1
|
Liu Z, Zhang H, Wang J, Yao Y, Wang X, Liu Y, Fang W, Liu X, Zheng Y. Clca1 deficiency exacerbates colitis susceptibility via impairment of mucus barrier integrity and gut microbiota homeostasis. Microbiol Res 2025; 297:128191. [PMID: 40300372 DOI: 10.1016/j.micres.2025.128191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
The intestinal mucus barrier has emerged as a promising therapeutic target for inflammatory bowel disease. Understanding its regulatory mechanisms is critical for elucidating ulcerative colitis (UC) pathogenesis, improving diagnostics, guiding treatments, and preventing relapse. Chloride Channel Accessory 1 (Clca1), a constituent of the mucus layer, remains understudied in colitis. Here, we investigated Clca1's role in mucosal immunity and intestinal homeostasis using experimental colitis models. Clca1-deficient (Clca1-/-) mice displayed compromised mucus layer integrity, reduced neutrophil infiltration, and gut microbiota dysbiosis. Notably, Clca1-/- mice exhibited exacerbated colitis severity following dextran sulfate sodium (DSS) challenge, accompanied by a diminished goblet cell populations. Fecal microbiota transplantation (FMT) studies revealed that gut microbiota critically modulates divergent phenotypic outcomes between genotypes. Our findings establish Clca1 as a multifunctional regulator of mucus barrier integrity through mechanisms involving goblet cell maintenance, neutrophil-mediated immunity, and host-microbiota crosstalk. These results advance the understanding of UC pathogenesis and identify Clca1-associated pathways as potential targets for barrier restoration therapies.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hong Zhang
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingjing Wang
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yutong Yao
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyi Wang
- Core Facility Center, The First Afliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xingyin Liu
- Department of Microbiology, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
2
|
Chen Y, Wu N, Yan X, Kang L, Ou G, Zhou Z, Xu C, Feng J, Shi T. Impact of gut microbiota on colorectal anastomotic healing (Review). Mol Clin Oncol 2025; 22:52. [PMID: 40297498 PMCID: PMC12035527 DOI: 10.3892/mco.2025.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal anastomosis is a critical procedure in both emergency and elective surgeries to maintain intestinal continuity. However, the incidence of anastomotic leakage (AL) has recently increased, reaching up to 20%, imposing major clinical and economic burdens. Substantial perioperative alterations in the intestinal microbiota composition may contribute to AL, particularly due to disruptions in key microbial populations essential for intestinal health and healing. The intricate interplay between the intestinal microbiota and the host immune system, along with microbial changes before and during surgery, significantly influences anastomotic integrity. Notably, specific pathogens such as Enterococcus and Pseudomonas aeruginosa have been implicated in AL pathogenesis. Preventive strategies including dietary regulation, personalized intestinal preparation, microbiota restoration and enhanced recovery after surgery protocols, may mitigate AL risks. Future research should focus on elucidating the precise mechanisms linking intestinal microbiota alterations to anastomotic healing and developing targeted interventions to improve surgical outcomes.
Collapse
Affiliation(s)
- Yangyang Chen
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Nian Wu
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xin Yan
- Anesthesia Operating Room, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Liping Kang
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Guoyong Ou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Zhenlin Zhou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Changbo Xu
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Jiayi Feng
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Tou Shi
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
3
|
Jans M, Vereecke L. Physiological drivers of pks+ E. coli in colorectal cancer. Trends Microbiol 2025:S0966-842X(25)00121-0. [PMID: 40335416 DOI: 10.1016/j.tim.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, with rising incidence, particularly among individuals under 50. Increasing evidence highlights the gut microbiota as key contributors to CRC development, with certain oncogenic bacteria influencing cancer initiation, progression, and therapy response. Among these is pks+ Escherichia coli, which produces colibactin, a genotoxic compound that induces DNA damage and leaves a distinct mutational signature in healthy individuals and CRC patients. While research has focused on its genotoxic effects, this review examines the kinetics of colibactin-induced mutations and the epithelial and environmental changes that promote E. coli expansion and colibactin exposure. We also explore the broader role of pks+ E. coli in cancer initiation and progression beyond genotoxicity, and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. Short-term exposure to ciprofloxacin and microplastic leads to intrahepatic cholestasis, while long-term exposure decreases energy metabolism and increases the risk of obesity. ENVIRONMENT INTERNATIONAL 2025; 199:109511. [PMID: 40328087 DOI: 10.1016/j.envint.2025.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Microplastics (MPs) and antibiotics are pervasive pollutants that may pose a risk to human health. Studies have shown that both MPs and antibiotics adversely affect lipid metabolism and increase the risk of obesity. However, it remains unclear whether combined exposure to these pollutants intensify the cumulative detrimental effect on obesity and metabolism. This study demonstrated the impact of exposure to polystyrene MPs (PS, 25 nm) and ciprofloxacin (CIP), both individually and combined, for 30 d and 90 d on the hepatic metabolism of male C57BL/6J mice. The results showed that mice exposed to PS and CIP for either 30 d or 90 d exhibited lipid metabolism disorders such as increased body weight, enlarged adipocytes, triglyceride accumulation in the liver, and higher HDL-C. Differentially expressed hepatic proteins were identified via proteomic analysis. The findings indicated that exposure for 30 d caused abnormal bile acid (BA) secretion in the liver and inhibited the BA secretion pathway, which resulted in intrahepatic cholestasis. Furthermore, exposure for 90 d resolved cholestasis and reduced the overall number of differentially expressed proteins. Intestinal pathology revealed more severe damage after exposure for 30 d, while 90 d exposure decreased the adverse effect. Combined CIP and PS exposure caused damage to the organism. However, the adaptive capacity of the organism during prolonged exposure mitigated the damage caused by both, but did not imply the complete eradication of adverse effects. This study found that 90 d exposure to PS and CIP resulted in weight gain, possibly due to changes in the gut flora and suppressed energy metabolism. These results indicated that simultaneous exposure to CIP and PS exacerbated the adverse impact on the liver, causing short-term intrahepatic cholestasis. Prolonged exposure reduced the energy metabolism in the body, exhibiting varied toxicity outcomes and mechanisms at different exposure durations. This study offers novel insights into the effect of MPs and antibiotic CIP exposure on metabolic abnormalities and provides a scientific basis for assessing these risks. It also emphasizes that the adverse effect resulting from 30 d (short-term) toxic exposure may not persist and that long-term chronic toxicity needs warrants.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
5
|
Huynh U, King J, Zastrow ML. Calcium modulates growth and biofilm formation of Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. Sci Rep 2025; 15:14246. [PMID: 40274962 PMCID: PMC12022101 DOI: 10.1038/s41598-025-98577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Lactobacillaceae are a large, diverse family of Gram-positive lactic acid-producing bacteria. As gut microbiota residents in many mammals, these bacteria are beneficial for health and frequently used as probiotics. Lactobacillaceae abundance in the gastrointestinal tract has been correlated with gastrointestinal pathologies and infection. Microbiota residents must compete for nutrients, including essential metal ions like calcium, zinc, and iron. Recent animal and human studies have revealed that dietary calcium can positively influence the diversity of the gut microbiota and abundance of intestinal Lactobacillaceae species, but the underlying molecular mechanisms remain poorly understood. Here, we investigated the impacts of calcium on the growth and biofilm formation of two distinct Lactobacillaceae species found in the gut microbiota, Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. We found that calcium ions differentially affect both growth and biofilm formation of these species. In general, calcium supplementation promotes the growth of both species, albeit with some variations in the extent to which different growth parameters were impacted. Calcium ions strongly induce biofilm formation of L. acidophilus ATCC 4356 but not L. plantarum ATCC 14917. Based on bioinformatic analyses and experimental chelator studies, we hypothesize that surface proteins specific to L. acidophilus ATCC 4356, like S-layer proteins, are responsible for Ca2+-induced biofilm formation. The ability of bacteria to form biofilms has been linked with their ability to colonize in the gut microbiota. This work shows how metal ions like Ca2+ may be important not just as nutrients for bacteria growth, but also for their ability to facilitate cell-cell interactions and possibly colonization in the gut microbiota.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - John King
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
6
|
Joja M, Grant ET, Desai MS. Living on the edge: Mucus-associated microbes in the colon. Mucosal Immunol 2025:S1933-0219(25)00041-8. [PMID: 40233878 DOI: 10.1016/j.mucimm.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
The colonic mucus layer acts as a physicochemical barrier to pathogen invasion and as a habitat for mucus-associated microbes. This mucosal microbiome plays a crucial role in moderating mucus production, maintaining barrier integrity, and shaping the host immune response. However, unchecked mucin foraging may render the host vulnerable to disease. To better understand these dynamics in the mucus layer, it is essential to advance fundamental knowledge on how commensals bind to and utilize mucin as well as their interactions with both the host and their microbial neighbors. We present an overview of approaches for surveying mucus-associated bacteria and assessing their mucin-utilizing capacity, alongside a discussion of the limitations of existing methods. Additionally, we highlight how diet and host secretory immunoglobulin A interact with the mucosal bacterial community in the colon. Insights into this subset of the microbial community can guide therapeutic strategies to optimally support and modulate mucosal barrier integrity.
