1
|
Möhrmann L, Rostock L, Werner M, Oleś M, Arnold JS, Paramasivam N, Jöhrens K, Rupp L, Schmitz M, Richter D, Uhrig S, Fröhlich M, Hutter B, Hüllein J, Jahn A, Arlt M, Möhrmann EE, Hanf D, Gieldon L, Kreutzfeldt S, Heilig CE, Teleanu MV, Lipka DB, Beck K, Baude-Müller A, Mock A, Jelas I, Rieke DT, Wiesweg M, Brandts C, Boerries M, Illert AL, Desuki A, Kindler T, Krackhardt AM, Westphalen CB, Christopoulos P, Apostolidis L, Stenzinger A, Allgäuer M, Neumann O, Kerle IA, Horak P, Heining C, Grosch H, Schröck E, Hübschmann D, Fröhling S, Glimm H. Genomic landscape and molecularly informed therapy in thymic carcinoma and other advanced thymic epithelial tumors. MED 2025; 6:100612. [PMID: 40107270 DOI: 10.1016/j.medj.2025.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 02/07/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Thymic epithelial tumors (TETs) are rare malignancies with limited treatment options and underexplored molecular features. METHODS We examined the genomic landscape and therapeutic outcomes in 81 patients with advanced TETs, including thymic carcinomas (TCs), thymomas, and thymic neuroendocrine neoplasms (TNENs), who were enrolled in the MASTER trial, a prospective observational precision oncology trial. FINDINGS Using whole-genome-sequencing and whole-exome-sequencing analysis, transcriptome analysis, and methylome analysis, we identified distinct molecular features across TET subtypes, including a higher tumor mutational burden in TC and pathogenic germline variants in 18% of cases. We performed transcriptome- and methylome-based unsupervised clustering and were able to divide TCs into immunologically hot and cold subsets, with hot TCs exhibiting higher T cell infiltration and significantly longer overall survival. In 65 out of 76 (86%) patients, we recommended molecularly informed therapies, which were applied in 29 out of 65 (45%) cases, leading to a disease control rate of 62% and an objective response rate of 23% (both n = 26). The progression-free survival ratio (PFSr) was > 1.3 in 8 out of 24 (33%) patients, 7 of them having TC. Among TCs, patients achieved a mean PFSr of 1.4, indicating potential therapeutic advantages in this subgroup. The PFSr between the PFS of immune checkpoint inhibition and preceding therapies was significantly higher in the hot cluster compared to the cold cluster (median 1.7 vs. 0.3; p = 0.01945). CONCLUSIONS Our findings expand the understanding of TET biology and emphasize the role of precision oncology in informing treatment decisions and improving outcomes for patients with advanced TETs, particularly in TCs.
Collapse
Affiliation(s)
- Lino Möhrmann
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, USA; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany.
| | - Lysann Rostock
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Maximilian Werner
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Małgorzata Oleś
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas S Arnold
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nagarajan Paramasivam
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Korinna Jöhrens
- Department of Pathology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany
| | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Sebastian Uhrig
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Hutter
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Arne Jahn
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marie Arlt
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elena E Möhrmann
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Dorothea Hanf
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Laura Gieldon
- Institute of Medical Genetics, Carl von Ossietzky University, Oldenburg, Germany
| | - Simon Kreutzfeldt
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Christoph E Heilig
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Maria-Veronica Teleanu
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Katja Beck
- Institute of Medical Genetics, Carl von Ossietzky University, Oldenburg, Germany
| | - Annika Baude-Müller
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany; Section Translational Cancer Epigenomics, Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Andreas Mock
- Institute of Pathology, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Ivan Jelas
- Charité Comprehensive Cancer Center, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Damian T Rieke
- Charité Comprehensive Cancer Center, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Brandts
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, Frankfurt, Germany; University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anna L Illert
- Department of Internal Medicine I, Division of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg im Breisgau, Germany; Klinik und Poliklinik für Innere Medizin III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Desuki
- University Cancer Center and Department of Internal Medicine III, University Medical Center Mainz, Mainz, Germany; TRON-Translational Oncology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; DKTK, partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Mainz, Mainz, Germany
| | - Thomas Kindler
- University Cancer Center and Department of Internal Medicine III, University Medical Center Mainz, Mainz, Germany; TRON-Translational Oncology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; DKTK, partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Mainz, Mainz, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C Benedikt Westphalen
