond to various hormones, light, and stress. The PheSnRK2.9 proteins were localized in the nucleus and cytoplasm. Transgenic experiments showed that overexpression of PheSnRK2.9 inhibited root development, the plants were salt-tolerant and exhibited slowed starch consumption in Arabidopsis in the dark. The results of yeast one-hybrid and dual luciferase assay showed that PheIAAs and PheNACs can regulate PheSnRK2.9 gene expression by binding to the promoter of PheSnRK2.9. This study provided a comprehensive understanding of PheSnRK genes of Moso bamboo, which provides valuable information for further research on energy regulation mechanism and stress response during the growth and development of Moso bamboo.
Collapse
Affiliation(s)
- Huifang Zheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
- College of Life Science, Leshan Normal University, Leshan, China
| | - Yali Xie
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, State Forestry and Grassland Administration, 100102, Beijing, China.
| |
Collapse
|
16
|
Liu Y, Chen Z, Zhang C, Guo J, Liu Q, Yin Y, Hu Y, Xia H, Li B, Sun X, Li Y, Liu X. Gene editing of ZmGA20ox3 improves plant architecture and drought tolerance in maize. PLANT CELL REPORTS 2023; 43:18. [PMID: 38148416 DOI: 10.1007/s00299-023-03090-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/19/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE Editing ZmGA20ox3 can achieve the effect similar to applying Cycocel, which can reduce maize plant height and enhance stress resistance. Drought stress, a major plant abiotic stress, is capable of suppressing crop yield performance severely. However, the trade-off between crop drought tolerance and yield performance turns out to be significantly challenging in drought-resistant crop breeding. Several phytohormones [e.g., gibberellin (GA)] have been reported to play a certain role in plant drought response, which also take on critical significance in plant growth and development. In this study, the loss-of-function mutations of GA biosynthesis enzyme ZmGA20ox3 were produced using the CRISPR-Cas9 system in maize. As indicated by the result of 2-year field trials, the above-mentioned mutants displayed semi-dwarfing phenotype with the decrease of GA1, and almost no yield loss was generated compared with wild-type (WT) plants. Interestingly, as revealed by the transcriptome analysis, differential expressed genes (DEGs) were notably enriched in abiotic stress progresses, and biochemical tests indicated the significantly increased ABA, JA, and DIMBOA levels in mutants, suggesting that ZmGA20ox3 may take on vital significance in stress response in maize. The in-depth analysis suggested that the loss function of ZmGA20ox3 can enhance drought tolerance in maize seedling, reduce Anthesis-Silking Interval (ASI) delay while decreasing the yield loss significantly in the field under drought conditions. The results of this study supported that regulating ZmGA20ox3 can improve plant height while enhancing drought resistance in maize, thus serving as a novel method for drought-resistant genetic improvement in maize.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Qing Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Hu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hanchao Xia
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- Jilin Agricultural University, Changchun, China
| | - Bingyang Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Yidan Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China.
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
17
|
Jin X, Li X, Xie Z, Sun Y, Jin L, Hu T, Huang J. Nuclear factor OsNF-YC5 modulates rice seed germination by regulating synergistic hormone signaling. PLANT PHYSIOLOGY 2023; 193:2825-2847. [PMID: 37706533 DOI: 10.1093/plphys/kiad499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023]
Abstract
Regulation of seed dormancy/germination is of great importance for seedling establishment and crop production. Nuclear factor-Y (NF-Y) transcription factors regulate plant growth and development, as well as stress responses; however, their roles in seed germination remain largely unknown. In this study, we reported that NF-Y gene OsNF-YC5 knockout increased, while its overexpression reduced, the seed germination in rice (Oryza sativa L.). ABA-induced seed germination inhibition assays showed that the osnf-yc5 mutant was less sensitive but OsNF-YC5-overexpressing lines were more sensitive to exogenous ABA than the wild type. Meanwhile, MeJA treatment substantially enhanced the ABA sensitivity of OsNF-YC5-overexpressing lines during seed germination. Mechanistic investigations revealed that the interaction of OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9) with OsNF-YC5 enhanced the stability of OsNF-YC5 by protein phosphorylation, while the interaction between JASMONATE ZIM-domain protein 9 (OsJAZ9) and OsNF-YC5 repressed OsNF-YC5 transcriptional activity and promoted its degradation. Furthermore, OsNF-YC5 transcriptionally activated ABA catabolic gene OsABA8ox3, reducing ABA levels in germinating seeds. However, the transcriptional regulation of OsABA8ox3 by OsNF-YC5 was repressed by addition of OsJAZ9. Notably, OsNF-YC5 improved seed germination under salinity conditions. Further investigation showed that OsNF-YC5 activated the high-affinity K+ transporter gene (OsHAK21) expression, and addition of SAPK9 could increase the transcriptional regulation of OsHAK21 by OsNF-YC5, thus substantially reducing the ROS levels to enhance seed germination under salt stress. Our findings establish that OsNF-YC5 integrates ABA and JA signaling during rice seed germination, shedding light on the molecular networks of ABA-JA synergistic interaction.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Liao Z, Zhang Y, Yu Q, Fang W, Chen M, Li T, Liu Y, Liu Z, Chen L, Yu S, Xia H, Xue HW, Yu H, Luo L. Coordination of growth and drought responses by GA-ABA signaling in rice. THE NEW PHYTOLOGIST 2023; 240:1149-1161. [PMID: 37602953 DOI: 10.1111/nph.19209] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management. However, the molecular mechanism underlying coordination of growth and drought response remains largely elusive. Here, we discovered that most of the gibberellin (GA) metabolic genes were regulated by water scarcity in rice, leading to the lower GA contents and hence inhibited plant growth. Low GA contents resulted in the accumulation of more GA signaling negative regulator SLENDER RICE 1, which inhibited the degradation of abscisic acid (ABA) receptor PYL10 by competitively binding to the co-activator of anaphase-promoting complex TAD1, resulting in the enhanced ABA response and drought tolerance. These results elucidate the synergistic regulation of crop growth inhibition and promotion of drought tolerance and survival, and provide useful genetic resource in breeding improvement of crop drought resistance.
Collapse
Affiliation(s)
- Zhigang Liao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yunchao Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
| | - Qing Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicong Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiyao Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianfei Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yi Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Zaochang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Liang Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Shunwu Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Hui Xia
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijun Luo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Agrobiological Gene Center, Shanghai, 201106, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| |
Collapse
|
19
|
Son S, Park SR. The rice SnRK family: biological roles and cell signaling modules. FRONTIERS IN PLANT SCIENCE 2023; 14:1285485. [PMID: 38023908 PMCID: PMC10644236 DOI: 10.3389/fpls.2023.1285485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Stimulus-activated signaling pathways orchestrate cellular responses to control plant growth and development and mitigate the effects of adverse environmental conditions. During this process, signaling components are modulated by central regulators of various signal transduction pathways. Protein phosphorylation by kinases is one of the most important events transmitting signals downstream, via the posttranslational modification of signaling components. The plant serine and threonine kinase SNF1-related protein kinase (SnRK) family, which is classified into three subgroups, is highly conserved in plants. SnRKs participate in a wide range of signaling pathways and control cellular processes including plant growth and development and responses to abiotic and biotic stress. Recent notable discoveries have increased our understanding of how SnRKs control these various processes in rice (Oryza sativa). In this review, we summarize current knowledge of the roles of OsSnRK signaling pathways in plant growth, development, and stress responses and discuss recent insights. This review lays the foundation for further studies on SnRK signal transduction and for developing strategies to enhance stress tolerance in plants.