Collapse
Affiliation(s)
- Mihovil Joja
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Ndeh DA, Nakjang S, Kwiatkowski KJ, Sawyers C, Koropatkin NM, Hirt RP, Bolam DN. A Bacteroides thetaiotaomicron genetic locus encodes activities consistent with mucin O-glycoprotein processing and N-acetylgalactosamine metabolism. Nat Commun 2025; 16:3485. [PMID: 40216766 PMCID: PMC11992087 DOI: 10.1038/s41467-025-58660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
The gut microbiota is a key modulator of human health and the status of major diseases including cancer, diabetes and inflammatory bowel disease. Central to microbiota survival is the ability to metabolise complex dietary and host-derived glycans, including intestinal mucins. The prominent human gut microbe Bacteroides thetaiotaomicron (B. theta) is a versatile and highly efficient complex glycan degrader thanks to the expansion of gene clusters termed polysaccharide utilisation loci (PULs). While the mechanism of action for several singular dietary glycan-induced PULs have been elucidated, studies on the unusually high number of mucin-inducible PULs in B. theta significantly lag behind. Here we show that a mucin inducible PUL BT4240-50 encodes activities consistent with the processing and metabolism of mucin O-glycoproteins and their core sugar N-acetylgalactosamine (GalNAc). PUL BT4240-50 was also shown to be important for competitive growth on mucins in vitro, encoding a kinase (BT4240) critical for GalNAc metabolism. Additionally, BT4240-kinase was shown to be essential for glycosaminoglycan metabolism, extending the PULs function beyond mucins. These data advance our understanding of glycoprotein metabolism at mucosal surfaces, highlighting GalNAc as a key metabolite for competitive microbial survival in the human gut.
Collapse
Affiliation(s)
- Didier A Ndeh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Sirintra Nakjang
- Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, UK
| | - Kurt J Kwiatkowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claire Sawyers
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Hirt
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - David N Bolam
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
8
|
Sinha R, Ottosen EN, Ngwaga T, Shames SR, DiRita VJ. Carbapenem-resistant Enterobacter hormaechei uses mucus metabolism to facilitate gastrointestinal colonization. mBio 2025; 16:e0288424. [PMID: 39878485 PMCID: PMC11898723 DOI: 10.1128/mbio.02884-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The emergence and global spread of carbapenem-resistant Enterobacter cloacae complex species present a pressing public health challenge. Carbapenem-resistant Enterobacter spp. cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults. The intestine may be a major reservoir for these resistant strains, either by facilitating contamination of fomites and transfer to susceptible individuals, or through translocation from the gut to the bloodstream. For this reason, we sought to establish a neonatal mouse model to investigate the mechanisms underpinning gut colonization by carbapenem-resistant Enterobacter hormaechei. We describe a new mouse model to study gut colonization by Enterobacter spp., leading to vital insights into the adaptation of carbapenem-resistant E. hormaechei to the gut environment during the early stages of intestinal colonization. We observed successful colonization and proliferation of E. hormaechei in the 5-day-old infant mouse gut, with primary localization to the colon following oral inoculation. We also uncovered evidence that E. hormaechei uses mucus as a carbon source during colonization of the colon. Our findings underscore the importance of oxygen-dependent metabolic pathways, including the pyruvate dehydrogenase complex and N-acetyl-D-glucosamine metabolism, in gut colonization and proliferation, which aligns with previous human studies. These insights are essential for developing novel therapeutic strategies that can serve as decolonization therapies in at-risk populations.IMPORTANCEBloodstream infections caused by Enterobacter spp. pose a significant clinical threat. The intestine acts as the primary site for colonization and serves as a reservoir for infection. To combat this pathogen, it is crucial to understand how carbapenem-resistant Enterobacter spp. colonize the gut, as such knowledge can pave the way for alternative therapeutic targets. In this study, we developed a novel neonatal mouse model for gastrointestinal colonization by Enterobacter spp. and discovered that mucus plays a key role as a carbon source during colonization. Additionally, we identified two mucus catabolism pathways that contribute to intestinal colonization by carbapenem-resistant E. hormaechei. This new mouse model offers valuable insights into host-pathogen interactions and helps identify critical gastrointestinal fitness factors of Enterobacter, potentially guiding the development of vaccines and alternative therapeutic strategies to minimize intestinal carriage in patient populations at risk of infection with Enterobacter spp.
Collapse
Affiliation(s)
- Ritam Sinha
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Elizabeth N. Ottosen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, USA
| | | | - Stephanie R. Shames
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Victor J. DiRita
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Rondinella D, Raoul PC, Valeriani E, Venturini I, Cintoni M, Severino A, Galli FS, Mora V, Mele MC, Cammarota G, Gasbarrini A, Rinninella E, Ianiro G. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025; 17:859. [PMID: 40077728 PMCID: PMC11901572 DOI: 10.3390/nu17050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Ultra-processed foods (UPFs) have become a widely consumed food category in modern diets. However, their impact on gut health is raising increasing concerns. This review investigates how UPFs impact the gut microbiome and gut barrier, emphasizing gut dysbiosis and increased gut permeability. UPFs, characterized by a high content of synthetic additives and emulsifiers, and low fiber content, are associated with a decrease in microbial diversity, lower levels of beneficial bacteria like Akkermansia muciniphila and Faecalibacterium prausnitzii, and an increase in pro-inflammatory microorganisms. These alterations in the microbial community contribute to persistent inflammation, which is associated with various chronic disorders including metabolic syndrome, irritable bowel syndrome, type 2 diabetes, and colorectal cancer. In addition, UPFs may alter the gut-brain axis, potentially affecting cognitive function and mental health. Dietary modifications incorporating fiber, fermented foods, and probiotics can help mitigate the effects of UPFs. Furthermore, the public needs stricter regulations for banning UPFs, along with well-defined food labels. Further studies are necessary to elucidate the mechanisms connecting UPFs to gut dysbiosis and systemic illnesses, thereby informing evidence-based dietary guidelines.
Collapse
Affiliation(s)
- Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Pauline Celine Raoul
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Valeriani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Sofia Galli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzina Mora
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
10
|
Wasney M, Briscoe L, Wolff R, Ghezzi H, Tropini C, Garud N. Uniform bacterial genetic diversity along the guts of mice inoculated with human stool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635365. [PMID: 39974986 PMCID: PMC11838389 DOI: 10.1101/2025.01.28.635365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Environmental gradients exist throughout the digestive tract, driving spatial variation in the membership and abundance of bacterial species along the gut. However, less is known about the distribution of genetic diversity within bacterial species along the gut. Understanding this distribution is important because bacterial genetic variants confer traits important for the functioning of the microbiome and are also known to impart phenotypes to the hosts, including local inflammation along the gut and the ability to digest food. Thus, to be able to understand how the microbiome functions at a mechanistic level, it is essential to understand how genetic diversity is organized along the gut and the ecological and evolutionary processes that give rise to this organization. In this study, we analyzed bacterial genetic diversity of approximately 30 common gut commensals in five regions along the gut lumen in germ-free mice colonized with the same healthy human stool sample. While species membership and abundances varied considerably along the gut, genetic diversity within species was substantially more uniform. Driving this uniformity were similar strain frequencies along the gut, implying that multiple, genetically divergent strains of the same species can coexist within a host without spatially segregating. Additionally, the approximately 60 unique evolutionary adaptations arising within mice tended to sweep throughout the gut, showing little specificity for particular gut regions. Together, our findings show that genetic diversity may be more uniform along the gut than species diversity, which implies that species presence-absence may play a larger role than genetic variation in responding to varied environments along the gut.
Collapse
Affiliation(s)
- Michael Wasney
- University of California, Los Angeles, Human Genetics, Los Angeles, CA
| | - Leah Briscoe
- University of California, Los Angeles, Interdepartmental Program in Bioinformatics, Los Angeles, CA
| | - Richard Wolff
- University of California, Los Angeles, Ecology and Evolutionary Biology, Los Angeles, CA
| | - Hans Ghezzi
- University of British Columbia, Department of Bioinformatics, Vancouver, Canada
| | - Carolina Tropini
- University of British Columbia, Department of Microbiology and Immunology, Vancouver, Canada
- University of British Columbia, School of Biomedical Engineering, Vancouver, Canada
- Canadian Institute for Advanced Research, Humans and the Microbiome Program, Toronto, Canada
| | - Nandita Garud
- University of California, Los Angeles, Human Genetics, Los Angeles, CA
- University of California, Los Angeles, Interdepartmental Program in Bioinformatics, Los Angeles, CA
- University of California, Los Angeles, Ecology and Evolutionary Biology, Los Angeles, CA
| |
Collapse
|
11
|
Sarfatis A, Wang Y, Twumasi-Ankrah N, Moffitt JR. Highly multiplexed spatial transcriptomics in bacteria. Science 2025; 387:eadr0932. [PMID: 39847624 DOI: 10.1126/science.adr0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/07/2024] [Indexed: 01/25/2025]
Abstract
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissected the response of Escherichia coli to carbon starvation, systematically mapped subcellular RNA organization, and charted the adaptation of a gut commensal Bacteroides thetaiotaomicron to micrometer-scale niches in the mammalian colon. We envision that bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.
