1
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Sourouni M, Opitz C, Radke I, Kiesel L, Tio J, Götte M, von Wahlde M. Establishment of a
3D
co‐culture model to investigate the role of primary fibroblasts in ductal carcinoma in situ of the breast. Cancer Rep (Hoboken) 2022; 6:e1771. [PMID: 36534078 PMCID: PMC10075300 DOI: 10.1002/cnr2.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is a precursor form of breast cancer. 13%-50% of these lesions will progress to invasive breast cancer, but the individual progression risk cannot be estimated. Therefore, all patients receive the same therapy, resulting in potential overtreatment of a large proportion of patients. AIMS The role of the tumor microenvironment (TME) and especially of fibroblasts appears to be critical in DCIS development and a better understanding of their role may aid individualized treatment. METHODS AND RESULTS Primary fibroblasts isolated from benign or malignant punch biopsies of the breast and MCF10DCIS.com cells were seeded in a 3D cell culture system. The fibroblasts were cultured in a type I collagen layer beneath a Matrigel layer with MCF10DCIS.com cells. Dye-quenched (DQ) fluorescent collagen I and IV were used in collagen and Matrigel layer respectively to demonstrate proteolysis. Confocal microscopy was performed on day 2, 7, and 14 to reveal morphological changes, which could indicate the transition to an invasive phenotype. MCF10DCIS.com cells form smooth, round spheroids in co-culture with non-cancer associated fibroblasts (NAFs). Spheroids in co-culture with tumor-associated fibroblasts (TAFs) appear irregularly shaped and with an uneven surface; similar to spheroids formed from invasive cells. Therefore, these morphological changes represent the progression of an in situ to an invasive phenotype. In addition, TAFs show a higher proteolytic activity compared to NAFs. The distance between DCIS cells and fibroblasts decreases over time. CONCLUSION The TAFs seem to play an important role in the progression of DCIS to invasive breast cancer. The better characterization of the TME could lead to the identification of DCIS lesions with high or low risk of progression. This could enable personalized oncological therapy, prevention of overtreatment and individualized hormone replacement therapy after DCIS.
Collapse
Affiliation(s)
- Marina Sourouni
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Carl Opitz
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Isabel Radke
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Joke Tio
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Martin Götte
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| | - Marie‐Kristin von Wahlde
- Department of Obstetrics and Gynecology, Breast Center University Hospital Münster Münster Germany
| |
Collapse
|
3
|
Shams A. Re-evaluation of the myoepithelial cells roles in the breast cancer progression. Cancer Cell Int 2022; 22:403. [PMID: 36510219 PMCID: PMC9746125 DOI: 10.1186/s12935-022-02829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, luminal epithelial cell lineage has gained considerable attraction as the functionally milk-secreting units and as the most fruitful acreage for breast cancer launching. Recognition of the effective involvement of the myoepithelial cells in mammary gland development and in hampering tumorigenesis has renewed the interest in investigating the biological roles of this second main mammary lineage. The human breast is made up of an extensively branching ductal system intervening by copious lobular units. The ductal system is coated by a chain of luminal epithelial cells (LECs) situated on a layer of myoepithelial cells (MECs) and encompassed by a distinguished basement membrane. Ductal contractility during lactation is a well-known function delivered by the MECs however this is not the only assignment mediated by these cellular populations. It has been well appreciated that the MECs exhibit a natural paracrine power in defeating cancer development and advancement. MECs were found to express numerous proteinase inhibitors, anti-angiogenic factors, and tumour suppressors proteins. Additionally, MECs contributed effectively to maintaining the right luminal cells' polarization and further separating them from the adjacent stroma by making an integrated fence. Indeed, disruption of the MECs layer was reported to facilitate the invasion of the cancer cells to the surrounding stroma. Nonetheless, MECs were also found to exhibit cancer-promoting effects and provoke tumour invasion and dissemination by displaying distinct cancer chemokines. Herein in this review, we aimed to address the roles delivered by MECs in breast cancer progression and decipher the molecular mechanisms regulating proper MECs' physiology, integrity, and terminal differentiation.
Collapse
Affiliation(s)
- Anwar Shams
- grid.412895.30000 0004 0419 5255Department of Pharmacology, College of Medicine, Taif University, P.O. BOX 11099, Taif, 21944 Saudi Arabia
| |
Collapse
|
4
|
Zhao Y, Bilal M, Raza A, Khan MI, Mehmood S, Hayat U, Hassan STS, Iqbal HMN. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol 2021; 168:22-37. [PMID: 33290765 DOI: 10.1016/j.ijbiomac.2020.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
Cancer is one of the leading causes of death with a mortality rate of 12%. Although significant progress has been achieved in cancer research, the effective treatment of cancer remains the greatest global challenge in medicine. Dysregulation of tyrosine kinases (TK) is one of the characteristics of several types of cancers. Thus, drugs that target and inhibit these enzymes, known as TK inhibitors (TKIs), are considered vital chemotherapeutics to combat various types of cancer. The oral bioavailability of available TKIs and their targeted therapy are their potential benefits. Based on these characteristics, most TKIs are included in first/second-line therapy for the treatment of different cancers. This review aims to shed light on orally-active TKIs (natural and synthetic molecules) and their promising implication in the therapy of numerous types of tumors along with their mechanisms of action. Further, recent progress in the development of synthetic and isolation of natural TKIs is reviewed. A significant growth in research regarding the development of new-generation TKIs is made with time (23 FDA-approved TKIs from 2018) due to their better therapeutic response. Oral bioavailability should be considered as an important parameter while developing of new-generation TKIs; however, drug delivery systems can also be used to address issue of poor bioavailability to a certain extent. Moreover, clinical trials should be designed in consideration of the development of resistance and tumor heterogeneity.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Masood S. Is it ductal carcinoma in situ with microinvasion or "Ductogenesis"? The role of myoepithelial cell markers. Breast J 2020; 26:1138-1147. [PMID: 32447817 DOI: 10.1111/tbj.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 11/29/2022]
Abstract
Mammary myoepithelial cells have been under-recognized for many years since they were considered less important in breast cancer tumorigenesis compared to luminal epithelial cells. However, in recent years with advances in genomics, cell biology, and research in breast cancer microenvironment, more emphasis has been placed on better understanding of the role that myoepithelial cells play in breast cancer progression. As the result, it has been recognized that the presence or absence of myoepithelial cells play a critical role in the assessment of tumor invasion in diagnostic breast pathology. In addition, advances in screening mammography and breast imaging has resulted in increased detection of ductal carcinoma in situ and consequently more diagnosis of ductal carcinoma in situ with microinvasion. In the present review, we discuss the characteristics of myoepithelial cells, their genomic markers and their role in the accurate diagnosis of ductal carcinoma in situ with microinvasion. We also share our experience with reporting of various morphologic features of ductal carcinoma in situ that may mimic microinvasion and introduce the term of ductogenesis.
