1
|
Kavtanyuk VV, Lee C, Jeong K, Shim JH. Achieving 5% 13C nuclear spin hyperpolarization in high-purity diamond at room temperature and low magnetic field. Sci Rep 2025; 15:10896. [PMID: 40158002 PMCID: PMC11954994 DOI: 10.1038/s41598-025-95675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Optically polarizable nitrogen-vacancy (NV) centers in diamond enable hyperpolarization of 13C nuclear spins at a low magnetic field and room temperature. However, it remains a challenge to achieve a high level of polarization, comparable to that of conventional dynamic nuclear polarization. In this paper, we demonstrate that a 13C polarization of 5%, equivalent to an enhancement ratio of over [Formula: see text], can be attained at less than 10 mT. We used a high-purity diamond with an initial nitrogen concentration below 1 ppm, which resulted in a storage time exceeding 100 min. Aligning the magnetic field along [100] increased the number of NV spins involved in polarization transfer by a factor of four. For this orientation, a comprehensive optimization of the magnetic field intensity and microwave (MW) sweep parameters has been performed. The optimum MW sweep width suggests that polarization transfer occurs primarily to the bulk 13C spins through the integrated solid effect, followed by nuclear spin diffusion.
Collapse
Affiliation(s)
| | - Changjae Lee
- School of Biomedical Engineering, Korea University, Seoul, 02842, Republic of Korea
- Department of Chemistry, Korea Military Academy, Seoul, 01805, Republic of Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul, 01805, Republic of Korea
| | - Jeong Hyun Shim
- Quantum Magnetic Sensing Group, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
- Department of Applied Measurement, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Blinder R, Mindarava Y, Korzeczek M, Marshall A, Glöckler F, Nothelfer S, Kienle A, Laube C, Knolle W, Jentgens C, Plenio MB, Jelezko F. 13C hyperpolarization with nitrogen-vacancy centers in micro- and nanodiamonds for sensitive magnetic resonance applications. SCIENCE ADVANCES 2025; 11:eadq6836. [PMID: 40020059 PMCID: PMC11870072 DOI: 10.1126/sciadv.adq6836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
Nuclear hyperpolarization is a known method to enhance the signal in nuclear magnetic resonance (NMR) by orders of magnitude. The present work addresses the 13C hyperpolarization in diamond micro- and nanoparticles, using the optically pumped nitrogen-vacancy center (NV) to polarize 13C spins at room temperature. Consequences of the small particle size are mitigated by using a combination of surface treatment improving the 13C relaxation (T1) time, as well as that of NV, and applying a technique for NV illumination based on a microphotonic structure. Adjustments to the dynamical nuclear polarization sequence (PulsePol) are performed, as well as slow sample rotation, to improve the NV-13C polarization transfer rate. The hyperpolarized 13C NMR signal is observed in particles of 2-micrometer and 100-nanometer median sizes, with enhancements over the thermal signal (at 0.29-tesla magnetic field) of 1500 and 940, respectively. The present demonstration of room-temperature hyperpolarization anticipates the development of agents based on nanoparticles for sensitive magnetic resonance applications.
Collapse
Affiliation(s)
- Rémi Blinder
- Institute for Quantum Optics, Albert-Einstein Allee 11, Ulm University, 89081 Ulm, Germany
| | - Yuliya Mindarava
- Institute for Quantum Optics, Albert-Einstein Allee 11, Ulm University, 89081 Ulm, Germany
| | - Martin Korzeczek
- Institute of Theoretical Physics, Albert-Einstein Allee 11, Ulm University, 89081 Ulm, Germany
| | | | - Felix Glöckler
- Institute for Laser Technologies in Medicine and Metrology at the University of Ulm (ILM), Helmholtzstr. 12, 89081 Ulm, Germany
| | - Steffen Nothelfer
- Institute for Laser Technologies in Medicine and Metrology at the University of Ulm (ILM), Helmholtzstr. 12, 89081 Ulm, Germany
| | - Alwin Kienle
- Institute for Laser Technologies in Medicine and Metrology at the University of Ulm (ILM), Helmholtzstr. 12, 89081 Ulm, Germany
| | - Christian Laube
- Leibniz Institute of Surface Engineering, 04318 Leipzig, Germany
| | - Wolfgang Knolle
- Leibniz Institute of Surface Engineering, 04318 Leipzig, Germany
| | | | - Martin B. Plenio
- Institute of Theoretical Physics, Albert-Einstein Allee 11, Ulm University, 89081 Ulm, Germany
- Centre for Integrated Quantum Science and Technology (IQST), 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Albert-Einstein Allee 11, Ulm University, 89081 Ulm, Germany
- Centre for Integrated Quantum Science and Technology (IQST), 89081 Ulm, Germany
| |
Collapse
|
3
|
Barskiy DA. Molecules, Up Your Spins! Molecules 2024; 29:1821. [PMID: 38675641 PMCID: PMC11052189 DOI: 10.3390/molecules29081821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are indispensable tools in science and medicine, offering insights into the functions of biological processes [...].
Collapse
Affiliation(s)
- Danila A. Barskiy
- Institut für Physik, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany;
- Helmholtz Institut Mainz, 55128 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| |
Collapse
|
4
|
Hu Z, Jiang F, He J, Dai Y, Wang Y, Xu N, Du J. Four-Order Power Reduction in Nanoscale Electron-Nuclear Double Resonance with a Nitrogen-Vacancy Center in Diamonds. NANO LETTERS 2024; 24:2846-2852. [PMID: 38391130 DOI: 10.1021/acs.nanolett.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Detecting nuclear spins using single nitrogen-vacancy (NV) centers is of particular importance in nanoscale science and engineering but often suffers from the heating effect of microwave fields for spin manipulation, especially under high magnetic fields. Here, we realize an energy-efficient nanoscale nuclear-spin detection using a phase-modulation electron-nuclear double resonance scheme. The microwave field can be reduced to 1/250 of the previous requirements, and the corresponding power is over four orders lower. Meanwhile, the microwave-induced broadening to the line-width of the spectroscopy is significantly canceled, and we achieve a nuclear-spin spectrum with a resolution down to 2.1 kHz under a magnetic field at 1840 Gs. The spectral resolution can be further improved by upgrading the experimental control precision. This scheme can also be used in sensing microwave fields and can be extended to a wide range of applications in the future.
Collapse
Affiliation(s)
- Zhiyi Hu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Fengjian Jiang
- School of Information Engineering, Huangshan University, Huangshan 245041, China
| | - Jingyan He
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yulin Dai
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Nanyang Xu
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiangfeng Du
- Institute of Quantum Sensing and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Zheng Z, Liu M, Wang X, Jiang W, Peng Q, Sun H, Chen Z. The experimental approach for the interleaved joint modulation of PHIP and NMR. J Chem Phys 2023; 159:184201. [PMID: 37937935 DOI: 10.1063/5.0173895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Nuclear spin hyperpolarization derived from parahydrogen is a technique for enhancing nuclear magnetic resonance (NMR) sensitivity. The key to hyperpolarization experiments is to achieve rapid transfer and detection to minimize relaxation losses, while also avoiding bubbles or turbulence to guarantee high spectral resolution. In this article, we describe an experimental approach for the interleaved joint modulation of parahydrogen-induced polarization and NMR. We provide schematic diagrams of parahydrogen-based polarizer with in situ high-pressure detection capability and low-field polarization transfer. This approach can help to control the experimental process and acquire experimental information, one example of which is the attainment of the highest hyperpolarization signal intensity at 3.6 s after closing the valve. The polarizer demonstrates in situ detection capability, allowing sample to be restabilized within 0.3 ± 0.1 s and high-resolution NMR sampling under a pressure of 3 bars. Moreover, it can transfer polarized samples from the polarization transfer field to the detection region of NMR within 1 ± 0.3 s for completing signal amplification by reversible exchange experiments.