Collapse
Affiliation(s)
- Ari Sarfatis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuanyou Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Nana Twumasi-Ankrah
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
12
|
Cubillejo I, Theis KR, Panzer J, Luo X, Banerjee S, Thummel R, Withey JH. Vibrio cholerae Gut Colonization of Zebrafish Larvae Induces a Dampened Sensorimotor Response. Biomedicines 2025; 13:226. [PMID: 39857809 PMCID: PMC11761238 DOI: 10.3390/biomedicines13010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by Vibrio cholerae, which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior. Zebrafish are an established cholera model that can maintain a complex, mature gut microbiome during infection. Larval zebrafish, which have immature gut microbiomes, provide the advantage of high-throughput analyses for established behavioral models. Methods: We identified the effects of V. cholerae O1 El Tor C6706 colonization at 5 days post-fertilization (dpf) on larval zebrafish behavior by tracking startle responses at 10 dpf. We also characterized the larval gut microbiome using 16S rRNA sequencing. V. cholerae-infected or uninfected control groups were exposed to either an alternating light/dark stimuli or a single-tap stimulus, and average distance and velocity were tracked. Results: While there was no significant difference in the light/dark trial, we report a significant decrease in distance moved for C6706-colonized larvae during the single-tap trial. Conclusion: This suggests that early V. cholerae colonization of the larval gut microbiome has a dampening effect on sensorimotor function, supporting the idea of a link between the gut microbiome and behavior.
Collapse
Affiliation(s)
- Isabella Cubillejo
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Jonathan Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| | - Xixia Luo
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shreya Banerjee
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA; (I.C.)
| |
Collapse
|
13
|
Doranga S, Krogfelt KA, Cohen PS, Conway T. Nutrition of Escherichia coli within the intestinal microbiome. EcoSal Plus 2024; 12:eesp00062023. [PMID: 38417452 PMCID: PMC11636361 DOI: 10.1128/ecosalplus.esp-0006-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 03/01/2024]
Abstract
In this chapter, we update our 2004 review of "The Life of Commensal Escherichia coli in the Mammalian Intestine" (https://doi.org/10.1128/ecosalplus.8.3.1.2), with a change of title that reflects the current focus on "Nutrition of E. coli within the Intestinal Microbiome." The earlier part of the previous two decades saw incremental improvements in understanding the carbon and energy sources that E. coli and Salmonella use to support intestinal colonization. Along with these investigations of electron donors came a better understanding of the electron acceptors that support the respiration of these facultative anaerobes in the gastrointestinal tract. Hundreds of recent papers add to what was known about the nutrition of commensal and pathogenic enteric bacteria. The fact that each biotype or pathotype grows on a different subset of the available nutrients suggested a mechanism for succession of commensal colonizers and invasion by enteric pathogens. Competition for nutrients in the intestine has also come to be recognized as one basis for colonization resistance, in which colonized strain(s) prevent colonization by a challenger. In the past decade, detailed investigations of fiber- and mucin-degrading anaerobes added greatly to our understanding of how complex polysaccharides support the hundreds of intestinal microbiome species. It is now clear that facultative anaerobes, which usually cannot degrade complex polysaccharides, live in symbiosis with the anaerobic degraders. This concept led to the "restaurant hypothesis," which emphasizes that facultative bacteria, such as E. coli, colonize the intestine as members of mixed biofilms and obtain the sugars they need for growth locally through cross-feeding from polysaccharide-degrading anaerobes. Each restaurant represents an intestinal niche. Competition for those niches determines whether or not invaders are able to overcome colonization resistance and become established. Topics centered on the nutritional basis of intestinal colonization and gastrointestinal health are explored here in detail.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen A. Krogfelt
- Department of Science and Environment, Pandemix Center Roskilde University, Roskilde, Denmark
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
14
|
Berkhout MD, Ioannou A, de Ram C, Boeren S, Plugge CM, Belzer C. Mucin-driven ecological interactions in an in vitro synthetic community of human gut microbes. Glycobiology 2024; 34:cwae085. [PMID: 39385462 PMCID: PMC11632381 DOI: 10.1093/glycob/cwae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Specific human gut microbes inhabit the outer mucus layer of the gastrointestinal tract. Certain residents of this niche can degrade the large and complex mucin glycoproteins that constitute this layer and utilise the degradation products for their metabolism. In turn, this microbial mucin degradation drives specific microbiological ecological interactions in the human gut mucus layer. However, the exact nature of these interactions remains unknown. In this study, we designed and studied an in vitro mucin-degrading synthetic community that included mucin O-glycan degraders and cross-feeding microorganisms by monitoring community composition and dynamics through a combination of 16S rRNA gene amplicon sequencing and qPCR, mucin glycan degradation with PGC-LC-MS/MS, production of mucin-degrading enzymes and other proteins through metaproteomics, and metabolite production with HPLC. We demonstrated that specialist and generalist mucin O-glycan degraders stably co-exist and found evidence for cross-feeding relationships. Cross-feeding on the products of mucin degradation by other gut microbes resulted in butyrate production, hydrogenotrophic acetogenesis, sulfate reduction and methanogenesis. Metaproteomics analysis revealed that mucin glycan degraders Akkermansia muciniphila, Bacteroides spp. and Ruminococcus torques together contributed 92% of the total mucin O-glycan degrading enzyme pool of this community. Furthermore, comparative proteomics showed that in response to cultivation in a community compared to monoculture, mucin glycan degraders increased carbohydrate-active enzymes whereas we also found indications for niche differentiation. These results confirm the complexity of mucin-driven microbiological ecological interactions and the intricate role of carbohydrate-active enzymes in the human gut mucus layer.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Carol de Ram
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
15
|
Benga L, Rehm A, Gougoula C, Westhoff P, Wachtmeister T, Benten WPM, Engelhardt E, Weber APM, Köhrer K, Sager M, Janssen S. The host genotype actively shapes its microbiome across generations in laboratory mice. MICROBIOME 2024; 12:256. [PMID: 39639355 PMCID: PMC11619136 DOI: 10.1186/s40168-024-01954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The microbiome greatly affects health and wellbeing. Evolutionarily, it is doubtful that a host would rely on chance alone to pass on microbial colonization to its offspring. However, the literature currently offers only limited evidence regarding two alternative hypotheses: active microbial shaping by host genetic factors or transmission of a microbial maternal legacy. RESULTS To further dissect the influence of host genetics and maternal inheritance, we collected two-cell stage embryos from two representative wild types, C57BL6/J and BALB/c, and transferred a mixture of both genotype embryos into hybrid recipient mice to be inoculated by an identical microbiome at birth. CONCLUSIONS Observing the offspring for six generations unequivocally emphasizes the impact of host genetic factors over maternal legacy in constant environments, akin to murine laboratory experiments. Interestingly, maternal legacy solely controlled the microbiome in the first offspring generation. However, current evidence supporting maternal legacy has not extended beyond this initial generation, resolving the aforementioned debate. Video Abstract.
Collapse
Affiliation(s)
- Laurentiu Benga
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Rehm
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany
| | - Christina Gougoula
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - W Peter M Benten
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martin Sager
- Central Unit for Animal Research and Animal Welfare Affairs, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Chen K, Wang H, Yang X, Tang C, Hu G, Gao Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol Res 2024; 210:107483. [PMID: 39521027 DOI: 10.1016/j.phrs.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The global epidemic of type 2 diabetes mellitus (T2DM) imposes a substantial burden on public health and healthcare expenditures, thereby driving the pursuit of cost-effective preventive and therapeutic strategies. Emerging evidence suggests a potential association between dysbiosis of gut microbiota and its metabolites with T2DM, indicating that targeted interventions aimed at modulating gut microbiota may represent a promising therapeutic approach for the management of T2DM. In this review, we concentrated on the multifaceted interactions between the gut microbiota and the intestinal barrier in the context of T2DM. We systematically summarized that the imbalance of beneficial gut microbiota and its metabolites may constitute a viable therapeutic approach for the management of T2DM. Meanwhile, the mechanisms by which gut microbiota interventions, such as probiotics, prebiotics, postbiotics, and synbiotics, synergistically improve insulin resistance in T2DM are summarized. These mechanisms include the restoration of gut microbiota structure, upregulation of intestinal epithelial cell proliferation and differentiation, enhancement of tight junction protein expression, promotion of mucin secretion by goblet cells, and the immunosuppressive functions of regulatory T cells (Treg) and M2 macrophages. Collectively, these actions contribute to the amelioration of the body's metabolic inflammatory status. Our objective is to furnish evidence that supports the clinical application of probiotics, prebiotics, and postbiotics in the management of T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Guojie Hu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Zezheng Gao
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
17
|
Abeltino A, Hatem D, Serantoni C, Riente A, De Giulio MM, De Spirito M, De Maio F, Maulucci G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024; 16:3806. [PMID: 39599593 PMCID: PMC11597134 DOI: 10.3390/nu16223806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Recent studies have shown a growing interest in the complex relationship between the human gut microbiota, metabolism, and overall health. This review aims to explore the gut microbiota-host association, focusing on its implications for precision nutrition and personalized medicine. The objective is to highlight how gut microbiota modulate metabolic and immune functions, contributing to disease susceptibility and wellbeing. The review synthesizes recent research findings, analyzing key studies on the influence of gut microbiota on lipid and carbohydrate metabolism, intestinal health, neurobehavioral regulation, and endocrine signaling. Data were drawn from both experimental and clinical trials examining microbiota-host interactions relevant to precision nutrition. Our findings highlight the essential role of gut microbiota-derived metabolites in regulating host metabolism, including lipid and glucose pathways. These metabolites have been found to influence immune responses and gut barrier integrity. Additionally, the microbiota impacts broader physiological processes, including neuroendocrine regulation, which could be crucial for dietary interventions. Therefore, understanding the molecular mechanisms of dietary-microbiota-host interactions is pivotal for advancing personalized nutrition strategies. Tailored dietary recommendations based on individual gut microbiota compositions hold promise for improving health outcomes, potentially revolutionizing future healthcare approaches across diverse populations.