Collapse
Affiliation(s)
- Shahla Masood
- Department of Pathology, University of Florida College of Medicine - Jax, Jacksonville, FL, USA
| |
Collapse
|
6
|
Chen H, Bai F, Wang M, Zhang M, Zhang P, Wu K. The prognostic significance of co-existence ductal carcinoma in situ in invasive ductal breast cancer: a large population-based study and a matched case-control analysis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:484. [PMID: 31700920 DOI: 10.21037/atm.2019.08.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background To evaluate the prognostic significance of co-existence ductal carcinoma in situ (DCIS) in invasive ductal breast cancer (IDC) compared with pure IDC. Methods The Surveillance, Epidemiology, and End Results (SEER) database was searched to identify unilateral IDC cases between 2004 and 2015, which were grouped into pure IDC and IDC with DCIS component (IDC-DCIS). Comparisons of the distribution of clinical-pathological characteristics the two groups were performed using Pearson's chi-square. Breast cancer-specific survival (BCSS) and overall survival (OS) were estimated using the Kaplan-Meier method and compared across RS groups using the log-rank statistic. Cox models were fitted to assess the factors independently associated with survival. A 1:1 matched case-control analysis was conducted with each clinical-pathological characteristic matched completely. Results A total of 98,097 pure IDC cases (39.6%) and 149,477 IDC-DCIS cases (60.4%) were enrolled. IDC-DCIS patients were presented with less aggressive characteristics such as lower proportion of histologic grade III (34.2% vs. 42.2%, P<0.001), ER negative (16.8% vs. 26.1%, P<0.001) and PR negative (26.5% vs. 35.7%, P<0.001) disease and higher proportion of T1 cases (68.7% vs. 58.2%, P<0.001) compared with pure IDC patients. Co-existence DCIS was an independent prognostic factor for BCSS and OS in the whole cohort. According to the multivariate analysis, it was an independent favorable prognostic factor among ER positive cases, but an independent negative prognostic factor among ER negative cases based on the matched cohort. Conclusions Co-existence DCIS showed quite different prognostic significance among ER positive and negative disease.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Fang Bai
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Maoli Wang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Mingdi Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Peng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
7
|
Triantafyllou A, Mikkelsen LH, Gnepp DR, Andreasen S, Hunt JL, Devaney KO, Vander Poorten V, Rinaldo A, Willems SM, Ferlito A. Salivary myoepithelial cells: an addendum. Ultrastruct Pathol 2018; 42:465-476. [DOI: 10.1080/01913123.2018.1551259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Asterios Triantafyllou
- Department of Pathology, Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool, UK
- School of Dentistry, University of Liverpool, Liverpool, UK
| | - Lauge Hjorth Mikkelsen
- Department of Pathology, Eye Pathology Section, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Douglas R. Gnepp
- Department of Pathology, Providence, Rhode Island, and Fall River, MA, USA
| | - Simon Andreasen
- Department of Pathology and Department of Otolaryngology Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen
| | - Jennifer L. Hunt
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Vincent Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery and Department of Oncology-Section Head and Neck Oncology, University Hospitals Leuven, Leuven, Belgium
- European Salivary Gland Society, Geneva, Switzerland
| | | | - Stefan M. Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
8
|
Shee K, Muller KE, Marotti J, Miller TW, Wells WA, Tsongalis GJ. Ductal Carcinoma in Situ Biomarkers in a Precision Medicine Era: Current and Future Molecular-Based Testing. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:956-965. [PMID: 30385093 DOI: 10.1016/j.ajpath.2018.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/09/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Historically, ductal carcinoma in situ (DCIS) of the breast has been managed aggressively with surgery and radiotherapy because of a risk of progression to invasive ductal carcinoma. However, this treatment paradigm has been challenged by overtreatment concerns and evidence that suggests that DCIS can be stratified according to risk of recurrence or risk of progression to invasive disease. Traditional methods of risk stratification include histologic grade and hormone receptor status. Recent technological advancements have enabled an era of precision medicine, where DCIS can be molecularly analyzed by tools, such as next-generation DNA and RNA sequencing, to identify molecular biomarkers for risk stratification. These findings have led to the development of tools such as the Oncotype DX Breast DCIS Score, a gene expression-based assay with the potential to prevent overtreatment in low-risk disease.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon
| | - Kristen E Muller
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jonathan Marotti
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Todd W Miller
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon
| | - Wendy A Wells
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Gregory J Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire.
| |
Collapse
|
9
|
Alali F, Kochaji N. Proliferative Activity of Myoepithelial Cells in Normal Salivary Glands and Adenoid Cystic Carcinomas Based on Double Immunohistochemical Labeling. Asian Pac J Cancer Prev 2018; 19:1965-1970. [PMID: 30051681 PMCID: PMC6165645 DOI: 10.22034/apjcp.2018.19.7.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate the proliferative activity of myoepithelial cells (MEC) in normal salivary glands (NSG) and adenoid cystic carcinomas (ACC)) Study design. Twenty -three salivary gland specimens (13 ACC, 10 NSG) were studied using double immunohistochemical labeling for α smooth muscle actin (a-SMA) and proliferative cell nuclear antigen (PCNA)). Results: There was a significant difference in PCNA reactivity in normal samples between myoepithelial cells of the parotid glands and of the submandibular glands, rates being higher in the latter. Neoplastic myoepithelial cells exhibited higher expression than neoplastic epithelial cells. In addition, myoepithelial cells of the cribriform type of ACC showed PCNA reactivity lower than those of the tubular type, whereas there was no statistically significant difference in epithelial cell rates. We could not identify myoepithelial cells in solid pattern due to α-SMA negativity; although high PCNA reactivity was evident. Conclusion: These data suggest that the myoepithelial cell has a key role in ACC oncogenesis, more so than its epithelial cell counterparts. Moreover, the data provide a histopathological interpretation for aggressive clinical features of submandibular ACC, as the myoepithelial cells were less differentiated as compared to those of parotid glands.
Collapse
Affiliation(s)
- Faisal Alali
- Department of Maxillofacial Surgery, Diagnostic Sciences, Prince Sattam Bin Abdulaziz University, Faculty College of Dentistry, Saudi Arabia.
| | | |
Collapse
|
10
|
McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018; 6:48. [PMID: 29868579 PMCID: PMC5951929 DOI: 10.3389/fcell.2018.00048] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
This review summarizes the roles of CAFs in forming a “cancerized” fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also form heterotypic clusters with circulating tumor cells (CTC), which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.
Collapse
Affiliation(s)
- James B McCarthy
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer Center, Minneapolis, MN, United States
| | - Eva A Turley
- London Regional Cancer Program, Department of Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
11
|
Abstract
We have devised a culture system with conditions that allow primary breast myoepithelial cells (MEPs) to be passaged in a manner that sustains either nonmyodifferentiated or myodifferentiated cell populations without permitting contaminating luminal cells to grow. We show that progenitor activity and potency of MEPs to generate luminal cells in culture and in vivo rely on maintenance of myodifferentiation. Specific isolation and propagation of topographically distinct MEPs reveal the existence of multipotent progenitors in terminal duct lobular units. These findings have important implications for our understanding of the emergence of candidate luminal precursor cells to human breast cancer. The human breast parenchyma consists of collecting ducts and terminal duct lobular units (TDLUs). The TDLU is the site of origin of most breast cancers. The reason for such focal susceptibility to cancer remains poorly understood. Here, we take advantage of a region-specific heterogeneity in luminal progenitors to interrogate the differentiation repertoire of candidate stem cells in TDLUs. We show that stem-like activity in serial passage culture and in vivo breast morphogenesis relies on the preservation of a myoepithelial phenotype. By enrichment for region-specific progenitors, we identify bipotent and multipotent progenitors in ducts and TDLUs, respectively. We propose that focal breast cancer susceptibility, at least in part, originates from region-specific myoepithelial progenitors.
Collapse
|
12
|
Navarini NF, De Araújo VC, Sperandio M, Napimoga MH, Teixeira LN, De Araújo NS, Martinez EF. Effect of epithelial growth factor on matrix metalloproteinase-2 and E-cadherin/β-catenin expression in an in situ model of tumorigenesis. Oncol Lett 2017; 14:3136-3140. [PMID: 28927057 DOI: 10.3892/ol.2017.6513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to analyze the in vitro effect of various doses of epidermal growth factor (EGF; 5 and 10 ng/ml) on matrix metalloproteinase-2 (MMP-2) secretion and E-cadherin/β-catenin expression by co-cultured cells that mimic an in situ carcinoma ex-pleomorphic adenoma, where benign myoepithelial cells from a pleomorphic adenoma surround malignant epithelial cells. EGF was supplemented in various doses and the effects were evaluated following four days of cell culture. ELISA was performed to determine MMP-2 secretion levels. Gene expression for E-cadherin and β-catenin was analyzed using quantitative polymerase chain reaction. The results revealed that E-cadherin expression decreased when the cells were supplemented with 5 ng/ml EGF. ELISA results indicated that MMP-2 secretion increased when EGF was supplemented at concentrations of 5 and 10 ng/ml. The present findings demonstrated that EGF may be involved in the epithelial-mesenchymal transition process via altering the E-cadherin/β-catenin complex and increasing MMP-2 secretion, which may then favor the dissolution of the basement membrane to the benefit of malignant cell clusters, contributing to the development of an invasive phenotype in this in vitro model of tumorigenesis.