- Department of Internal Medicine III, University Hospital, LMU Munich and Comprehensive Cancer Center, Munich, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, and NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Leonidas Apostolidis
- Department of Medical Oncology, NCT Heidelberg and Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Allgäuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Neumann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Irina A Kerle
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Peter Horak
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany
| | - Heidrun Grosch
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, and NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Evelin Schröck
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Hübschmann
- Computational Oncology Group (CO), Molecular Precision Oncology Program (MPOP), German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Innovation and Service Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), NCT Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, TU Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; Translational Functional Cancer Genomics, DKFZ Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Uemoto Y, Lin CCA, Wang B, Ye D, Fang YV, Bikorimana E, Napolitano F, Chica-Parrado MR, Li C, Mendiratta S, Chen C, Hanker AB, Arteaga CL. Selective degradation of FGFR1/2 overcomes antiestrogen resistance in ER+ breast cancer with FGFR1/2 alterations. Cancer Lett 2025; 619:217668. [PMID: 40127812 DOI: 10.1016/j.canlet.2025.217668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
FGFR1 amplification and FGFR1/2 activating mutations have been associated with antiestrogen resistance in estrogen receptor-positive (ER+) breast cancer. However, there are no approved FGFR1-targeted therapies for breast cancers harboring these alterations. In this study, we investigated the selective degradation of FGFR1/2 using the proteolysis-targeting chimera (PROTAC) DGY-09-192 as a novel therapeutic strategy in ER + breast cancers harboring FGFR1/2 somatic alterations. Treatment of ER+/FGFR1-amplified breast cancer cells and patient-derived xenografts with DGY-09-192 resulted in sustained degradation of FGFR1 in a proteasome-dependent manner and suppressed downstream signal transduction. The combination of DGY-09-192 and the ERα degrader fulvestrant resulted in complete cell growth arrest and tumor regression of ER+/FGFR1-amplified patients-derived xenografts. In addition, we tested the effect of DGY-09-192 on breast cancer cells expressing FGFR1N546K and FGFR2K659E hotspot kinase domain mutations as well as ER-negative breast cancer cells harboring FGFR2 gene amplification. Treatment with DGY-09-192 resulted in the degradation of mutant FGFR1/2 and blocked mutant receptor-induced signal transduction and antiestrogen resistance. Collectively, our study suggests that degradation of FGFR1/2, in combination with antiestrogens, can be leveraged as a therapeutic strategy in ER + breast cancers harboring FGFR1/2 driver alterations.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Female
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Animals
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Xenograft Model Antitumor Assays
- Proteolysis/drug effects
- Mice
- Fulvestrant/pharmacology
- Cell Line, Tumor
- Receptors, Estrogen/metabolism
- Signal Transduction/drug effects
- Mutation
- Cell Proliferation/drug effects
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor alpha/metabolism
- MCF-7 Cells
Collapse
Affiliation(s)
- Yasuaki Uemoto
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Chang-Ching A Lin
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Bingnan Wang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dan Ye
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Yisheng V Fang
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA; Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - Cheung Li
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | | | - Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA.
| | - Carlos L Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Jhawar S, Jha A, Talvacchio S, Kamihara J, Del Rivero J, Pacak K. Case Series of Patients With FGFR1-Related Pheochromocytoma and Paraganglioma With a Focus on Biochemical, Imaging Signatures and Treatment Options. Clin Endocrinol (Oxf) 2025; 102:626-634. [PMID: 40091522 PMCID: PMC12046543 DOI: 10.1111/cen.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/19/2025]
Abstract
Pheochromocytoma and paraganglioma (together PPGL) are tumours with a high degree of heritability. Genetic landscape is divided into three clusters, cluster 1 (Krebs/pseudohypoxia signalling pathway), cluster 2 (kinase signalling pathway) and cluster 3 (Wnt signalling pathway). With increasing knowledge in the field of genetics, cluster-specific tumour characteristics, biochemical phenotype and imaging signatures are established in commonly found genes. The association of FGFR1 pathogenic mutations with PPGL have been recently described although its features are not yet well established. Here, we present four patients with PPGL who were found to have somatic FGFR1 pathogenic mutations. We discuss their clinical presentations, biochemical phenotypes, imaging signatures and treatment options that will be relevant for practicing physicians in managing these patients effectively.
