1
|
Miyashita Y, Tajima K, Izumi K, Matsumoto N, Hayakawa D, Nakamura IT, Katayama I, Wibowo A, Matsuda H, Winardi W, Amien BR, Mitsuishi Y, Takahashi F, Nakamura K, Uchibori K, Yanagitani N, Hayashi T, Takamochi K, Suzuki K, Katayama R, Takahashi K. Novel Approach to Overcome Osimertinib Resistance Using Bromodomain and Extra-Terminal Domain Inhibitors. Cancer Sci 2025; 116:1392-1404. [PMID: 40036147 PMCID: PMC12044652 DOI: 10.1111/cas.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor, is the first-line therapy for lung cancer harboring EGFR mutations. The mechanisms underlying osimertinib resistance are diverse, with approximately half remaining unknown. Epigenetic dysregulation is implicated in drug resistance; however, the mechanisms remain unclear. Therefore, we investigated epigenetic involvement in osimertinib resistance and its therapeutic potential. We established osimertinib-resistant cells and used an assay for transposase-accessible chromatin using sequencing to evaluate chromatin accessibility, finding significant changes post-resistance. Combining the assay for transposase-accessible chromatin and RNA sequencing data, we identified FGF1 as a resistance-related gene regulated by histone modifications. FGF1 induced osimertinib resistance, and its suppression attenuated resistance. Bromodomain and extra-terminal domain inhibitors combined with osimertinib overcame osimertinib resistance by reducing FGF1 expression. Increased FGF1 expression was observed in osimertinib-resistant clinical samples. This combination therapy was effective in cell lines and mouse xenograft models. These results suggest targeting histone modifications using bromodomain and extra-terminal domain inhibitors as a novel approach to overcoming osimertinib resistance.
Collapse
Affiliation(s)
- Yosuke Miyashita
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Ken Tajima
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Kenta Izumi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Naohisa Matsumoto
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Daisuke Hayakawa
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Ikuko Takeda Nakamura
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Isana Katayama
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Adityo Wibowo
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Hironari Matsuda
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Wira Winardi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Bagus Radityo Amien
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoichiro Mitsuishi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Fumiyuki Takahashi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| | - Kohta Nakamura
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, The Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Takuo Hayashi
- Department of Human PathologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Kazuya Takamochi
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Kenji Suzuki
- Department of General Thoracic SurgeryJuntendo University Graduate School of MedicineTokyoJapan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Kazuhisa Takahashi
- Department of Respiratory MedicineJuntendo University Graduate School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
2
|
Bosworth ML, Isles AR, Wilkinson LS, Humby T. Sex-dependent effects of Setd1a haploinsufficiency on development and adult behaviour. PLoS One 2024; 19:e0298717. [PMID: 39141687 PMCID: PMC11324134 DOI: 10.1371/journal.pone.0298717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Loss of function (LoF) mutations affecting the histone methyl transferase SETD1A are implicated in the aetiology of a range of neurodevelopmental disorders including schizophrenia. We examined indices of development and adult behaviour in a mouse model of Setd1a haploinsufficiency, revealing a complex pattern of sex-related differences spanning the pre- and post-natal period. Specifically, male Setd1a+/- mice had smaller placentae at E11.5 and females at E18.5 without any apparent changes in foetal size. In contrast, young male Setd1a+/- mice had lower body weight and showed enhanced growth, leading to equivalent weights by adulthood. Embryonic whole brain RNA-seq analysis revealed expression changes that were significantly enriched for mitochondria-related genes in Setd1a+/ samples. In adulthood, we found enhanced acoustic startle responding in male Setd1a+/- mice which was insentitive to the effects of risperidone, but not haloperidol, both commonly used antipsychotic drugs. We also observed reduced pre-pulse inhibition of acoustic startle, a schizophrenia-relevant phenotype, in both male and female Setd1a+/- mice which could not be rescued by either drug. In the open field and elevated plus maze tests of anxiety, Setd1a haplosufficiency led to more anxiogenic behaviour in both sexes, whereas there were no differences in general motoric ability and memory. Thus, we find evidence for changes in a number of phenotypes which strengthen the support for the use of Setd1a haploinsufficient mice as a model for the biological basis of schizophrenia. Furthermore, our data point towards possible underpinning neural and developmental mechanisms that may be subtly different between the sexes.
Collapse
Affiliation(s)
- Matthew L. Bosworth
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- Division of Psychological Medicine and Clinical Neuroscience, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Wadhwani N, Nayak S, Wang Y, Hashizume R, Jie C, Mania-Farnell B, James CD, Xi G, Tomita T. WDR82-Mediated H3K4me3 Is Associated with Tumor Proliferation and Therapeutic Efficacy in Pediatric High-Grade Gliomas. Cancers (Basel) 2023; 15:3429. [PMID: 37444539 PMCID: PMC10340597 DOI: 10.3390/cancers15133429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity. Here, we show that H3K4me3 and its methyltransferase WDR82 are elevated in pHGGs. A reduction in H3K4me3 by downregulating WDR82 decreases H3K4me3 promoter occupancy and the expression of genes associated with stem cell features, cell proliferation, the cell cycle, and DNA damage repair. A reduction in WDR82-mediated H3K4me3 increases the response of pediatric glioma cells to chemotherapy. These findings suggest that WDR82-mediated H3K4me3 is an important determinant of pediatric glioma malignancy and therapeutic response. This highlights the need for a more thorough understanding of the potential of WDR82 as an epigenetic target to increase therapeutic efficacy and improve the prognosis for children with malignant gliomas.
Collapse
Affiliation(s)
- Nitin Wadhwani
- Department of Pathology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sonali Nayak
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yufen Wang
- Department of Radio-oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University Medicine and Health Sciences, Des Moines, IA 50312, USA
| | - Barbara Mania-Farnell
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN 46323, USA
| | - Charles David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Guifa Xi
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B 1-induced toxicity in human kidney cells. Mycotoxin Res 2023:10.1007/s12550-023-00494-2. [PMID: 37328702 DOI: 10.1007/s12550-023-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010, Topkapi, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
5
|
Chai H, Pan C, Zhang M, Huo H, Shan H, Wu J. Histone methyltransferase SETD1A interacts with notch and promotes notch transactivation to augment ovarian cancer development. BMC Cancer 2023; 23:96. [PMID: 36707804 PMCID: PMC9883963 DOI: 10.1186/s12885-023-10573-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND High expression of SETD1A, a histone methyltransferase that specifically methylates H3K4, acted as a key oncogene in several human cancers. However, the function and underlying molecular mechanism of SETD1A in ovarian cancer (OV) remain markedly unknown. METHODS The expression of SETD1A in OV were detected by Western blot and analyzed online, and the prognosis of STED1A in OV were analyzed online. The protein and mRNA levels were determined by Western blot and RT-qPCR. The cell proliferatin, migration and invasion were measured by CCK-8 and transwell assays. The protein interaction was detected by co-IP assay. The interaction between protein and DNA was performed by ChIP assay. The tumor growth in vivo was performed by xenograft tumor model. RESULTS SETD1A was overexpressed in OV and a predictor of poor prognosis. Overexpression of SETD1A augmented the abilities of cell proliferation, migration, and invasion in MRG1 and OVCAR5 cells. In comparison, SETD1A knockdown suppressed cell growth, migration, and invasion in SKOV3 and Caov3 cells. Specifically, SETD1A enhanced Notch signaling by promoting the expression of Notch target genes, such as Hes1, Hey1, Hey2, and Heyl. Mechanistically, SETD1A interacted with Notch1 and methylated H3K4me3 at Notch1 targets to enhance Notch signaling. In addition, restoration of Notch1 in SETD1A-knockdown OV cells recovered cell proliferation, migration and invasion, which was inhibited by SETD1A knockdown. Furthermore, reduction of SETD1A suppressed tumorigenesis in vivo. CONCLUSION In conclusion, our results highlighted the key role of SETD1A in OV development and proved that SETD1A promotes OV development by enhancing Notch1 signaling, indicating that SETD1A may be a novel target for OV treatment.
Collapse
Affiliation(s)
- Hongjuan Chai
- grid.412523.30000 0004 0386 9086Department of Gynecology and Obstetrics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunpeng Pan
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- grid.263761.70000 0001 0198 0694Department of Forensic Sciences, Soochow University, Suzhou, China
| | - Haizhong Huo
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Haiyan Shan
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242, Guangji Road, 215000 Suzhou, China
| | - Jugang Wu
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Clifton NE, Bosworth ML, Haan N, Rees E, Holmans PA, Wilkinson LS, Isles AR, Collins MO, Hall J. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Hum Mol Genet 2022; 31:3095-3106. [PMID: 35531971 PMCID: PMC9476630 DOI: 10.1093/hmg/ddac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.