Collapse
Affiliation(s)
- Natalia Festugatto Navarini
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-755, Brazil
| | - Vera Cavalcanti De Araújo
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-755, Brazil
| | - Marcelo Sperandio
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-755, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-755, Brazil
| | - Lucas Novaes Teixeira
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-755, Brazil
| | - Ney Soares De Araújo
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-755, Brazil
| | - Elizabeth Ferreira Martinez
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-755, Brazil
| |
Collapse
|
13
|
|
14
|
LPA receptor activity is basal specific and coincident with early pregnancy and involution during mammary gland postnatal development. Sci Rep 2016; 6:35810. [PMID: 27808166 PMCID: PMC5093903 DOI: 10.1038/srep35810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
During pregnancy, luminal and basal epithelial cells of the adult mammary gland proliferate and differentiate resulting in remodeling of the adult gland. While pathways that control this process have been characterized in the gland as a whole, the contribution of specific cell subtypes, in particular the basal compartment, remains largely unknown. Basal cells provide structural and contractile support, however they also orchestrate the communication between the stroma and the luminal compartment at all developmental stages. Using RNA-seq, we show that basal cells are extraordinarily transcriptionally dynamic throughout pregnancy when compared to luminal cells. We identified gene expression changes that define specific basal functions acquired during development that led to the identification of novel markers. Enrichment analysis of gene sets from 24 mouse models for breast cancer pinpoint to a potential new function for insulin-like growth factor 1 (Igf1r) in the basal epithelium during lactogenesis. We establish that β-catenin signaling is activated in basal cells during early pregnancy, and demonstrate that this activity is mediated by lysophosphatidic acid receptor 3 (Lpar3). These findings identify novel pathways active during functional maturation of the adult mammary gland.
Collapse
|
15
|
Wang Y, Jindal S, Martel M, Wu Y, Schedin P, Troxell M. Myoepithelial cells in lobular carcinoma in situ: distribution and immunophenotype. Hum Pathol 2016; 55:126-34. [PMID: 27195907 DOI: 10.1016/j.humpath.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022]
Abstract
Myoepithelial cells have important physical and paracrine roles in breast tissue development, maintenance, and tumor suppression. Recent molecular and immunohistochemical studies have demonstrated phenotypic alterations in ductal carcinoma in situ-associated myoepithelial cells. Although the relationship of lobular carcinoma in situ (LCIS) and myoepithelial cells was described in 1980, further characterization of LCIS-associated myoepithelial cells is lacking. We stained 27 breast specimens harboring abundant LCIS with antibodies to smooth muscle myosin heavy chain, smooth muscle actin, and calponin. Dual stains for E-cadherin/smooth muscle myosin heavy chain and CK7/p63 were also performed. In each case, the intensity and distribution of staining in LCIS-associated myoepithelial cells were compared with normal breast tissue on the same slide. In 78% of the cases, LCIS-associated myoepithelial cells demonstrated decreased staining intensity for one or more myoepithelial markers. The normal localization of myoepithelial cells (flat against the basement membrane, pattern N) was seen in 96% of LCIS, yet 85% of cases had areas with myoepithelial cell cytoplasm oriented perpendicular to the basement membrane (pattern P), and in 30% of cases, myoepithelial cells appeared focally admixed with LCIS cells (pattern C). This study characterizes detailed architectural and immunophenotypic alterations of LCIS-associated myoepithelial cells. The finding of variably diminished staining favors application of several myoepithelial immunostains in clinical practice. The interaction of LCIS with myoepithelial cells, especially in light of the perpendicular and central architectural arrangements, deserves further mechanistic investigation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239
| | - Sonali Jindal
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Maritza Martel
- Department of Pathology, Providence Health and Services, Portland, OR 97213
| | - Yaping Wu
- Department of Pathology, Providence Health and Services, Portland, OR 97213
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239; Oregon Health & Science University, Knight Cancer Institute, Portland, OR 97239
| | - Megan Troxell
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239; Oregon Health & Science University, Knight Cancer Institute, Portland, OR 97239.
| |
Collapse
|
16
|
Incidence of mammary tumors in the canine population living in the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer. Prev Vet Med 2016; 126:183-9. [DOI: 10.1016/j.prevetmed.2016.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/10/2016] [Accepted: 02/27/2016] [Indexed: 12/21/2022]
|
17
|
GT198 Expression Defines Mutant Tumor Stroma in Human Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1340-50. [PMID: 27001628 DOI: 10.1016/j.ajpath.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/02/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022]
Abstract
Human breast cancer precursor cells remain to be elucidated. Using breast cancer gene product GT198 (PSMC3IP; alias TBPIP or Hop2) as a unique marker, we revealed the cellular identities of GT198 mutant cells in human breast tumor stroma. GT198 is a steroid hormone receptor coactivator and a crucial factor in DNA repair. Germline mutations in GT198 are present in breast and ovarian cancer families. Somatic mutations in GT198 are present in ovarian tumor stromal cells. Herein, we show that human breast tumor stromal cells carry GT198 somatic mutations and express cytoplasmic GT198 protein. GT198(+) stromal cells share vascular smooth muscle cell origin, including myoepithelial cells, adipocytes, capillary pericytes, and stromal fibroblasts. Frequent GT198 mutations are associated with GT198(+) tumor stroma but not with GT198(-) tumor cells. GT198(+) progenitor cells are mostly capillary pericytes. When tested in cultured cells, mutant GT198 induces vascular endothelial growth factor promoter, and potentially promotes angiogenesis and adipogenesis. Our results suggest that multiple lineages of breast tumor stromal cells are mutated in GT198. These findings imply the presence of mutant progenitors, whereas their descendants, carrying the same GT198 mutations, are collectively responsible for forming breast tumor microenvironment. GT198 expression is, therefore, a specific marker of mutant breast tumor stroma and has the potential to facilitate diagnosis and targeted treatment of human breast cancer.
Collapse
|
18
|
Ruszczyk M, Zirpoli G, Kumar S, Bandera EV, Bovbjerg DH, Jandorf L, Khoury T, Hwang H, Ciupak G, Pawlish K, Schedin P, Masso-Welch P, Ambrosone CB, Hong CC. Breast cancer risk factor associations differ for pure versus invasive carcinoma with an in situ component in case-control and case-case analyses. Cancer Causes Control 2015; 27:183-98. [PMID: 26621543 DOI: 10.1007/s10552-015-0696-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/07/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Invasive ductal carcinoma (IDC) is diagnosed with or without a ductal carcinoma in situ (DCIS) component. Previous analyses have found significant differences in tumor characteristics between pure IDC lacking DCIS and mixed IDC with DCIS. We will test our hypothesis that pure IDC represents a form of breast cancer with etiology and risk factors distinct from mixed IDC/DCIS. METHODS We compared reproductive risk factors for breast cancer risk, as well as family and smoking history between 831 women with mixed IDC/DCIS (n = 650) or pure IDC (n = 181), and 1,620 controls, in the context of the Women's Circle of Health Study (WCHS), a case-control study of breast cancer in African-American and European-American women. Data on reproductive and lifestyle factors were collected during interviews, and tumor characteristics were abstracted from pathology reports. Case-control and case-case analyses were conducted using unconditional logistic regression. RESULTS Most risk factors were similarly associated with pure IDC and mixed IDC/DCIS. However, among postmenopausal women, risk of pure IDC was lower in women with body mass index (BMI) 25 to <30 [odds ratio (OR) 0.66; 95 % confidence interval (CI) 0.35-1.23] and BMI ≥ 30 (OR 0.33; 95 % CI 0.18-0.67) compared to women with BMI < 25, with no associations with mixed IDC/DCIS. In case-case analyses, women who breastfed up to 12 months (OR 0.55; 95 % CI 0.32-0.94) or longer (OR 0.47; 95 % CI 0.26-0.87) showed decreased odds of pure IDC than mixed IDC/DCIS compared to those who did not breastfeed. CONCLUSIONS Associations with some breast cancer risk factors differed between mixed IDC/DCIS and pure IDC, potentially suggesting differential developmental pathways. These findings, if confirmed in a larger study, will provide a better understanding of the developmental patterns of breast cancer and the influence of modifiable risk factors, which in turn could lead to better preventive measures for pure IDC, which have worse disease prognosis compared to mixed IDC/DCIS.