Collapse
Affiliation(s)
- Sakshi Jhawar
- National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Abhishek Jha
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Sara Talvacchio
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Junne Kamihara
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jaydira Del Rivero
- National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
4
|
Selt F, Sigaud R, Korshunov A, Capper D, Reuss D, von Deimling A, Pajtler KW, van Tilburg CM, Nesper-Brock M, Jones DTW, Pfister SM, Sahm F, Witt O, Milde T, Ecker J. Association of phosphorylation status of ERK and genetic MAPK alterations in pediatric tumors. Sci Rep 2025; 15:13498. [PMID: 40251387 PMCID: PMC12008427 DOI: 10.1038/s41598-025-98514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is one of the most frequently altered pathways in pediatric cancer. Activating genomic MAPK-alterations and phosphorylation of the MAPK downstream target ERK (pERK) were analyzed in the PTT2.0 registry to identify potential targets for MAPK-directed treatment in relapsed pediatric CNS tumors, sarcomas and other solid tumors. The present study investigates the association of ERK phosphorylation and genomic MAPK pathway alterations (mutations, fusions, amplifications) in the PTT2.0 dataset. PTT2.0 registry cases with available genomic and immunohistochemistry data (n = 235) were included. Samples with and without detected activating genomic MAPK alterations were compared regarding ERK phosphorylation, quantified by immunohistochemistry H-score. The association of pERK intensity and the presence of MAPK alteration was analyzed using a univariable binary logistic regression model.The mean pERK H-score was significantly higher in samples with activating genomic MAPK alterations. pERK H-score positively correlated with the presence of MAPK alterations. However, the pERK H-score predicted MAPK alterations only with a sensitivity of 58.3% and a specificity of 83.8%. The highest mean pERK H-scores were observed in low-grade gliomas, enriched for MAPK alterations, and in ependymoma, where MAPK alterations were absent. Although there is an association between pERK level and activating genetic MAPK alterations, the predictive power of pERK H-score for genetic MAPK alterations is low in pediatric tumors. Tumors/groups with absent genetic MAPK alterations but high pERK indicate a dissociation of the two parameters, as well as a possible MAPK pathway activation in the absence of genetic MAPK alterations.
Collapse
Affiliation(s)
- Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, German Consortium for Translational Cancer Research (DKTK), Berlin, Germany
| | - David Reuss
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Jena, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
5
|
Ernst KJ, Okonechnikov K, Bageritz J, Perera AA, Mallm JP, Wittmann A, Maaß KK, Leible S, Boutros M, Pfister SM, Zuckermann M, Jones DTW. A simplified preparation method for single-nucleus RNA-sequencing using long-term frozen brain tumor tissues. Sci Rep 2025; 15:12849. [PMID: 40229354 PMCID: PMC11997191 DOI: 10.1038/s41598-025-97053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Single-cell RNA-sequencing has provided intriguing new insights into research areas such as developmental processes and tumor heterogeneity. Most approaches, however, rely on the availability of fresh surgical specimens, thereby dramatically reducing the ability to profile particularly rare tissue types. Here, we optimized a method to isolate intact nuclei from long-term frozen pediatric glioma tissues. We performed a technical comparison between different single-nucleus RNA-sequencing (snRNA-seq) systems and applied the established nucleus isolation method to analyze frozen primary glioma tissues. The results show that our fast, simple and low-cost nuclear isolation protocol provides intact nuclei, which can be used in both droplet- and plate-based single-cell sequencing platforms - allowing the identification of distinct tumor cell populations and infiltrating microglia. Additional optimization to include shorter RNA fragments in the 3' sequencing library improved gene detection and cell type annotation. Taken together, the method dramatically increases the potential of studying rare tumor entities and is specifically tailored for using frozen brain tumor tissue.