Collapse
Affiliation(s)
- Nicholas E Clifton
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Matthew L Bosworth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Niels Haan
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
7
|
Cenik BK, Sze CC, Ryan CA, Das S, Cao K, Douillet D, Rendleman EJ, Zha D, Khan NH, Bartom E, Shilatifard A. A synthetic lethality screen reveals ING5 as a genetic dependency of catalytically dead Set1A/COMPASS in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2022; 119:e2118385119. [PMID: 35500115 PMCID: PMC9171609 DOI: 10.1073/pnas.2118385119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells (ESCs) are defined by their ability to self-renew and the potential to differentiate into all tissues of the developing organism. We previously demonstrated that deleting the catalytic SET domain of the Set1A/complex of proteins associated with SET1 histone methyltransferase (Set1A/COMPASS) in mouse ESCs does not impair their viability or ability to self-renew; however, it leads to defects in differentiation. The precise mechanisms by which Set1A executes these functions remain to be elucidated. In this study, we demonstrate that mice lacking the SET domain of Set1A are embryonic lethal at a stage that is unique from null alleles. To gain insight into Set1A function in regulating pluripotency, we conducted a CRISPR/Cas9-mediated dropout screen and identified the MOZ/MORF (monocytic leukaemia zinc finger protein/monocytic leukaemia zinc finger protein-related factor) and HBO1 (HAT bound to ORC1) acetyltransferase complex member ING5 as a synthetic perturbation to Set1A. The loss of Ing5 in Set1AΔSET mouse ESCs decreases the fitness of these cells, and the simultaneous loss of ING5 and in Set1AΔSET leads to up-regulation of differentiation-associated genes. Taken together, our results point toward Set1A/COMPASS and ING5 as potential coregulators of the self-renewal and differentiation status of ESCs.
Collapse
Affiliation(s)
- Bercin K. Cenik
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Christie C. Sze
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Caila A. Ryan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Siddhartha Das
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Kaixiang Cao
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Delphine Douillet
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Emily J. Rendleman
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Didi Zha
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Nabiha Haleema Khan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Elizabeth Bartom
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
8
|
Li M, Shi M, Xu Y, Qiu J, Lv Q. Histone Methyltransferase KMT2D Regulates H3K4 Methylation and is Involved in the Pathogenesis of Ovarian Cancer. Cell Transplant 2021; 30:9636897211027521. [PMID: 34705580 PMCID: PMC8554562 DOI: 10.1177/09636897211027521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To investigate the function of histone-lysine N-methyltransferase 2D (KMT2D) on the methylation of H3 lysine 4 (H3K4) in the progression of Ovarian cancer (OV). KMT2D, ESR1 and H3K4me expressions in surgical resected tumors and tumor adjacent tissues of OV from 198 patients were determined using immunohistochemistry (IHC). Human OV cell lines including SKOV3, HO-8910 cells and normal ovarian epithelial cell line IOSE80 were employed for in vitro experiment, and BALB/C female nude mice were used for in vivo study. qRT-PCR and Western blotting were implemented for measuring the KMT2D, ESR1, PTGS2, STAT3, VEGFR2, H3K4me and ELF3 levels. Chromatin immunoprecipitation (ChIP) analysis was used for studying the binding between ESR1 and H3K4me. Edu staining assay was executed to determine cell viability, and colony formation and cell invasion assay. The immunofluorescence method was utilized for the visualization of protein expression and distribution in cells. In this study, KMT2D, ESR1 and H3K4me were found upregulated in OV progression. Mutated H3K4me could inhibit the proliferation, colony formation and invasion ability of OV cells. Mutated H3K4me could also hinder the ESR1 in SKOV3 expressions and HO-8910 cells, which would further mediate PTGS2/STAT3/VEGF pathway. In vivo studies also demonstrated that mutated H3K4me inhibited OV progression via targeting ESR1. All the ChIP-PCR analysis indicated the moderator effect of H3K4me on ESR1. Our findings indicated that ESR1 played an important role in the OV progression. Besides, H3K4me could promote cell proliferation and inhibit apoptosis of OV cells. Meanwhile, it could also targets the ESR1 production to enhance the migration and invasion of OV cells, which was through the activation of ESR1-ELF3-PTGS2-STAT3-VEGF cascade signaling pathway.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
- Co-first author
| | - Mengdie Shi
- Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
- Co-first author
| | - Ying Xu
- Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
| | - Jianping Qiu
- Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
- Jianping Qiu, Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, No.242 Guangji Road, Suzhou, 215008, China.
| | - Qing Lv
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
- Qing Lv, Department of Breast Surgery, Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214000, China.
| |
Collapse
|
9
|
Wirawan A, Tajima K, Takahashi F, Mitsuishi Y, Winardi W, Hidayat M, Hayakawa D, Matsumoto N, Izumi K, Asao T, Ko R, Shimada N, Takamochi K, Suzuki K, Abe M, Hino O, Sekido Y, Takahashi K. A Novel Therapeutic Strategy Targeting the Mesenchymal Phenotype of Malignant Pleural Mesothelioma By Suppressing LSD1. Mol Cancer Res 2021; 20:127-138. [PMID: 34593606 DOI: 10.1158/1541-7786.mcr-21-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor that has a low overall survival; however, no significant treatment advances have been made in the past 15 years. Large-scale molecular studies have identified a poor prognostic subset of MPM linked to the epithelial-mesenchymal transition (EMT) that may contribute toward resistance to chemotherapy, suggesting that EMT could be targeted to treat patients with MPM. Previously, we reported that histone modifiers regulating EMT could be therapeutic targets; therefore, in this study, we investigated whether targeting lysine-specific demethylase 1 (LSD1/KDM1), a histone-modifying enzyme responsible for demethylating histone H3 lysine 4 and lysine 9, could represent a novel therapeutic strategy for MPM. We suppressed LSD1 and investigated the EMT phenotype using EMT marker expression and wound-healing assay; and chemosensitivity using apoptosis assay. We found that suppressing LSD1 induces an epithelial phenotype in sarcomatoid MPM cells, while attenuating the mesenchymal phenotype sensitized MPM cells to cisplatin-induced apoptosis. Subsequent genome-wide identification, comprehensive microarray analysis, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) to assess genome-wide changes in chromatin accessibility suggested that LSD1 directly regulates milk fat globulin protein E8 (MFGE8), an integrin ligand that is involved in the FAK pathway. Furthermore, we found that LSD1 regulates the mesenchymal phenotype and apoptosis by activating the FAK-AKT-GSK3β pathway via a positive feedback loop involving MFGE8 and Snail expression, thereby leading to cisplatin resistance. IMPLICATIONS: This study suggests that LSD1 regulates the mesenchymal phenotype and apoptosis, and that LSD1 inhibitors could be combined with the cisplatin as a novel therapy for patients with MPM.
Collapse
Affiliation(s)
- Aditya Wirawan
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Tajima
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan. .,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoichiro Mitsuishi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Wira Winardi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Moulid Hidayat
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Hayakawa
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Naohisa Matsumoto
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenta Izumi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsuhiko Asao
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Ko
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoko Shimada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Abe
- Department of Molecular Pathogenesis, Juntendo University School of Medicine, Tokyo, Japan
| | - Okio Hino
- Department of Molecular Pathogenesis, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan.,Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Santos-Rosa H, Millán-Zambrano G, Han N, Leonardi T, Klimontova M, Nasiscionyte S, Pandolfini L, Tzelepis K, Bartke T, Kouzarides T. Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Mol Cell 2021; 81:2793-2807.e8. [PMID: 33979575 PMCID: PMC7612968 DOI: 10.1016/j.molcel.2021.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
DNA replication initiates at genomic locations known as origins of replication, which, in S. cerevisiae, share a common DNA consensus motif. Despite being virtually nucleosome-free, origins of replication are greatly influenced by the surrounding chromatin state. Here, we show that histone H3 lysine 37 mono-methylation (H3K37me1) is catalyzed by Set1p and Set2p and that it regulates replication origin licensing. H3K37me1 is uniformly distributed throughout most of the genome, but it is scarce at replication origins, where it increases according to the timing of their firing. We find that H3K37me1 hinders Mcm2 interaction with chromatin, maintaining low levels of MCM outside of conventional replication origins. Lack of H3K37me1 results in defective DNA replication from canonical origins while promoting replication events at inefficient and non-canonical sites. Collectively, our results indicate that H3K37me1 ensures correct execution of the DNA replication program by protecting the genome from inappropriate origin licensing and spurious DNA replication.
Collapse
Affiliation(s)
- Helena Santos-Rosa
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Gonzalo Millán-Zambrano
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), 41092 Sevilla, Spain
| | - Namshik Han
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Milner Therapeutics Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Tommaso Leonardi
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Center for Genomic Science Istituto Italiano di Tecnologia (IIT), 20139 Milano, Italy
| | - Marie Klimontova
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Simona Nasiscionyte
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Luca Pandolfini
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Istituto Italiano di Tecnologia (IIT), Center for Human Technologies (CHT), 16152 Genova, Italy
| | - Kostantinos Tzelepis
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
11
|
Wu J, Chai H, Shan H, Pan C, Xu X, Dong W, Yu J, Gu Y. Histone Methyltransferase SETD1A Induces Epithelial-Mesenchymal Transition to Promote Invasion and Metastasis Through Epigenetic Reprogramming of Snail in Gastric Cancer. Front Cell Dev Biol 2021; 9:657888. [PMID: 34164392 PMCID: PMC8215546 DOI: 10.3389/fcell.2021.657888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Aberrant epigenetic modification induces oncogene expression and promotes cancer development. The histone lysine methyltransferase SETD1A, which specifically methylates histone 3 lysine 4 (H3K4), is involved in tumor growth and metastasis, and its ectopic expression has been detected in aggressive malignancies. Our previous study reported that SETD1A promotes gastric cancer (GC) proliferation and tumorigenesis. However, the function and molecular mechanisms of SETD1A in GC metastasis remain to be elucidated. In this study, we found that overexpression of SETD1A promoted GC migration and invasion, whereas knockdown of SETD1A suppressed GC migration and invasion in vitro. Moreover, knockdown of SETD1A suppressed GC epithelial-mesenchymal transition (EMT) by increasing the expression of epithelial marker E-cadherin and decreasing the expression of mesenchymal markers, including N-cadherin, Fibronectin, Vimentin, and α-smooth muscle actin (α-SMA). Mechanistically, knockdown of SETD1A reduced the EMT key transcriptional factor snail expression. SETD1A was recruited to the promoter of snail, where SETD1A could methylate H3K4. However, knockdown of SETD1A decreased the methylation of H3K4 on the snail promoter. Furthermore, SETD1A could be a coactivator of snail to induce EMT gene expression. Rescue of snail restored SETD1A knockdown-induced GC migration and invasion inhibition. In addition, knockdown of SETD1A suppressed GC metastasis in vivo. In summary, our data revealed that SETD1A mediated the EMT process and induced metastasis through epigenetic reprogramming of snail.