Collapse
Affiliation(s)
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
20
|
Wang T, Li J, Jiang Y, Zhang J, Ni Y, Zhang P, Yao Z, Jiao Z, Li H, Li L, Niu Y, Li Q, Yin G, Niu J. Wheat gibberellin oxidase genes and their functions in regulating tillering. PeerJ 2023; 11:e15924. [PMID: 37671358 PMCID: PMC10476609 DOI: 10.7717/peerj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple genetic factors control tillering, a key agronomy trait for wheat (Triticum aestivum L.) yield. Previously, we reported a dwarf-monoculm mutant (dmc) derived from wheat cultivar Guomai 301, and found that the contents of gibberellic acid 3 (GA3) in the tiller primordia of dmc were significantly higher. Transcriptome analysis indicated that some wheat gibberellin oxidase (TaGAox) genes TaGA20ox-A2, TaGA20ox-B2, TaGA3ox-A2, TaGA20ox-A4, TaGA2ox-A10 and TaGA2ox-B10 were differentially expressed in dmc. Therefore, this study systematically analyzed the roles of gibberellin oxidase genes during wheat tillering. A total of 63 TaGAox genes were identified by whole genome analysis. The TaGAoxs were clustered to four subfamilies, GA20oxs, GA2oxs, GA3oxs and GA7oxs, including seven subgroups based on their protein structures. The promoter regions of TaGAox genes contain a large number of cis-acting elements closely related to hormone, plant growth and development, light, and abiotic stress responses. Segmental duplication events played a major role in TaGAoxs expansion. Compared to Arabidopsis, the gene collinearity degrees of the GAoxs were significantly higher among wheat, rice and maize. TaGAox genes showed tissue-specific expression patterns. The expressions of TaGAox genes (TaGA20ox-B2, TaGA7ox-A1, TaGA2ox10 and TaGA3ox-A2) were significantly affected by exogenous GA3 applications, which also significantly promoted tillering of Guomai 301, but didn't promote dmc. TaGA7ox-A1 overexpression transgenic wheat lines were obtained by Agrobacterium mediated transformation. Genomic PCR and first-generation sequencing demonstrated that the gene was integrated into the wheat genome. Association analysis of TaGA7ox-A1 expression level and tiller number per plant demonstrated that the tillering capacities of some TaGA7ox-A1 transgenic lines were increased. These data demonstrated that some TaGAoxs as well as GA signaling were involved in regulating wheat tillering, but the GA signaling pathway was disturbed in dmc. This study provided valuable clues for functional characterization of GAox genes in wheat.
Collapse
Affiliation(s)
- Ting Wang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yongjing Ni
- Henan Engineering Research Center of Wheat Spring Freeze Injury Identification, Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China, Shangqiu, China
| | - Peipei Zhang
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lei Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yufan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Qiaoyun Li
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guihong Yin
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Song J, Ga E, Park S, Lee H, Yoon IS, Lee SB, Lee JY, Kim BG. PROTEIN PHOSPHATASE 2C08, a Negative Regulator of Abscisic Acid Signaling, Promotes Internode Elongation in Rice. Int J Mol Sci 2023; 24:10821. [PMID: 37445999 DOI: 10.3390/ijms241310821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Clade A protein phosphatase 2Cs (PP2CAs) negatively regulate abscisic acid (ABA) signaling. Here, we investigated the functions of OsPP2CAs and their crosstalk with ABA and gibberellic acid (GA) signaling pathways in rice (Oryza sativa). Among the nine OsPP2CAs, OsPP2C08 had the highest amino acid sequence similarity with OsPP2C51, which positively regulates GA signaling in rice seed germination. However, OsPP2C08 was expressed in different tissues (internodes, sheaths, and flowers) compared to OsPP2C51, which was specifically expressed in seeds, and showed much stronger induction under abiotic stress than OsPP2C51. Transgenic rice lines overexpressing OsPP2C08 (OsPP2C08-OX) had a typical ABA-insensitive phenotype in a post-germination assay, indicating that OsPP2C08, as with other OsPP2CAs, negatively regulates ABA signaling. Furthermore, OsPP2C08-OX lines had longer stems than wild-type (WT) plants due to longer internodes, especially between the second and third nodes. Internode cells were also longer in OsPP2C08-OX lines than in the WT. As GA positively regulates plant growth, these results suggest that OsPP2C08 might positively regulate GA biosynthesis. Indeed, the expression levels of GA biosynthetic genes including gibberellin 20-oxidase (OsGA20ox4) and Ent-kaurenoic acid oxidase (OsKAO) were increased in OsPP2C08-OX lines, and we observed that GIBBERELLIN 2-OXIDASE 4 (OsGA2ox4), encoding an oxidase that catalyzes the 2-beta-hydroxylation of several biologically active GAs, was repressed in the OsPP2C08-OX lines based on a transcriptome deep sequencing and RT-qPCR analysis. Furthermore, we compared the accumulation of SLENDER RICE 1 (SLR1), a DELLA protein involved in GA signaling, in OsPP2C08-OX and WT plants, and observed lower levels of SLR1 in the OsPP2C08-OX lines than in the WT. Taken together, our results reveal that OsPP2C08 negatively regulates ABA signaling and positively regulates GA signaling in rice. Our study provides valuable insight into the molecular mechanisms underlying the crosstalk between GA and ABA signaling in rice.
Collapse
Affiliation(s)
- Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Eunji Ga
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sangkyu Park
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyo Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jong-Yeol Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
22
|
Jin X, Zhang Y, Li X, Huang J. OsNF-YA3 regulates plant growth and osmotic stress tolerance by interacting with SLR1 and SAPK9 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:914-933. [PMID: 36906910 DOI: 10.1111/tpj.16183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023]
Abstract
The antagonism between gibberellin (GA) and abscisic acid (ABA) signaling pathways is vital to balance plant growth and stress response. Nevertheless, the mechanism by which plants determine the balance remains to be elucidated. Here, we report that rice NUCLEAR FACTOR-Y A3 (OsNF-YA3) modulates GA- and ABA-mediated balance between plant growth and osmotic stress tolerance. OsNF-YA3 loss-of-function mutants exhibit stunted growth, compromised GA biosynthetic gene expression, and decreased GA levels, while its overexpression lines have promoted growth and enhanced GA content. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis and transient transcriptional regulation assays demonstrate that OsNF-YA3 activates GA biosynthetic gene OsGA20ox1 expression. Furthermore, the DELLA protein SLENDER RICE1 (SLR1) physically interacts with OsNF-YA3 and thus inhibits its transcriptional activity. On the other side, OsNF-YA3 negatively regulates plant osmotic stress tolerance by repressing ABA response. OsNF-YA3 reduces ABA levels by transcriptionally regulating ABA catabolic genes OsABA8ox1 and OsABA8ox3 by binding to their promoters. Furthermore, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9), the positive component in ABA signaling, interacts with OsNF-YA3 and mediates OsNF-YA3 phosphorylation, resulting in its degradation in plants. Collectively, our findings establish OsNF-YA3 as an important transcription factor that positively modulates GA-regulated plant growth and negatively controls ABA-mediated water-deficit and salt tolerance. These findings shed light on the molecular mechanism underlying the balance between the growth and stress response of the plant.