Collapse
Affiliation(s)
- Zeyu Zheng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Min Liu
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Xinchang Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| | - Wenlong Jiang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qiwei Peng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Huijun Sun
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
6
|
von Witte G, Ernst M, Kozerke S. Modelling and correcting the impact of RF pulses for continuous monitoring of hyperpolarized NMR. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:175-186. [PMID: 37904858 PMCID: PMC10583294 DOI: 10.5194/mr-4-175-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 11/01/2023]
Abstract
Monitoring the build-up or decay of hyperpolarization in nuclear magnetic resonance requires radio-frequency (RF) pulses to generate observable nuclear magnetization. However, the pulses also lead to a depletion of the polarization and, thus, alter the spin dynamics. To simulate the effects of RF pulses on the polarization build-up and decay, we propose a first-order rate-equation model describing the dynamics of the hyperpolarization process through a single source and a relaxation term. The model offers a direct interpretation of the measured steady-state polarization and build-up time constant. Furthermore, the rate-equation model is used to study three different methods to correct the errors introduced by RF pulses: (i) a 1 / cos n - 1 θ correction (θ denoting the RF pulse flip angle), which is only applicable to decays; (ii) an analytical model introduced previously in the literature; and (iii) an iterative correction approach proposed here. The three correction methods are compared using simulated data for a range of RF flip angles and RF repetition times. The correction methods are also tested on experimental data obtained with dynamic nuclear polarization (DNP) using 4-oxo-TEMPO in 1 H glassy matrices. It is demonstrated that the analytical and iterative corrections allow us to obtain accurate build-up times and steady-state polarizations (enhancements) for RF flip angles of up to 25∘ during the polarization build-up process within ± 10 % error when compared to data acquired with small RF flip angles (< 3 ∘ ). For polarization decay experiments, corrections are shown to be accurate for RF flip angles of up to 12∘ . In conclusion, the proposed iterative correction allows us to compensate for the impact of RF pulses offering an accurate estimation of polarization levels, build-up and decay time constants in hyperpolarization experiments.
Collapse
Affiliation(s)
- Gevin von Witte
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Gomez MV, Baas S, Velders AH. Multinuclear 1D and 2D NMR with 19F-Photo-CIDNP hyperpolarization in a microfluidic chip with untuned microcoil. Nat Commun 2023; 14:3885. [PMID: 37391397 PMCID: PMC10313780 DOI: 10.1038/s41467-023-39537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLODf,600, of 0.01 nmol Hz1/2). The chip is equipped with a single planar microcoil operating in an untuned circuit that allows different Larmor frequencies to be addressed simultaneously, permitting advanced hetero-, di- and trinuclear, 1D and 2D NMR experiments. Here we show NMR chips with photo-CIDNP and broadband capabilities addressing two of the major limiting factors of NMR, by enhancing sensitivity as well as reducing cost and hardware complexity; the performance is compared to state-of-the-art instruments.
Collapse
Affiliation(s)
- M Victoria Gomez
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
| | - Sander Baas
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands
| | - Aldrik H Velders
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands.
| |
Collapse
|
8
|
Gorrini F, Bifone A. Advances in Stabilization and Enrichment of Shallow Nitrogen-Vacancy Centers in Diamond for Biosensing and Spin-Polarization Transfer. BIOSENSORS 2023; 13:691. [PMID: 37504090 PMCID: PMC10377017 DOI: 10.3390/bios13070691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Negatively charged nitrogen-vacancy (NV-) centers in diamond have unique magneto-optical properties, such as high fluorescence, single-photon generation, millisecond-long coherence times, and the ability to initialize and read the spin state using purely optical means. This makes NV- centers a powerful sensing tool for a range of applications, including magnetometry, electrometry, and thermometry. Biocompatible NV-rich nanodiamonds find application in cellular microscopy, nanoscopy, and in vivo imaging. NV- centers can also detect electron spins, paramagnetic agents, and nuclear spins. Techniques have been developed to hyperpolarize 14N, 15N, and 13C nuclear spins, which could open up new perspectives in NMR and MRI. However, defects on the diamond surface, such as hydrogen, vacancies, and trapping states, can reduce the stability of NV- in favor of the neutral form (NV0), which lacks the same properties. Laser irradiation can also lead to charge-state switching and a reduction in the number of NV- centers. Efforts have been made to improve stability through diamond substrate doping, proper annealing and surface termination, laser irradiation, and electric or electrochemical tuning of the surface potential. This article discusses advances in the stabilization and enrichment of shallow NV- ensembles, describing strategies for improving the quality of diamond devices for sensing and spin-polarization transfer applications. Selected applications in the field of biosensing are discussed in more depth.
Collapse
Affiliation(s)
- Federico Gorrini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| |
Collapse
|
9
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
10
|
Kagawa A, Kusumi R, Nagase R, Morishita Y, Miyanishi K, Takeda K, Kitagawa M, Negoro M. Triplet-DNP in magnetically oriented microcrystal arrays. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107439. [PMID: 37084519 DOI: 10.1016/j.jmr.2023.107439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
We explore dynamic nuclear polarization using electron spins in the photo-excited triplet state (Triplet-DNP) in magnetically oriented microcrystal arrays (MOMAs) of pentacene-doped p-terphenyl, in which the individual crystallites are magnetically aligned and UV-cured. In contrast to the conventional approach to Triplet-DNP in powder, which suffers from reduced nuclear polarization due to the averaged electron polarization and the broadening of electron-spin resonance, Triplet-DNP of the MOMAs offers as high dynamic polarization as that attainable in single-crystals. In the case of pentacene-doped p-terphenyl, the enhanced 1H polarization in the one-dimensional MOMA, prepared simply by leaving the suspension in a stationary magnetic field before UV curation, can be higher than that attainable in the powder sample by an order of magnitude and comparable to that in single crystals and in the three-dimensional MOMA made using a modulational rotating field. Triplet-DNP of the MOMAs may find potential applications, such as the polarization of the co-doped target molecules and dissolution experiments.
Collapse
Affiliation(s)
- Akinori Kagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan.
| | - Ryosuke Kusumi
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba 305-8687, Japan; Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba 305-8687, Japan.
| | - Rintarou Nagase
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yuki Morishita
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan
| | - Kazuyuki Takeda
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan
| | - Makoto Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, Japan; Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
11
|
Stevanato G, Ding Y, Mamone S, Jagtap AP, Korchak S, Glöggler S. Real-Time Pyruvate Chemical Conversion Monitoring Enabled by PHIP. J Am Chem Soc 2023; 145:5864-5871. [PMID: 36857108 PMCID: PMC10021011 DOI: 10.1021/jacs.2c13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In recent years, parahydrogen-induced polarization side arm hydrogenation (PHIP-SAH) has been applied to hyperpolarize [1-13C]pyruvate and map its metabolic conversion to [1-13C]lactate in cancer cells. Developing on our recent MINERVA pulse sequence protocol, in which we have achieved 27% [1-13C]pyruvate carbon polarization, we demonstrate the hyperpolarization of [1,2-13C]pyruvate (∼7% polarization on each 13C spin) via PHIP-SAH. By altering a single parameter in the pulse sequence, MINERVA enables the signal enhancement of C1 and/or C2 in [1,2-13C]pyruvate with the opposite phase, which allows for the simultaneous monitoring of different chemical reactions with enhanced spectral contrast or for the same reaction via different carbon sites. We first demonstrate the ability to monitor the same enzymatic pyruvate to lactate conversion at 7T in an aqueous solution, in vitro, and in-cell (HeLa cells) via different carbon sites. In a second set of experiments, we use the C1 and C2 carbon positions as spectral probes for simultaneous chemical reactions: the production of acetate, carbon dioxide, bicarbonate, and carbonate by reacting [1,2-13C]pyruvate with H2O2 at a high temperature (55 °C). Importantly, we detect and characterize the intermediate 2-hydroperoxy-2-hydroxypropanoate in real time and at high temperature.
Collapse
Affiliation(s)
- Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Yonghong Ding
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
13
|
Lin MC, Lo PY, Nori F, Chen HB. Precession-induced nonclassicality of the free induction decay of NV centers by a dynamical polarized nuclear spin bath. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:505701. [PMID: 36261040 DOI: 10.1088/1361-648x/ac9bbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The ongoing exploration of the ambiguous boundary between the quantum and the classical worlds has spurred substantial developments in quantum science and technology. Recently, the nonclassicality of dynamical processes has been proposed from a quantum-information-theoretic perspective, in terms of witnessing nonclassical correlations with Hamiltonian ensemble simulations. To acquire insights into the quantum-dynamical mechanism of the process nonclassicality, here we propose to investigate the nonclassicality of the electron spin free-induction-decay process associated with an NV-center. By controlling the nuclear spin precession dynamics via an external magnetic field and nuclear spin polarization, it is possible to manipulate the dynamical behavior of the electron spin, showing a transition between classicality and nonclassicality. We propose an explanation of the classicality-nonclassicality transition in terms of the nuclear spin precession axis orientation and dynamics. We have also performed a series of numerical simulations supporting our findings. Consequently, we can attribute the nonclassical trait of the electron spin dynamics to the behavior of nuclear spin precession dynamics.