Collapse
Affiliation(s)
- Alessio Abeltino
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Duaa Hatem
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Cassandra Serantoni
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessia Riente
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Michele Maria De Giulio
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Metabolic Intelligence Lab, Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy; (A.A.); (D.H.); (C.S.); (A.R.); (M.M.D.G.); (M.D.S.)
- UOC Physics for Life Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
18
|
Liu S, Yin J, Wan D, Yin Y. The Role of Iron in Intestinal Mucus: Perspectives from Both the Host and Gut Microbiota. Adv Nutr 2024; 15:100307. [PMID: 39341502 PMCID: PMC11533511 DOI: 10.1016/j.advnut.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Although research on the role of iron in host immunity has a history spanning decades, it is only relatively recently that attention has been directed toward the biological effects of iron on the intestinal mucus layer, prompted by an evolving understanding of the role of this material in immune defense. The mucus layer, secreted by intestinal goblet cells, covers the intestinal epithelium, and given its unique location, interactions between the host and gut microbiota, as well as among constituent microbiota, occur frequently within the mucus layer. Iron, as an essential nutrient for the vast majority of life forms, regulates immune responses from both the host and microbial perspectives. In this review, we summarize the iron metabolism of both the host and gut microbiota and describe how iron contributes to intestinal mucosal homeostasis via the intestinal mucus layer with respect to both host and constituent gut microbiota. The findings described herein offer a new perspective on iron-mediated intestinal mucosal barrier function.
Collapse
Affiliation(s)
- Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Le Doujet T, Haugen P. The Microbiota of the Outer Gut Mucus Layer of the Migrating Northeast Arctic Cod ( Gadus morhua) as Determined by Shotgun DNA Sequencing. Microorganisms 2024; 12:2204. [PMID: 39597593 PMCID: PMC11596785 DOI: 10.3390/microorganisms12112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Animals form functional units with their microbial communities, termed metaorganisms. Despite extensive research on some model animals, microbial diversity in many species remains unexplored. Here, we describe the taxonomic profile of the microbes from the outer gut mucus layer from the Northeast Arctic cod using a shotgun DNA sequencing approach. We focused on the mucus to determine if its microbial composition differs from that of the fecal microbiota, which could reveal unique microbial interactions and functions. Metagenomes from six individuals were analyzed, revealing three different taxonomic profiles: Type I is dominated in numbers by Pseudomonadaceae (44%) and Xanthomonadaceae (13%), Type II by Vibrionaceae (65%), and Type III by Enterobacteriaceae (76%). This stands in sharp contrast to the bacterial diversity of the transient gut content (i.e., feces). Additionally, binning of assembled reads followed by phylogenomic analyses place a high-completeness bin of Type I within the Pseudomonas fluorescens group, Type II within the Photobacterium phosphoreum clade, and Type III within the Escherichia/Shigella group. In conclusion, we describe the adherent bacterial diversity in the Northeast Arctic cod's intestine using shotgun sequencing, revealing different taxonomic profiles compared to the more homogenous transient microbiota. This suggests that the intestine contains two separate and distinct microbial populations.
Collapse
Affiliation(s)
| | - Peik Haugen
- Department of Chemistry and the Center for Bioinformatics, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway;
| |
Collapse
|
20
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Sinha R, Ottosen EN, Ngwaga T, Shames SR, DiRita VJ. Carbapenem-Resistant Enterobacter hormaechei Uses Mucus Metabolism to Facilitate Gastrointestinal Colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615021. [PMID: 39386425 PMCID: PMC11463422 DOI: 10.1101/2024.09.25.615021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The emergence and global spread of carbapenem-resistant Enterobacter cloacae complex species presents a pressing public health challenge. Carbapenem-resistant Enterobacter species cause a wide variety of infections, including septic shock fatalities in newborns and immunocompromised adults. The intestine may be a major reservoir for these resistant strains, either by facilitating contamination of fomites and transfer to susceptible individuals, or through translocation from the gut to the bloodstream. For this reason, we sought to establish a neonatal mouse model to investigate the mechanisms underpinning gut colonization by carbapenem-resistant Enterobacter hormaechei. We describe a new mouse model to study gut colonization by Enterobacter species, leading to vital insights into the adaptation of carbapenem-resistant E. hormaechei to the gut environment during the early stages of intestinal colonization. We observed successful colonization and proliferation of E. hormaechei in the five-day old infant mouse gut, with primary localization to the colon following oral inoculation. We also uncovered evidence that E. hormaechei uses mucus as a carbon source during colonization of the colon. Our findings underscore the importance of oxygen-dependent metabolic pathways, including the pyruvate dehydrogenase complex, and N-acetyl-D-glucosamine metabolism, in gut colonization and proliferation, which aligns with previous human studies. These insights are essential for developing novel therapeutic strategies that can serve as decolonization therapies in at-risk populations. Importance Bloodstream infections caused by Enterobacter species pose a significant clinical threat. The intestine acts as the primary site for colonization and serves as a reservoir for infection. To combat this pathogen, it is crucial to understand how carbapenem-resistant Enterobacter species colonize the gut, as such knowledge can pave the way for alternative therapeutic targets. In this study, we developed a novel neonatal mouse model for gastrointestinal colonization by Enterobacter species and discovered that mucus plays a key role as a carbon source during colonization. Additionally, we identified two mucus catabolism pathways that contribute to intestinal colonization by carbapenem-resistant E. hormaechei. This new mouse model offers valuable insights into host-pathogen interactions and helps identify critical gastrointestinal fitness factors of Enterobacter, potentially guiding the development of vaccines and alternative therapeutic strategies to minimize intestinal carriage in patient populations at risk for infection with Enterobacter species.
Collapse
Affiliation(s)
- Ritam Sinha
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, 48824
| | - Elizabeth N. Ottosen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, 48824
| | | | - Stephanie R. Shames
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, 48824
| | - Victor J. DiRita
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
22
|
Fusco W, Bricca L, Kaitsas F, Tartaglia MF, Venturini I, Rugge M, Gasbarrini A, Cammarota G, Ianiro G. Gut microbiota in colorectal cancer: From pathogenesis to clinic. Best Pract Res Clin Gastroenterol 2024; 72:101941. [PMID: 39645279 DOI: 10.1016/j.bpg.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer is the third most common type of cancer, with a significant burden on healthcare and social systems. Its incidence is constantly rising, due to the spread of unhealthy lifestyle, i.e. Western diet. Increasing evidence suggests that westernization-driven microbiome alterations may play a critical role in colorectal tumorigenesis. The current screening strategies for this neoplasm, mainly fecal immunochemical tests, are burdened by unsatisfactory accuracy. Novel, non-invasive biomarkers are rising as the new frontier of colorectal cancer screening, and the microbiome-based ones are showing positive and optimistic results. This Review describes our current knowledge on the role of gut microbiota in colorectal cancer, from its pathogenetic action to its clinical potential as diagnostic biomarker.
Collapse
Affiliation(s)
- William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| | - Ludovica Bricca
- Department of Medicine - DIMED, Surgical Pathology and Cytopathology Unit, Università degli Studi di Padova, Padova, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Massimo Rugge
- Department of Medicine - DIMED, Surgical Pathology and Cytopathology Unit, Università degli Studi di Padova, Padova, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
23
|
Xu Z, Chen M, Ng SC. Metabolic Regulation of Microbiota and Tissue Response. Gastroenterol Clin North Am 2024; 53:399-412. [PMID: 39068002 DOI: 10.1016/j.gtc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The microbiota in our gut regulates the sophisticated metabolic system that the human body has, essentially converting food into energy and the building blocks for various bodily functions. In this review, we discuss the multifaceted impact of the microbiota on host nutritional status by producing short-chain fatty acids, influencing gut hormones and mediating bile acid metabolism, and the key role in maintaining intestinal barrier integrity and immune homeostasis. Understanding and leveraging the power of the gut microbiome holds tremendous potential for enhancing human health and preventing various diseases.