Collapse
Affiliation(s)
- Xinkai Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yifan Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
23
|
Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, Tal I, Vasuki H, Zhang Y, Sakvarelidze-Achard L, Davière JM, Ripper D, Carrera E, Manasherova E, Ben Yaakov S, Lazary S, Hua C, Novak V, Crocoll C, Weinstain R, Cohen H, Ragni L, Aharoni A, Band LR, Achard P, Nour-Eldin HH, Shani E. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. NATURE PLANTS 2023; 9:785-802. [PMID: 37024660 PMCID: PMC7615257 DOI: 10.1038/s41477-023-01391-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.
Collapse
Affiliation(s)
- Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Nikolai Wulff
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lucie Camut
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Kristian Kiradjiev
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Iris Tal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Himabindu Vasuki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Lali Sakvarelidze-Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Shir Ben Yaakov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Chengyao Hua
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Vlastimil Novak
- Plant Nutrients and Food Quality Research Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon Lezion, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Leah R Band
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | - Patrick Achard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Hussam Hassan Nour-Eldin
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Kim S, Huh SM, Han HJ, Lee GS, Hwang YS, Cho MH, Kim BG, Song JS, Chung JH, Nam MH, Ji H, Kim KH, Yoon IS. A rice seed-specific glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy. PLANT MOLECULAR BIOLOGY 2023; 111:523-539. [PMID: 36973492 DOI: 10.1007/s11103-023-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein. This gene successfully complemented the PHS phenotype of dor1 mutant and its ectopic expression enhanced seed dormancy. Here, we demonstrated that OsDOR1 protein binds to the GA receptor protein, OsGID1 in rice protoplasts, and interrupts with the formation OsGID1-OsSLR1 complex in yeast cells. Co-expression of OsDOR1 with OsGID1 in rice protoplasts attenuated the GA-dependent degradation of OsSLR1, the key repressor of GA signaling. We showed the endogenous OsSLR1 protein level in the dor1 mutant seeds is significantly lower than that of wild type. The dor1 mutant featured a hypersensitive GA-response of α-amylase gene expression during seed germination. Based on these findings, we suggest that OsDOR1 is a novel negative player of GA signaling operated in the maintenance of seed dormancy. Our findings provide a novel source of PHS resistance.
Collapse
Affiliation(s)
- Sooyeon Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Sun Mi Huh
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
- Department of Medical and Biological Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hay Ju Han
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Gang Seob Lee
- Biosafety Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mi Hyun Cho
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Ji Sun Song
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul, 02841, Republic of Korea
| | - Hyeonso Ji
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - Kyung-Hwan Kim
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea
| | - In Sun Yoon
- Gene Engineering Division, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, 55365, Republic of Korea.
| |
Collapse
|
25
|
Willems A, Liang Y, Heyman J, Depuydt T, Eekhout T, Canher B, Van den Daele H, Vercauteren I, Vandepoele K, De Veylder L. Plant lineage-specific PIKMIN1 drives APC/CCCS52A2 E3-ligase activity-dependent cell division. PLANT PHYSIOLOGY 2023; 191:1574-1595. [PMID: 36423220 PMCID: PMC10022622 DOI: 10.1093/plphys/kiac528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) marks key cell cycle proteins for proteasomal breakdown, thereby ensuring unidirectional progression through the cell cycle. Its target recognition is temporally regulated by activating subunits, one of which is called CELL CYCLE SWITCH 52 A2 (CCS52A2). We sought to expand the knowledge on the APC/C by using the severe growth phenotypes of CCS52A2-deficient Arabidopsis (Arabidopsis thaliana) plants as a readout in a suppressor mutagenesis screen, resulting in the identification of the previously undescribed gene called PIKMIN1 (PKN1). PKN1 deficiency rescues the disorganized root stem cell phenotype of the ccs52a2-1 mutant, whereas an excess of PKN1 inhibits the growth of ccs52a2-1 plants, indicating the need for control of PKN1 abundance for proper development. Accordingly, the lack of PKN1 in a wild-type background negatively impacts cell division, while its systemic overexpression promotes proliferation. PKN1 shows a cell cycle phase-dependent accumulation pattern, localizing to microtubular structures, including the preprophase band, the mitotic spindle, and the phragmoplast. PKN1 is conserved throughout the plant kingdom, with its function in cell division being evolutionarily conserved in the liverwort Marchantia polymorpha. Our data thus demonstrate that PKN1 represents a novel, plant-specific protein with a role in cell division that is likely proteolytically controlled by the CCS52A2-activated APC/C.
Collapse
Affiliation(s)
- Alex Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
26
|
Wang Y, Wu F, Lin Q, Sheng P, Wu Z, Jin X, Chen W, Li S, Luo S, Duan E, Wang J, Ma W, Ren Y, Cheng Z, Zhang X, Lei C, Guo X, Wang H, Zhu S, Wan J. A regulatory loop establishes the link between the circadian clock and abscisic acid signaling in rice. PLANT PHYSIOLOGY 2023; 191:1857-1870. [PMID: 36493391 PMCID: PMC10022614 DOI: 10.1093/plphys/kiac548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
There is a close regulatory relationship between the circadian clock and the abscisic acid (ABA) signaling pathway in regulating many developmental processes and stress responses. However, the exact feedback regulation mechanism between them is still poorly understood. Here, we identified the rice (Oryza sativa) clock component PSEUDO-RESPONSE REGULATOR 95 (OsPRR95) as a transcriptional regulator that accelerates seed germination and seedling growth by inhibiting ABA signaling. We also found that OsPRR95 binds to the ABA receptor gene REGULATORY COMPONENTS OF ABA RECEPTORS10 (OsRCAR10) DNA and inhibits its expression. Genetic analysis showed OsRCAR10 acts downstream of OsPRR95 in mediating ABA responses. In addition, the induction of OsPRR95 by ABA partly required a functional OsRCAR10, and the ABA-responsive element-binding factor ABSCISIC ACID INSENSITIVE5 (OsABI5) bound directly to the promoter of OsPRR95 and activated its expression, thus establishing a regulatory feedback loop between OsPRR95, OsRCAR10, and OsABI5. Taken together, our results demonstrated that the OsRCAR10-OsABI5-OsPRR95 feedback loop modulates ABA signaling to fine-tune seed germination and seedling growth, thus establishing the molecular link between ABA signaling and the circadian clock.