Collapse
Affiliation(s)
- Mu-Che Lin
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
| | - Ping-Yuan Lo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Franco Nori
- Quantum Computing Center, and Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, United States of America
| | - Hong-Bin Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
- Center for Quantum Frontiers of Research & Technology, NCKU, Tainan 701401, Taiwan
| |
Collapse
|
14
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Kavtanyuk VV, Lee HJ, Oh S, Jeong K, Shim JH. Optical Dynamic Nuclear Polarization of 13C Spins in Diamond at a Low Field with Multi-Tone Microwave Irradiation. Molecules 2022; 27:1700. [PMID: 35268801 PMCID: PMC8911784 DOI: 10.3390/molecules27051700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Majority of dynamic nuclear polarization (DNP) experiments have been requiring helium cryogenics and strong magnetic fields for a high degree of nuclear polarization. In this work, we instead demonstrate an optical hyperpolarization of naturally abundant 13C nuclei in a diamond crystal at a low magnetic field and the room temperature. It exploits continuous laser irradiation for polarizing electronic spins of nitrogen vacancy centers and microwave irradiation for transferring the electronic polarization to 13C nuclear spins. We have studied the dependence of 13C polarization on laser and microwave powers. For the first time, a triplet structure corresponding to the 14N hyperfine splitting has been observed in the 13C polarization spectrum. By simultaneously exciting three microwave frequencies at the peaks of the triplet, we have achieved 13C bulk polarization of 0.113 %, leading to an enhancement of 90,000 over the thermal polarization at 17.6 mT. We believe that the multi-tone irradiation can be extended to further enhance the 13C polarization at a low magnetic field.
Collapse
Affiliation(s)
- Vladimir V. Kavtanyuk
- Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon 34113, Korea; (V.V.K.); (S.O.)
| | - Hyun Joon Lee
- Radio & Satellite Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea;
| | - Sangwon Oh
- Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon 34113, Korea; (V.V.K.); (S.O.)
| | | | - Jeong Hyun Shim
- Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon 34113, Korea; (V.V.K.); (S.O.)
- Department of Medical Physics, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
16
|
Eichhorn TR, Parker AJ, Josten F, Müller C, Scheuer J, Steiner JM, Gierse M, Handwerker J, Keim M, Lucas S, Qureshi MU, Marshall A, Salhov A, Quan Y, Binder J, Jahnke KD, Neumann P, Knecht S, Blanchard JW, Plenio MB, Jelezko F, Emsley L, Vassiliou CC, Hautle P, Schwartz I. Hyperpolarized Solution-State NMR Spectroscopy with Optically Polarized Crystals. J Am Chem Soc 2022; 144:2511-2519. [PMID: 35113568 DOI: 10.1021/jacs.1c09119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T). This makes it possible to exploit the high spin polarization of optically polarized crystals, while mitigating the challenges of its transfer to external nuclei. With this method, we inject the highly polarized mixture into a benchtop NMR spectrometer and observe the polarization dynamics for target 1H nuclei. Although the spectra are radiation damped due to the high naphthalene magnetization, we describe a procedure to process the data to obtain more conventional NMR spectra and extract the target nuclei polarization. With the entire process occurring on a time scale of 1 min, we observe NMR signals enhanced by factors between -200 and -1730 at 1.45 T for a range of small molecules.
Collapse
Affiliation(s)
| | - Anna J Parker
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Felix Josten
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | - Jakob M Steiner
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Martin Gierse
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | - Alastair Marshall
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany.,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram, Israel
| | - Yifan Quan
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jan Binder
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | - Kay D Jahnke
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| | | | | | | | - Martin B Plenio
- Institute for Theoretical Physics, Ulm University, 89081 Ulm, Germany.,Center for Integrated Quantum Science and Technology, Ulm University, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, 89081 Ulm, Germany.,Center for Integrated Quantum Science and Technology, Ulm University, 89081 Ulm, Germany
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081 Ulm, Germany
| |
Collapse
|
17
|
Menzildjian G, Lund A, Yulikov M, Gajan D, Niccoli L, Karthikeyan G, Casano G, Jeschke G, Ouari O, Lelli M, Lesage A. Efficient Dynamic Nuclear Polarization up to 230 K with Hybrid BDPA-Nitroxide Radicals at a High Magnetic Field. J Phys Chem B 2021; 125:13329-13338. [PMID: 34818009 DOI: 10.1021/acs.jpcb.1c07307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pairing the spectral resolution provided by high magnetic fields at ambient temperature with the enhanced sensitivity offered by dynamic nuclear polarization (DNP) is a major goal of modern solid-state NMR spectroscopy, which will allow one to unlock ever-challenging applications. This study demonstrates that, by combining HyTEK2, a hybrid BDPA-nitroxide biradical polarizing agent, with ortho-terphenyl (OTP), a rigid DNP matrix, enhancement factors as high as 65 can be obtained at 230 K, 40 kHz magic angle spinning (MAS), and 18.8 T. The temperature dependence of the DNP enhancement and its behavior around the glass transition temperature (Tg) of the matrix is investigated by variable-temperature EPR measurements of the electron relaxation properties and numerical simulations. A correlation is suggested between the decrease in enhancement at the passage of the Tg and the concomitant drop of both transverse electron relaxation times in the biradical.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Alicia Lund
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - David Gajan
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| | - Lorenzo Niccoli
- Center of Magnetic Resonance (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Ganesan Karthikeyan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gilles Casano
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCBL), 69100 Villeurbanne, France
| |
Collapse
|
18
|
Jiang W, Peng Q, Sun H, Zhang Q, Huang C, Cao S, Wang X, Chen Z. Determining the enantioselectivity of asymmetric hydrogenation through parahydrogen-induced hyperpolarization. J Chem Phys 2021; 155:161101. [PMID: 34717365 DOI: 10.1063/5.0067959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymmetric hydrogenation plays an essential role for both academic research and industry to produce enantiomeric pure chiral molecules. Although nuclear magnetic resonance (NMR) is powerful in determining the yields of hydrogenation, it is still challenging to use NMR for chirality-related analysis. Herein, we applied parahydrogen-induced hyperpolarization (PHIP) NMR to determine the enantioselectivity of asymmetric hydrogenation and the absolute chirality of products. We hyperpolarized two types of unsaturated amino acid precursors, i.e., methyl-α-acetoamido cinnamate and (E)-ethyl 3-acetamidobut-2-enoate. Hydrogenation of prochiral substrates with parahydrogen gave temporary hyperpolarized diastereoisomers, which exhibit different PHIP patterns distinguishable in 1H NMR. After assigning the NMR peaks by density functional theory calculations, we simulated the PHIP patterns of all the possible temporary hyperpolarized diastereoisomers and unambiguously assigned the chirality of the products and the enantioselectivity of asymmetric hydrogenation. Our work demonstrates the application and potential of PHIP in revealing the mechanism of asymmetric hydrogenation.
Collapse
Affiliation(s)
- Wenlong Jiang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qiwei Peng
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Huijun Sun
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Qi Zhang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Chengda Huang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Shuohui Cao
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Xinchang Wang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
19
|
Jarmola A, Lourette S, Acosta VM, Birdwell AG, Blümler P, Budker D, Ivanov T, Malinovsky VS. Demonstration of diamond nuclear spin gyroscope. SCIENCE ADVANCES 2021; 7:eabl3840. [PMID: 34678066 PMCID: PMC8535796 DOI: 10.1126/sciadv.abl3840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 05/28/2023]
Abstract
We demonstrate the operation of a rotation sensor based on the nitrogen-14 (14N) nuclear spins intrinsic to nitrogen-vacancy (NV) color centers in diamond. The sensor uses optical polarization and readout of the nuclei and a radio-frequency double-quantum pulse protocol that monitors 14N nuclear spin precession. This measurement protocol suppresses the sensitivity to temperature variations in the 14N quadrupole splitting, and it does not require microwave pulses resonant with the NV electron spin transitions. The device was tested on a rotation platform and demonstrated a sensitivity of 4.7°/s (13 mHz/Hz), with a bias stability of 0.4 °/s (1.1 mHz).