Collapse
Affiliation(s)
- Jugang Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjuan Chai
- Department of Gynecology and Obstetrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chunpeng Pan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Xu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenpei Dong
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Kummeling J, Stremmelaar DE, Raun N, Reijnders MRF, Willemsen MH, Ruiterkamp-Versteeg M, Schepens M, Man CCO, Gilissen C, Cho MT, McWalter K, Sinnema M, Wheless JW, Simon MEH, Genetti CA, Casey AM, Terhal PA, van der Smagt JJ, van Gassen KLI, Joset P, Bahr A, Steindl K, Rauch A, Keller E, Raas-Rothschild A, Koolen DA, Agrawal PB, Hoffman TL, Powell-Hamilton NN, Thiffault I, Engleman K, Zhou D, Bodamer O, Hoefele J, Riedhammer KM, Schwaibold EMC, Tasic V, Schubert D, Top D, Pfundt R, Higgs MR, Kramer JM, Kleefstra T. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol Psychiatry 2021; 26:2013-2024. [PMID: 32346159 DOI: 10.1038/s41380-020-0725-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Collapse
Affiliation(s)
- Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diante E Stremmelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Margot R F Reijnders
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martina Ruiterkamp-Versteeg
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marga Schepens
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Calvin C O Man
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | - Margje Sinnema
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - James W Wheless
- Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Casie A Genetti
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia M Casey
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper J van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Elmar Keller
- Division of Neuropediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Annick Raas-Rothschild
- Institute of Rare Disease, Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor L Hoffman
- Regional Department of Genetics, Southern California Kaiser Permanente Medical Group, 1188N. Euclid Street, Anaheim, CA, 92801, USA
| | - Nina N Powell-Hamilton
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Dihong Zhou
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, Skopje, North Macedonia
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Deniz Top
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
The H3K4 methyltransferase SETD1A is required for proliferation of non-small cell lung cancer cells by promoting S-phase progression. Biochem Biophys Res Commun 2021; 561:120-127. [PMID: 34023776 DOI: 10.1016/j.bbrc.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022]
Abstract
Epigenetic dysregulation has been strongly implicated in carcinogenesis and is one of the mechanisms that contribute to the development of lung cancer. Using genome-wide CRISPR/Cas9 library screening, we showed SET domain-containing protein 1A (SETD1A) is an essential epigenetic modifier of the proliferation of NSCLC H1299 cells. Depletion of SETD1A strikingly inhibited the proliferation of NSCLC cells. IHC staining and bioinformatics showed that SETD1A is upregulated in lung cancer. Kaplan-Meier survival analysis indicated that high expression of SETD1A is associated with poor prognosis of patients with NSCLC. We revealed that loss of SETD1A inhibits DNA replication and induces replication stress accompanied by impaired fork progression. In addition, transcription of CDC7 and TOP1, which are involved in replication origin activation and fork progression, respectively, was significantly reduced by knockdown of SETD1A. Taken together, these findings demonstrated SETD1A is a critical epigenetic modifier of NSCLC cell proliferation by promoting the transcription of a subset of DNA replication-associated genes.
Collapse
|
14
|
Aberrant Activity of Histone-Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis. Int J Mol Sci 2020; 21:ijms21249340. [PMID: 33302406 PMCID: PMC7762615 DOI: 10.3390/ijms21249340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes.
Collapse
|
15
|
Wu J, Chai H, Li F, Ren Q, Gu Y. SETD1A augments sorafenib primary resistance via activating YAP in hepatocellular carcinoma. Life Sci 2020; 260:118406. [PMID: 32918976 DOI: 10.1016/j.lfs.2020.118406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
AIMS Sorafenib, the approved first-line chemotherapy drug for HCC (Hepatocellular Carcinoma), remains the key treatment agent which effectively improves the survival rate of advanced HCC patients. However, the sorafenib primary resistance limits the application of sorafenib for HCC treatment. The aims of current study are to explore the role and mechanism of SETD1A (Histone Lysine Methyltransferase SET Domain Containing 1A) in sorafenib primary resistance. MAIN METHODS The SETD1A expression in HCC was analyzed by Gene Expression Profiling Interactive Analysis. The survival of HCC patients was analyzed by Kaplan-Meier Plotter. Western Blot and Real-time qPCR were performed to measure the protein and mRNA levels, respectively. Cell counting kit-8 assay and colony formation assay were performed to determine cell viability and proliferation. Propidium Iodide and Trypan Blue staining assays were performed to investigate cell death. KEY FINDINGS Here, we showed that the expression of SETD1A was markedly upregulated in both HCC cell lines and tumor tissues compared to normal hepatocytes and corresponding non-tumor liver tissues, respectively. Regardless of whether treated with sorafenib, the patients who had higher level of SETD1A underwent lower survival rate of overall. In addition, SETD1A expression was positively correlated with the IC50 of sorafenib treated HCC cell lines. Furthermore, we indicated that knockdown of SETD1 augmented proliferation inhibition and cell death induced by sorafenib. SETD1A deficiency impaired YAP (Yes-associated protein) phosphorylation and activation. YAP activation contributed to SETD1A mediated sorafenib primary resistance. SIGNIFICANCE The current study demonstrated that SETD1A enhanced YAP activation to induce sorafenib primary resistance in HCC.
Collapse
Affiliation(s)
- Jugang Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hongjuan Chai
- Department of Gynecology and Obstetrics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Feng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qing Ren
- Department of Gynecology and Obstetrics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Department of Gynecology and Obstetrics, Hainan West Central Hospital (Shanghai Ninth People's Hospital, Hainan Branch), Shanghai JiaoTong University School of Medicine, Hainan, China.
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
The COMPASS Family Protein ASH2L Mediates Corticogenesis via Transcriptional Regulation of Wnt Signaling. Cell Rep 2020; 28:698-711.e5. [PMID: 31315048 DOI: 10.1016/j.celrep.2019.06.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/12/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Histone methylation is essential for regulating gene expression during organogenesis to maintain stem cells and execute a proper differentiation program for their descendants. Here we show that the COMPASS family histone methyltransferase co-factor ASH2L is required for maintaining neural progenitor cells (NPCs) and the production and positioning of projection neurons during neocortex development. Specifically, loss of Ash2l in NPCs results in malformation of the neocortex; the mutant neocortex has fewer neurons, which are also abnormal in composition and laminar position. Moreover, ASH2L loss impairs trimethylation of H3K4 and the transcriptional machinery specific for Wnt-β-catenin signaling, inhibiting the proliferation ability of NPCs at late stages of neurogenesis by disrupting S phase entry to inhibit cell cycle progression. Overexpressing β-catenin after ASH2L elimination rescues the proliferation deficiency. Therefore, our findings demonstrate that ASH2L is crucial for modulating Wnt signaling to maintain NPCs and generate a full complement of neurons during mammalian neocortex development.
Collapse
|
17
|
Kwon M, Park K, Hyun K, Lee JH, Zhou L, Cho YW, Ge K, Skalnik DG, Muir TW, Kim J. H2B ubiquitylation enhances H3K4 methylation activities of human KMT2 family complexes. Nucleic Acids Res 2020; 48:5442-5456. [PMID: 32365172 PMCID: PMC7261165 DOI: 10.1093/nar/gkaa317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
In mammalian cells, distinct H3K4 methylation states are created by deposition of methyl groups by multiple complexes of histone lysine methyltransferase 2 (KMT2) family proteins. For comprehensive analyses that directly compare the catalytic properties of all six human KMT2 complexes, we employed a biochemically defined system reconstituted with recombinant KMT2 core complexes (KMT2CoreCs) containing minimal components required for nucleosomal H3K4 methylation activity. We found that each KMT2CoreC generates distinct states and different levels of H3K4 methylation, and except for MLL3 all are stimulated by H2Bub. Notably, SET1BCoreC exhibited the strongest H3K4 methylation activity and, to our surprise, did not require H2B ubiquitylation (H2Bub); in contrast, H2Bub was required for the H3K4me2/3 activity of the paralog SET1ACoreC. We also found that WDR5, RbBP5, ASH2L and DPY30 are required for efficient H3K4 methyltransferase activities of all KMT2CoreCs except MLL3, which could produce H3K4me1 in the absence of WDR5. Importantly, deletion of the PHD2 domain of CFP1 led to complete loss of the H3K4me2/3 activities of SET1A/BCoreCs in the presence of H2Bub, indicating a critical role for this domain in the H2Bub-stimulated H3K4 methylation. Collectively, our results suggest that each KMT2 complex methylates H3K4 through distinct mechanisms in which individual subunits differentially participate.