Collapse
Affiliation(s)
- Melanie Ruszczyk
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, 12 Capen Hall, Buffalo, NY, 14214, USA.
| | - Gary Zirpoli
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA.
| | - Shicha Kumar
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA.
| | - Elisa V Bandera
- Population Science/Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ, 08903, USA. .,Department of Epidemiology, Rutgers School of Public Health, 683 Hoes Ln W, Piscataway, NJ, 08854, USA.
| | - Dana H Bovbjerg
- Department of Psychiatry, University of Pittsburgh Cancer Institute, 5150 Centre Ave., Pittsburgh, PA, 15232, USA.
| | - Lina Jandorf
- Department of Oncology Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison Ave., New York, NY, 10029, USA.
| | - Thaer Khoury
- Department of Pathology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
| | - Helena Hwang
- Department of Pathology, University of Texas, Southwestern Medical Center, 5325 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Gregory Ciupak
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA.
| | - Karen Pawlish
- New Jersey State Cancer Registry, New Jersey Department of Health, 140 East Front Street, Trenton, NJ, 08625, USA.
| | - Pepper Schedin
- Department of Cell, Development and Cancer Biology, Oregon Health Sciences University, 3181 SW Sam Jackson Pkwy, Portland, OR, 97239, USA.
| | - Patricia Masso-Welch
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, 12 Capen Hall, Buffalo, NY, 14214, USA.
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA.
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm & Carlton Sts., Buffalo, NY, 14263, USA.
| |
Collapse
|
19
|
Krasnapolski MA, Lodillinsky C, Bal De Kier Joffé E, Eiján AM. Hypoxia-induced nitric oxide release by luminal cells stimulates proliferation and uPA secretion of myoepithelial cells in a bicellular murine mammary tumor. J Cancer Res Clin Oncol 2015; 141:1727-38. [PMID: 25687381 DOI: 10.1007/s00432-015-1934-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/05/2015] [Indexed: 12/28/2022]
Abstract
INTRODUCTION LM38 murine mammary adenocarcinoma model is formed by LM38-LP (myoepithelial and luminal), LM38-HP (luminal) and LM38-D2 (myoepithelial) cell lines. In a previous work, we had shown that LM38-HP and LM38-D2 cell lines are less malignant than the bicellular LM38-LP cell line. PURPOSE To study the role of nitric oxide (NO) as one of the mediators of functional interactions between malignant luminal and myoepithelial cells. METHODS AND RESULTS Using immunohistochemistry, in vivo iNOS expression was only detected in the luminal cells of bicellular LM38-LP and most cells of LM38-HP tumors. In cobalt-induced pseudohypoxia, LM38-LP and LM38-HP cell lines significantly increased HIF-1α and iNOS expression (Western blotting) and therefore NO production (Griess method). This increase was inhibited by the iNOS inhibitor 1400 W. On the other side, NO was not detectable in LM38-D2 cells either in basal or in pseudohypoxia. In addition, pseudohypoxia increased urokinase-type plasminogen activator (uPA) secretion by LM38-LP and LM38-HP cells and migration in the LM38-LP cell line, without modulating these properties in LM38-D2 cells (radial caseinolysis). The NO donor DETA/NONOate (500 μM) was able to increase uPA secretion and in vitro growth of LM38-D2. In agreement, 1400 W prevented in vivo growth of the myoepithelial LM38-D2 cells. CONCLUSIONS Hypoxia leads to an enhanced NO production by the luminal component, through HIF-1α and iNOS, which can stimulate myoepithelial cell proliferation and uPA secretion. In these new conditions, myoepithelial cells might act as an invasive forefront generating gaps that could help luminal cells to escape from the primary tumor.
Collapse
|
20
|
Zhao Y, Li Q, Katzenellenbogen BS, Lau LF, Taylor RN, Bagchi IC, Bagchi MK. Estrogen-induced CCN1 is critical for establishment of endometriosis-like lesions in mice. Mol Endocrinol 2015; 28:1934-47. [PMID: 25321413 DOI: 10.1210/me.2014-1080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endometriosis is a prevalent gynecological disorder in which endometrial tissue proliferates in extrauterine sites, such as the peritoneal cavity, eventually giving rise to painful, invasive lesions. Dysregulated estradiol (E) signaling has been implicated in this condition. However, the molecular mechanisms that operate downstream of E in the ectopic endometrial tissue are unknown. To investigate these mechanisms, we used a mouse model of endometriosis. Endometrial tissue from donor mice was surgically transplanted on the peritoneal surface of immunocompetent syngeneic recipient mice, leading to the establishment of cystic endometriosis-like lesions. Our studies revealed that treatment with E led to an approximately 3-fold increase in the lesion size within a week of transplantation. E also caused a concomitant stimulation in the expression of connective tissue growth factor/Cyr61/Nov (CCN1), a secreted cysteine-rich matricellular protein, in the lesions. Interestingly, CCN1 is highly expressed in human ectopic endometriotic lesions. To address its role in endometriosis, endometrial tissue from Ccn1-null donor mice was transplanted in wild-type recipient mice. The resulting ectopic lesions were reduced up to 75% in size compared with wild-type lesions due to diminished cell proliferation and cyst formation. Notably, loss of CCN1 also disrupted the development of vascular networks in the ectopic lesions and reduced the expression of several angiogenic factors, such as vascular endothelial growth factor-A and vascular endothelial growth factor-C. These results suggest that CCN1, acting downstream of E, critically controls cell proliferation and neovascularization, which support the growth and survival of endometriotic tissue at ectopic sites. Blockade of CCN1 signaling during the early stages of lesion establishment may provide a therapeutic avenue to control endometriosis.
Collapse
Affiliation(s)
- Yuechao Zhao
- Departments of Molecular and Integrative Physiology (Y.Z., B.S.K., M.K.B.) and Comparative Biosciences (Q.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Biochemistry and Molecular Genetics (L.F.L.), University of Illinois College of Medicine, Chicago, Illinois 60637; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | | | |
Collapse
|
21
|
Farhanji B, Latifpour M, Alizadeh AM, Khodayari H, Khodayari S, Khaniki M, Ghasempour S. Tumor suppression effects of myoepithelial cells on mice breast cancer. Eur J Pharmacol 2015; 765:171-8. [PMID: 26297304 DOI: 10.1016/j.ejphar.2015.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023]
Abstract
Several studies have assumed that myoepithelial cells (MECs) loss may contribute to epithelial tumor induction and/or progression. We adopted an in vitro assay and a syngeneic mice breast cancer model with histological and molecular characteristics resembling human lesions to evaluate tumor suppression effects of MECs. Flow cytometric, cell viability, blood chemistry, transmission electron microscope, immunohistochemistry and qRT-PCR assays were performed at the end of the study. We demonstrated that MECs could significantly suppress the viability of cancer cells at different time points (P<0.05). At the end of the fourth and fifth weeks, treated mice had smaller tumor volume compared with control animals. Average tumor volume was significantly less in treated groups than control group at days 21 (0.38±0.19 vs. 1.99±0.13 cm3), 28 (0.57±0.3 vs. 2.5±0.37 cm3) and 35 (0.7±0.35 vs. 2.65±0.4 cm3) after tumor cell injection (P<0.05). No hematological, hepatocellular, and renal toxicities were seen in MECs treated groups. Ultrastructural features revealed severe relationship between adjacent tumoral cells and loose interconnections of neoplastic cells in treated group. Immunohistochemical examinations of breast tumors showed high p63 and low alpha-smooth muscle actin protein expression in treated mice compared to control (P<0.05). MRNA expressions of TNF-α, smooth muscle-myosin heavy chain, connexin 43, and maspin were significantly up-regulated in breast tumor tissues in treated group compared to control (P<0.05). VEGF and alpha-smooth muscle actin mRNA expression were reduced in treated animals (P<0.05). The present study highlighted the potential tumor suppression effects of MECs on breast cancer in a typical animal model.