Collapse
Affiliation(s)
- Andrey Jarmola
- Department of Physics, University of California, Berkeley, CA 94720, USA
- U.S. Army Research Laboratory, Adelphi, MD 20783, USA
| | - Sean Lourette
- Department of Physics, University of California, Berkeley, CA 94720, USA
- U.S. Army Research Laboratory, Adelphi, MD 20783, USA
| | - Victor M. Acosta
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | | | - Peter Blümler
- Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Dmitry Budker
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
- Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Tony Ivanov
- U.S. Army Research Laboratory, Adelphi, MD 20783, USA
| | | |
Collapse
|
20
|
Gorrini F, Dorigoni C, Olivares-Postigo D, Giri R, Aprà P, Picollo F, Bifone A. Long-Lived Ensembles of Shallow NV - Centers in Flat and Nanostructured Diamonds by Photoconversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43221-43232. [PMID: 34468122 PMCID: PMC8447188 DOI: 10.1021/acsami.1c09825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/02/2021] [Indexed: 05/29/2023]
Abstract
Shallow, negatively charged nitrogen-vacancy centers (NV-) in diamond have been proposed for high-sensitivity magnetometry and spin-polarization transfer applications. However, surface effects tend to favor and stabilize the less useful neutral form, the NV0 centers. Here, we report the effects of green laser irradiation on ensembles of nanometer-shallow NV centers in flat and nanostructured diamond surfaces as a function of laser power in a range not previously explored (up to 150 mW/μm2). Fluorescence spectroscopy, optically detected magnetic resonance (ODMR), and charge-photoconversion detection are applied to characterize the properties and dynamics of NV- and NV0 centers. We demonstrate that high laser power strongly promotes photoconversion of NV0 to NV- centers. Surprisingly, the excess NV- population is stable over a timescale of 100 ms after switching off the laser, resulting in long-lived enrichment of shallow NV-. The beneficial effect of photoconversion is less marked in nanostructured samples. Our results are important to inform the design of samples and experimental procedures for applications relying on ensembles of shallow NV- centers in diamond.
Collapse
Affiliation(s)
- Federico Gorrini
- Istituto
Italiano di Tecnologia, Center for Sustainable
Future Technologies, via Livorno 60, 10144 Torino, Italy
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Carla Dorigoni
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
| | - Domingo Olivares-Postigo
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| | - Rakshyakar Giri
- Istituto
Italiano di Tecnologia, Center for Neuroscience
and Cognitive System, corso Bettini 31, 38068 Rovereto (Tn), Italy
| | - Pietro Aprà
- Department
of Physics and “NIS Inter-departmental Centre”, University of Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
- National
Institute of Nuclear Physics, Section of Torino, Torino 10125, Italy
| | - Federico Picollo
- Department
of Physics and “NIS Inter-departmental Centre”, University of Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
- National
Institute of Nuclear Physics, Section of Torino, Torino 10125, Italy
| | - Angelo Bifone
- Istituto
Italiano di Tecnologia, Center for Sustainable
Future Technologies, via Livorno 60, 10144 Torino, Italy
- Molecular
Biology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
21
|
Miyanishi K, Segawa T, Takeda K, Ohki I, Onoda S, Ohshima T, Abe H, Takashima H, Takeuchi S, Shames A, Morita K, Wang Y, So FK, Terada D, Igarashi R, Kagawa A, Kitagawa M, Mizuochi N, Shirakawa M, Negoro M. Room-temperature hyperpolarization of polycrystalline samples with optically polarized triplet electrons: pentacene or nitrogen-vacancy center in diamond? MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:33-48. [PMID: 37904782 PMCID: PMC10539752 DOI: 10.5194/mr-2-33-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 11/01/2023]
Abstract
We demonstrate room-temperature 13 C hyperpolarization by dynamic nuclear polarization (DNP) using optically polarized triplet electron spins in two polycrystalline systems: pentacene-doped [carboxyl-13 C] benzoic acid and microdiamonds containing nitrogen-vacancy (NV- ) centers. For both samples, the integrated solid effect (ISE) is used to polarize the 13 C spin system in magnetic fields of 350-400 mT. In the benzoic acid sample, the 13 C spin polarization is enhanced by up to 0.12 % through direct electron-to-13 C polarization transfer without performing dynamic 1 H polarization followed by 1 H - 13 C cross-polarization. In addition, the ISE has been successfully applied to polarize naturally abundant 13 C spins in a microdiamond sample to 0.01 %. To characterize the buildup of the 13 C polarization, we discuss the efficiencies of direct polarization transfer between the electron and 13 C spins as well as that of 13 C - 13 C spin diffusion, examining various parameters which are beneficial or detrimental for successful bulk dynamic 13 C polarization.
Collapse
Affiliation(s)
- Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takuya F. Segawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Kazuyuki Takeda
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Izuru Ohki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shinobu Onoda
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Takeshi Ohshima
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Hiroshi Abe
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Hideaki Takashima
- Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigeki Takeuchi
- Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Alexander I. Shames
- Department of Physics, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Kohki Morita
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yu Wang
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Frederick T.-K. So
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Daiki Terada
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
- JST, PRESTO, Kawaguchi, Japan
| | - Akinori Kagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- JST, PRESTO, Kawaguchi, Japan
- Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masahiro Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Norikazu Mizuochi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Makoto Negoro
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
- JST, PRESTO, Kawaguchi, Japan
- Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
22
|
Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:5-23. [PMID: 33185800 DOI: 10.1007/s10334-020-00894-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique's shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.
Collapse
|
23
|
Bondon N, Raehm L, Charnay C, Boukherroub R, Durand JO. Nanodiamonds for bioapplications, recent developments. J Mater Chem B 2020; 8:10878-10896. [PMID: 33156316 DOI: 10.1039/d0tb02221g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The world of biomedical research is in constant evolution, requiring more and more conditions and norms through pre-clinic and clinic studies. Nanodiamonds (NDs) with exceptional optical, thermal and mechanical properties emerged on the global scientific scene and recently gained more attention in biomedicine and bioanalysis fields. Many problematics have been deliberated to better understand their in vitro and in vivo efficiency and compatibility. Light was shed on their synthesis, modification and purification steps, as well as particle size and surface properties in order to find the most suitable operating conditions. In this review, we present the latest advances of NDs use in bioapplications. A large variety of subjects including anticancer and antimicrobial systems, wound healing and tissue engineering management tools, but also bioimaging and labeling probes are tackled. The key information resulting from these recent works were evidenced to make an overview of the potential features of NDs, with a special look on emerging therapeutic and diagnosis combinations.
Collapse
Affiliation(s)
- Nicolas Bondon
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon 34095, Montpellier cedex 05, France.
| | | | | | | | | |
Collapse
|
24
|
Nishimura K, Kouno H, Kawashima Y, Orihashi K, Fujiwara S, Tateishi K, Uesaka T, Kimizuka N, Yanai N. Materials chemistry of triplet dynamic nuclear polarization. Chem Commun (Camb) 2020; 56:7217-7232. [PMID: 32495753 DOI: 10.1039/d0cc02258f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic nuclear polarization with photo-excited triplet electrons (triplet-DNP) has the potential to enhance the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at a moderate temperature. While many efforts have been devoted to achieving a large nuclear polarization based on triplet-DNP, the application of triplet-DNP has been limited to nuclear physics experiments. The recent introduction of materials chemistry into the field of triplet-DNP has achieved air-stable and water-soluble polarizing agents as well as the hyperpolarization of nanomaterials with a large surface area such as nanoporous metal-organic frameworks (MOFs) and nanocrystal dispersion in water. This Feature Article overviews the recently-emerged materials chemistry of triplet-DNP that paves new paths towards unprecedented biological and medical applications.
Collapse
Affiliation(s)
- Koki Nishimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hironori Kouno
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yusuke Kawashima
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kana Orihashi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Saiya Fujiwara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Abstract
Biomedical imaging allows in vivo studies of organisms, providing valuable information of biological processes at both cellular and tissue levels. Nanodiamonds have recently emerged as a new type of probe for fluorescence imaging and contrast agent for magnetic resonance and photoacoustic imaging. Composed of sp3-carbon atoms, diamond is chemically inert and inherently biocompatible. Uniquely, its matrix can host a variety of optically and magnetically active defects suited for bioimaging applications. Since the first production of fluorescent nanodiamonds in 2005, a large number of experiments have demonstrated that fluorescent nanodiamonds are useful as photostable markers and nanoscale sensors in living cells and organisms. In this review, we focus our discussion on the recent advancements of nanodiamond-enabled biomedical imaging for preclinical applications.