Collapse
Affiliation(s)
- Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Erchao Duan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Zhang Y, Wang J, Li Y, Zhang Z, Yang L, Wang M, Zhang Y, Zhang J, Li C, Li L, Reynolds MP, Jing R, Wang C, Mao X. Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice. PLANT PHYSIOLOGY 2023; 191:1344-1364. [PMID: 36417260 PMCID: PMC9922405 DOI: 10.1093/plphys/kiac523] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Wheat (Triticum aestivum) is particularly susceptible to water deficit at the jointing stage of its development. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) acts as a signaling hub in the response to drought stress, but whether SnRK2 helps plants cope with water deficit via other mechanisms is largely unknown. Here, we cloned and characterized TaSnRK2.10, which was induced by multiple abiotic stresses and phytohormones. Ectopic expression of TaSnRK2.10 in rice (Oryza sativa) conferred drought tolerance, manifested by multiple improved physiological indices, including increased water content, cell membrane stability, and survival rates, as well as decreased water loss and accumulation of H2O2 and malonaldehyde. TaSnRK2.10 interacted with and phosphorylated early responsive to dehydration 15 (TaERD15) and enolase 1 (TaENO1) in vivo and in vitro. TaERD15 phosphorylated by TaSnRK2.10 was prone to degradation by the 26S proteasome, thereby mitigating its negative effects on drought tolerance. Phosphorylation of TaENO1 by TaSnRK2.10 may account for the substantially increased levels of phosphoenolpyruvate (PEP), a key metabolite of primary and secondary metabolism, in TaSnRK2.10-overexpressing rice, thereby enhancing its viability under drought stress. Our results demonstrate that TaSnRK2.10 not only regulated stomatal aperture and the expression of drought-responsive genes, but also enhanced PEP supply and promoted the degradation of TaERD15, all of which enhanced drought tolerance.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuying Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihui Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Lili Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yining Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Jie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyang Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| |
Collapse
|
28
|
Lou D, Lu S, Chen Z, Lin Y, Yu D, Yang X. Molecular characterization reveals that OsSAPK3 improves drought tolerance and grain yield in rice. BMC PLANT BIOLOGY 2023; 23:53. [PMID: 36694135 PMCID: PMC9872327 DOI: 10.1186/s12870-023-04071-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Many data suggest that the sucrose non-fermenting 1-related kinases 2 (SnRK2s) are very important to abiotic stress for plants. In rice, these kinases are known as osmotic stress/ABA-activated protein kinases (SAPKs). Osmotic stress/ABA-activated protein kinase 3 (OsSAPK3) is a member of SnRK2II in rice, but its function is still unclear. RESULTS The expression of OsSAPK3 was up regulated by drought, NaCl, PEG and ABA. OsSAPK3 mutated seedings (sapk3-1 and sapk3-2) showed reduced hypersensitivity to exogenous ABA. In addition, under drought conditions, sapk3-1 and sapk3-2 showed more intolerance to drought, including decreased survival rate, increased water loss rate, increased stomatal conductance and significantly decreased expression levels of SLAC1 and SLAC7. Physiological and metabolic analyses showed that OsSAPK3 might play an important role in drought stress signaling pathway by affecting osmotic adjustment and osmolytes, ROS detoxification and expression of ABA dependent and independent dehydration-responsive genes. All gronomic traits analyses demonstrated that OsSAPK3 could improve rice yield by affecting the regulation of tiller numbers and grain size. CONCLUSION OsSAPK3 plays an important role in both ABA-dependent and ABA-independent drought stress responses. More interestingly, OsSAPK3 could improve rice yield by indirectly regulating tiller number and grain size. These findings provide new insight for the development of drought-resistant rice.
Collapse
Affiliation(s)
- Dengji Lou
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Suping Lu
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Zhen Chen
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Yi Lin
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
29
|
Molecular Mechanism of Cold Tolerance of Centipedegrass Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24021265. [PMID: 36674780 PMCID: PMC9860682 DOI: 10.3390/ijms24021265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarify the molecular mechanisms underlying the cold tolerance of warm-season grasses.
Collapse
|
30
|
Kavi Kishor PB, Tiozon RN, Fernie AR, Sreenivasulu N. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. TRENDS IN PLANT SCIENCE 2022; 27:1283-1295. [PMID: 36100537 DOI: 10.1016/j.tplants.2022.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA) is known to confer stress tolerance; however, at elevated levels it impairs plant growth under prolonged stress. Paradoxically, at its basal level, ABA plays many vital roles in promoting plant growth and development, including modulation of tillering, flowering, and seed development, as well as seed maturation. In this review, we provide insight into novel discoveries of ABA fluxes, ABA signaling responses, and their impact on yield stability. We discuss ABA homeostasis implicated under pre- and postanthesis drought and its impact on productive tillers, grain number determination, and seed development to address yield stability in cereal crops while considering the new knowledge that emerged from the model plant systems.
Collapse
Affiliation(s)
- Polavarapu B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Rhowell N Tiozon
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany; International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
31
|
Ding W, Liu J. Rutin Stimulates the Green Alga Chromochloris zofingiensis for Improved Biomass and Astaxanthin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13626-13636. [PMID: 36219673 DOI: 10.1021/acs.jafc.2c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromochloris zofingiensis represents a potential algal producer of the value-added ketocarotenoid astaxanthin. Here, rutin, a low-cost flavonoid compound, was evaluated regarding its roles in C. zofingiensis production under astaxanthin-inducing conditions via physiological, biochemical, and transcriptomics analyses. The rutin treatment allowed C. zofingiensis to achieve 81.2% more biomass and 20.5% greater astaxanthin content under nitrogen deprivation, leading to more than doubled astaxanthin production. The rutin-treated C. zofingiensis had higher levels of chlorophylls, proteins, and lipids and lower carbohydrate level than the control. Rutin promoted the intracellular abscisic acid (ABA) level, which could be restored by the ABA biosynthesis inhibitor, accompanied by the restoration of biomass concentration and astaxanthin content. The application of exogenous ABA to C. zofingiensis also furthered biomass concentration and astaxanthin accumulation. Together with the comparative transcriptomics analysis, our study provides implications into the involvement of ABA in rutin-mediated stimulation of C. zofingiensis growth and astaxanthin accumulation and highlights a feasible strategy of combining stress and chemical induction for improved microalgal production.