Collapse
Affiliation(s)
- Kati J Ernst
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Josephine Bageritz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashwyn A Perera
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-Cell Open Lab; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Wittmann
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra K Maaß
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Svenja Leible
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Zuckermann
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Shen ZP, Zhang ZY, Li N, Xu L, Chen Y. Targeted therapy for pediatric glioma: RAF(t)ing in the molecular era. World J Pediatr 2025; 21:338-351. [PMID: 40227462 DOI: 10.1007/s12519-025-00889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Pediatric gliomas are the most frequently occurring central nervous system tumors in children. While targeted therapies have been widely applied in the treatment of many adult cancers, their use in pediatric gliomas has lagged behind. However, recent advances in multiomics profiling of pediatric gliomas, coupled with the approval of inhibitors against Raf serine/threonine kinase (RAF), isocitrate dehydrogenase 1/2 (IDH1/2) and neurotrophic receptor tyrosine kinase (NTRK), have spurred significant progress in this field. In light of these developments, this review aims to provide a comprehensive overview of current advancements and the evolving landscape of targeted therapeutic strategies and approaches for pediatric gliomas. DATA SOURCES Data analyzed in this study were obtained from the literature from PubMed, as well as other online databases and websites, including ClinicalTrials.gov and the Pediatric Neuro-Oncology Consortium. RESULTS Based on findings from multiomics profiling, significant insights have been gained into the genetic and molecular landscape of pediatric gliomas, enabling the identification of key mutations and potentially targetable lesions. These advancements provide rationales for the development of more precise treatment strategies and targeted therapies. Recent approvals of targeted therapies and ongoing clinical trials in pediatric gliomas are converging on the targeting of key signaling molecules and metabolic pathways. CONCLUSIONS In the molecular era, targeted therapies offer new hope for more effective and personalized treatment options for pediatric glioma patients. By developing and tailoring treatments to target specific molecular and metabolic vulnerabilities, targeted therapies have the potential to improve the clinical management of pediatric gliomas, ultimately enhancing both the treatment experience and overall prognosis of these patients.
Collapse
Affiliation(s)
- Zhi-Peng Shen
- Department of Neurosurgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310052, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Zhong-Yuan Zhang
- Department of Neurosurgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310052, China
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Nan Li
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Liang Xu
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Ye Chen
- Department of Neurosurgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Odintsov I, Papke DJ, George S, Padera RF, Hornick JL, Siegmund SE. Genomic Profiling of Cardiac Angiosarcoma Reveals Novel Targetable KDR Variants, Recurrent MED12 Mutations, and a High Burden of Germline POT1 Alterations. Clin Cancer Res 2025; 31:1091-1102. [PMID: 39820259 DOI: 10.1158/1078-0432.ccr-24-3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE Cardiac angiosarcoma is a rare, aggressive malignancy with limited treatment options. Both sporadic and familial cases occur, with recent links to germline POT1 mutations. The genomic landscape of this disease is poorly understood. EXPERIMENTAL DESIGN We conducted comprehensive genomic profiling of cardiac angiosarcoma to assess the burden of germline predisposition and identify other recurrent genomic alterations of clinical significance. RESULTS Six patients were female, and four were male. The median age at presentation was 40 years (range, 21-69 years). All cases with available follow-up exhibited an aggressive clinical course (6/8 patients died of disease). KDR alterations, including novel structural variants, were found in 9/11 cases at a rate significantly higher than that in noncardiac angiosarcomas. POT1 mutations were present in 45.5% of cardiac angiosarcoma cases. In three of five POT1-mutant cases, the germline status was confirmed through testing of normal tissue, and in one additional case, the germline status was inferred with high probability through allele frequency analysis. Additionally, we identified novel recurrent MED12 exon 2 mutations in POT1 wild-type cardiac angiosarcoma, suggesting an alternative path to cardiac angiosarcoma oncogenesis. CONCLUSIONS Cardiac angiosarcoma demonstrates a unique genetic profile, distinct from noncardiac angiosarcoma. This study highlights the role of germline POT1 burden on cardiac angiosarcoma development and demonstrates recurrent MED12 alterations for the first time. The reported KDR variants provide a potential avenue for the treatment of this aggressive disease. Given the prevalence of germline POT1 mutations reported in this study, germline genetic testing should be considered in patients diagnosed with cardiac angiosarcoma.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Suzanne George