Collapse
Affiliation(s)
- Yen-Yiu Liu
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Be-Ming Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic & Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei, 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei, 106, Taiwan
| |
Collapse
|
26
|
Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relationship between the unique characteristics of nanodiamonds (NDs) and the fluorescence properties of nitrogen-vacancy (NV) centers has lead to a tool with quantum sensing capabilities and nanometric spatial resolution; this tool is able to operate in a wide range of temperatures and pressures and in harsh chemical conditions. For the development of devices based on NDs, a great effort has been invested in researching cheap and easily scalable synthesis techniques for NDs and NV-NDs. In this review, we discuss the common fluorescent NDs synthesis techniques as well as the laser-assisted production methods. Then, we report recent results regarding the applications of fluorescent NDs, focusing in particular on sensing of the environmental parameters as well as in catalysis. Finally, we underline that the highly non-equilibrium processes occurring in the interactions of laser-materials in controlled laboratory conditions for NDs synthesis present unique opportunities for investigation of the phenomena occurring under extreme thermodynamic conditions in planetary cores or under warm dense matter conditions.
Collapse
|
27
|
Jaffe T, Attrash M, Kuntumalla MK, Akhvlediani R, Michaelson S, Gal L, Felgen N, Fischer M, Reithmaier JP, Popov C, Hoffman A, Orenstein M. Novel Ultra Localized and Dense Nitrogen Delta-Doping in Diamond for Advanced Quantum Sensing. NANO LETTERS 2020; 20:3192-3198. [PMID: 32356992 DOI: 10.1021/acs.nanolett.9b05243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce and demonstrate a new approach for nitrogen-vacancy (NV) patterning in diamond, achieving a deterministic, nanometer-thin, and dense delta-doped layer of negatively charged NV centers in diamond. We employed a pure nitridation stage using microwave plasma and a subsequent in situ diamond overgrowth. We present the highest reported nitrogen concentration in a delta-doped layer (1.8 × 1020 cm-3) while maintaining the pristine diamond crystal quality. This result combined with the large optically detected magnetic resonance contrast can pave the way toward highly sensitive NV-based magnetometers. We further employed this delta-doping technique on high-quality fabricated diamond nanostructures for realizing a topographic NV patterning in order to enhance the sensing and hyperpolarization capabilities of NV-based devices.
Collapse
Affiliation(s)
- Tzach Jaffe
- Andrew and Erna Viterbi Department of Electrical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Mohammed Attrash
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Mohan Kumar Kuntumalla
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Roza Akhvlediani
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Shaul Michaelson
- Israeli Center of Advanced Diamond Technology (ICDAT), 3688849 Nesher, Israel
| | - Lior Gal
- Andrew and Erna Viterbi Department of Electrical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Nina Felgen
- Institute of Nanostructure Technologies and Analytics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Miri Fischer
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Johann Peter Reithmaier
- Institute of Nanostructure Technologies and Analytics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Cyril Popov
- Institute of Nanostructure Technologies and Analytics, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Alon Hoffman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Meir Orenstein
- Andrew and Erna Viterbi Department of Electrical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
28
|
Kagawa A, Miyanishi K, Ichijo N, Negoro M, Nakamura Y, Enozawa H, Murata T, Morita Y, Kitagawa M. High-field NMR with dissolution triplet-DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106623. [PMID: 31669795 DOI: 10.1016/j.jmr.2019.106623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Dissolution dynamic nuclear polarization (DNP) has wide variety of important applications such as real-time monitoring of chemical reactions and metabolic imaging. We construct DNP using photoexcited triplet electron spins (Triplet-DNP) apparatus combined with dissolution apparatus for solution NMR in a high magnetic field. Triplet-DNP enables us to obtain high nuclear polarization at room temperature. Solid-state samples polarized by Triplet-DNP are transferred to a superconducting magnet and dissolved by injecting aqueous solvents. The 13C polarization of 0.22% has been obtained for [caryboxy-13C]benzoic acid-d in the liquid state. Our results show that Triplet-DNP can be applied to real-time monitoring with solution NMR.
Collapse
Affiliation(s)
- Akinori Kagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Naoki Ichijo
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Makoto Negoro
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yushi Nakamura
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Hideo Enozawa
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Tsuyoshi Murata
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Yasushi Morita
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Masahiro Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan; Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan
| |
Collapse
|
29
|
Lang JE, Broadway DA, White GAL, Hall LT, Stacey A, Hollenberg LCL, Monteiro TS, Tetienne JP. Quantum Bath Control with Nuclear Spin State Selectivity via Pulse-Adjusted Dynamical Decoupling. PHYSICAL REVIEW LETTERS 2019; 123:210401. [PMID: 31809126 DOI: 10.1103/physrevlett.123.210401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Dynamical decoupling (DD) is a powerful method for controlling arbitrary open quantum systems. In quantum spin control, DD generally involves a sequence of timed spin flips (π rotations) arranged to either average out or selectively enhance coupling to the environment. Experimentally, errors in the spin flips are inevitably introduced, motivating efforts to optimize error-robust DD. Here we invert this paradigm: by introducing particular control "errors" in standard DD, namely, a small constant deviation from perfect π rotations (pulse adjustments), we show we obtain protocols that retain the advantages of DD while introducing the capabilities of quantum state readout and polarization transfer. We exploit this nuclear quantum state selectivity on an ensemble of nitrogen-vacancy centers in diamond to efficiently polarize the ^{13}C quantum bath. The underlying physical mechanism is generic and paves the way to systematic engineering of pulse-adjusted protocols with nuclear state selectivity for quantum control applications.
Collapse
Affiliation(s)
- J E Lang
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - D A Broadway
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - G A L White
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - L T Hall
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - A Stacey
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria 3168, Australia
| | - L C L Hollenberg
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - T S Monteiro
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - J-P Tetienne
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
30
|
Torelli MD, Nunn NA, Shenderova OA. A Perspective on Fluorescent Nanodiamond Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902151. [PMID: 31215753 PMCID: PMC6881523 DOI: 10.1002/smll.201902151] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Indexed: 05/28/2023]
Abstract
The field of fluorescent nanodiamonds (FNDs) has advanced greatly over the past few years. Though historically limited primarily to red fluorescence, the wavelengths available for nanodiamonds have increased due to continuous technical advancement. This Review summarizes the strides made in the synthesis, functionalization, and application of FNDs to bioimaging. Highlights range from super-resolution microscopy, through cellular and whole animal imaging, up to constantly emerging fields including sensing and hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- Marco D. Torelli
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Nicholas A. Nunn
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| | - Olga A. Shenderova
- Adámas Nanotechnologies, Inc., 8100 Brownleigh Dr, Suite 120, Raleigh, NC 27617
| |
Collapse
|
31
|
Henshaw J, Pagliero D, Zangara PR, Franzoni MB, Ajoy A, Acosta RH, Reimer JA, Pines A, Meriles CA. Carbon-13 dynamic nuclear polarization in diamond via a microwave-free integrated cross effect. Proc Natl Acad Sci U S A 2019; 116:18334-18340. [PMID: 31451667 PMCID: PMC6744875 DOI: 10.1073/pnas.1908780116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Color-center-hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center-assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anticrossing condition-where the P1 Zeeman splitting matches one of the NV spin transitions-we demonstrate efficient microwave-free 13C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.
Collapse
Affiliation(s)
- Jacob Henshaw
- Department of Physics, City College of New York, City University of New York, New York, NY 10031
| | - Daniela Pagliero
- Department of Physics, City College of New York, City University of New York, New York, NY 10031
| | - Pablo R Zangara
- Department of Physics, City College of New York, City University of New York, New York, NY 10031
| | - María B Franzoni
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, CP X5000HUA Córdoba, Argentina
- Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas, CP X5000HUA Córdoba, Argentina
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
| | - Rodolfo H Acosta
- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, CP X5000HUA Córdoba, Argentina
- Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas, CP X5000HUA Córdoba, Argentina
| | - Jeffrey A Reimer
- Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
| | - Carlos A Meriles
- Department of Physics, City College of New York, City University of New York, New York, NY 10031;
- Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
32
|
Zhou K. The alternative splicing of SKU5-Similar3 in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651182. [PMID: 31397618 PMCID: PMC6768224 DOI: 10.1080/15592324.2019.1651182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 05/29/2023]
Abstract
Alternative splicing largely enhanced the diversity of transcriptome and proteome in eukaryas. Along with technological development, more and more genes are reported to be alternatively spliced during mRNA maturation. Here, I report the alternative splicing of SKU5-Similar 3 (SKS3) and its special splicing site in Arabidopsis. SKS3 was predicted to be alternatively transcribed into two variants, SKS3.1 and SKS3.2, which encoded a GPI-anchored protein and a soluble secretory protein, respectively. But, according to experimental data, instead of SKS3.2, a novel variant, SKS3.3, which encodes a protein with a transmembrane region at its C-terminus, was demonstrated. Interestingly, it exhibites a different organ-specific expression pattern with SKS3.1, and an unusual intron splicing site not following 'GT-AG' rule or any reported rule.