Collapse
Affiliation(s)
- Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manman Chen
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
24
|
Li M, Li W, Dong Y, Zhan C, Tao T, Kang M, Zhang C, Liu Z. Advances in metabolism pathways of theaflavins: digestion, absorption, distribution and degradation. Crit Rev Food Sci Nutr 2024:1-9. [PMID: 39096025 DOI: 10.1080/10408398.2024.2384647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Theaflavins, a major kind of component in black tea, have been reported to show a variety of biological activities and health effects. However, the unstable chemical properties, low bioavailability and unclear metabolism pathways of theaflavins have left much to be desired in terms of its specific efficacy and applications. This paper provides a comprehensive knowledge on the digestion, absorption, metabolism, distribution and excretion of theaflavins. We find that pH-dependent stability, efflux transport proteins are closely related to the low absorption rate and low bioavailability of theaflavins. When pass through the gastrointestinal tract, TFDG, TF2A and TF2B are gradually degraded to TF1, and release gallic acid. Then, the theaflavins skeleton are degraded into small molecular phenolic substances under the action of enzymes and microorganisms. In addition, theaflavins are widely distributed in the human body including brain, lung, heart, kidney, liver, blood tissue in a low content and can be excreted through feces. However, the influence of digestive enzymes barrier and gut microbial barrier on theaflavins are still unclear. Importantly, most findings are reported by in vitro methods and animal experiments, the metabolites and metabolic pathways of theaflavins in human body are not fully understood and need to be further investigated. We hope to lay a theoretical basis for exploring methods to improve the bioavailability of theaflavins and expanding the application of theaflavins in health foods as well as pharmaceuticals.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Wenlan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yunxia Dong
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Cai Zhan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Tiantian Tao
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Manjun Kang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
25
|
Hu G, Cooke MB, Wen AX, Yu X, Wang J, Herman C, Wang MC. Chemical Induction of Longevity-Promoting Colanic Acid in the Host's Microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604802. [PMID: 39211270 PMCID: PMC11360898 DOI: 10.1101/2024.07.23.604802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microbiota-derived metabolites have emerged as key regulators of longevity. The metabolic activity of the gut microbiota, influenced by dietary components and ingested chemical compounds, profoundly impacts host fitness. While the benefits of dietary prebiotics are well-known, chemically targeting the gut microbiota to enhance host fitness remains largely unexplored. Here, we report a novel chemical approach to induce a pro-longevity bacterial metabolite in the host gut. We discovered that specific Escherichia coli strains overproduce colanic acids (CAs) when exposed to a low dose of cephaloridine, leading to an increased lifespan in host Caenorhabditis elegans . In the mouse gut, oral administration of low-dose cephaloridine induces the transcription of the capsular biosynthesis operon responsible for CA biosynthesis in commensal E. coli , which overcomes the inhibition of CA biosynthesis above 30°C and enables its induction directly from the microbiota. Importantly, low-dose cephaloridine induces CA independently of its antibiotic properties through a previously unknown mechanism mediated by the membrane-bound histidine kinase ZraS. Our work lays the foundation for microbiota-based therapeutics through the chemical modulation of bacterial metabolism and reveals the promising potential of bacteria-targeting drugs in promoting host longevity.
Collapse
|
26
|
Wilde J, Slack E, Foster KR. Host control of the microbiome: Mechanisms, evolution, and disease. Science 2024; 385:eadi3338. [PMID: 39024451 DOI: 10.1126/science.adi3338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Many species, including humans, host communities of symbiotic microbes. There is a vast literature on the ways these microbiomes affect hosts, but here we argue for an increased focus on how hosts affect their microbiomes. Hosts exert control over their symbionts through diverse mechanisms, including immunity, barrier function, physiological homeostasis, and transit. These mechanisms enable hosts to shape the ecology and evolution of microbiomes and generate natural selection for microbial traits that benefit the host. Our microbiomes result from a perpetual tension between host control and symbiont evolution, and we can leverage the host's evolved abilities to regulate the microbiota to prevent and treat disease. The study of host control will be central to our ability to both understand and manipulate microbiotas for better health.
Collapse
Affiliation(s)
- Jacob Wilde
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Slack
- Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Basel Institute for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Sarfatis A, Wang Y, Twumasi-Ankrah N, Moffitt JR. Highly Multiplexed Spatial Transcriptomics in Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601034. [PMID: 38979245 PMCID: PMC11230453 DOI: 10.1101/2024.06.27.601034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial mRNA. To overcome this challenge, we combine 1000-fold volumetric expansion with multiplexed error robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissect the response of E. coli to carbon starvation, systematically map subcellular RNA organization, and chart the adaptation of a gut commensal B. thetaiotaomicron to micron-scale niches in the mammalian colon. We envision bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.
Collapse
Affiliation(s)
- Ari Sarfatis
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Yuanyou Wang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Nana Twumasi-Ankrah
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Jeffrey R. Moffitt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| |
Collapse
|
28
|
Xu C, Aqib AI, Fatima M, Muneer S, Zaheer T, Peng S, Ibrahim EH, Li K. Deciphering the Potential of Probiotics in Vaccines. Vaccines (Basel) 2024; 12:711. [PMID: 39066349 PMCID: PMC11281421 DOI: 10.3390/vaccines12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The demand for vaccines, particularly those prepared from non-conventional sources, is rising due to the emergence of drug resistance around the globe. Probiotic-based vaccines are a wise example of such vaccines which represent new horizons in the field of vaccinology in providing an enhanced and diversified immune response. The justification for incorporating probiotics into vaccines lies in the fact that that they hold the capacity to regulate immune function directly or indirectly by influencing the gastrointestinal microbiota and related pathways. Several animal-model-based studies have also highlighted the efficacy of these vaccines. The aim of this review is to collect and summarize the trends in the recent scientific literature regarding the role of probiotics in vaccines and vaccinology, along with their impact on target populations.
Collapse
Affiliation(s)
- Chang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Sadia Muneer
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
29
|
Sato K, Hara-Chikuma M, Yasui M, Inoue J, Kim YG. Sufficient water intake maintains the gut microbiota and immune homeostasis and promotes pathogen elimination. iScience 2024; 27:109903. [PMID: 38799550 PMCID: PMC11126815 DOI: 10.1016/j.isci.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Water is the most abundant substance in the human body and plays a pivotal role in various bodily functions. While underhydration is associated with the incidence of certain diseases, the specific role of water in gut function remains largely unexplored. Here, we show that water restriction disrupts gut homeostasis, which is accompanied by a bloom of gut microbes and decreased numbers of immune cells, especially Th17 cells, within the colon. These microbial and immunological changes in the gut are associated with an impaired ability to eliminate the enteric pathogen Citrobacter rodentium. Moreover, aquaporin 3, a water channel protein, is required for the maintenance of Th17 cell function and differentiation. Taken together, adequate water intake is critical for maintaining bacterial and immunological homeostasis in the gut, thereby enhancing host defenses against enteric pathogens.
Collapse
Affiliation(s)
- Kensuke Sato
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Joe Inoue
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
30
|
Jegatheesan T, Moorthy AS, Eberl HJ. A mathematical model of competition between fiber and mucin degraders in the gut provides a possible explanation for mucus thinning. J Theor Biol 2024; 587:111824. [PMID: 38604595 DOI: 10.1016/j.jtbi.2024.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
The human gut microbiota relies on complex carbohydrates (glycans) for energy and growth, primarily dietary fiber and host-derived mucins. We introduce a mathematical model of a glycan generalist and a mucin specialist in a two-compartment chemostat model of the human colon. Our objective is to characterize the influence of dietary fiber and mucin supply on the abundance of mucin-degrading species within the gut ecosystem. Current mathematical gut reactor models that include the enzymatic degradation of glycans do not differentiate between glycan types and their degraders. The model we present distinguishes between a generalist that can degrade both dietary fiber and mucin, and a specialist species that can only degrade mucin. The integrity of the colonic mucus barrier is essential for overall human health and well-being, with the mucin specialist Akkermanisa muciniphila being associated with a healthy mucus layer. Competition, particularly between the specialist and generalists like Bacteroides thetaiotaomicron, may lead to mucus layer erosion, especially during periods of dietary fiber deprivation. Our model treats the colon as a gut reactor system, dividing it into two compartments that represent the lumen and the mucus of the gut, resulting in a complex system of ordinary differential equations with a large and uncertain parameter space. To understand the influence of model parameters on long-term behavior, we employ a random forest classifier, a supervised machine learning method. Additionally, a variance-based sensitivity analysis is utilized to determine the sensitivity of steady-state values to changes in model parameter inputs. By constructing this model, we can investigate the underlying mechanisms that control gut microbiota composition and function, free from confounding factors.