Collapse
Affiliation(s)
- Baharak Farhanji
- Iranian Tissue Bank & Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Latifpour
- Cancer Research Center, Tehran University of Medical Sciences, 1419733141 Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, 1419733141 Tehran, Iran.
| | - Hamid Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, 1419733141 Tehran, Iran
| | - Saeed Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, 1419733141 Tehran, Iran; Department of Pharmacology, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmood Khaniki
- Pathology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarieh Ghasempour
- Cancer Research Center, Tehran University of Medical Sciences, 1419733141 Tehran, Iran
| |
Collapse
|
22
|
Silva CAB, Nardello LCL, Garcia FW, Araújo NSD, Montalli VA, Araújo VCD, Martinez EF. The role of FGF-2/HGF and fibronectin matrix on pleomorphic adenoma myoepithelial cell morphology and immunophenotype: an in vitro study. Growth Factors 2015; 33:50-6. [PMID: 25257141 DOI: 10.3109/08977194.2014.957758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myoepithelial cells play a central role in glandular tumors, regulating the progression of in situ to invasive neoplasias, with the tumor microenvironment being shown to be involved in both initiation and progression. This study aimed to analyze the in vitro effects of fibroblast growth factor-2 (FGF-2) and hepatocyte growth factor (HGF) in myoepithelial cells under the influence of the fibronectin matrix extracellular protein. Benign myoepithelial cells were obtained from pleomorphic adenoma and cultured on a fibronectin substratum. FGF-2 and HGF were supplemented at different concentrations and time intervals, in order to evaluate cell proliferation, morphology and immunophenotype. Individually, FGF-2 and HGF supplementation did not alter myoepithelial cell proliferation, morphology or immunophenotype. The fibronectin substratum provoked an increase in cell proliferation and immunopositivity for α-smooth muscle actin and FGF-2. The myoepithelial cell morphology changed when the fibronectin substratum and FGF-2 acted together, highlighting the importance of the fibronectin extracellular matrix protein on the behavior of these cells.
Collapse
|
23
|
Phenotypic and Functional Characterization of Ductal Carcinoma In Situ-Associated Myoepithelial Cells. Clin Breast Cancer 2015; 15:335-42. [PMID: 25700939 DOI: 10.1016/j.clbc.2015.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/14/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) is contained by myoepithelial cells that are morphologically similar to normal breast tissue myoepithelial cells. However, phenotypic and functional characteristics of DCIS-associated myoepithelial cells are not known. In this study, we aimed to assess the characteristics of DCIS-associated myoepithelial cells. MATERIALS AND METHODS Immunophenotypic and functional characteristics of myoepithelial cells of pure DCIS, the DCIS component of infiltrating duct carcinoma (IDC), and the adjacent normal breast tissue of both groups (30 cases in each group) was assessed using phenotypic (CK5/6, CK14, p63, and calponin) and functional markers (maspin and CXCL14). RESULTS There was a decrease in expression of CK14, p63, and calponin in pure DCIS-associated myoepithelial cells compared with normal breast tissue myoepithelial cells (43.3% vs. 80.3%, 3.3% vs. 70%, 46.6 vs. 93.3%, respectively) and in the DCIS component of IDC compared with normal breast tissue myoepithelial cells (56.6% vs. 100%, 3.3% vs. 73.3%, 56.6% vs. 96.6%, respectively). CK5/6 expression was low to absent in myoepithelial cells of pure DCIS and the DCIS component of IDC as well as normal breast tissue myoepithelial cells. Maspin was expressed in all samples of normal breast tissue; however, 20% of pure DCIS and 26.6% of the DCIS component of IDC showed decreased expression. CXCL14 expression was greater in pure DCIS compared with adjacent normal breast tissue and the DCIS component of IDC. CONCLUSION Decreased expression of myoepithelial cell markers in DCIS suggests that DCIS-associated myoepithelial cells are phenotypically different from their normal counterparts. Two or more markers, preferably p63 and calponin, should be used to distinguish in situ from invasive breast carcinomas.
Collapse
|
24
|
Martinez EF, Demasi APD, Napimoga MH, Silva CAB, Navarini NF, Araújo NS, DE Araújo VC. Myoepithelial cells from pleomorphic adenoma are not influenced by tumor conditioned media from breast ductal adenocarcinoma and melanoma cells: An in vitro study. Oncol Lett 2014; 9:313-317. [PMID: 25435982 PMCID: PMC4246695 DOI: 10.3892/ol.2014.2624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023] Open
Abstract
Myoepithelial cells have been implicated in the regulation of the transition from in situ to invasive neoplasia in salivary gland tumors. Considering the importance of the microenvironment of the tumor, the present in vitro study therefore analyzed the morphological and phenotypic changes undergone by benign myoepithelial cells from pleomorphic adenoma (PA) stimulated by tumor-conditioned medium. The benign myoepithelial cells were obtained from PA and were cultured with fibronectin extracellular matrix protein, supplemented with tumor-conditioned medium, which was harvested from breast ductal adenocarcinoma AU-565 and melanoma Hs 852.T cells. The morphological alterations were assessed by immunofluorescence analysis using vimentin antibody. The α-smooth muscle actin (α-SMA) and fibroblast growth factor (FGF)-2 proteins were analyzed by indirect immunofluorescence and quantitative polymerase chain reaction (qPCR). No morphological changes were observed in the myoepithelial cells cultured in fibronectin protein under stimulation from either tumor-conditioned medium. The immunofluorescence results, which were supported by qPCR analysis, revealed that only α-SMA was upregulated in the fibronectin substratum, with or without tumor-conditioned medium obtained from breast ductal adenocarcinoma and melanoma cells. No significant difference in FGF-2 mRNA expression was detected when the cells were cultured either in the tumor-conditioned medium or in the fibronectin substratum. The tumor-conditioned medium harvested from breast ductal adenocarcinoma and melanoma did not affect myoepithelial cell differentiation and function, which was reflected by the fact that there was no observed increase in α-SMA and FGF-2 expression, respectively.