Collapse
Affiliation(s)
- Ke Zhou
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
33
|
Ha M, Thiessen AN, Sergeyev IV, Veinot JGC, Michaelis VK. Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 100:77-84. [PMID: 31015058 DOI: 10.1016/j.ssnmr.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Silicon nanoparticles (SiNPs) are intriguing materials and their properties fascinate the broader scientific community; they are also attractive to the biological and materials science sub-disciplines because of their established biological and environmental compatibility, as well as their far-reaching practical applications. While characterization of the particle nanostructure can be performed using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy, poor sensitivity due to low Boltzmann population and long acquisition times hinder in-depth studies of these potentially game-changing materials. In this study, we compare two dynamic nuclear polarization (DNP) NMR protocols to boost 29Si sensitivity in hydride-terminated SiNPs. First, we assess a traditional indirect DNP approach, where a nitroxide biradical (AMUPol or bCTbk) is incorporated into a glassing agent and transferred through protons (e- → 1H → 29Si) to enhance the silicon. In this mode, electron paramagnetic resonance (EPR) spectroscopy demonstrated that the hydride-terminated surface was highly reactive with the exogenous biradicals, thus decomposing the radicals within hours and resulting in an enhancement factor, ε, of 3 (TB = 15 s) for the 64 nm SiNP, revealing the surface components. Secondly, direct DNP NMR methods were used to enhance the silicon without the addition of an exogenous radical (i.e., use of dangling bonds as an endogenous radical source). With radical concentrations <1 mM, 29Si enhancements were obtained for the series of SiNPs ranging from 3 to 64 nm. The ability to use direct 29Si DNP transfer (e- → 29Si) shows promise for DNP studies of these inorganic nanomaterials (ε = 6 (TB = 79 min) for 64 nm SiNPs) with highly reactive surfaces, showing the sub-surface and core features. These preliminary findings lay a foundation for future endogenous radical development through tailoring the surface chemistry, targeting further sensitivity gains.
Collapse
Affiliation(s)
- Michelle Ha
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | - Ivan V Sergeyev
- Bruker-Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | | |
Collapse
|
34
|
Smits J, Damron JT, Kehayias P, McDowell AF, Mosavian N, Fescenko I, Ristoff N, Laraoui A, Jarmola A, Acosta VM. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. SCIENCE ADVANCES 2019; 5:eaaw7895. [PMID: 31360769 PMCID: PMC6660203 DOI: 10.1126/sciadv.aaw7895] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micrometer-scale detection volume and noninductive-based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 ± 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ∼40-picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a major step toward applications in mass-limited chemical analysis and single-cell biology.
Collapse
Affiliation(s)
- Janis Smits
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
- Laser Center of the University of Latvia, Riga, LV-1586, Latvia
| | - Joshua T. Damron
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Pauli Kehayias
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | - Nazanin Mosavian
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Ilja Fescenko
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Nathaniel Ristoff
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Abdelghani Laraoui
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Andrey Jarmola
- Department of Physics, University of California, Berkeley, CA 94720, USA
- ODMR Technologies Inc., El Cerrito, CA 94530, USA
- Corresponding author. (A.J.); (V.M.A.)
| | - Victor M. Acosta
- Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87106, USA
- Corresponding author. (A.J.); (V.M.A.)
| |
Collapse
|
35
|
Schwartz I, Rosskopf J, Schmitt S, Tratzmiller B, Chen Q, McGuinness LP, Jelezko F, Plenio MB. Blueprint for nanoscale NMR. Sci Rep 2019; 9:6938. [PMID: 31061430 PMCID: PMC6502870 DOI: 10.1038/s41598-019-43404-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 01/24/2023] Open
Abstract
Nitrogen vacancy (NV) centers in diamond have been used as ultrasensitive magnetometers to perform nuclear magnetic resonance (NMR) spectroscopy of statistically polarized samples at 1-100 nm length scales. However, the spectral linewidth is typically limited to the kHz level, both by the NV sensor coherence time and by rapid molecular diffusion of the nuclei through the detection volume which in turn is critical for achieving long nuclear coherence times. Here we provide a blueprint supported by detailed theoretical analysis for a set-up that combines a sensitivity sufficient for detecting NMR signals from nano- to micron-scale samples with a spectral resolution that is limited only by the nuclear spin coherence, i.e. comparable to conventional NMR. Our protocol detects the nuclear polarization induced along the direction of an external magnetic field with near surface NV centers using lock-in detection techniques to enable phase coherent signal averaging. Using the NV centers in a dual role of NMR detector and optical hyperpolarization source to increase signal to noise, and in combination with Bayesian inference models for signal processing, nano/microscale NMR spectroscopy can be performed on sample concentrations in the micromolar range, several orders of magnitude better than the current state of the art.
Collapse
Affiliation(s)
- Ilai Schwartz
- Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- NVision Imaging Technologies GmbH, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Joachim Rosskopf
- Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Schmitt
- Institute of Quantum Optics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Benedikt Tratzmiller
- Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Qiong Chen
- Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Liam P McGuinness
- Institute of Quantum Optics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fedor Jelezko
- Institute of Quantum Optics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
36
|
Waddington DEJ, Boele T, Rej E, McCamey DR, King NJC, Gaebel T, Reilly DJ. Phase-Encoded Hyperpolarized Nanodiamond for Magnetic Resonance Imaging. Sci Rep 2019; 9:5950. [PMID: 30976049 PMCID: PMC6459867 DOI: 10.1038/s41598-019-42373-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/21/2019] [Indexed: 11/08/2022] Open
Abstract
Surface-functionalized nanomaterials are of interest as theranostic agents that detect disease and track biological processes using hyperpolarized magnetic resonance imaging (MRI). Candidate materials are sparse however, requiring spinful nuclei with long spin-lattice relaxation (T1) and spin-dephasing times (T2), together with a reservoir of electrons to impart hyperpolarization. Here, we demonstrate the versatility of the nanodiamond material system for hyperpolarized 13C MRI, making use of its intrinsic paramagnetic defect centers, hours-long nuclear T1 times, and T2 times suitable for spatially resolving millimeter-scale structures. Combining these properties, we enable a new imaging modality, unique to nanoparticles, that exploits the phase-contrast between spins encoded with a hyperpolarization that is aligned, or anti-aligned with the external magnetic field. The use of phase-encoded hyperpolarization allows nanodiamonds to be tagged and distinguished in an MRI based on their spin-orientation alone, and could permit the action of specific bio-functionalized complexes to be directly compared and imaged.
Collapse
Affiliation(s)
- David E J Waddington
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Boele
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ewa Rej
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - Dane R McCamey
- ARC Centre of Excellence for Exciton Science, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicholas J C King
- The Discipline of Pathology, School of Medical Sciences, Bosch Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Torsten Gaebel
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
| | - David J Reilly
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
- Microsoft Corporation, Station Q Sydney, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
37
|
Zangara PR, Henshaw J, Pagliero D, Ajoy A, Reimer JA, Pines A, Meriles CA. Two-Electron-Spin Ratchets as a Platform for Microwave-Free Dynamic Nuclear Polarization of Arbitrary Material Targets. NANO LETTERS 2019; 19:2389-2396. [PMID: 30884227 DOI: 10.1021/acs.nanolett.8b05114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optically pumped color centers in semiconductor powders can potentially induce high levels of nuclear spin polarization in surrounding solids or fluids at or near ambient conditions, but complications stemming from the random orientation of the particles and the presence of unpolarized paramagnetic defects hinder the flow of polarization beyond the defect's host material. Here, we theoretically study the spin dynamics of interacting nitrogen-vacancy (NV) and substitutional nitrogen (P1) centers in diamond to show that outside protons spin-polarize efficiently upon a magnetic field sweep across the NV-P1 level anticrossing. The process can be interpreted in terms of an NV-P1 spin ratchet, whose handedness, and hence the sign of the resulting nuclear polarization, depends on the relative timing of the optical excitation pulse. Further, we find that the polarization transfer mechanism is robust to NV misalignment relative to the external magnetic field, and efficient over a broad range of electron-electron and electron-nuclear spin couplings, even if proxy spins feature short coherence or spin-lattice relaxation times. Therefore, these results pave the route toward the dynamic nuclear polarization of arbitrary spin targets brought in proximity with a diamond powder under ambient conditions.