Collapse
Affiliation(s)
- Thulasi Jegatheesan
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada
| | - Arun S Moorthy
- Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada; Department of Forensic Science, Trent University, 1600 West Bank Drive, Peterborough, K9L 0G2, ON, Canada
| | - Hermann J Eberl
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd E, Guelph, N1G 2W1, ON, Canada.
| |
Collapse
|
31
|
Garibay-Valdez E, Martínez-Porchas M, Vargas-Albores F, Medina-Félix D, Martínez-Córdova LR. The zebrafish model requires a standardized synthetic microbial community analogous to the oligo-mouse-microbiota (OMM12). Front Microbiol 2024; 15:1407092. [PMID: 38903789 PMCID: PMC11188439 DOI: 10.3389/fmicb.2024.1407092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Estefania Garibay-Valdez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, Mexico
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, Mexico
| | - Diana Medina-Félix
- Departamento de Ecología, Universidad Estatal de Sonora, Hermosillo, Sonora, Mexico
| | - Luis Rafael Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Universidad de Sonora, Hermosillo, Sonora, Mexico
| |
Collapse
|
32
|
Rady NA, Parrish J. Perforation of the Terminal Ileum Secondary to Mucosal Damage of Enteroaggregative Escherichia coli and a Toothpick. Cureus 2024; 16:e62495. [PMID: 39022518 PMCID: PMC11253569 DOI: 10.7759/cureus.62495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a common form of E. coli that causes gastroenteritis and diarrhea worldwide. Biofilm formation on the intestinal mucosa initiates an inflammatory cascade in the gastrointestinal tissue, which has significant destructive effects on the mucosa of the small and large intestines. Small bowel obstruction and perforation due to a foreign body are uncommon, but the risk increases with pre-existing conditions such as the presence of intestinal strictures, inflammation, and mucosal ulceration. We present a unique case of acute enteritis from EAEC with mucosal ulceration and perforation because of co-ingestion of foreign body and impaction with the presence of stricture in the terminal ileum. This was treated with small bowel resection and primary anastomosis. The patient was successfully discharged from the hospital. The clinical features and pathological findings of enteric EAEC infection are described. To our knowledge, intestinal perforation and secondary peritonitis related to EAEC enteric infection, with mucosal ulceration and perforation secondary to co-ingestion of a foreign body with intestinal stricture, have not been documented. In this case, EAEC was associated with terminal ileum mucosal ulceration and complicated by perforation secondary to foreign body impaction along with ileal stricture. These compounding effects likely explain gastrointestinal tract perforation and secondary peritonitis.
Collapse
Affiliation(s)
- Nora A Rady
- Research, Edward Via College of Osteopathic Medicine - Louisiana Campus, Monroe, USA
| | - James Parrish
- Surgery, Christus St. Frances Cabrini Hospital, Alexandria, USA
| |
Collapse
|
33
|
Stange EF. Dysbiosis in inflammatory bowel diseases: egg, not chicken. Front Med (Lausanne) 2024; 11:1395861. [PMID: 38846142 PMCID: PMC11153678 DOI: 10.3389/fmed.2024.1395861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
There is agreement that inflammatory bowel diseases are, both in terms of species composition and function, associated with an altered intestinal microbiome. This is usually described by the term "dysbiosis," but this is a vague definition lacking quantitative precision. In this brief narrative review, the evidence concerning the primary or secondary role of this dysbiotic state is critically evaluated. Among others, the following facts argue against a primary etiological impact: 1) There is no specific dysbiotic microbiome in IBD, 2) the presence or absence of mucosal inflammation has a profound impact on the composition of the microbiome, 3) dysbiosis is not specific for IBD but linked to many unrelated diseases, 4) antibiotics, probiotics, and microbiome transfer have a very limited therapeutic effect, 5) the microbiome in concordant twins is similar to disease-discordant twins, and 6) the microbiome in relatives of IBD patients later developing IBD is altered, but these individuals already display subclinical inflammation.
Collapse
Affiliation(s)
- Eduard F. Stange
- Klinik für Innere Medizin I, Universitätsklinik Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
O'Brien JW, Merali N, Pring C, Rockall T, Robertson D, Bartlett D, Frampton A. Gastrointestinal Permeability After Bariatric Surgery: A Systematic Review. Cureus 2024; 16:e60480. [PMID: 38883053 PMCID: PMC11180380 DOI: 10.7759/cureus.60480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Gastrointestinal permeability refers to the movement of substances across the gut wall. This is mediated by endotoxemia (bacterial products entering the systemic circulation), and is associated with metabolic disease. The effect of bariatric surgery on permeability remains uncertain; the associated dietary, metabolic and weight changes are suggested to influence, or trigger, altered permeability. The primary aim of this study is to synthesize evidence and analyze the effect of bariatric surgery on permeability. A systematic review was performed, searching MEDLINE, EMBASE, and Scopus until February 2023, using MESH terms "intestinal permeability", "bariatric", for studies reporting in vivo assessment of permeability. Three cohort studies and two case series were identified (n=96). Data was heterogeneous; methodology and controls preclude meta-analysis. Gastroduodenal permeability reduced post-sleeve gastrectomy (SG). Two studies showed an increase in small intestinal permeability after biliopancreatic diversion. Two studies revealed a decrease in post-Roux-en-Y gastric bypass. One study identified increased colonic permeability six months post-SG. Evidence regarding permeability change after bariatric surgery is conflicting, notably for the small intestine. Impaired colonic permeability post-SG raises concerns regarding colonic protein fermentation and harmful dietary sequelae. There are multiple interacting variables confounding gastrointestinal permeability change; procedure type, altered microbiota and metabolic response to surgery. Further understanding of this important aspect of obesity is required, both before and after bariatric surgery.
Collapse
Affiliation(s)
- James W O'Brien
- Department of Surgery, School of Biosciences and Medicine, University of Surrey, Guildford, GBR
- Department of Minimal Access Therapy Training Unit, Royal Surrey NHS Foundation Trust, Guildford, GBR
| | - Nabeel Merali
- Department of Surgery, School of Biosciences and Medicine, University of Surrey, Guildford, GBR
- Department of Minimal Access Therapy Training Unit, Royal Surrey NHS Foundation Trust, Guildford, GBR
| | - Chris Pring
- Department of Bariatric Surgery, University Hospitals Sussex NHS Foundation Trust, Chichester, GBR
| | - Tim Rockall
- Department of Minimal Access Therapy Training Unit, Royal Surrey NHS Foundation Trust, Guildford, GBR
| | - Denise Robertson
- Department of Nutrition, School of Biosciences and Medicine, University of Surrey, Guildford, GBR
| | - David Bartlett
- Department of Nutrition, School of Biosciences and Medicine, University of Surrey, Guildford, GBR
| | - Adam Frampton
- Department of Surgery, School of Biosciences and Medicine, University of Surrey, Guildford, GBR
| |
Collapse
|
35
|
Raev SA, Kick MK, Chellis M, Amimo JO, Saif LJ, Vlasova AN. Histo-Blood Group Antigen-Producing Bacterial Cocktail Reduces Rotavirus A, B, and C Infection and Disease in Gnotobiotic Piglets. Viruses 2024; 16:660. [PMID: 38793542 PMCID: PMC11125826 DOI: 10.3390/v16050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The suboptimal performance of rotavirus (RV) vaccines in developing countries and in animals necessitates further research on the development of novel therapeutics and control strategies. To initiate infection, RV interacts with cell-surface O-glycans, including histo-blood group antigens (HBGAs). We have previously demonstrated that certain non-pathogenic bacteria express HBGA- like substances (HBGA+) capable of binding RV particles in vitro. We hypothesized that HBGA+ bacteria can bind RV particles in the gut lumen protecting against RV species A (RVA), B (RVB), and C (RVC) infection in vivo. In this study, germ-free piglets were colonized with HBGA+ or HBGA- bacterial cocktail and infected with RVA/RVB/RVC of different genotypes. Diarrhea severity, virus shedding, immunoglobulin A (IgA) Ab titers, and cytokine levels were evaluated. Overall, colonization with HBGA+ bacteria resulted in reduced diarrhea severity and virus shedding compared to the HBGA- bacteria. Consistent with our hypothesis, the reduced severity of RV disease and infection was not associated with significant alterations in immune responses. Additionally, colonization with HBGA+ bacteria conferred beneficial effects irrespective of the piglet HBGA phenotype. These findings are the first experimental evidence that probiotic performance in vivo can be improved by including HBGA+ bacteria, providing decoy epitopes for broader/more consistent protection against diverse RVs.