Collapse
Affiliation(s)
- Wei Ding
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Wang T, Zhou Q, Wu X, Wang D, Yang L, Luo W, Wang J, Yang Y, Liu Z. Arabidopsis thaliana E3 ligase AIRP4 is involved in GA synthesis. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153805. [PMID: 36087409 DOI: 10.1016/j.jplph.2022.153805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Arabidopsis abscisic acid ABA-Insensitive RING Proteins (AtAIRP1-4) are RING E3s that play significant roles in ABA-signaling pathways. However, it is still unclear whether they have other functions. Here, AtAIRP4 was determined to play a role in response to gibberellin A3 (GA3) in Arabidopsis thaliana. After proAtAIRP4::GUS transgenic lines were treated with GA3, the GUS activity decreased in hypocotyls. Increased hypocotyl elongation in response to GA3 seen in WT was not observed in the AtAIRP4-overexpression lines, whereas AtAIRP4-overexpression lines were hypersensitive to Paclobutrazol (PAC, an inhibitor of GA biosynthesis) during the seed germination stage. Additionally, AtAIRP4-overexpressing lines showed the lowest level of primary root elongation in the presence of GA3. The levels of endogenous GA3 in 35S::AtAIRP4 lines were lower than those in wild-type. In addition, among the plants, the mRNA levels of the GA synthetic gene GIBBERELLIN 20-OXIDASE1 (GA20ox1) was the lowest in overexpressing line. However, the expression of the response gene DELLA RGA-LIKE3 (RGL3) was the highest in overexpressing lines after treatment with GA3. Thus, AtAIRP4 plays a negative role in GA-mediated hypocotyl elongation and root growth, and it inhibits the synthesis of endogenous biologically active GA3 to some extent.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qin Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xiaobo Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Duo Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Liang Yang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Wenmin Luo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
33
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
34
|
Jadoon S, Qin Q, Shi W, Longfeng Y, Hou S. Rice protein phosphatase 1 regulatory subunits OsINH2 and OsINH3 participate actively in growth and adaptive responses under abscisic acid. FRONTIERS IN PLANT SCIENCE 2022; 13:990575. [PMID: 36186070 PMCID: PMC9521630 DOI: 10.3389/fpls.2022.990575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa L.), a worldwide staple food crop, is affected by various environmental stressors that ultimately reduce yield. However, diversified physiological and molecular responses enable it to cope with adverse factors. It includes the integration of numerous signaling in which protein phosphatase 1 (PP1) plays a pivotal role. Research on PP1 has been mostly limited to the PP1 catalytic subunit in numerous cellular progressions. Therefore, we focused on the role of PP1 regulatory subunits (PP1r), OsINH2 and OsINH3, homologs of AtINH2 and AtINH3 in Arabidopsis, in rice growth and stress adaptations. Our observations revealed that these are ubiquitously expressed regulatory subunits that interacted and colocalized with their counter partners, type 1 protein phosphatase (OsTOPPs) but could not change their subcellular localization. The mutation in OsINH2 and OsINH3 reduced pollen viability, thereby affected rice fertility. They were involved in abscisic acid (ABA)-mediated inhibition of seed germination, perhaps by interacting with osmotic stress/ABA-activated protein kinases (OsSAPKs). Meanwhile, they positively participated in osmotic adjustment by proline biosynthesis, detoxifying reactive oxygen species (ROS) through peroxidases (POD), reducing malondialdehyde formation (MDA), and regulating stress-responsive genes. Moreover, their co-interaction proposed they might mediate cellular processes together or by co-regulation; however, the special behavior of two different PP1r is needed to explore. In a nutshell, this research enlightened the involvement of OsINH2 and OsINH3 in the reproductive growth of rice and adaptive strategies under stress. Hence, their genetic interaction with ABA components and deep mechanisms underlying osmotic regulation and ROS adjustment would explain their role in complex signaling. This research offers the basis for introducing stress-resistant crops.
Collapse
|
35
|
Hussain Q, Zheng M, Chang W, Ashraf MF, Khan R, Asim M, Riaz MW, Alwahibi MS, Elshikh MS, Zhang R, Wu J. Genome-Wide Identification and Expression Analysis of SnRK2 Gene Family in Dormant Vegetative Buds of Liriodendron chinense in Response to Abscisic Acid, Chilling, and Photoperiod. Genes (Basel) 2022; 13:genes13081305. [PMID: 35893042 PMCID: PMC9331246 DOI: 10.3390/genes13081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Protein kinases play an essential role in plants’ responses to environmental stress signals. SnRK2 (sucrose non-fermenting 1-related protein kinase 2) is a plant-specific protein kinase that plays a crucial role in abscisic acid and abiotic stress responses in some model plant species. In apple, corn, rice, pepper, grapevine, Arabidopsis thaliana, potato, and tomato, a genome-wide study of the SnRK2 protein family was performed earlier. The genome-wide comprehensive investigation was first revealed to categorize the SnRK2 genes in the Liriodendron chinense (L. chinense). The five SnRK2 genes found in the L. chinense genome were highlighted in this study. The structural gene variants, 3D structure, chromosomal distributions, motif analysis, phylogeny, subcellular localization, cis-regulatory elements, expression profiles in dormant buds, and photoperiod and chilling responses were all investigated in this research. The five SnRK2 genes from L. chinense were grouped into groups (I–IV) based on phylogeny analysis, with three being closely related to other species. Five hormones-, six stress-, two growths and biological process-, and two metabolic-related responsive elements were discovered by studying the cis-elements in the promoters. According to the expression analyses, all five genes were up- and down-regulated in response to abscisic acid (ABA), photoperiod, chilling, and chilling, as well as photoperiod treatments. Our findings gave insight into the SnRK2 family genes in L. chinense and opened up new study options.
Collapse
Affiliation(s)
- Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Manjia Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Wenwen Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Muhammad Furqan Ashraf
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, 9009 Tromsø, Norway;
| | - Rayyan Khan
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (R.K.); (M.A.)
| | - Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (R.K.); (M.A.)
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (M.S.E.)
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.A.); (M.S.E.)
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China; (Q.H.); (M.Z.); (W.C.); (M.W.R.); (R.Z.)
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Hangzhou 311300, China
- Correspondence:
| |
Collapse
|
36
|
Gong D, He F, Liu J, Zhang C, Wang Y, Tian S, Sun C, Zhang X. Understanding of Hormonal Regulation in Rice Seed Germination. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071021. [PMID: 35888110 PMCID: PMC9324290 DOI: 10.3390/life12071021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Seed germination is a critical stage during the life cycle of plants. It is well known that germination is regulated by a series of internal and external factors, especially plant hormones. In Arabidopsis, many germination-related factors have been identified, while in rice, the important crop and monocot model species and the further molecular mechanisms and regulatory networks controlling germination still need to be elucidated. Hormonal signals, especially those of abscisic acid (ABA) and gibberellin (GA), play a dominant role in determining whether a seed germinates or not. The balance between the content and sensitivity of these two hormones is the key to the regulation of germination. In this review, we present the foundational knowledge of ABA and GA pathways obtained from germination research in Arabidopsis. Then, we highlight the current advances in the identification of the regulatory genes involved in ABA- or GA-mediated germination in rice. Furthermore, other plant hormones regulate seed germination, most likely by participating in the ABA or GA pathways. Finally, the results from some regulatory layers, including transcription factors, post-transcriptional regulations, and reactive oxygen species, are also discussed. This review aims to summarize our current understanding of the complex molecular networks involving the key roles of plant hormones in regulating the seed germination of rice.
Collapse
Affiliation(s)
- Diankai Gong
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Fei He
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Jingyan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China; (F.H.); (J.L.)
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Yanrong Wang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Shujun Tian
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Chi Sun
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
| | - Xue Zhang
- Liaoning Rice Research Institute, Shenyang 110115, China; (D.G.); (C.Z.); (Y.W.); (S.T.); (C.S.)
- Correspondence: ; Tel.: +86-150-4020-6835
| |
Collapse
|
37
|
QTL Mapping and Candidate Gene Analysis for Seed Germination Response to Low Temperature in Rice. Int J Mol Sci 2022; 23:ijms23137379. [PMID: 35806382 PMCID: PMC9266303 DOI: 10.3390/ijms23137379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Low temperature is a serious threat to the seed emergence of rice, which has become one of the main limiting factors affecting rice production in the world. It is of great significance to find the candidate genes controlling low-temperature tolerance during seed germination and study their functions for breeding new rice cultivars with immense low-temperature tolerance during seed germination. In the current experiment, 120 lines of the Cheongcheong Nagdong Double Haploid (CNDH) population were used for quantitative trait locus (QTL) analysis of low-temperature germinability. The results showed a significant difference in germination under low different temperature (LDT) (15 °C, 20 °C) conditions. In total, four QTLs were detected on chromosome 3, 6, and 8. A total of 41 genes were identified from all the four QTLs, among them, 25 genes were selected by gene function annotation and further screened through quantitative real-time polymerase chain reaction (qRT-PCR). Based on gene function annotation and level of expression under low-temperature, our study suggested the OsGPq3 gene as a candidate gene controlling viviparous germination, ABA and GA signaling under low-temperature. This study will provide a theoretical basis for marker-assisted breeding and lay the basis for further mining molecular mechanisms of low-temperature germination tolerance in rice.