Collapse
Affiliation(s)
- Minjung Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Kihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jeong-Heon Lee
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Linjiao Zhou
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, USA
| | - Young-Wook Cho
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David G Skalnik
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, USA
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
18
|
Yang L, Jin M, Park SJ, Seo SY, Jeong KW. SETD1A Promotes Proliferation of Castration-Resistant Prostate Cancer Cells via FOXM1 Transcription. Cancers (Basel) 2020; 12:1736. [PMID: 32629770 PMCID: PMC7407996 DOI: 10.3390/cancers12071736] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
Androgen deprivation therapy eventually leads to the development of castration-resistant prostate cancer (CRPC). Here, we demonstrate for the first time that the histone H3K4 methyltransferase SETD1A is a major regulator for the proliferation of metastatic CRPC (mCRPC). The expression of SETD1A was significantly correlated with the survival rate of patients with prostate cancer. SETD1A, which is expressed at a higher level in mCRPC than in primary prostate cancer cells, promotes the expression of FOXM1, a gene encoding a cell proliferation-specific transcription factor. SETD1A is recruited to the promoter region of FOXM1 (forkhead box M1) upon binding to E2F1, a protein that regulates the transcription of FOXM1 and contributes to the trimethylation of H3K4 in the FOXM1 promoter region. In addition, SETD1A is essential for the expression of stem cell factor (e.g., OCT4, octamer-binding transcription factor 4) and stem cell formation in mCRPC, suggesting the importance of SETD1A expression in mCRPC tumor formation. Notably, poor prognosis is associated with high expression of the SETD1A-FOXM1 pair in clinical data sets. Therefore, our study suggests that SETD1A plays an important role in the proliferation of mCRPC by regulating FOXM1 transcription.
Collapse
Affiliation(s)
| | | | | | | | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.Y.); (M.J.); (S.J.P.); (S.-Y.S.)
| |
Collapse
|
19
|
Sze CC, Ozark PA, Cao K, Ugarenko M, Das S, Wang L, Marshall SA, Rendleman EJ, Ryan CA, Zha D, Douillet D, Chen FX, Shilatifard A. Coordinated regulation of cellular identity-associated H3K4me3 breadth by the COMPASS family. SCIENCE ADVANCES 2020; 6:eaaz4764. [PMID: 32637595 PMCID: PMC7314515 DOI: 10.1126/sciadv.aaz4764] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/08/2020] [Indexed: 06/01/2023]
Abstract
Set1A and Set1B, two members of the COMPASS family of methyltransferases that methylate the histone H3 lysine 4 (H3K4) residue, have been accredited as primary depositors of global H3K4 trimethylation (H3K4me3) in mammalian cells. Our previous studies in mouse embryonic stem cells (ESCs) demonstrated that deleting the enzymatic SET domain of Set1A does not perturb bulk H3K4me3, indicating possible compensatory roles played by other COMPASS methyltransferases. Here, we generated a series of ESC lines harboring compounding mutations of COMPASS methyltransferases. We find that Set1B is functionally redundant to Set1A in implementing H3K4me3 at highly expressed genes, while Mll2 deposits H3K4me3 at less transcriptionally active promoters. While Set1A-B/COMPASS is responsible for broad H3K4me3 peaks, Mll2/COMPASS establishes H3K4me3 with narrow breadth. Additionally, Mll2 helps preserve global H3K4me3 levels and peak breadth in the absence of Set1A-B activity. Our results illustrate the biological flexibility of such enzymes in regulating transcription in a context-dependent manner to maintain stem cell identity.
Collapse
Affiliation(s)
- Christie C. Sze
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Patrick A. Ozark
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Kaixiang Cao
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Michal Ugarenko
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Siddhartha Das
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Stacy A. Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Emily J. Rendleman
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Caila A. Ryan
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Didi Zha
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Delphine Douillet
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Fei Xavier Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| |
Collapse
|
20
|
Wu J, Chai H, Xu X, Yu J, Gu Y. Histone methyltransferase SETD1A interacts with HIF1α to enhance glycolysis and promote cancer progression in gastric cancer. Mol Oncol 2020; 14:1397-1409. [PMID: 32291851 PMCID: PMC7266269 DOI: 10.1002/1878-0261.12689] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Growing tumors alter their metabolic profiles to support the increased cell proliferation. SETD1A, a histone lysine methyltransferase which specifically methylates H3K4, plays important roles in both normal cell and cancer cell functions. However, the function of SETD1A in gastric cancer (GC) progression and its role in GC metabolic reprogramming are still largely unknown. In the current study, we discovered that the expression of SETD1A was higher in GC tumor specimens compared to surrounding nontumor tissues. Upregulation of SETD1A increased GC cell proliferation, whereas downregulation of SETD1A inhibited GC cell proliferation. Furthermore, knockdown of SETD1A reduced glucose uptake and production of lactate and suppressed glycolysis by decreasing the expression of glycolytic genes, including GLUT1, HK2, PFK2, PKM2, LDHA, and MCT4. Mechanistically, SETD1A interacted with HIF1α to strengthen its transactivation, indicating that SETD1A promotes glycolysis through coactivation of HIF1α. SETD1A and HIF1α were recruited to the promoter of HK2 and PFK2, where SETD1A could methylate H3K4. However, knockdown of SETD1A decreased the methylation of H3K4 on HK2 and PFK2 promoter and reduced HIF1α recruitment necessary to promote transcription of glycolytic genes. Inhibition of HIF1α decelerated SETD1A‐enhanced GC cell growth. In additional, there was a linear correlation between SETD1A and several key glycolytic genes in human GC specimens obtained from TCGA dataset. Thus, our results demonstrated that SETD1A interacted with HIF1α to promote glycolysis and accelerate GC progression, implicating that SETD1A may be a potential molecular target for GC treatment.
Collapse
Affiliation(s)
- Jugang Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Hongjuan Chai
- Department of Gynecology and Obstetrics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Xin Xu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| |
Collapse
|
21
|
Histone methyltransferases regulate the transcriptional expression of ERα and the proliferation of tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat 2020; 180:45-54. [PMID: 31897900 PMCID: PMC7031178 DOI: 10.1007/s10549-019-05517-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022]
Abstract
Purpose Although tamoxifen remains the frontline treatment for ERα-positive breast cancers, resistance to this drug limits its clinical efficacy. Most tamoxifen-resistant patients retain ERα expression which may support growth and progression of breast cancers. Therefore, we investigated epigenetic regulation of ERα that may provide a rationale for targeting ERα in these patients. Methods Expression levels of the mixed-lineage leukemia (MLL) family of proteins in tamoxifen-resistant breast cancer cells and publicly available breast cancer patient data sets were analyzed. Histone methylation levels in ERα promoter regions were assessed using chromatin immunoprecipitation. Expression levels of ERα and its target gene were analyzed using western blotting and real-time qPCR. Cell-cycle was analyzed by flow cytometry. Results The expression of MLL3 and SET-domain-containing 1A (SET1A) were increased in tamoxifen-resistant breast cancers. An MLL3 chromatin immunoprecipitation-sequencing data analysis and chromatin immunoprecipitation experiments for MLL3 and SET1A suggested that these proteins bound to enhancer or intron regions of the ESR1 gene and regulated histone H3K4 methylation status. Depletion of MLL3 or SET1A downregulated the expression level of ERα and inhibited the growth of tamoxifen-resistant breast cancer cells. Additional treatment with fulvestrant resulted in a synergistic reduction of ERα levels and the growth of the cells. Conclusions The enhanced expression of MLL3 and SET1A in tamoxifen-resistant breast cancer cells supported the ERα-dependent growth of these cells by increasing ERα expression. Our results suggest that targeting these histone methyltransferases might provide an attractive strategy to overcome endocrine resistance. Electronic supplementary material The online version of this article (10.1007/s10549-019-05517-0) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Tumor-Derived Exosomes Mediate the Instability of Cadherins and Promote Tumor Progression. Int J Mol Sci 2019; 20:ijms20153652. [PMID: 31357383 PMCID: PMC6696460 DOI: 10.3390/ijms20153652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherins, including E-cadherin, N-cadherin, VE-cadherin, etc., are important adhesion molecules mediating intercellular junctions. The abnormal expression of cadherins is often associated with tumor development and progression. Epithelial–mesenchymal transition (EMT) is the most important step in the metastasis cascade and is accompanied by altered expression of cadherins. Recent studies reveal that as a cargo for intercellular communication, exosomes—one type of extracellular vesicles that can be secreted by tumor cells—are involved in a variety of physiological and pathological processes, especially in tumor metastasis. Tumor-derived exosomes play a crucial role in mediating the cadherin instability in recipient cells by transferring bioactive molecules (oncogenic microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), EMT-related proteins, and others), modulating their local and distant microenvironment, and facilitating cancer metastasis. In turn, aberrant expression of cadherins in carcinoma cells can also affect the biogenesis and release of exosomes. Therefore, we summarize the current research on the crosstalk between tumor-derived exosomes and aberrant cadherin signals to reveal the unique role of exosomes in cancer progression.