Collapse
Affiliation(s)
- Sergei A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | - Maryssa K. Kick
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | - Maria Chellis
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | | | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.A.R.); (M.K.K.); (M.C.); (L.J.S.)
| |
Collapse
|
36
|
Ryan D, Bornet E, Prezza G, Alampalli SV, Franco de Carvalho T, Felchle H, Ebbecke T, Hayward RJ, Deutschbauer AM, Barquist L, Westermann AJ. An expanded transcriptome atlas for Bacteroides thetaiotaomicron reveals a small RNA that modulates tetracycline sensitivity. Nat Microbiol 2024; 9:1130-1144. [PMID: 38528147 PMCID: PMC10994844 DOI: 10.1038/s41564-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
Plasticity in gene expression allows bacteria to adapt to diverse environments. This is particularly relevant in the dynamic niche of the human intestinal tract; however, transcriptional networks remain largely unknown for gut-resident bacteria. Here we apply differential RNA sequencing (RNA-seq) and conventional RNA-seq to the model gut bacterium Bacteroides thetaiotaomicron to map transcriptional units and profile their expression levels across 15 in vivo-relevant growth conditions. We infer stress- and carbon source-specific transcriptional regulons and expand the annotation of small RNAs (sRNAs). Integrating this expression atlas with published transposon mutant fitness data, we predict conditionally important sRNAs. These include MasB, which downregulates tetracycline tolerance. Using MS2 affinity purification and RNA-seq, we identify a putative MasB target and assess its role in the context of the MasB-associated phenotype. These data-publicly available through the Theta-Base web browser ( http://micromix.helmholtz-hiri.de/bacteroides/ )-constitute a valuable resource for the microbiome community.
Collapse
Affiliation(s)
- Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Elise Bornet
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Shuba Varshini Alampalli
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Taís Franco de Carvalho
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Hannah Felchle
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Department of Radiation Oncology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Titus Ebbecke
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Regan J Hayward
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
37
|
Yang J, Qin K, Wang Q, Yang X. Deciphering the nutritional strategies for polysaccharides effects on intestinal barrier in broilers: Selectively promote microbial ecosystems. Int J Biol Macromol 2024; 264:130677. [PMID: 38458298 DOI: 10.1016/j.ijbiomac.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The gut microbiota, a complex and dynamic microbial ecosystem, plays a crucial role in regulating the intestinal barrier. Polysaccharide foraging is specifically dedicated to establishing and maintaining microbial communities, contributing to the shaping of the intestinal ecosystem and ultimately enhancing the integrity of the intestinal barrier. The utilization and regulation of individual polysaccharides often rely on distinct gut-colonizing bacteria. The products of their metabolism not only benefit the formation of the ecosystem but also facilitate cross-feeding partnerships. In this review, we elucidate the mechanisms by which specific bacteria degrade polysaccharides, and how polysaccharide metabolism shapes the microbial ecosystem through cross-feeding. Furthermore, we explore how selectively promoting microbial ecosystems and their metabolites contributes to improvements in the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianggang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
38
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Flores JN, Lubin JB, Silverman MA. The case for microbial intervention at weaning. Gut Microbes 2024; 16:2414798. [PMID: 39468827 PMCID: PMC11540084 DOI: 10.1080/19490976.2024.2414798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Weaning, the transition from a milk-based diet to solid food, coincides with the most significant shift in gut microbiome composition in the lifetime of most mammals. Notably, this period also marks a "window of opportunity" where key components of the immune system develop, and host-microbe interactions shape long-term immune homeostasis thereby influencing the risk of autoimmune and inflammatory diseases. This review provides a comprehensive analysis of the changes in nutrition, microbiota, and host physiology that occur during weaning. We explore how these weaning-associated processes differ across species, lifestyles, and regions of the intestine. Using prinicples of microbial ecology, we propose that the weaning transition is an optimal period for microbiome-targeted therapeutic interventions. Additionally, we suggest that replicating features of the weaning microbiome in adults could promote the successful engraftment of probiotics. Finally, we highlight key research areas that could deepen our understanding of the complex relationships between diet, commensal microbes, and the host, informing the development of more effective microbial therapies.
Collapse
Affiliation(s)
- Julia N. Flores
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Bernard Lubin
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael A. Silverman
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Li X, Brejnrod A, Thorsen J, Zachariasen T, Trivedi U, Russel J, Vestergaard GA, Stokholm J, Rasmussen MA, Sørensen SJ. Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults. Nat Commun 2023; 14:8526. [PMID: 38135681 PMCID: PMC10746713 DOI: 10.1038/s41467-023-44289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Despite their crucial importance for human health, there is still relatively limited knowledge on how the gut resistome changes or responds to antibiotic treatment across ages, especially in the latter case. Here, we use fecal metagenomic data from 662 Danish infants and 217 young adults to fill this gap. The gut resistomes are characterized by a bimodal distribution driven by E. coli composition. The typical profile of the gut resistome differs significantly between adults and infants, with the latter distinguished by higher gene and plasmid abundances. However, the predominant antibiotic resistance genes (ARGs) are the same. Antibiotic treatment reduces bacterial diversity and increased ARG and plasmid abundances in both cohorts, especially core ARGs. The effects of antibiotic treatments on the gut microbiome last longer in adults than in infants, and different antibiotics are associated with distinct impacts. Overall, this study broadens our current understanding of gut resistome dynamics and the impact of antibiotic treatment across age groups.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Asker Brejnrod
- Department of Health Technology, Technical University of Denmark, Section of Bioinformatics, 2800 Kgs, Lyngby, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Trine Zachariasen
- Department of Health Technology, Technical University of Denmark, Section of Bioinformatics, 2800 Kgs, Lyngby, Denmark
| | - Urvish Trivedi
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jakob Russel
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Gisle Alberg Vestergaard
- Department of Health Technology, Technical University of Denmark, Section of Bioinformatics, 2800 Kgs, Lyngby, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, Section of Microbiology and Fermentation, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
- Department of Food Science, Section of Microbiology and Fermentation, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| | - Søren Johannes Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
41
|
Cecchini L, Barmaz C, Cea MJC, Baeschlin H, Etter J, Netzer S, Bregy L, Marchukov D, Trigo NF, Meier R, Hirschi J, Wyss J, Wick A, Zingg J, Christensen S, Radan AP, Etter A, Müller M, Kaess M, Surbek D, Yilmaz B, Macpherson AJ, Sokollik C, Misselwitz B, Ganal-Vonarburg SC. The Bern Birth Cohort (BeBiCo) to study the development of the infant intestinal microbiota in a high-resource setting in Switzerland: rationale, design, and methods. BMC Pediatr 2023; 23:560. [PMID: 37946167 PMCID: PMC10637001 DOI: 10.1186/s12887-023-04198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/17/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Microbiota composition is fundamental to human health with the intestinal microbiota undergoing critical changes within the first two years of life. The developing intestinal microbiota is shaped by maternal seeding, breast milk and its complex constituents, other nutrients, and the environment. Understanding microbiota-dependent pathologies requires a profound understanding of the early development of the healthy infant microbiota. METHODS Two hundred and fifty healthy pregnant women (≥20 weeks of gestation) from the greater Bern area will be enrolled at Bern University hospital's maternity department. Participants will be followed as mother-baby pairs at delivery, week(s) 1, 2, 6, 10, 14, 24, 36, 48, 96, and at years 5 and 10 after birth. Clinical parameters describing infant growth and development, morbidity, and allergic conditions as well as socio-economic, nutritional, and epidemiological data will be documented. Neuro-developmental outcomes and behavior will be assessed by child behavior checklists at and beyond 2 years of age. Maternal stool, milk, skin and vaginal swabs, infant stool, and skin swabs will be collected at enrolment and at follow-up visits. For the primary outcome, the trajectory of the infant intestinal microbiota will be characterized by 16S and metagenomic sequencing regarding composition, metabolic potential, and stability during the first 2 years of life. Secondary outcomes will assess the cellular and chemical composition of maternal milk, the impact of nutrition and environment on microbiota development, the maternal microbiome transfer at vaginal or caesarean birth and thereafter on the infant, and correlate parameters of microbiota and maternal milk on infant growth, development, health, and mental well-being. DISCUSSION The Bern birth cohort study will provide a detailed description and normal ranges of the trajectory of microbiota maturation in a high-resource setting. These data will be compared to data from low-resource settings such as from the Zimbabwe-College of Health-Sciences-Birth-Cohort study. Prospective bio-sampling and data collection will allow studying the association of the microbiota with common childhood conditions concerning allergies, obesity, neuro-developmental outcomes , and behaviour. Trial registration The trial has been registered at www. CLINICALTRIALS gov , Identifier: NCT04447742.