Collapse
Affiliation(s)
- Elizabeth Ferreira Martinez
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Ana Paula Dias Demasi
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Marcelo Henrique Napimoga
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | | | - Natalia Festugatto Navarini
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Ney Soares Araújo
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| | - Vera Cavalcanti DE Araújo
- Department of Oral Pathology, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo 13045-610, Brazil
| |
Collapse
|
25
|
The EGF signaling pathway influences cell migration and the secretion of metalloproteinases by myoepithelial cells in pleomorphic adenoma. Tumour Biol 2014; 36:205-11. [PMID: 25230789 DOI: 10.1007/s13277-014-2624-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022] Open
Abstract
During tumor development, benign neoplastic cells are influenced by the expression of cytokines, growth factors, and proteases present in the tumor microenvironment. Epidermal growth factor (EGF) is the most studied growth factor and is considered important for cell proliferation and migration. Metalloproteinases (MMPs) are also involved in tumor progression. The present study aimed to analyze the proliferation, viability and migration index of pleomorphic adenoma myoepithelial cells, in addition to the secretion of MMPs with EGF supplementation. Benign myoepithelial cells were cultured with two different EGF doses (5 and 10 ng/ml), and the influence of EGF on cell proliferation and viability, using trypan blue and MTT assays, respectively, after 24, 48, and 72 h, was evaluated. To analyze cellular morphology, hematoxylin-eosin staining and indirect immunofluorescence using the anti-vimentin antibody, was performed. In vitro migration assays were performed in Transwell chambers with an 8-μm pore covered with Matrigel and supplemented with 5 or 10 ng/ml of EGF, after 96 h. After 4 days of cell culture, ELISA was performed to determine the MMP-2 and MMP-13 levels. One-way analysis of variance (ANOVA) with post hoc Tukey test was applied, with a significance level of 0.05. The results revealed that EGF influences myoepithelial cell morphology, without alteration of proliferation and viability. The migration assay showed that EGF increased the mean index from 16 % in the control group to 40 and 76 % for 5 and 10 ng/ml of EGF, respectively. ELISA revealed that when the cells were supplemented with either of the EGF doses, an increase in MMP-2 levels was observed when compared with the control group (C). This study concludes that EGF aids in the production of MMP-2, which favors the dissolution of the basement membrane, contributing to cell migration and tumor progression, hence permitting contact between the myoepithelial cells and stroma.
Collapse
|
26
|
Lien HC, Lee YH, Jeng YM, Lin CH, Lu YS, Yao YT. Differential expression of hyaluronan synthase 2 in breast carcinoma and its biological significance. Histopathology 2014; 65:328-39. [DOI: 10.1111/his.12390] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/08/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Huang-Chun Lien
- Department of Pathology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology; National Taiwan University Hospital, Hsin-Chu Branch; Hsin-Chu Taiwan
| | - Yung-Ming Jeng
- Department of Pathology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Ching-Hung Lin
- Department of Oncology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Yen-Shen Lu
- Department of Oncology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Yu-Tung Yao
- Department of Pathology; College of Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|
27
|
Dieterich M, Hartwig F, Stubert J, Klöcking S, Kundt G, Stengel B, Reimer T, Gerber B. Accompanying DCIS in breast cancer patients with invasive ductal carcinoma is predictive of improved local recurrence-free survival. Breast 2014; 23:346-51. [PMID: 24559611 DOI: 10.1016/j.breast.2014.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/28/2013] [Accepted: 01/19/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) often accompanies invasive ductal carcinoma (IDC). The presence of co-existing DCIS is postulated to present as a less aggressive phenotype than IDC alone. PATIENTS AND METHODS Patients diagnosed with hormone receptor-positive breast cancer receiving mastectomy were evaluated. Only patients without adjuvant radio- and chemotherapy were included to decrease treatment bias on local recurrence (LR). RESULTS Of 2239 breast cancer patients, 198 fulfilled the inclusion criteria. The overall LR rate was 11.6%. Tumor stage (p = 0.002), nodal status (pN2 vs. pN0, p = 0.023) and pure IDC compared with IDC-DCIS (p = 0.029) were multivariate independent factors for increased LR risk. Patients with IDC-DCIS were significantly younger (p < 0.001), had smaller tumors (p = 0.001), less lymph node involvement (p = 0.012). The LR rate was significantly increased in patients with pure IDC (p = 0.012). The time to distant metastases was decreased in patients with pure IDC compared with that observed in patients with IDC-DCIS (log rank = 0.030). CONCLUSION Invasive ductal carcinoma accompanied by DCIS is associated with lower LR. The prognostic value of co-existing DCIS in the adjuvant decision-making process may be considered a new independent prognostic marker. This finding needs further studies to evaluate its usefulness in premenopausal women.
Collapse
Affiliation(s)
- M Dieterich
- Department of Obstetrics and Gynecology, Breast Unit, University of Rostock, Suedring 81, 18059 Rostock, Germany.
| | - F Hartwig
- Department of Obstetrics and Gynecology, Breast Unit, University of Rostock, Suedring 81, 18059 Rostock, Germany
| | - J Stubert
- Department of Obstetrics and Gynecology, Breast Unit, University of Rostock, Suedring 81, 18059 Rostock, Germany
| | - S Klöcking
- Cancer Registry Rostock, Department of Radiotherapy, University of Rostock, Suedring 75, 18059 Rostock, Germany
| | - G Kundt
- Institute for Biostatistics and Informatics in Medicine, University of Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - B Stengel
- Institute for Pathology, Hospital Suedstadt, Suedring 81, 18059 Rostock, Germany
| | - T Reimer
- Department of Obstetrics and Gynecology, Breast Unit, University of Rostock, Suedring 81, 18059 Rostock, Germany
| | - B Gerber
- Department of Obstetrics and Gynecology, Breast Unit, University of Rostock, Suedring 81, 18059 Rostock, Germany
| |
Collapse
|
28
|
Punglia RS, Schnitt SJ, Weeks JC. Treatment of Ductal Carcinoma In Situ After Excision: Would a Prophylactic Paradigm Be More Appropriate? J Natl Cancer Inst 2013; 105:1527-33. [DOI: 10.1093/jnci/djt256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Cowell CF, Weigelt B, Sakr RA, Ng CKY, Hicks J, King TA, Reis-Filho JS. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 2013; 7:859-69. [PMID: 23890733 DOI: 10.1016/j.molonc.2013.07.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is an intraductal neoplastic proliferation of epithelial cells that is separated from the breast stroma by an intact layer of basement membrane and myoepithelial cells. DCIS is a non-obligate precursor of invasive breast cancer, and up to 40% of these lesions progress to invasive disease if untreated. Currently, it is not possible to predict accurately which DCIS would be more likely to progress to invasive breast cancer as neither the significant drivers of the invasive transition have been identified, nor has the clinical utility of tests predicting the likelihood of progression been demonstrated. Although molecular studies have shown that qualitatively, synchronous DCIS and invasive breast cancers are remarkably similar, there is burgeoning evidence to demonstrate that intra-tumor genetic heterogeneity is observed in a subset of DCIS, and that the process of progression to invasive disease may constitute an 'evolutionary bottleneck', resulting in the selection of subsets of tumor cells with specific genetic and/or epigenetic aberrations. Here we review the clinical challenge posed by DCIS, the contribution of the microenvironment and genetic aberrations to the progression from in situ to invasive breast cancer, the emerging evidence of the impact of intra-tumor genetic heterogeneity on this process, and strategies to combat this heterogeneity.
Collapse
Affiliation(s)
- Catherine F Cowell
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Coradini D, Oriana S. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation. CHINESE JOURNAL OF CANCER 2013; 33:51-67. [PMID: 23845141 PMCID: PMC3935006 DOI: 10.5732/cjc.013.10040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical and Community Health Sciences, Medical Statistics, Biometry and Bioinformatics, University of Milan 20133, Italy.
| | | |
Collapse
|
31
|
In vitro cytokine expression in in situ-like areas of malignant neoplasia. Arch Oral Biol 2013; 58:552-7. [DOI: 10.1016/j.archoralbio.2012.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 01/07/2023]
|
32
|
da Silva AD, Silva CAB, Montalli VAM, Martinez EF, de Araújo VC, Furuse C. In vitro evaluation of the suppressor potential of conditioned medium from benign myoepithelial cells from pleomorphic adenoma in malignant cell invasion. J Oral Pathol Med 2012; 41:610-4. [PMID: 22680065 DOI: 10.1111/j.1600-0714.2012.01163.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumoral invasion process is the result of a complex interaction between the tumor cells and microenvironment which plays an important role in modulating the growth and invasion of the cancer. The myoepithelial cells, present in glandular organs such as the breast and salivary glands, seem to exert paracrine effects on the glandular epithelium, acting as natural tumor suppressors. To verify the influence of the benign myoepithelial cells in the invasion of malignant cells, simulating an in situ carcinoma ex pleomorphic adenoma, we have cultured three different high-potential invasive malignant tumors (breast ductal adenocarcinoma, melanoma and oral squamous cell carcinoma) in conditioned medium of myoepithelial cells from salivary gland pleomorphic adenomas using transwell chambers with 8-μm pores membrane coated with matrigel. After 96 h, quantitative analyses of the results were performed by calculating the invasion index (number of cells that invaded in relation to the total number of cells). The results showed that there was a reduction of the invasion index mean for the three different malignant tumors. This study supports a tumoral suppressor function of the myoepithelial cells from pleomorphic adenoma in in vitro invasion process.