Collapse
|
23
|
Alsulami M, Munawar N, Dillon E, Oliviero G, Wynne K, Alsolami M, Moss C, Ó Gaora P, O'Meara F, Cotter D, Cagney G. SETD1A Methyltransferase Is Physically and Functionally Linked to the DNA Damage Repair Protein RAD18. Mol Cell Proteomics 2019; 18:1428-1436. [PMID: 31076518 PMCID: PMC6601208 DOI: 10.1074/mcp.ra119.001518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/13/2022] Open
Abstract
SETD1A is a SET domain-containing methyltransferase involved in epigenetic regulation of transcription. It is the main catalytic component of a multiprotein complex that methylates lysine 4 of histone H3, a histone mark associated with gene activation. In humans, six related protein complexes with partly nonredundant cellular functions share several protein subunits but are distinguished by unique catalytic SET-domain proteins. We surveyed physical interactions of the SETD1A-complex using endogenous immunoprecipitation followed by label-free quantitative proteomics on three subunits: SETD1A, RBBP5, and ASH2L. Surprisingly, SETD1A, but not RBBP5 or ASH2L, was found to interact with the DNA damage repair protein RAD18. Reciprocal RAD18 immunoprecipitation experiments confirmed the interaction with SETD1A, whereas size exclusion and protein network analysis suggested an interaction independent of the main SETD1A complex. We found evidence of SETD1A and RAD18 influence on mutual gene expression levels. Further, knockdown of the genes individually showed a DNA damage repair phenotype, whereas simultaneous knockdown resulted in an epistatic effect. This adds to a growing body of work linking epigenetic enzymes to processes involved in genome stability.
Collapse
Affiliation(s)
- Manal Alsulami
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nayla Munawar
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; ¶Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Eugene Dillon
- §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Giorgio Oliviero
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran Wynne
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; ‖Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074
| | - Mona Alsolami
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Catherine Moss
- §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peadar Ó Gaora
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fergal O'Meara
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Cotter
- **Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Gerard Cagney
- From the ‡School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, IRELAND;; §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland;.
| |
Collapse
|
24
|
Alsulami M, Munawar N, Dillon E, Oliviero G, Wynne K, Alsolami M, Moss C, Ó Gaora P, O'Meara F, Cotter D, Cagney G. SETD1A Methyltransferase Is Physically and Functionally Linked to the DNA Damage Repair Protein RAD18. Mol Cell Proteomics 2019. [DOI: https://doi.org/10.1074/mcp.ra119.001518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
25
|
SETD1A protects from senescence through regulation of the mitotic gene expression program. Nat Commun 2019; 10:2854. [PMID: 31253781 PMCID: PMC6599037 DOI: 10.1038/s41467-019-10786-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/20/2019] [Indexed: 01/13/2023] Open
Abstract
SETD1A, a Set1/COMPASS family member maintaining histone-H3-lysine-4 (H3K4) methylation on transcriptionally active promoters, is overexpressed in breast cancer. Here, we show that SETD1A supports mitotic processes and consequentially, its knockdown induces senescence. SETD1A, through promoter H3K4 methylation, regulates several genes orchestrating mitosis and DNA-damage responses, and its depletion causes chromosome misalignment and segregation defects. Cell cycle arrest in SETD1A knockdown senescent cells is independent of mutations in p53, RB and p16, known senescence mediators; instead, it is sustained through transcriptional suppression of SKP2, which degrades p27 and p21. Rare cells escaping senescence by restoring SKP2 expression display genomic instability. In > 200 cancer cell lines and in primary circulating tumor cells, SETD1A expression correlates with genes promoting mitosis and cell cycle suggesting a broad role in suppressing senescence induced by aberrant mitosis. Thus, SETD1A is essential to maintain mitosis and proliferation and its suppression unleashes the tumor suppressive effects of senescence. SETD1A, a histone H3K4 methyltransferase that promotes gene expression, is required for embryonic development. Here, the authors show that SETD1A regulates the expression of mitotic genes and that SETD1A suppression induces senescence.
Collapse
|
26
|
Translational downregulation of Twist1 expression by antiproliferative gene, B-cell translocation gene 2, in the triple negative breast cancer cells. Cell Death Dis 2019; 10:410. [PMID: 31138781 PMCID: PMC6538657 DOI: 10.1038/s41419-019-1640-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Twist1, a key transcription factor regulating epithelial–mesenchymal transition and cancer metastasis, is highly expressed in invasive cancers in contrast to the loss of BTG2/TIS21 expression. Based on our observation that forced expression of BTG2/TIS21 downregulated Twist1 protein expression without altering mRNA level, we investigated molecular mechanisms of the BTG2/TIS21-inhibited Twist1 translation in the triple negative breast cancer (TNBC) cells and in vivo BTG2/TIS21-knockout (KO) mice and human breast cancer tissues. (1) C-terminal domain of Twist1 and Box B of BTG2/TIS21 interacted with each other, which abrogated Twist1 activity. (2) BTG2/TIS21 inhibited translational initiation by depleting eIF4E availability via inhibiting 4EBP1 phosphorylation. (3) Expression of BTG2/TIS21 maintained p-eIF2α that downregulates initiation of protein translation, confirmed by eIF2α-AA mutant expression and BTG2/TIS21 knockdown in MEF cells. (4) cDNA microarray analysis revealed significantly higher expression of initiation factors-eIF2A, eIF3A, and eIF4G2-in the BTG2/TIS21-KO mouse than that in the wild type. (5) BTG2/TIS21-inhibited translation initiation lead to the collapse of polysome formation and the huge peak of 80s monomer in the BTG2/TIS21 expresser, but not in the control. (6) mRNAs and protein expressions of elongation factors were also downregulated by BTG2/TIS21 expression in TNBC cells, but much higher in both TIS21-KO mice and lymph node-positive human breast cancers. (7) BTG2/TIS21-mediated Twist1 loss was not due to the protein degradation by ubiquitination and autophagy activation. (8) Twist1 protein level was significantly higher in various organs of TIS21-KO mice compared with that in the control, indicating the in vivo role of BTG2/TIS21 gene in the regulation of Twist1 protein level. Altogether, the present study support our hypothesis that BTG2/TIS21 is a promising target to combat with metastatic cancers with high level of Twist1 without BTG2/TIS21 expression.
Collapse
|
27
|
Lewis R, Li YD, Hoffman L, Hashizume R, Gravohac G, Rice G, Wadhwani NR, Jie C, Pundy T, Mania-Farnell B, Mayanil CS, Soares MB, Lei T, James CD, Foreman NK, Tomita T, Xi G. Global Reduction of H3K4me3 Improves Chemotherapeutic Efficacy for Pediatric Ependymomas. Neoplasia 2019; 21:505-515. [PMID: 31005631 PMCID: PMC6477190 DOI: 10.1016/j.neo.2019.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ependymomas (EPNs) are the third most common brain tumor in children. These tumors are resistant to available chemotherapeutic treatments, therefore new effective targeted therapeutics must be identified. Increasing evidence shows epigenetic alterations including histone posttranslational modifications (PTMs), are associated with malignancy, chemotherapeutic resistance and prognosis for pediatric EPNs. In this study we examined histone PTMs in EPNs and identified potential targets to improve chemotherapeutic efficacy. METHODS Global histone H3 lysine 4 trimethylation (H3K4me3) levels were detected in pediatric EPN tumor samples with immunohistochemistry and immunoblots. Candidate genes conferring therapeutic resistance were profiled in pediatric EPN tumor samples with micro-array. Promoter H3K4me3 was examined for two candidate genes, CCND1 and ERBB2, with chromatin-immunoprecipitation coupled with real-time PCR (ChIP-PCR). These methods and MTS assay were used to verify a relationship between H3K4me3 levels and CCND1 and ERBB2, and to investigate cell viability in response to chemotherapeutic drugs in primary cultured pediatric EPN cells. RESULTS H3K4me3 levels positively correlate with WHO grade malignancy in pediatric EPNs and are associated with progression free survival in patients with posterior fossa group A EPNs (PF-EPN-A). Reduction of H3K4me3 by silencing its methyltransferase SETD1A, in primary cultured EPN cells increased cell response to chemotherapy. CONCLUSIONS Our results support the development of a novel treatment that targets H3K4me3 to increase chemotherapeutic efficacy in pediatric PF-EPN-A tumors.