Collapse
Affiliation(s)
- Luca Cecchini
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Colette Barmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Maria José Coloma Cea
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hannah Baeschlin
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Julian Etter
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Stefanie Netzer
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Leonie Bregy
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Dmitrij Marchukov
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Rachel Meier
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jasmin Hirschi
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jacqueline Wyss
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrina Wick
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Joelle Zingg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Sandro Christensen
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Anda-Petronela Radan
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Annina Etter
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Martin Müller
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, Haus A, 3000, Bern, Switzerland
| | - Daniel Surbek
- Department of Obstetrics and Gynaecology, Bern University Hospital, Inselspital, University of Bern, Friedbühlstrasse 19, 3010, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Andrew J Macpherson
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Christiane Sokollik
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Benjamin Misselwitz
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Department of Visceral Surgery and Medicine, University of Bern, Inselspital, Bern University Hospital, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
42
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
43
|
Yang X, Wang C, Wang Q, Zhang Z, Nie W, Shang L. Armored probiotics for oral delivery. SMART MEDICINE 2023; 2:e20230019. [PMID: 39188298 PMCID: PMC11235677 DOI: 10.1002/smmd.20230019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 08/28/2024]
Abstract
As a kind of intestinal flora regulator, probiotics show great potential in the treatment of many diseases. However, orally delivered probiotics are often vulnerable to unfriendly gastrointestinal environments, resulting in a low survival rate and decreased therapeutic efficacy. Decorating or encapsulating probiotics with functional biomaterials has become a facile yet useful strategy, and probiotics can be given different functions by wearing different armors. This review systematically discusses the challenges faced by oral probiotics and the research progress of armored probiotics delivery systems. We focus on how various functional armors help probiotics overcome different obstacles and achieve efficient delivery. We also introduce the applications of armor probiotics in disease treatment and analyze the future trends of developing advanced probiotics-based therapies.
Collapse
Affiliation(s)
- Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiao Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weimin Nie
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityShanghaiChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
44
|
Miao YB, Xu T, Gong Y, Chen A, Zou L, Jiang T, Shi Y. Cracking the intestinal lymphatic system window utilizing oral delivery vehicles for precise therapy. J Nanobiotechnology 2023; 21:263. [PMID: 37559085 PMCID: PMC10413705 DOI: 10.1186/s12951-023-01991-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Oral administration is preferred over other drug delivery methods due to its safety, high patient compliance, ease of ingestion without discomfort, and tolerance of a wide range of medications. However, oral drug delivery is limited by the poor oral bioavailability of many drugs, caused by extreme conditions and absorption challenges in the gastrointestinal tract. This review thoroughly discusses the targeted drug vehicles to the intestinal lymphatic system (ILS). It explores the structure and physiological barriers of the ILS, highlighting its significance in dietary lipid and medication absorption and transport. The review presents various approaches to targeting the ILS using spatially precise vehicles, aiming to enhance bioavailability, achieve targeted delivery, and reduce first-pass metabolism with serve in clinic. Furthermore, the review outlines several methods for leveraging these vehicles to open the ILS window, paving the way for potential clinical applications in cancer treatment and oral vaccine delivery. By focusing on targeted drug vehicles to the ILS, this article emphasizes the critical role of these strategies in improving therapeutic efficacy and patient outcomes. Overall, this article emphasizes the critical role of targeted drug vehicles to the ILS and the potential impact of these strategies on improving therapeutic efficacy and patient outcomes.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Tianxing Xu
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Tao Jiang
- Department of Haematology, School of Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
- Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
45
|
Yamaguchi M, Yamamoto K. Mucin glycans and their degradation by gut microbiota. Glycoconj J 2023; 40:493-512. [PMID: 37318672 DOI: 10.1007/s10719-023-10124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Organic Bio Chemistry, Faculty of Education, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan.
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
46
|
Kazura W, Michalczyk K, Stygar D. The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Microbiota Condition and Obesity in Humans. Nutrients 2023; 15:3082. [PMID: 37513500 PMCID: PMC10385089 DOI: 10.3390/nu15143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The relationship between gut microbiota and obesity is well documented in humans and animal models. Dietary factors can change the intestinal microbiota composition and influence obesity development. However, knowledge of how diet, metabolism, and intestinal microbiota interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies show a link between consuming dietary proteins and fats from specific sources and obesity. Animal studies confirm that proteins and fats of different origins differ in their ability to prevent or induce obesity. Protein sources, such as meat, dairy products, vegetables, pulses, and seafood, vary in their amino acid composition. In addition, the type and level of other factors, such as fatty acids or persistent organic pollutants, vary depending on the source of dietary protein. All these factors can modulate the intestinal microbiota composition and, thus, may influence obesity development. This review summarizes selected evidence of how proteins and fats of different origins affect energy efficiency, obesity development, and intestinal microbiota, linking protein and fat-dependent changes in the intestinal microbiota with obesity.
Collapse
Affiliation(s)
- Wojciech Kazura
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Jordana Street 19, 41-808 Zabrze, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
47
|
Zhang B, Li J, Fu J, Shao L, Yang L, Shi J. Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: Soil and seeds. Chin Med J (Engl) 2023; 136:1390-1400. [PMID: 37200041 PMCID: PMC10278733 DOI: 10.1097/cm9.0000000000002711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 05/19/2023] Open
Abstract
ABSTRACT The intestinal mucus layer is a barrier that separates intestinal contents and epithelial cells, as well as acts as the "mucus layer-soil" for intestinal flora adhesion and colonization. Its structural and functional integrity is crucial to human health. Intestinal mucus is regulated by factors such as diet, living habits, hormones, neurotransmitters, cytokines, and intestinal flora. The mucus layer's thickness, viscosity, porosity, growth rate, and glycosylation status affect the structure of the gut flora colonized on it. The interaction between "mucus layer-soil" and "gut bacteria-seed" is an important factor leading to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Probiotics, prebiotics, fecal microbiota transplantation (FMT), and wash microbial transplantation are efficient methods for managing NAFLD, but their long-term efficacy is poor. FMT is focused on achieving the goal of treating diseases by enhancing the "gut bacteria-seed". However, a lack of effective repair and management of the "mucus layer-soil" may be a reason why "seeds" cannot be well colonized and grow in the host gut, as the thinning and destruction of the "mucus layer-soil" is an early symptom of NAFLD. This review summarizes the existing correlation between intestinal mucus and gut microbiota, as well as the pathogenesis of NAFLD, and proposes a new perspective that "mucus layer-soil" restoration combined with "gut bacteria-seed" FMT may be one of the most effective future strategies for enhancing the long-term efficacy of NAFLD treatment.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jinlong Fu
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li Shao
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Luping Yang
- Department of Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
48
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
49
|
Meier KHU, Trouillon J, Li H, Lang M, Fuhrer T, Zamboni N, Sunagawa S, Macpherson AJ, Sauer U. Metabolic landscape of the male mouse gut identifies different niches determined by microbial activities. Nat Metab 2023:10.1038/s42255-023-00802-1. [PMID: 37217759 DOI: 10.1038/s42255-023-00802-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/06/2023] [Indexed: 05/24/2023]
Abstract
Distinct niches of the mammalian gut are populated by diverse microbiota, but the contribution of spatial variation to intestinal metabolism remains unclear. Here we present a map of the longitudinal metabolome along the gut of healthy colonized and germ-free male mice. With this map, we reveal a general shift from amino acids in the small intestine to organic acids, vitamins and nucleotides in the large intestine. We compare the metabolic landscapes in colonized versus germ-free mice to disentangle the origin of many metabolites in different niches, which in some cases allows us to infer the underlying processes or identify the producing species. Beyond the known impact of diet on the small intestinal metabolic niche, distinct spatial patterns suggest specific microbial influence on the metabolome in the small intestine. Thus, we present a map of intestinal metabolism and identify metabolite-microbe associations, which provide a basis to connect the spatial occurrence of bioactive compounds to host or microorganism metabolism.
Collapse
Affiliation(s)
- Karin H U Meier
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Hai Li
- Department for Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Melanie Lang
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | | - Andrew J Macpherson
- Department for Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
50
|
Liu Y, Feng Y, Yang X, Lv Z, Li P, Zhang M, Wei F, Jin X, Hu Y, Guo Y, Liu D. Mining chicken ileal microbiota for immunomodulatory microorganisms. THE ISME JOURNAL 2023; 17:758-774. [PMID: 36849630 PMCID: PMC10119185 DOI: 10.1038/s41396-023-01387-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The gut microbiota makes important contributions to host immune system development and resistance to pathogen infections, especially during early life. However, studies addressing the immunomodulatory functions of gut microbial individuals or populations are limited. In this study, we explore the systemic impact of the ileal microbiota on immune cell development and function of chickens and identify the members of the microbiota involved in immune system modulation. We initially used a time-series design with six time points to prove that ileal microbiota at different succession stages is intimately connected to immune cell maturation. Antibiotics perturbed the microbiota succession and negatively affected immune development, whereas early exposure to the ileal commensal microbiota from more mature birds promoted immune cell development and facilitated pathogen elimination after Salmonella Typhimurium infection, illustrating that early colonization of gut microbiota is an important driver of immune development. Five bacterial strains, Blautia coccoides, Bacteroides xylanisolvens, Fournierella sp002159185, Romboutsia lituseburensis, and Megamonas funiformis, which are closely related to the immune system development of broiler chickens, were then screened out and validated for their immunomodulatory properties. Our results provide insight into poultry immune system-microbiota interactions and also establish a foundation for targeted immunological interventions aiming to combat infectious diseases and promote poultry health and production.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|