Collapse
Affiliation(s)
- Pablo R Zangara
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Jacob Henshaw
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Daniela Pagliero
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Ashok Ajoy
- Department of Chemistry and Materials Science Division Lawrence Berkeley National Laboratory , University of California Berkeley , Berkeley , California 94720 , United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering and Materials Science Division Lawrence Berkeley National Laboratory University of California , Berkeley , California 94720 , United States
| | - Alexander Pines
- Department of Chemistry and Materials Science Division Lawrence Berkeley National Laboratory , University of California Berkeley , Berkeley , California 94720 , United States
| | - Carlos A Meriles
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
- CUNY-Graduate Center , New York , New York 10016 , United States
| |
Collapse
|
38
|
Zangara PR, Dhomkar S, Ajoy A, Liu K, Nazaryan R, Pagliero D, Suter D, Reimer JA, Pines A, Meriles CA. Dynamics of frequency-swept nuclear spin optical pumping in powdered diamond at low magnetic fields. Proc Natl Acad Sci U S A 2019; 116:2512-2520. [PMID: 30679282 PMCID: PMC6377465 DOI: 10.1073/pnas.1811994116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A broad effort is underway to improve the sensitivity of NMR through the use of dynamic nuclear polarization. Nitrogen vacancy (NV) centers in diamond offer an appealing platform because these paramagnetic defects can be optically polarized efficiently at room temperature. However, work thus far has been mainly limited to single crystals, because most polarization transfer protocols are sensitive to misalignment between the NV and magnetic field axes. Here we study the spin dynamics of NV-13C pairs in the simultaneous presence of optical excitation and microwave frequency sweeps at low magnetic fields. We show that a subtle interplay between illumination intensity, frequency sweep rate, and hyperfine coupling strength leads to efficient, sweep-direction-dependent 13C spin polarization over a broad range of orientations of the magnetic field. In particular, our results strongly suggest that finely tuned, moderately coupled nuclear spins are key to the hyperpolarization process, which makes this mechanism distinct from other known dynamic polarization channels. These findings pave the route to applications where powders are intrinsically advantageous, including the hyperpolarization of target fluids in contact with the diamond surface or the use of hyperpolarized particles as contrast agents for in vivo imaging.
Collapse
Affiliation(s)
- Pablo R Zangara
- Department of Physics, City College of New York, City University of New York, New York, NY 10031
| | - Siddharth Dhomkar
- Department of Physics, City College of New York, City University of New York, New York, NY 10031
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kristina Liu
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Raffi Nazaryan
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Daniela Pagliero
- Department of Physics, City College of New York, City University of New York, New York, NY 10031
| | - Dieter Suter
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Jeffrey A Reimer
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, CA 94720
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Carlos A Meriles
- Department of Physics, City College of New York, City University of New York, New York, NY 10031;
- Graduate Center, City University of New York, New York, NY 10016
| |
Collapse
|
39
|
Kagawa A, Negoro M, Ohba R, Ichijo N, Takamine K, Nakamura Y, Murata T, Morita Y, Kitagawa M. Dynamic Nuclear Polarization using Photoexcited Triplet Electron Spins in Eutectic Mixtures. J Phys Chem A 2018; 122:9670-9675. [DOI: 10.1021/acs.jpca.8b09934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Akinori Kagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Makoto Negoro
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ryohei Ohba
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Naoki Ichijo
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kota Takamine
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yushi Nakamura
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Tsuyoshi Murata
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Yasushi Morita
- Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
| | - Masahiro Kitagawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
40
|
Schwartz I, Scheuer J, Tratzmiller B, Müller S, Chen Q, Dhand I, Wang ZY, Müller C, Naydenov B, Jelezko F, Plenio MB. Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics. SCIENCE ADVANCES 2018; 4:eaat8978. [PMID: 30182060 PMCID: PMC6118411 DOI: 10.1126/sciadv.aat8978] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/24/2018] [Indexed: 05/03/2023]
Abstract
Dynamic nuclear polarization (DNP) is an important technique that uses polarization transfer from electron to nuclear spins to achieve nuclear hyperpolarization. Combining efficient DNP with optically polarized nitrogen-vacancy (NV) centers offers promising opportunities for novel technological applications, including nanoscale nuclear magnetic resonance spectroscopy of liquids, hyperpolarized nanodiamonds as magnetic resonance imaging contrast agents, and the initialization of nuclear spin-based diamond quantum simulators. However, none of the current realizations of polarization transfer are simultaneously robust and sufficiently efficient, making the realization of the applications extremely challenging. We introduce the concept of systematically designing polarization sequences by Hamiltonian engineering, resulting in polarization sequences that are robust and fast. We theoretically derive sequences and experimentally demonstrate that they are capable of efficient polarization transfer from optically polarized NV centers in diamond to the surrounding 13C nuclear spin bath even in the presence of control errors, making the abovementioned novel applications possible.
Collapse
Affiliation(s)
- Ilai Schwartz
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
- NVision Imaging Technologies GmbH, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jochen Scheuer
- Institut für Quantenoptik und IQST (Center for Integrated Quantum Science and Technology), Universität Ulm, 89081 Ulm, Germany
| | - Benedikt Tratzmiller
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - Samuel Müller
- Institut für Quantenoptik und IQST (Center for Integrated Quantum Science and Technology), Universität Ulm, 89081 Ulm, Germany
| | - Qiong Chen
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - Ish Dhand
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - Zhen-Yu Wang
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - Christoph Müller
- NVision Imaging Technologies GmbH, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Boris Naydenov
- Institut für Quantenoptik und IQST (Center for Integrated Quantum Science and Technology), Universität Ulm, 89081 Ulm, Germany
| | - Fedor Jelezko
- Institut für Quantenoptik und IQST (Center for Integrated Quantum Science and Technology), Universität Ulm, 89081 Ulm, Germany
| | - Martin B. Plenio
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, 89081 Ulm, Germany
| |
Collapse
|
41
|
Wunderlich R, Kohlrautz J, Abel B, Haase J, Meijer J. Investigation of room temperature multispin-assisted bulk diamond 13C hyperpolarization at low magnetic fields. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:305803. [PMID: 29897048 DOI: 10.1088/1361-648x/aacc32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.
Collapse
Affiliation(s)
- Ralf Wunderlich
- Faculty of Physics and Earth Sciences, Felix Bloch Institute for Solid State Physics, Leipzig University, Linnstrassé 5, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
42
|
Dhomkar S, Jayakumar H, Zangara PR, Meriles CA. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond. NANO LETTERS 2018; 18:4046-4052. [PMID: 29733616 DOI: 10.1021/acs.nanolett.8b01739] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.
Collapse
Affiliation(s)
- Siddharth Dhomkar
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Harishankar Jayakumar
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Pablo R Zangara
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
| | - Carlos A Meriles
- Department of Physics , CUNY-City College of New York , New York , New York 10031 , United States
- CUNY-Graduate Center , New York , New York 10016 , United States
| |
Collapse
|
43
|
Shagieva F, Zaiser S, Neumann P, Dasari DBR, Stöhr R, Denisenko A, Reuter R, Meriles CA, Wrachtrup J. Microwave-Assisted Cross-Polarization of Nuclear Spin Ensembles from Optically Pumped Nitrogen-Vacancy Centers in Diamond. NANO LETTERS 2018; 18:3731-3737. [PMID: 29719156 DOI: 10.1021/acs.nanolett.8b00925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability to optically initialize the electronic spin of the nitrogen-vacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Further, slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular dynamics near the diamond surface compared to that in bulk. This observation is consistent with present models of the microscopic structure of a fluid and can be exploited to estimate the diffusion coefficient near a solid-liquid interface, of importance in colloid science.