Collapse
Key Words
- epn, ependymoma
- ptm, posttranslational modification
- cns, central nervous system
- emem, eagle's minimum essential medium
- cimp+, cpg island methylator positive
- tss, transcription start site
- pfs, progression free survival
- vcr, vincristine
- cpl, carboplatin
- irb, institutional review board
- mts, 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium
- ffpe, formalin-fixed paraffin-embedded
- chip-pcr, chromatin-immunoprecipitation coupled with real-time pcr
Collapse
Affiliation(s)
- Rebecca Lewis
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuping D Li
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lindsey Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Rintaro Hashizume
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gordan Gravohac
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gavin Rice
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nitin R Wadhwani
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunfa Jie
- Department of Biochemistry, Des Moines University, Des Moines, Iowa, USA
| | - Tatiana Pundy
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Chandra S Mayanil
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Development Biology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcelo B Soares
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ting Lei
- Department of Neurological Surgery of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Charles D James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicolas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA,Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Tadanori Tomita
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guifa Xi
- Falk Brain Tumor Center and Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Development Biology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
28
|
Estrogen receptor-α regulation of microRNA-590 targets FAM171A1-a modifier of breast cancer invasiveness. Oncogenesis 2019; 8:5. [PMID: 30631046 PMCID: PMC6328622 DOI: 10.1038/s41389-018-0113-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
The pathobiology and aggressiveness of the triple negative breast cancer (TNBC) are influenced by genes that are preferentially expressed in TNBC cells. However, the nature of such genes with the role in invasiveness of TNBC cells is not fully understood. Here, we identified FAM171A1, member (A1) of the family with sequence similarity 171, as an overexpressed candidate gene in TNBC cells and tumors as compared to estrogen receptor-alpha (ERα) positive breast cancer. We found that the expression of FAM171A1 correlates well with the loss of ERα as well as its newly identified target miR590-5p in TNBC but not in ERα-positive cells. In addition, we report that ERα regulates FAM171A1 expression through a mechanism which involves ERα stimulation of miR590-5p expression via binding to its promoter, and in-turn, miR590-5p suppression of FAM171A1 expression. Further, we found that the levels of FAM171A1 correlate well with cancer cell aggressiveness as depletion or overexpression of FAM171A1 confers reduced or increased ability of TNBC cells to form mammospheres, respectively in accordance with the previous report of increased mammosphere formation potential of metastatic cells. In brief, results presented here have demonstrated that ERα regulation of FAM171A1 expression via miR590-5p explains the molecular basis of the noticed reduced levels of FAM171A1 in ER-positive breast cancer cells and that FAM171A1 is a preferably TNBC- overexpressed gene. Further, the noted loss of ERα-miR590-5p axis may upregulate the expression of FAM171A1 and consequently, resulting aggressiveness of TNBC cells. These findings suggest that FAM171A1 might represent a potentially novel therapeutic target for TNBC tumors.
Collapse
|
29
|
Mohamad Hanif EA, Shah SA. Overview on Epigenetic Re-programming: A Potential Therapeutic Intervention in Triple Negative Breast Cancers. Asian Pac J Cancer Prev 2018; 19:3341-3351. [PMID: 30583339 PMCID: PMC6428526 DOI: 10.31557/apjcp.2018.19.12.3341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer treatments leads to variable responses. Hormonal therapy is beneficial to receptor positive breast cancer subtypes and display better clinical outcome than triple negative breast cancers (TNBCs) with FEC (5-Fluorouracil, Epirubicin and Cyclophosphamide) the mainstay chemotherapy regiment. Owning to their negative expressions of estrogen (ER), progesterone (PR) and HER2 receptors, disease recurrence and metastasis befalls some patients indicating resistance to FEC. Involvement of epigenetic silencing through DNA methylation, histone methylation, acetylation and sumoylation may be the key player in FEC chemoresistance. Epigenetic and molecular profiling successfully classified breast cancer subtypes, indicating potential driver mechanisms to the progression of TNBCs but functional mechanisms behind chemoresistance of these molecular markers are not well defined. Several epigenetic inhibitors and drugs have been used in the management of cancers but these attempts are mainly beneficial in hematopoietic cancers and not specifically favourable in solid tumours. Hypothetically, upon administration of epigenetic drugs, recovery of tumour suppressor genes is expected. However, high tendency of switching on global metastatic genes is predicted. Polycomb repressive complex (PRC) such as EZH2, SETD1A, DNMT, is known to have repressive effects in gene regulation and shown to inhibit cell proliferation and invasion in breast cancers. Individual epigenetic regulators may be an option to improve chemo-drug delivery in cancers. This review discussed on molecular signatures of various breast cancer subtypes and on-going attempts in understanding underlying molecular mechanisms of epigenetic regulators as well as providing insights on possible ways to utilize epigenetic enzymes/inhibitors with responses to chemotherapeutic drugs to re-program cellular and biological outcome in TNBCs.
Collapse
|
30
|
Jin ML, Kim YW, Jin HL, Kang H, Lee EK, Stallcup MR, Jeong KW. Aberrant expression of SETD1A promotes survival and migration of estrogen receptor α-positive breast cancer cells. Int J Cancer 2018; 143:2871-2883. [PMID: 30191958 DOI: 10.1002/ijc.31853] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
Abstract
The histone H3 lysine 4-specific methyltransferase SETD1A is associated with transcription activation and is considered a key epigenetic regulator that modulates the cell cycle and metastasis in triple-negative breast cancer cells. However, the clinical role of SETD1A in estrogen receptor (ER)-positive breast cancer cells remains unclear. Here, we examined whether SETD1A is a potential target for ERα-positive breast cancer therapy. SETD1A expression was upregulated in breast tumor tissue compared to that in normal breast tissue. Moreover, ER-target genes regulated by SETD1A were particularly enriched in cell cycle and cancer pathways. SETD1A is involved in histone H3K4 methylation, subsequent recruitment of ERα, and the establishment of accessible chromatin structure at the enhancer region of ERα target genes. In addition to ERα target genes, other cell survival genes were also downregulated by SETD1A depletion in MCF-7 cells, leading to significant decrease in cell proliferation and migration, and spontaneous induction of apoptosis. We also found that miR-1915-3p functioned as a novel regulator of SETD1A expression in breast cells. Importantly, the growth of tamoxifen-resistant MCF-7 cells was effectively repressed by SETD1A knockdown. These results indicate that SETD1A may serve as a molecular target and prognostic indicator in ERα-positive breast cancer.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Young Woong Kim
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hong Lan Jin
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kwang Won Jeong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
31
|
Biray Avci C, Goker Bagca B, Tetik Vardarli A, Saydam G, Gunduz C. Epigenetic modifications in chronic myeloid leukemia cells through ruxolitinib treatment. J Cell Biochem 2018; 120:4555-4563. [PMID: 30260022 DOI: 10.1002/jcb.27744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022]
Abstract
Chronic myeloid leukemia is a clonal malignancy of hematopoietic stem cell that is characterized by the occurrence of t(9;22)(q34;q11.2) translocation, named Philadelphia chromosome. Ruxolitinib is a powerful Janus tyrosine kinase 1 and 2 inhibitor that is used for myelofibrosis treatment. DNA-histone connection mediates a wide range of genes that code methylation, demethylation, acetylation, deacetylation, ubiquitination, and phosphorylation enzymes. Epigenetic modifications regulate chromatin compactness, which plays pivotal roles in critical biological processes including the transcriptional activity and cell proliferation as well as various pathological mechanisms, including CML. This study is aimed to determine the alterations of the expression levels of epigenetic modification-related genes after ruxolitinib treatment. Total RNA was isolated from K-562 cells treated with the IC50 value of ruxolitinib and untreated K-562 control cells. A reverse transcription procedure was performed for complementary DNA synthesis, and gene expressions were detected by real-time polymerase chain reaction compared with the untreated cells. Ruxolitinib treatment caused a significant alteration in the expression levels of epigenetic regulation-related genes in K-562 cells. Our novel results suggested that ruxolitinib has inhibitor effects on epigenetic modification-regulator genes.
Collapse
Affiliation(s)
- Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Asli Tetik Vardarli
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Guray Saydam
- Department of Internal Medicine, Division of Haematology, Medical Faculty, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| |
Collapse
|
32
|
Mishra S, Van Rechem C, Pal S, Clarke TL, Chakraborty D, Mahan SD, Black JC, Murphy SE, Lawrence MS, Daniels DL, Whetstine JR. Cross-talk between Lysine-Modifying Enzymes Controls Site-Specific DNA Amplifications. Cell 2018; 174:803-817.e16. [PMID: 30057114 PMCID: PMC6212369 DOI: 10.1016/j.cell.2018.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/02/2018] [Accepted: 06/08/2018] [Indexed: 12/28/2022]
Abstract
Acquired chromosomal DNA amplifications are features of many tumors. Although overexpression and stabilization of the histone H3 lysine 9/36 (H3K9/36) tri-demethylase KDM4A generates transient site-specific copy number gains (TSSGs), additional mechanisms directly controlling site-specific DNA copy gains are not well defined. In this study, we uncover a collection of H3K4-modifying chromatin regulators that function with H3K9 and H3K36 regulators to orchestrate TSSGs. Specifically, the H3K4 tri-demethylase KDM5A and specific COMPASS/KMT2 H3K4 methyltransferases modulate different TSSG loci through H3K4 methylation states and KDM4A recruitment. Furthermore, a distinct chromatin modifier network, MLL1-KDM4B-KDM5B, controls copy number regulation at a specific genomic locus in a KDM4A-independent manner. These pathways comprise an epigenetic addressing system for defining site-specific DNA rereplication and amplifications.