Collapse
|
33
|
Martinez EF, Demasi APD, Napimoga MH, Arana-Chavez VE, Altemani A, de Araújo NS, de Araújo VC. In vitro influence of the extracellular matrix in myoepithelial cells stimulated by malignant conditioned medium. Oral Oncol 2012; 48:102-9. [DOI: 10.1016/j.oraloncology.2011.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 10/16/2022]
|
34
|
Hua X, Yu L, Huang X, Liao Z, Xian Q. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma. Diagn Pathol 2011; 6:111. [PMID: 22067528 PMCID: PMC3228672 DOI: 10.1186/1746-1596-6-111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Diagnosis of ductal carcinoma in situ (DCIS) in breast cancer cases is challenging for pathologist due to a variety of in situ patterns and artefacts, which could be misinterpreted as stromal invasion. Microinvasion is detected by the presence of cytologically malignant cells outside the confines of the basement membrane and myoepithelium. When malignant cells invade the stroma, there is tissue remodeling induced by perturbed stromal-epithelial interactions. Carcinoma-associated fibroblasts (CAFs) are main cells in the microenvironment of the remodeled tumor-host interface. They are characterized by the expression of the specific fibroblast activation protein-alpha (FAP-α), and differ from that of normal fibroblasts exhibiting an immunophenotype of CD34. We hypothesized that staining for FAP-α may be helpful in determining whether DCIS has microinvasion. METHODS 349 excised breast specimens were immunostained for smooth muscle actin SMA, CD34, FAP-α, and Calponin. Study material was divided into 5 groups: group 1: normal mammary tissues of healthy women after plastic surgery; group 2: usual ductal hyperplasia (UDH); group 3: DCIS without microinvasion on H & E stain; group 4: DCIS with microinvasion on H & E stain (DCIS-MI), and group 5: invasive ductal carcinoma (IDC). A comparative evaluation of the four immunostains was conducted. RESULTS Our results demonstrated that using FAP-α and Calponin adjunctively improved the sensitivity of pathological diagnosis of DCIS-MI by 11.29%, whereas the adjunctive use of FAP-α and Calponin improved the sensitivity of pathological diagnosis of DCIS by 13.6%. CONCLUSIONS This study provides the first evidence that immunostaining with FAP-α and Calponin can serve as a novel marker for pathologically diagnosing whether DCIS has microinvasion.
Collapse
Affiliation(s)
- Xing Hua
- Department of Pathology, the Forth Affiliated Hospital of Jinan University, 510220 Guangzhou, China
- Department of Pathology, Guangzhou Red Cross Hospital, 510220 Guangzhou, China
| | - Lina Yu
- Department of Pathology, College of Basic Medicine, Southern Medical University, 510515 Guangzhou, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Xiaoxiao Huang
- Department of Pathology, the Forth Affiliated Hospital of Jinan University, 510220 Guangzhou, China
- Department of Pathology, Guangzhou Red Cross Hospital, 510220 Guangzhou, China
| | - Zexiao Liao
- Department of Pathology, the Forth Affiliated Hospital of Jinan University, 510220 Guangzhou, China
- Department of Pathology, Guangzhou Red Cross Hospital, 510220 Guangzhou, China
| | - Qi Xian
- Department of Pathology, the Forth Affiliated Hospital of Jinan University, 510220 Guangzhou, China
- Department of Pathology, Guangzhou Red Cross Hospital, 510220 Guangzhou, China
| |
Collapse
|
35
|
Pasic L, Eisinger-Mathason TSK, Velayudhan BT, Moskaluk CA, Brenin DR, Macara IG, Lannigan DA. Sustained activation of the HER1-ERK1/2-RSK signaling pathway controls myoepithelial cell fate in human mammary tissue. Genes Dev 2011; 25:1641-53. [PMID: 21828273 DOI: 10.1101/gad.2025611] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human mammary glands arise from multipotent progenitor cells, which likely respond both to cell-autonomous and to extrinsic cues. However, the identity of these cues and how they might act remain unclear. We analyzed HER1 ligand effects on mammary morphogenesis using a three-dimensional organoid model generated from human breast tissue that recapitulates both qualitatively and quantitatively the normal ductal network in situ. Strikingly, different HER1 ligands generate distinct patterns of cell fate. Epidermal growth factor (EGF) causes a massive expansion of the myoepithelial lineage. Amphiregulin, in contrast, enables normal ductal development. These differences cannot be ascribed to preferential apoptosis or proliferation of differentiated cell populations, but are dependent on HER1 signal intensity. Inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) effector RSK prevents the EGF-induced myoepithelial expansion. Notably, mouse mammary organoids are much less responsive to HER1 ligands. Little is known about the myoepithelial lineage or about growth factor effects on mammary progenitor differentiation, and our studies provide an important window into human mammary development that reveals unexpected differences from the mouse model.
Collapse
Affiliation(s)
- Lejla Pasic
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mahooti S, Porter K, Alpaugh ML, Ye Y, Xiao Y, Jones S, Tellez JD, Barsky SH. Breast carcinomatous tumoral emboli can result from encircling lymphovasculogenesis rather than lymphovascular invasion. Oncotarget 2011; 1:131-47. [PMID: 21297224 DOI: 10.18632/oncotarget.100609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The canonical view of the origin of tumor lymphovascular emboli is that they usually originate from lymphovascular invasion as part of a multistep metastatic process. Recent experimental evidence has suggested that metastasis can occur earlier than previously thought and we found evidence that tumor emboli formation can result from the short-circuiting step of encircling lymphovasculogenesis. Experimentally, we used a xenograft of human inflammatory breast cancer (MARY-X), a model that exhibited florid tumor emboli, to generate tumoral spheroids in vitro. In observational studies, we chose human breast carcinoma cases where there appeared to be a possible transition of in situ carcinoma to lymphovascular emboli without intervening stromal invasion. These cases were studied by morphometry as well as IHC with tumor proliferation (Ki-67) and adhesion (E-cadherin) markers, myoepithelial (p63), as well as endothelial (podoplanin [D2-40], CD31, VEGFR-3, Prox-1) markers. Unlabelled spheroids coinjected with either GFP or RFP-human myoepithelial cells or murine embryonal fibroblasts (MEFs) gave rise to tumors which exhibited GFP/RFP immunoreactivity within the cells lining the emboli-containing lymphovascular channels. In vitro studies demonstrated that the tumoral spheroids induced endothelial differentiation of cocultured myoepithelial cells and MEFs, measured by real time PCR and immunofluorescence. In humans, the in situ clusters exhibited similar proliferation, E-cadherin immunoreactivity and size as the tumor emboli (p =.5), suggesting the possibility that the latter originated from the former. The in situclusters exhibited a loss (50%-100%) of p63 myoepithelial immunoreactivity but not E-cadherin epithelial immunoreactivity. The tumor emboli were mainly present within lymphatic channels whose dual p63/CD31, p63/D2-40 and p63/VEGFR-3 and overall weak patterns of D2-40/CD31/VEGFR-3 immunoreactivities suggested that they represented immature and newly created vasculature derived from originally myoepithelial-lined ducts. Collectively both experimental as well as observational studies suggested the possibility that these breast cancer emboli resulted from encircling lymphovasculogenesis rather than conventional lymphovascular invasion.