Collapse
Affiliation(s)
- F Shagieva
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - S Zaiser
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - P Neumann
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - D B R Dasari
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - R Stöhr
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - A Denisenko
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - R Reuter
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - C A Meriles
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| | - J Wrachtrup
- Institute for Quantum Science and Technology (IQST) , University of Stuttgart , Third Institute of Physics, Stuttgart 70569 , Germany
| |
Collapse
|
44
|
Ajoy A, Liu K, Nazaryan R, Lv X, Zangara PR, Safvati B, Wang G, Arnold D, Li G, Lin A, Raghavan P, Druga E, Dhomkar S, Pagliero D, Reimer JA, Suter D, Meriles CA, Pines A. Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond. SCIENCE ADVANCES 2018; 4:eaar5492. [PMID: 29795783 PMCID: PMC5959305 DOI: 10.1126/sciadv.aar5492] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/05/2018] [Indexed: 05/20/2023]
Abstract
Dynamic nuclear polarization via contact with electronic spins has emerged as an attractive route to enhance the sensitivity of nuclear magnetic resonance beyond the traditional limits imposed by magnetic field strength and temperature. Among the various alternative implementations, the use of nitrogen vacancy (NV) centers in diamond-a paramagnetic point defect whose spin can be optically polarized at room temperature-has attracted widespread attention, but applications have been hampered by the need to align the NV axis with the external magnetic field. We overcome this hurdle through the combined use of continuous optical illumination and a microwave sweep over a broad frequency range. As a proof of principle, we demonstrate our approach using powdered diamond with which we attain bulk 13C spin polarization in excess of 0.25% under ambient conditions. Remarkably, our technique acts efficiently on diamond crystals of all orientations and polarizes nuclear spins with a sign that depends exclusively on the direction of the microwave sweep. Our work paves the way toward the use of hyperpolarized diamond particles as imaging contrast agents for biosensing and, ultimately, for the hyperpolarization of nuclear spins in arbitrary liquids brought in contact with their surface.
Collapse
Affiliation(s)
- Ashok Ajoy
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| | - Kristina Liu
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raffi Nazaryan
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xudong Lv
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pablo R. Zangara
- Department of Physics, City University of New York (CUNY)–City College of New York, New York, NY 10031, USA
| | - Benjamin Safvati
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Guoqing Wang
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Physics, Peking University, Beijing, China
| | - Daniel Arnold
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Grace Li
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arthur Lin
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Priyanka Raghavan
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emanuel Druga
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Siddharth Dhomkar
- Department of Physics, City University of New York (CUNY)–City College of New York, New York, NY 10031, USA
| | - Daniela Pagliero
- Department of Physics, City University of New York (CUNY)–City College of New York, New York, NY 10031, USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dieter Suter
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Carlos A. Meriles
- Department of Physics, City University of New York (CUNY)–City College of New York, New York, NY 10031, USA
- CUNY–Graduate Center, New York, NY 10016, USA
| | - Alexander Pines
- Department of Chemistry, and Materials Science Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
45
|
Broadway DA, Tetienne JP, Stacey A, Wood JDA, Simpson DA, Hall LT, Hollenberg LCL. Quantum probe hyperpolarisation of molecular nuclear spins. Nat Commun 2018; 9:1246. [PMID: 29593304 PMCID: PMC5871805 DOI: 10.1038/s41467-018-03578-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/20/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperpolarisation of nuclear spins is important in overcoming sensitivity and resolution limitations of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. Current hyperpolarisation techniques require high magnetic fields, low temperatures, or catalysts. Alternatively, the emergence of room temperature spin qubits has opened new pathways to achieve direct nuclear spin hyperpolarisation. Employing a microwave-free cross-relaxation induced polarisation protocol applied to a nitrogen vacancy qubit, we demonstrate quantum probe hyperpolarisation of external molecular nuclear spins to ~50% under ambient conditions, showing a single qubit increasing the polarisation of ~106 nuclear spins by six orders of magnitude over the thermal background. Results are verified against a detailed theoretical treatment, which also describes how the system can be scaled up to a universal quantum hyperpolarisation platform for macroscopic samples. Our results demonstrate the prospects for this approach to nuclear spin hyperpolarisation for molecular imaging and spectroscopy and its potential to extend beyond into other scientific areas. Molecules with ‘hyperpolarised’ nuclear spins can be used to improve MRI performance but require an efficient polarisation method. Broadway et al. demonstrate a quantum control protocol using a nitrogen vacancy centre inside a diamond to hyperpolarise protons within molecules deposited on the surface.
Collapse
Affiliation(s)
- David A Broadway
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, VIC 3010, Australia. .,School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jean-Philippe Tetienne
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.,School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alastair Stacey
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.,School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.,Melbourne Centre for Nanofabrication, Clayton, VIC 3168, Australia
| | - James D A Wood
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.,School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Physics, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
| | - David A Simpson
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Liam T Hall
- School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Lloyd C L Hollenberg
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, VIC 3010, Australia. .,School of Physics, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
46
|
Park SM, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. NATURE REVIEWS. MATERIALS 2017; 2:17014. [PMID: 29876137 PMCID: PMC5985817 DOI: 10.1038/natrevmats.2017.14] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanodiagnostics as a field makes use of fundamental advances in nanobiotechnology to diagnose, characterize and manage disease at the molecular scale. As these strategies move closer to routine clinical use, a proper understanding of different imaging modalities, relevant biological systems and physical properties governing nanoscale interactions is necessary to rationally engineer next-generation bionanomaterials. In this Review, we analyse the background physics of several clinically relevant imaging modalities and their associated sensitivity and specificity, provide an overview of the materials currently used for in vivo nanodiagnostics, and assess the progress made towards clinical translation. This work provides a framework for understanding both the impressive progress made thus far in the nanodiagnostics field as well as presenting challenges that must be overcome to obtain widespread clinical adoption.
Collapse
Affiliation(s)
- Seung-Min Park
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Amin Aalipour
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Ophir Vermesh
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Jung Ho Yu
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, California 94304, USA
| |
Collapse
|
47
|
Suter D, Jelezko F. Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:50-62. [PMID: 28283086 DOI: 10.1016/j.pnmrs.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Magnetic resonance of single spins has flourished mostly because of the unique properties of the NV center in diamond. This review covers the basic physics of this defect center, introduces the techniques for working with single spins and gives an overview of some applications like quantum information and sensing.
Collapse
Affiliation(s)
- Dieter Suter
- Fakultät Physik, TU Dortmund, 44221 Dortmund, Germany.
| | - Fedor Jelezko
- Institut für Quantenoptik, Universität Ulm, Ulm, Germany
| |
Collapse
|
48
|
Jeong K. Minireview on Nuclear Spin Polarization in Optically-Pumped Diamond Nitrogen Vacancy Centers. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2016. [DOI: 10.6564/jkmrs.2016.20.4.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Bretschneider CO, Akbey Ü, Aussenac F, Olsen GL, Feintuch A, Oschkinat H, Frydman L. On The Potential of Dynamic Nuclear Polarization Enhanced Diamonds in Solid-State and Dissolution (13) C NMR Spectroscopy. Chemphyschem 2016; 17:2691-701. [PMID: 27416769 DOI: 10.1002/cphc.201600301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Dynamic nuclear polarization (DNP) is a versatile option to improve the sensitivity of NMR and MRI. This versatility has elicited interest for overcoming potential limitations of these techniques, including the achievement of solid-state polarization enhancement at ambient conditions, and the maximization of (13) C signal lifetimes for performing in vivo MRI scans. This study explores whether diamond's (13) C behavior in nano- and micro-particles could be used to achieve these ends. The characteristics of diamond's DNP enhancement were analyzed for different magnetic fields, grain sizes, and sample environments ranging from cryogenic to ambient temperatures, in both solution and solid-state experiments. It was found that (13) C NMR signals could be boosted by orders of magnitude in either low- or room-temperature solid-state DNP experiments by utilizing naturally occurring paramagnetic P1 substitutional nitrogen defects. We attribute this behavior to the unusually long electronic/nuclear spin-lattice relaxation times characteristic of diamond, coupled with a time-independent cross-effect-like polarization transfer mechanism facilitated by a matching of the nitrogen-related hyperfine coupling and the (13) C Zeeman splitting. The efficiency of this solid-state polarization process, however, is harder to exploit in dissolution DNP-enhanced MRI contexts. The prospects for utilizing polarized diamond approaching nanoscale dimensions for both solid and solution applications are briefly discussed.
Collapse
Affiliation(s)
| | - Ümit Akbey
- NMR Supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany.,Aarhus Institute of Advanced Studies and Interdisciplinary Nanoscience Center, Aarhus, Denmark
| | | | - Greg L Olsen
- Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel
| | - Akiva Feintuch
- Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel
| | - Hartmut Oschkinat
- NMR Supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Lucio Frydman
- Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
50
|
Wu Y, Jelezko F, Plenio MB, Weil T. Diamond Quantum Devices in Biology. Angew Chem Int Ed Engl 2016; 55:6586-98. [DOI: 10.1002/anie.201506556] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Yuzhou Wu
- Institut für Organische Chemie III; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Fedor Jelezko
- Institut für Quantenoptik; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Martin B Plenio
- Institut für Theoretische Physik; Albert-Einstein-Allee 11 89069 Ulm Deutschland
| | - Tanja Weil
- Institut für Organische Chemie III; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|