Collapse
Affiliation(s)
- Sweta Mishra
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Sangita Pal
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Thomas L Clarke
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Damayanti Chakraborty
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Sarah D Mahan
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Sedona E Murphy
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
33
|
Sundaramoorthy S, Devanand P, Ryu MS, Song KY, Noh DY, Lim IK. TIS21 /BTG2 inhibits breast cancer growth and progression by differential regulation of mTORc1 and mTORc2-AKT1-NFAT1-PHLPP2 signaling axis. J Cancer Res Clin Oncol 2018; 144:1445-1462. [PMID: 29808317 DOI: 10.1007/s00432-018-2677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 10/25/2022]
Abstract
PURPOSE It has been reported that PI3K/AKT pathway is altered in various cancers and AKT isoforms specifically regulate cell growth and metastasis of cancer cells; AKT1, but not AKT2, reduces invasion of cancer cells but maintains cancer growth. We propose here a novel mechanism of the tumor suppresser, TIS21/BTG2, that inhibits both growth and invasion of triple negative breast cancer cells via AKT1 activation by differential regulation of mTORc1 and mTORc2 activity. METHODS Transduction of adenovirus carrying TIS21/BTG2 gene and transfection of short interfering RNAs were employed to regulate TIS21/BTG2 gene expression in various cell lines. Treatment of mTOR inhibitors and mTOR kinase assays can evaluate the role of mTORc in the regulation of AKT phosphorylation at S473 residue by TIS21/BTG2 in breast cancer cells. Open data and immunohistochemical analysis were performed to confirm the role of TIS21/BTG2 expression in various human breast cancer tissues. RESULTS We observed that TIS21/BTG2 inhibited mTORc1 activity by reducing Raptor-mTOR interaction along with upregulation of tsc1 expression, which lead to significant reduction of p70S6K activation as opposed to AKT1S473, but not AKT2, phosphorylation via downregulating PHLPP2 (AKT1-specific phosphatase) in breast cancers. TIS21/BTG2-induced pAKTS473 required Rictor-bound mTOR kinase, indicating activation of mTORc2 by TIS21/BTG2 gene. Additionally, the TIS21/BTG2-induced pAKTS473 could reduce expression of NFAT1 (nuclear factor of activated T cells) and its target genes, which regulate cancer microenvironment. CONCLUSIONS TIS21/BTG2 significantly lost in the infiltrating ductal carcinoma, but it can inhibit cancer growth via the TIS21/BTG2-tsc1/2-mTORc1-p70S6K axis and downregulate cancer progression via the TIS21/BTG2-mTORc2-AKT1-NFAT1-PHLPP2 pathway.
Collapse
Affiliation(s)
- Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Preethi Devanand
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Min Sook Ryu
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea
| | - Dong Young Noh
- Department of Surgery, Seoul National University, Seoul, 03080, Republic of Korea
| | - In Kyoung Lim
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
34
|
Jia W, Yu T, An Q, Cao X, Pan H. MicroRNA-423-5p inhibits colon cancer growth by promoting caspase-dependent apoptosis. Exp Ther Med 2018; 16:1225-1231. [PMID: 30116373 PMCID: PMC6090304 DOI: 10.3892/etm.2018.6288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Plasma microRNA (miR)-423-5p is a potential biomarker for the detection of colon cancer. However, the expression and biological role of miR-423-5p in colon tumorigenesis remains unclear. In the current study, reverse transcription-quantitative polymerase chain reaction was used to determine miR-423-5p expression in malignant colon tissues and plasma from patients with colon cancer. Cell viability, colony formation and apoptosis assays, as well as western blotting, were performed to investigate the biological role and regulatory mechanisms of miR-423-5p in colon cancer. The results demonstrated that miR-423-5p expression was downregulated in tumor tissues and plasma from patients with colon cancer, as well as in colon cancer cell lines. Furthermore, overexpression of miR-423-5p promoted colon cancer cell apoptosis and resulted in the inhibition of cell proliferation and colony formation. Mechanistically, miR-423-5p induced the expression of caspases 3, 8 and 9, as well as p53 in colon cancer. The effect of z-VAD treatment indicated that the miR-423-5p-mediated colon cancer cell apoptosis is caspase-dependent. These results suggest that miR-423-5p is a tumor suppressor in colon cancer and a potential diagnostic target to enable the early detection of colon cancer.
Collapse
Affiliation(s)
- Wenzhuo Jia
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, P.R. China
| | - Tao Yu
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, P.R. China
| | - Qi An
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, P.R. China
| | - Xianglong Cao
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, P.R. China
| | - Hongda Pan
- Department of General Surgery, Beijing Hospital, National Centre of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
35
|
Liu H, Li Y, Li J, Liu Y, Cui B. H3K4me3 and Wdr82 are associated with tumor progression and a favorable prognosis in human colorectal cancer. Oncol Lett 2018; 16:2125-2134. [PMID: 30008910 PMCID: PMC6036332 DOI: 10.3892/ol.2018.8902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/15/2018] [Indexed: 12/25/2022] Open
Abstract
Histone methylation is closely associated with the occurrence of cancer. Histone H3 trimethylation at lysine 4 (H3K4me3) has been reported to modulate the expression of tumor-associated expression and be altered during the progression of several human cancers. WD Repeat Domain 82 (Wdr82), a key epigenetics-associated factor, is a component of the H3K4me3 methyltransferase complex. An aim of the present study was to determine H3K4me3 and Wdr82 expression and their clinical significances in colorectal cancer (CRC). Immunohistochemistry results demonstrated that the expression level of the H3K4me3 and Wdr82 were significantly decreased in CRC tissues compared with paired noncancerous tissues from 123 patients with CRC. Furthermore, the negative expression of H3K4me3 and Wdr82 expression were significantly associated with lymph node (n=33, P=0.0001) and liver metastasis (n=30, P=0.0001). Additionally, multivariate Cox regression analysis indicated that the low expression level of H3K4me3 or Wdr82 was associated with reduced overall survival (OS, P<0.05), and patients with a low H3K4me3 and Wdr82 expression had a significantly poorer outcome compared with patients with a high expression of H3K4me3 and Wdr82 (P=0.0001), suggesting that H3K4me3 and Wdr82 expression were independent factors for OS in patients with CRC. In conclusion, the decreased expressions of H3K4me3 and Wdr82 were associated with a poor prognosis in CRC. The combined expression of H3K4me3 and Wdr82 may serve as a novel prognostic marker for CRC.
Collapse
Affiliation(s)
- He Liu
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yongmin Li
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jingwen Li
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Binbin Cui
- Department of Colorectal Surgery, Harbin Medical University, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
36
|
Ding H, Lu WC, Hu JC, Liu YC, Zhang CH, Lian FL, Zhang NX, Meng FW, Luo C, Chen KX. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search. Molecules 2018; 23:567. [PMID: 29498708 PMCID: PMC6017732 DOI: 10.3390/molecules23030567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
SET7, serving as the only histone methyltransferase that monomethylates 'Lys-4' of histone H3, has been proved to function as a key regulator in diverse biological processes, such as cell proliferation, transcriptional network regulation in embryonic stem cell, cell cycle control, protein stability, heart morphogenesis and development. What's more, SET7 is involved inthe pathogenesis of alopecia aerate, breast cancer, tumor and cancer progression, atherosclerosis in human carotid plaques, chronic renal diseases, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Therefore, there is urgent need to develop novel SET7 inhibitors. In this paper, based on DC-S239 which has been previously reported in our group, we employed scaffold hopping- and 2D fingerprint-based similarity searches and identified DC-S285 as the new hit compound targeting SET7 (IC50 = 9.3 μM). Both radioactive tracing and NMR experiments validated the interactions between DC-S285 and SET7 followed by the second-round similarity search leading to the identification ofDC-S303 with the IC50 value of 1.1 μM. In cellular level, DC-S285 retarded tumor cell proliferation and showed selectivity against MCF7 (IC50 = 21.4 μM), Jurkat (IC50 = 2.2 μM), THP1 (IC50 = 3.5 μM), U937 (IC50 = 3.9 μM) cell lines. Docking calculations suggested that DC-S303 share similar binding mode with the parent compoundDC-S239. What's more, it presented good selectivity against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2. DC-S303 can serve as a drug-like scaffold which may need further optimization for drug development, and can be used as chemical probe to help the community to better understand the SET7 biology.