Collapse
Affiliation(s)
- Sepi Mahooti
- Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Macias H, Moran A, Samara Y, Moreno M, Compton JE, Harburg G, Strickland P, Hinck L. SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev Cell 2011; 20:827-40. [PMID: 21664580 PMCID: PMC3129866 DOI: 10.1016/j.devcel.2011.05.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/12/2011] [Accepted: 05/16/2011] [Indexed: 01/08/2023]
Abstract
In the field of breast biology, there is a growing appreciation for the "gatekeeping function" of basal cells during development and disease processes yet mechanisms regulating the generation of these cells are poorly understood. Here, we report that the proliferation of basal cells is controlled by SLIT/ROBO1 signaling and that production of these cells regulates outgrowth of mammary branches. We identify the negative regulator TGF-β1 upstream of Robo1 and show that it induces Robo1 expression specifically in the basal layer, functioning together with SLIT2 to restrict branch formation. Loss of SLIT/ROBO1 signaling in this layer alone results in precocious branching due to a surplus of basal cells. SLIT2 limits basal cell proliferation by inhibiting canonical WNT signaling, increasing the cytoplasmic and membrane pools of β-catenin at the expense of its nuclear pool. Together, our studies provide mechanistic insight into how specification of basal cell number influences branching morphogenesis.
Collapse
Affiliation(s)
- Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Angel Moran
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Yazeed Samara
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Melissa Moreno
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Jennifer E Compton
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Gwyndolen Harburg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Phyllis Strickland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
38
|
Dewar R, Fadare O, Gilmore H, Gown AM. Best practices in diagnostic immunohistochemistry: myoepithelial markers in breast pathology. Arch Pathol Lab Med 2011; 135:422-9. [PMID: 21466356 DOI: 10.5858/2010-0336-cp.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Numerous immunohistochemical stains have been shown to exhibit exclusive or preferential positivity in breast myoepithelial cells relative to their luminal/epithelial counterparts. These myoepithelial markers provide invaluable assistance in accurately classifying breast proliferations, especially in core biopsies. Although numerous myoepithelial markers are available, they differ in their sensitivity, specificity, and ease of interpretation, which may be attributed, to a large extent, to the variable immunoreactivity of these markers in stromal cells including myofibroblasts, vessels, luminal/epithelial cells, and tumor cells. OBJECTIVE To review commonly used myoepithelial markers in breast pathology and a selection of diagnostic scenarios where they may be useful. DATA SOURCES The information outlined in this review article is based on our experiences with routine cases and a review of English-language articles published between 1987 and 2008. CONCLUSIONS To demonstrate the presence or absence of myoepithelial cells, a panel-based approach of 2 or more markers is recommended. Markers that most effectively combine sensitivity, specificity, and ease of interpretation include smooth muscle myosin heavy chains, calponin, p75, p63, P-cadherin, basal cytokeratins, maspin, and CD10. These markers, however, display varying cross-reactivity patterns and variably reduced expression in the myoepithelial cells bordering in situ carcinomas. The choice of a myoepithelial marker should be dependent on a combination of factors, including published evidence on its diagnostic utility, its availability, performance characteristics that have been achieved in a given laboratory, and the specific diagnostic scenario. When its use is deemed necessary, immunohistochemistry for myoepithelial cells in breast pathology is most effective when conceptualized as supplemental, rather than central to routine morphologic interpretation.
Collapse
Affiliation(s)
- Rajan Dewar
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
39
|
Schnitt SJ. Molecular biology of breast tumor progression: a view from the other side. Int J Surg Pathol 2010; 18:170S-173S. [PMID: 20484285 DOI: 10.1177/1066896910370773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stuart J Schnitt
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Mahooti S, Porter K, Alpaugh ML, Ye Y, Xiao Y, Jones S, Tellez JD, Barsky SH. Breast carcinomatous tumoral emboli can result from encircling lymphovasculogenesis rather than lymphovascular invasion. Oncotarget 2010; 1:131-147. [PMID: 21297224 PMCID: PMC3058877 DOI: 10.18632/oncotarget.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/23/2010] [Indexed: 11/25/2022] Open
Abstract
The canonical view of the origin of tumor lymphovascular emboli is that they usually originate from lymphovascular invasion as part of a multistep metastatic process. Recent experimental evidence has suggested that metastasis can occur earlier than previously thought and we found evidence that tumor emboli formation can result from the short-circuiting step of encircling lymphovasculogenesis. Experimentally, we used a xenograft of human inflammatory breast cancer (MARY-X), a model that exhibited florid tumor emboli, to generate tumoral spheroids in vitro. In observational studies, we chose human breast carcinoma cases where there appeared to be a possible transition of in situ carcinoma to lymphovascular emboli without intervening stromal invasion. These cases were studied by morphometry as well as IHC with tumor proliferation (Ki-67) and adhesion (E-cadherin) markers, myoepithelial (p63), as well as endothelial (podoplanin [D2-40], CD31, VEGFR-3, Prox-1) markers. Unlabelled spheroids coinjected with either GFP or RFP-human myoepithelial cells or murine embryonal fibroblasts (MEFs) gave rise to tumors which exhibited GFP/RFP immunoreactivity within the cells lining the emboli-containing lymphovascular channels. In vitro studies demonstrated that the tumoral spheroids induced endothelial differentiation of cocultured myoepithelial cells and MEFs, measured by real time PCR and immunofluorescence. In humans, the in situ clusters exhibited similar proliferation, E-cadherin immunoreactivity and size as the tumor emboli (p =.5), suggesting the possibility that the latter originated from the former. The in situclusters exhibited a loss (50%-100%) of p63 myoepithelial immunoreactivity but not E-cadherin epithelial immunoreactivity. The tumor emboli were mainly present within lymphatic channels whose dual p63/CD31, p63/D2-40 and p63/VEGFR-3 and overall weak patterns of D2-40/CD31/VEGFR-3 immunoreactivities suggested that they represented immature and newly created vasculature derived from originally myoepithelial-lined ducts. Collectively both experimental as well as observational studies suggested the possibility that these breast cancer emboli resulted from encircling lymphovasculogenesis rather than conventional lymphovascular invasion.
Collapse
Affiliation(s)
- Sepi Mahooti
- Department of Pathology and Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Kyle Porter
- Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | | | - Yin Ye
- University of Nevada School of Medicine, Reno, NV 89557
| | - Yi Xiao
- Department of Pathology and Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Susie Jones
- Department of Pathology and Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | | | - Sanford H. Barsky
- University of Nevada School of Medicine, Reno, NV 89557
- Nevada Cancer Institute, Las Vegas, NV 89135
| |
Collapse
|
41
|
Phenotypic Alterations in Myoepithelial Cells Associated With Benign Sclerosing Lesions of the Breast. Am J Surg Pathol 2010; 34:896-900. [DOI: 10.1097/pas.0b013e3181dd60d3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Schnitt SJ. The transition from ductal carcinoma in situ to invasive breast cancer: the other side of the coin. Breast Cancer Res 2009; 11:101. [PMID: 19291276 PMCID: PMC2687714 DOI: 10.1186/bcr2228] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The factors associated with the progression of ductal carcinoma in situ (DCIS) to invasive breast cancer are poorly understood. Many studies of this subject focus on the role of molecular and genetic alterations in the neoplastic epithelial cells. However, emerging evidence suggests that transition from DCIS to invasive cancer is strongly dependent upon alterations in the microenvironment. The potential roles of myoepithelial cells and of stromal-epithelial interaction are of particular interest in this regard.
Collapse
|
43
|
Phenotypic Alterations in Ductal Carcinoma In Situ-associated Myoepithelial Cells. Am J Surg Pathol 2009; 33:227-32. [DOI: 10.1097/pas.0b013e318180431d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Filip S, Mokry J, Horacek J, English D. Stem Cells and the Phenomena of Plasticity and Diversity: A Limiting Property of Carcinogenesis. Stem Cells Dev 2008; 17:1031-8. [DOI: 10.1089/scd.2007.0234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stanislav Filip
- Department of Oncology and Radiotherapy, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jiri Horacek
- Department of Medicine, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Denis English
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Florida
| |
Collapse
|