Collapse
|
38
|
Nong Q, Malviya MK, Solanki MK, Solanki AC, Lin L, Xie J, Mo Z, Wang Z, Song XP, Huang X, Rai S, Li C, Li YR. Sugarcane Root Transcriptome Analysis Revealed the Role of Plant Hormones in the Colonization of an Endophytic Diazotroph. Front Microbiol 2022; 13:924283. [PMID: 35814670 PMCID: PMC9263702 DOI: 10.3389/fmicb.2022.924283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Some sugarcane germplasms can absorb higher amounts of nitrogen via atmospheric nitrogen fixation through the bacterial diazotrophs. Most endophytic diazotrophs usually penetrate through the root, colonize inside the plant, and fix the nitrogen. To assess the plant’s bacterial association during root colonization, strain GXS16 was tagged with a plasmid-bear green fluorescent protein (GFP) gene. The results demonstrated that the strain can colonize roots all the way to the maturation zone. The strain GXS16 showed maximum nitrogenase enzyme activity at pH 8 and 30°C, and nitrogenase activity is less affected by different carbon sources. Further, strain GXS16 colonization response was investigated through plant hormones analysis and RNAseq. The results showed that the bacterial colonization gradually increased with time, and the H2O2 and malondialdehyde (MDA) content significantly increased at 1 day after inoculation. There were no substantial changes noticed in proline content, and the ethylene content was detected initially, but it decreased with time. The abscisic acid (ABA) content showed significant increases of 91.9, 43.9, and 18.7%, but conversely, the gibberellin (GA3) content decreased by 12.9, 28.5, and 45.2% at 1, 3, and 5 days after inoculation, respectively. The GXS16 inoculation significantly increased the activities of catalase (CAT), superoxide dismutase (SOD), polyphenol oxidase (PPO), ascorbate peroxidase (APX), and glutathione reductase (GR) at different timepoint. In contrast, the peroxisome (POD) activity had no changes detected during the treatment. In the case of RNAseq analysis, 2437, 6678, and 4568 differentially expressed genes (DEGs) were identified from 1, 3, and 5 days inoculated root samples, and 601 DEGs were shared in all samples. The number or the expression diversity of DEGs related to ethylene was much higher than that of ABA or GA, which indicated the critical role of ethylene in regulating the sugarcane roots response to GXS16 inoculation.
Collapse
Affiliation(s)
- Qian Nong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jinlan Xie
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhanghong Mo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zeping Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xin Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shalini Rai
- Department of Biotechnology, Society of Higher Education and Practical Application (SHEPA), Varanasi, India
| | - Changning Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- *Correspondence: Changning Li,
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- Yang-Rui Li,
| |
Collapse
|
39
|
Jiang L, Chen J, Yang YZ, Li R, Li S, Wang ZQ, Jiang T. Functional analysis of a viral promoter from a strawberry vein banding virus isolate from China. Virol J 2022; 19:60. [PMID: 35361243 PMCID: PMC8974135 DOI: 10.1186/s12985-022-01778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Promoters are important factors affecting gene expression in cells. The driven activities of viral promoters were generally assessed to screen available promoters for transgenic and research and biotech industries. In this study, we cloned a full-length promoter from a Chinese isolate of strawberry vein banding virus (SVBV) and produced several deletion mutants for evaluation of applications in production of reporter proteins in stable transgenic plants. Methods The full-length promoter of SVBV (SP1) and its three deletion mutants (SP2, SP3, and SP4) were amplified using polymerase chain reaction. The effects of SVBV SP1, SP2, SP3, and SP4 on gene expression were evaluated using β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. Results Transient expression assays showed that the SVBV SP1 promoter and its three deletion mutants all expressed the reporter genes, albeit at very different levels. Interestingly, transcriptional activity driven by the SP1 promoter was much higher than that of the cauliflower mosaic virus (CaMV) 35S promoter. After stable transformation of the GUS gene into Nicotiana tabacum plants, SVBV SP1-driven transgene expression was approximately 2.6-fold higher than CaMV 35S promoter-driven transgene expression. In addition, GUS gene expression levels were enhanced by co-inoculation of the plants with the SP1 promoter-driven vector carrying the GUS gene and the vector expressing SVBV open reading frame (ORF) V or ORF VI. Conclusions The SVBV SP1 promoter from the Chinese isolate evaluated in this study could successfully drive transient and stable expression in plants, it was a stronger promoter than the CaMV 35S and FLt-US promoters and may be more useful for the production of stable transgenic plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01778-2.
Collapse
Affiliation(s)
- Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - You-Zhi Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Rui Li
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Shuang Li
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, People's Republic of China.
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China. .,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China. .,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
40
|
Wang S, Liu W, He Y, Adegoke TV, Ying J, Tong X, Li Z, Tang L, Wang H, Zhang J, Tian Z, Wang Y. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:112-118. [PMID: 34775177 DOI: 10.1016/j.plaphy.2021.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Seed germination and coleoptile elongation in response to flooding stress is an important trait for the direct seeding of rice. However, the genes regulating this process and the underlying mechanisms are little understood. In this study, bZIP72 was identified as a positive regulator of seed germination under submergence. Transcription of bZIP72 was submergence induced. Over-expression of bZIP72 enhanced submerged seed germination and coleoptile elongation, while bzip72 mutants exhibited the opposite tendency. Using biochemical interaction assays, we showed that bZIP72 directly binds to the promoter of alcohol dehydrogenase 1 (ADH1), enhances its activity, and subsequently produces more NAD+, NADH and ATP involved in the alcoholic fermentation and glycolysis pathway, ultimately providing necessary energy reserves thus conferring tolerance to submergence. In summary, this research provides novel insights into bZIP72 participation in submerged rice seed germination and coleoptile elongation.
Collapse
Affiliation(s)
- Shuang Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Wanning Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Yong He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Tosin Victor Adegoke
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, LinAn, 311300, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Zhihong Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
41
|
OsABF1 Represses Gibberellin Biosynthesis to Regulate Plant Height and Seed Germination in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms222212220. [PMID: 34830102 PMCID: PMC8622533 DOI: 10.3390/ijms222212220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Gibberellins (GAs) are diterpenoid phytohormones regulating various aspects of plant growth and development, such as internode elongation and seed germination. Although the GA biosynthesis pathways have been identified, the transcriptional regulatory network of GA homeostasis still remains elusive. Here, we report the functional characterization of a GA-inducible OsABF1 in GA biosynthesis underpinning plant height and seed germination. Overexpression of OsABF1 produced a typical GA-deficient phenotype with semi-dwarf and retarded seed germination. Meanwhile, the phenotypes could be rescued by exogenous GA3, suggesting that OsABF1 is a key regulator of GA homeostasis. OsABF1 could directly suppress the transcription of green revolution gene SD1, thus reducing the endogenous GA level in rice. Moreover, OsABF1 interacts with and transcriptionally antagonizes to the polycomb repression complex component OsEMF2b, whose mutant showed as similar but more severe phenotype to OsABF1 overexpression lines. It is suggested that OsABF1 recruits RRC2-mediated H3K27me3 deposition on the SD1 promoter, thus epigenetically silencing SD1 to maintain the GA homeostasis for growth and seed germination. These findings shed new insight into the functions of OsABF1 and regulatory mechanism underlying GA homeostasis in rice.