Collapse
Affiliation(s)
- Hong Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Wen Chao Lu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jun Chi Hu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Chen Hua Zhang
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Fu Lin Lian
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Nai Xia Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Fan Wang Meng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Cheng Luo
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Kai Xian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
37
|
Devanand P, Oya Y, Sundaramoorthy S, Song KY, Watanabe T, Kobayashi Y, Shimizu Y, Hong SA, Suganuma M, Lim IK. Inhibition of TNFα-interacting protein α (Tipα)-associated gastric carcinogenesis by BTG2 /TIS21 via downregulating cytoplasmic nucleolin expression. Exp Mol Med 2018; 50:e449. [PMID: 29472702 PMCID: PMC5903828 DOI: 10.1038/emm.2017.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
To understand the regulation of Helicobacter pylori (H. pylori)-associated gastric carcinogenesis, we examined the effect of B-cell translocation gene 2 (BTG2) expression on the biological activity of Tipα, an oncoprotein secreted from H. pylori. BTG2, the human ortholog of mouse TIS21 (BTG2/TIS21), has been reported to be a primary response gene that is transiently expressed in response to various stimulations. Here, we report that BTG2 is constitutively expressed in the mucous epithelium and parietal cells of the gastric gland in the stomach. Expression was increased in the mucous epithelium following H. pylori infection in contrast to its loss in human gastric adenocarcinoma. Indeed, adenoviral transduction of BTG2/TIS21 significantly inhibited Tipα activity in MKN-1 and MGT-40, human and mouse gastric cancer cells, respectively, thereby downregulating tumor necrosis factor-α (TNFα) expression and Erk1/2 phosphorylation by reducing expression of nucleolin, a Tipα receptor. Chromatin immunoprecipitation proved that BTG2/TIS21 inhibited Sp1 expression and its binding to the promoter of the nucleolin gene. In addition, BTG2/TIS21 expression significantly reduced membrane-localized nucleolin expression in cancer cells, and the loss of BTG2/TIS21 expression induced cytoplasmic nucleolin availability in gastric cancer tissues, as evidenced by immunoblotting and immunohistochemistry. Higher expression of BTG2 and lower expression of nucleolin were accompanied with better overall survival of poorly differentiated gastric cancer patients. This is the first report showing that BTG2/TIS21 inhibits nucleolin expression via Sp1 binding, which might be associated with the inhibition of H. pylori-induced carcinogenesis. We suggest that BTG2/TIS21 is a potential inhibitor of nucleolin in the cytoplasm, leading to inhibition of carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Preethi Devanand
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Yukiko Oya
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tatsuro Watanabe
- Department of Clinical Laboratory of Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Soon Auck Hong
- Department of Pathology, Soonchunhyang Cheonan hospital, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - In Kyoung Lim
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
38
|
Jiang H, Zhu Y, Zhou Z, Xu J, Jin S, Xu K, Zhang H, Sun Q, Wang J, Xu J. PRMT5 promotes cell proliferation by inhibiting BTG2 expression via the ERK signaling pathway in hepatocellular carcinoma. Cancer Med 2018; 7:869-882. [PMID: 29441724 PMCID: PMC5852340 DOI: 10.1002/cam4.1360] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that PRMT5, a protein arginine methyltransferase, has roles in cell growth regulation and cancer development. However, the role of PRMT5 in hepatocellular carcinoma (HCC) progression remains unclear. Here, we showed that PRMT5 expression was frequently upregulated in HCC tissues, and its expression was inversely correlated with overall survival in HCC patients. PRMT5 knockdown markedly inhibited in vitro HCC proliferation and in vivo tumorigenesis. We revealed that the mechanism of PRMT5‐induced proliferation was partially mediated by BTG downregulation, leading to cell cycle arrest during the G1 phase in HCC cells. Ectopic BTG2 overexpression decreased HCC growth, caused cell cycle arrest at the G1 phase, and downregulated Cyclin D1 and Cyclin E1 protein expression. Furthermore, we found that PRMT5‐induced ERK phosphorylation regulated BTG2 expression in HCC cells, whereas pretreatment with a selective ERK1/2 inhibitor (PD184352) significantly reversed the effect of PRMT5 on BTG2 expression. Our results indicated that PRMT5 promotes HCC proliferation by downregulating BTG2 expression via the ERK pathway.
Collapse
Affiliation(s)
- Hai Jiang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Zhu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhenyu Zhou
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junyang Xu
- Department of Neurology, Forth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Shaowen Jin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kang Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Heyun Zhang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qing Sun
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Wang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Junyao Xu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
39
|
Senyildiz M, Karaman EF, Bas SS, Pirincci PA, Ozden S. Effects of BPA on global DNA methylation and global histone 3 lysine modifications in SH-SY5Y cells: An epigenetic mechanism linking the regulation of chromatin modifiying genes. Toxicol In Vitro 2017; 44:313-321. [PMID: 28765096 DOI: 10.1016/j.tiv.2017.07.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA), an estrogenic endocrine disruptor, is widely used in the production of polycarbonate plastic and epoxy resins, resulting in high risk on human health. In present study we aimed to investigate the effects of BPA on global and gene specific DNA methylation, global histone modifications and regulation of chromatin modifiying enzymes in human neuroblastoma cells (SH-SY5Y). Cells were treated with BPA at 0.1, 1 and 10μM concentrations for 48 and 96h. IC50 value of BPA was determined as 183 and 129μM in SH-SY5Y cells after 24h by MTT and NRU tests, respectively. We observed significant alterations on the 5-mC% levels (1.3 fold) and 5-hmC% levels (1.67 fold) after 10μM of BPA for 96h. Significant decrease was identified in H3K9me3 and H3K9ac after 10μM of BPA for 96h while decrease was observed in H3K4me3 at 10μM of BPA for 48h. Alterations were observed in chromatin modifiying genes including G9a, EZH2, SETD8, SETD1A, HAT1, SIRT1, DNMT1, RIZ1 and Suv39h1 after 96h of BPA exposure. Taken together, this study suggests that BPA might modulate the epigenetic regulators which would be key molecular events in the toxicity of endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Mine Senyildiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Serap Sancar Bas
- Department of Biology, Faculty of Science, Istanbul University, 34134-Vezneciler, Istanbul, Turkey
| | - Pelin Arda Pirincci
- Department of Biology, Faculty of Science, Istanbul University, 34134-Vezneciler, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|
40
|
Li Y, Jiao J. Histone chaperone HIRA regulates neural progenitor cell proliferation and neurogenesis via β-catenin. J Cell Biol 2017; 216:1975-1992. [PMID: 28515277 PMCID: PMC5496612 DOI: 10.1083/jcb.201610014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
Histone cell cycle regulator (HIRA) is a histone chaperone and has been identified as an epigenetic regulator. Subsequent studies have provided evidence that HIRA plays key roles in embryonic development, but its function during early neurogenesis remains unknown. Here, we demonstrate that HIRA is enriched in neural progenitor cells, and HIRA knockdown reduces neural progenitor cell proliferation, increases terminal mitosis and cell cycle exit, and ultimately results in premature neuronal differentiation. Additionally, we demonstrate that HIRA enhances β-catenin expression by recruiting H3K4 trimethyltransferase Setd1A, which increases H3K4me3 levels and heightens the promoter activity of β-catenin. Significantly, overexpression of HIRA, HIRA N-terminal domain, or β-catenin can override neurogenesis abnormities caused by HIRA defects. Collectively, these data implicate that HIRA, cooperating with Setd1A, modulates β-catenin expression and then regulates neurogenesis. This finding represents a novel epigenetic mechanism underlying the histone code and has profound and lasting implications for diseases and neurobiology.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Xu W, Xu H, Fang M, Wu X, Xu Y. MKL1 links epigenetic activation of MMP2 to ovarian cancer cell migration and invasion. Biochem Biophys Res Commun 2017; 487:500-508. [PMID: 28385531 DOI: 10.1016/j.bbrc.2017.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 11/15/2022]
Abstract
Responding to pro-metastatic cues such as low oxygen tension, cancer cells develop several different strategies to facilitate migration and invasion. During this process, expression levels of matrix metalloproteinases (MMPs) are up-regulated so that cancer cells can more easily enter or exit the circulation. In this report we show that message levels of the transcriptional modulator MKL1 were elevated in malignant forms of ovarian cancer tissues in humans when compared to more benign forms accompanying a similar change in MMP2 expression. MKL1 silencing blocked hypoxia-induced migration and invasion of ovarian cancer cells (SKOV-3) in vitro. Over-expression of MKL1 activated while MKL1 depletion repressed MMP2 transcription in SKOV-3 cells. MKL1 was recruited to the MMP2 promoter by NF-κB in response to hypoxia. Mechanistically, MKL1 recruited a histone methyltransferase, SET1, and a chromatin remodeling protein, BRG1, and coordinated their interaction to alter the chromatin structure surrounding the MMP2 promoter leading to transcriptional activation. Both BRG1 and SET1 were essential for hypoxia-induced MMP2 trans-activation. Finally, expression levels of SET1 and BRG1 were positively correlated with ovarian cancer malignancies in humans. Together, our data suggest that MKL1 promotes ovarian cancer cell migration and invasion by epigenetically activating MMP2 transcription.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Pathophysiology, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Nursing, Jiangsu Jiankang Vocational College, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun 2016; 17:342-8. [DOI: 10.1038/gene.2016.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
|
43
|
Yae T, Tajima K, Maheswaran S. SETD1A induced miRNA network suppresses the p53 gene expression module. Cell Cycle 2016; 15:487-8. [PMID: 26865005 DOI: 10.1080/15384101.2015.1130572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Toshifumi Yae
- a Department of Surgery , Massachusetts General Hospital Cancer Center, Harvard Medical School , Charlestown , MA , USA.,b Department of Surgery , Harvard Medical School , Charlestown , MA , USA
| | - Ken Tajima
- a Department of Surgery , Massachusetts General Hospital Cancer Center, Harvard Medical School , Charlestown , MA , USA.,b Department of Surgery , Harvard Medical School , Charlestown , MA , USA
| | - Shyamala Maheswaran
- a Department of Surgery , Massachusetts General Hospital Cancer Center, Harvard Medical School , Charlestown , MA , USA.,b Department of Surgery , Harvard Medical School , Charlestown , MA , USA
| |
Collapse
|