Collapse
|
42
|
Maszkowska J, Szymańska KP, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The Multifaceted Regulation of SnRK2 Kinases. Cells 2021; 10:cells10092180. [PMID: 34571829 PMCID: PMC8465348 DOI: 10.3390/cells10092180] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Katarzyna Patrycja Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Adrian Kasztelan
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| |
Collapse
|
43
|
Zhang G, Liu Y, Gui R, Wang Z, Li Z, Han Y, Guo X, Sun J. Comparative multi-omics analysis of hypoxic germination tolerance in weedy rice embryos and coleoptiles. Genomics 2021; 113:3337-3348. [PMID: 34298069 DOI: 10.1016/j.ygeno.2021.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/04/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Hypoxic germination tolerance is an important trait for seedling establishment of direct-seeded rice. Our comparative metabolomics analysis revealed that weedy rice accumulated more sugar and amino acids than cultivated rice accumulated in the embryo and coleoptile tissues under hypoxic stress. At the transcriptional level, oxidative phosphorylation activity in weedy rice was higher than in cultivated rice that likely led to more efficient energy metabolism during hypoxic stress. Based on our comparative proteomics analysis, enriched proteins related to cell wall implied that the advantages in energy metabolism of weedy rice were ultimately reflected in the formation of tissue structures. In this study, we found that most of key hypoxic germination tolerance (HGT) genes shared the same genetic backgrounds with Oryza japonica, however, several of them genetically similar to other Oryza plant also play important roles. Our findings suggest weedy rice can serve as genetic resources for the improvement of direct-seeding rice.
Collapse
Affiliation(s)
- Guangchen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Youhong Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Molecular Design and Germplasm Innovation, Haerbin, 150086, China
| | - Rui Gui
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Ziming Wang
- College of forestry, Shenyang Agricultural University, Shenyang 110161, China
| | - Zhuan Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Yuqing Han
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China
| | - Xiaojia Guo
- Jinzhou Institute of Science and Technology, Jinzhou, 121000, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
44
|
Yue K, Lingling L, Xie J, Coulter JA, Luo Z. Synthesis and regulation of auxin and abscisic acid in maize. PLANT SIGNALING & BEHAVIOR 2021; 16:1891756. [PMID: 34057034 PMCID: PMC8205056 DOI: 10.1080/15592324.2021.1891756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 05/12/2023]
Abstract
Indole-3-acetic acid (IAA), the primary auxin in higher plants, and abscisic acid (ABA) play crucial roles in the ability of maize (Zea mays L.) to acclimatize to various environments by mediating growth, development, defense and nutrient allocation. Although understanding the biochemical reactions for IAA and ABA biosynthesis and signal transduction has progressed, the mechanisms by which auxin and ABA are synthesized and transduced in maize have not been fully elucidated to date. The synthesis and signal transduction pathway of IAA and ABA in maize can be analyzed using an existing model. This article focuses on the research progress toward understanding the synthesis and signaling pathways of IAA and ABA, as well as IAA and ABA regulation of maize growth, providing insight for future development and the significance of IAA and ABA for maize improvement.
Collapse
Affiliation(s)
- Kai Yue
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Li Lingling
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Jeffrey A. Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Zhuzhu Luo
- College of Resource and Environment, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
45
|
Ubiquitylation of ABA Receptors and Protein Phosphatase 2C Coreceptors to Modulate ABA Signaling and Stress Response. Int J Mol Sci 2021; 22:ijms22137103. [PMID: 34281157 PMCID: PMC8268412 DOI: 10.3390/ijms22137103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications play a fundamental role in regulating protein function and stability. In particular, protein ubiquitylation is a multifaceted modification involved in numerous aspects of plant biology. Landmark studies connected the ATP-dependent ubiquitylation of substrates to their degradation by the 26S proteasome; however, nonproteolytic functions of the ubiquitin (Ub) code are also crucial to regulate protein interactions, activity, and localization. Regarding proteolytic functions of Ub, Lys-48-linked branched chains are the most common chain type for proteasomal degradation, whereas promotion of endocytosis and vacuolar degradation is triggered through monoubiquitylation or Lys63-linked chains introduced in integral or peripheral plasma membrane proteins. Hormone signaling relies on regulated protein turnover, and specifically the half-life of ABA signaling components is regulated both through the ubiquitin-26S proteasome system and the endocytic/vacuolar degradation pathway. E3 Ub ligases have been reported that target different ABA signaling core components, i.e., ABA receptors, PP2Cs, SnRK2s, and ABFs/ABI5 transcription factors. In this review, we focused specifically on the ubiquitylation of ABA receptors and PP2C coreceptors, as well as other post-translational modifications of ABA receptors (nitration and phosphorylation) that result in their ubiquitination and degradation.
Collapse
|
46
|
Long T, Xu B, Hu Y, Wang Y, Mao C, Wang Y, Zhang J, Liu H, Huang H, Liu Y, Yu G, Zhao C, Li Y, Huang Y. Genome-wide identification of ZmSnRK2 genes and functional analysis of ZmSnRK2.10 in ABA signaling pathway in maize (Zea mays L). BMC PLANT BIOLOGY 2021; 21:309. [PMID: 34210268 PMCID: PMC8246669 DOI: 10.1186/s12870-021-03064-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/25/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Phytohormone abscisic acid (ABA) is involved in the regulation of a wide range of biological processes. In Arabidopsis, it has been well-known that SnRK2s are the central components of the ABA signaling pathway that control the balance between plant growth and stress response, but the functions of ZmSnRK2 in maize are rarely reported. Therefore, the study of ZmSnRK2 is of great importance to understand the ABA signaling pathways in maize. RESULTS In this study, 14 ZmSnRK2 genes were identified in the latest version of maize genome database. Phylogenetic analysis revealed that ZmSnRK2s are divided into three subclasses based on their diversity of C-terminal domains. The exon-intron structures, phylogenetic, synteny and collinearity analysis indicated that SnRK2s, especially the subclass III of SnRK2, are evolutionally conserved in maize, rice and Arabidopsis. Subcellular localization showed that ZmSnRK2 proteins are localized in the nucleus and cytoplasm. The RNA-Seq datasets and qRT-PCR analysis showed that ZmSnRK2 genes exhibit spatial and temporal expression patterns during the growth and development of different maize tissues, and the transcript levels of some ZmSnRK2 genes in kernel are significantly induced by ABA and sucrose treatment. In addition, we found that ZmSnRK2.10, which belongs to subclass III, is highly expressed in kernel and activated by ABA. Overexpression of ZmSnRK2.10 partially rescued the ABA-insensitive phenotype of snrk2.2/2.3 double and snrk2.2/2.3/2.6 triple mutants and led to delaying plant flowering in Arabidopsis. CONCLUSION The SnRK2 gene family exhibits a high evolutionary conservation and has expanded with whole-genome duplication events in plants. The ZmSnRK2s expanded in maize with whole-genome and segmental duplication, not tandem duplication. The expression pattern analysis of ZmSnRK2s in maize offers important information to study their functions. Study of the functions of ZmSnRK.10 in Arabidopsis suggests that the ABA-dependent members of SnRK2s are evolutionarily conserved in plants. Our study elucidated the structure and evolution of SnRK2 genes in plants and provided a basis for the functional study of ZmSnRK2s protein in maize.
Collapse
Affiliation(s)
- Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Binjie Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yayun Wang
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Changqing Mao
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yongbin Wang
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- College of Agronomy, Sichuan Agricultural University, No.211 Huimin Rd., Wenjiang Dist, Chengdu, 611130 Sichuan China
| |
Collapse
|
47
|
Wang J, Ren Y, Liu X, Luo S, Zhang X, Liu X, Lin Q, Zhu S, Wan H, Yang Y, Zhang Y, Lei B, Zhou C, Pan T, Wang Y, Wu M, Jing R, Xu Y, Han M, Wu F, Lei C, Guo X, Cheng Z, Zheng X, Wang Y, Zhao Z, Jiang L, Zhang X, Wang YF, Wang H, Wan J. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. MOLECULAR PLANT 2021; 14:315-329. [PMID: 33278597 DOI: 10.1016/j.molp.2020.11.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/23/2020] [Accepted: 11/25/2020] [Indexed: 05/08/2023]
Abstract
Low temperature is a major environmental factor that limits plant growth and productivity. Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance, the calcium channels responsible for this process have remained largely elusive. Here we report that OsCNGC9, a cyclic nucleotide-gated channel, positively regulates chilling tolerance by mediating cytoplasmic calcium elevation in rice (Oryza sativa). We showed that the loss-of-function mutant of OsCNGC9 is defective in cold-induced calcium influx and more sensitive to prolonged cold treatment, whereas OsCNGC9 overexpression confers enhanced cold tolerance. Mechanistically, we demonstrated that in response to chilling stress, OsSAPK8, a homolog of Arabidopsis thaliana OST1, phosphorylates and activates OsCNGC9 to trigger Ca2+ influx. Moreover, we found that the transcription of OsCNGC9 is activated by a rice dehydration-responsive element-binding transcription factor, OsDREB1A. Taken together, our results suggest that OsCNGC9 enhances chilling tolerance in rice through regulating cold-induced calcium influx and cytoplasmic calcium elevation.
Collapse
Affiliation(s)
- Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiao Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hua Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunlei Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfei Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruonan Jing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
48
|
Guo W, Chen W, Zhang Z, Guo N, Liu L, Ma Y, Dai H. The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110641. [PMID: 33180701 DOI: 10.1016/j.plantsci.2020.110641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Virus-derived small interfering RNAs (vsiRNAs) can target not only viruses but also plant genes. Apple chlorotic leaf spot virus (ACLSV) is an RNA virus that infects Rosaceae plants extensively, including apple, pear and hawthorn. Here, we report an ACLSV-derived vsiRNA [vsiR1360(-)] that targets and down-regulates the leucine-rich repeat receptor-like kinase 1 (LRR-RLK1) gene of hawthorn (Crataegus pinnatifida). The targeting and cleavage of the CpLRR-RLK1 gene by vsiR1360(-) were validated by RNA ligase-mediated 5' rapid amplification of cDNA ends and tobacco transient transformation assays. And the CpLRR-RLK1 protein fused to green fluorescent protein localized to the cell membrane. Conserved domain and phylogenetic tree analyses showed that CpLRR-RLK1 is closely related to the proteins of the LRRII-RLK subfamily. The biological function of CpLRR-RLK1 was explored by heterologous overexpression of CpLRR-RLK1 gene in Arabidopsis. The results of inoculation of Pst DC3000 in Arabidopsis leaves showed that the symptoms of CpLRR-RLK1 overexpression plants infected with Pst DC3000 were significantly reduced compared with the wild type. In addition, the detection of reactive oxygen species and callose deposition and the expression analysis of defense-related genes showed that the CpLRR-RLK1 gene can indeed enhance the resistance of Arabidopsis to bacteria disease.
Collapse
Affiliation(s)
- Wei Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China; Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China; Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Nan Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Lifu Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China.
| |
Collapse
|
49
|
Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). THE NEW PHYTOLOGIST 2020; 228:1336-1353. [PMID: 32583457 PMCID: PMC7689938 DOI: 10.1111/nph.16774] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/15/2020] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) and jasmonic acid (JA) both inhibit seed germination, but their interactions during this process remain elusive. Here, we report the identification of a 'SAPK10-bZIP72-AOC' pathway, through which ABA promotes JA biosynthesis to synergistically inhibit rice seed germination. Using biochemical interaction and phosphorylation assays, we show that SAPK10 exhibits autophosphorylation activity on the 177th serine, which enables it to phosphorylate bZIP72 majorly on 71st serine. The SAPK10-dependent phosphorylation enhances bZIP72 protein stability as well as the DNA-binding ability to the G-box cis-element of AOC promoter, thereby elevating the AOC transcription and the endogenous concentration of JA. Blocking of JA biosynthesis significantly alleviated the ABA sensitivity on seed germination, suggesting that ABA-imposed inhibition partially relied on the elevated concentration of JA. Our findings shed a novel insight into the molecular networks of ABA-JA synergistic interaction during rice seed germination.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Yuxuan Hou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jiehua Qiu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Huimei Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Shuang Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
- College of Life ScienceYangtze UniversityJingzhou434025China
| | - Liqun Tang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Xiaohong Tong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jian Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| |
Collapse
|
50
|
Willems A, Heyman J, Eekhout T, Achon I, Pedroza-Garcia JA, Zhu T, Li L, Vercauteren I, Van den Daele H, van de Cotte B, De Smet I, De Veylder L. The Cyclin CYCA3;4 Is a Postprophase Target of the APC/C CCS52A2 E3-Ligase Controlling Formative Cell Divisions in Arabidopsis. THE PLANT CELL 2020; 32:2979-2996. [PMID: 32690720 PMCID: PMC7474283 DOI: 10.1105/tpc.20.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) controls unidirectional progression through the cell cycle by marking key cell cycle proteins for proteasomal turnover. Its activity is temporally regulated by the docking of different activating subunits, known in plants as CELL DIVISION PROTEIN20 (CDC20) and CELL CYCLE SWITCH52 (CCS52). Despite the importance of the APC/C during cell proliferation, the number of identified targets in the plant cell cycle is limited. Here, we used the growth and meristem phenotypes of Arabidopsis (Arabidopsis thaliana) CCS52A2-deficient plants in a suppressor mutagenesis screen to identify APC/CCCS52A2 substrates or regulators, resulting in the identification of a mutant cyclin CYCA3;4 allele. CYCA3;4 deficiency partially rescues the ccs52a2-1 phenotypes, whereas increased CYCA3;4 levels enhance the scored ccs52a2-1 phenotypes. Furthermore, whereas the CYCA3;4 protein is promptly broken down after prophase in wild-type plants, it remains present in later stages of mitosis in ccs52a2-1 mutant plants, marking it as a putative APC/CCCS52A2 substrate. Strikingly, increased CYCA3;4 levels result in aberrant root meristem and stomatal divisions, mimicking phenotypes of plants with reduced RETINOBLASTOMA-RELATED PROTEIN1 (RBR1) activity. Correspondingly, RBR1 hyperphosphorylation was observed in CYCA3;4 gain-of-function plants. Our data thus demonstrate that an inability to timely destroy CYCA3;4 contributes to disorganized formative divisions, possibly in part caused by the inactivation of RBR1.
Collapse
Affiliation(s)
- Alex Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jose Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lei Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|