- Sarcoma Division, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stephanie E Siegmund
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Deland L, Keane S, Olsson Bontell T, Sjöberg Bexelius T, Gudinaviciene I, De La Cuesta E, De Luca F, Nilsson JA, Carén H, Mörse H, Abel F. A pilocytic astrocytoma with novel ATG16L1::NTRK2 fusion responsive to larotrectinib: a case report with genomic and functional analysis. Oncologist 2025; 30:oyae254. [PMID: 39326005 PMCID: PMC11954494 DOI: 10.1093/oncolo/oyae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The outcome of pilocytic astrocytoma (PA) depends heavily on the success of surgery. In cases where surgery alone is not curative, genetic analysis can be used to identify treatment targets for precision medicine. Here, we report a pediatric PA case that underwent incomplete surgical resection due to the tumor location. Clinical routine analyses demonstrated that the tumor did not carry any BRAF alteration. After postoperative surveillance, according to the low-grade glioma (LGG) protocol, recurrent tumor progressions resulted in multiple chemotherapy regimens. Screening formalin-fixed paraffin-embedded tumor material using an open-ended RNA sequencing panel revealed a novel in-frame autophagy related 16 like 1-neurotrophic receptor tyrosine kinase 2 (ATG16L1::NTRK2) fusion gene. The NTRK2 rearrangement was subsequently confirmed by fluorescent in situ hybridization on tumor tissue sections. Functional validation was performed by in vitro transient transfection of HEK293 cells and showed the ATG16L1::TRKB fusion protein to activate both the mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase oncogenic pathways through increased phosphorylation of extracellular signal-regulated kinase, AKT, and S6. As a result of the identification of the NTRK fusion, the patient was enrolled in a phase I/II clinical trial of the highly selective TRK inhibitor larotrectinib. The patient responded well without significant side effects, and 8 months after the start of treatment, the contrast-enhancing tumor lesions were no longer detectable, consistent with a complete response as per Response Assessment in Neuro-Oncology (RANO) criteria. Presently, after 22 months of treatment, the patient's complete remission is sustained. Our findings highlight the importance of screening for other oncogenic drivers in BRAF-negative LGGs since rare fusion genes may serve as targets for precision oncology therapy.
Collapse
Affiliation(s)
- Lily Deland
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simon Keane
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Sjöberg Bexelius
- Section for Pediatric Oncology, Highly Specialized Pediatric Pediatrics 1, Astrid Lindgren’s Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Inga Gudinaviciene
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, Lund, Sweden
| | | | - Francesca De Luca
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Mörse
- Pediatric Cancer Center, Skåne University Hospital, Lund, Sweden
| | - Frida Abel
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
9
|
Zhang Z, Shi H, Shao Y, Lu B. Clinicopathologic and molecular characterization of primitive neuroectodermal tumors (PNET) in the female genital tract: a retrospective study of 8 cases. Hum Pathol 2025; 157:105769. [PMID: 40189027 DOI: 10.1016/j.humpath.2025.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/03/2025] [Indexed: 04/13/2025]
Abstract
AIMS This study aimed to investigate the molecular alterations in primitive neuroectodermal tumors (PNET) of the female genital tract. METHODS We retrospectively analyzed the clinicopathologic and immunohistochemical features of 8 gynecologic PNET cases (3 cervical, 1 vaginal, and 4 ovarian). Fluorescence in situ hybridization and targeted next-generation sequencing (NGS) were performed to identify molecular alterations in these tumors. RESULTS The cohort included 5 FIGO stage I, 1 stage III, and 2 stage IV tumors. Two patients with stage IV disease died at 8 and 12 months. The cervical/vaginal tumors consisted of small round blue cells arranged in sheets, with EWSR1 rearrangements and concurrent diffuse expression of membranous CD99 and nuclear FLI1. The ovarian tumors displayed diverse morphologic features resembling central nervous system (CNS) tumors, including embryonal tumor with multilayered rosettes (case 5), medulloblastoma (case 6), glioblastoma (case 7), and ependymoma (case 8). Three ovarian tumors were associated with teratomas. None of the ovarian tumors exhibited EWSR1 rearrangements or i(12p)/12p overrepresentation. NGS identified an EWSR1::exon11∼FLI1::exon6 fusion in one cervical PNET, with no additional molecular alterations. In contrast, three ovarian tumors lacked common genetic changes seen in CNS tumors but harbored several significant variants, including NTRK2 exon11 c.1019C > T (p.T340 M) (case 6), INPP4B exon23 c.2221G > A (p.V741 M) (case 7), and FANCG exon7 c.882_883insA (p.D295Rfs∗14) with MET 7q31 polysomy (case 8). CONCLUSIONS Our findings confirm that cervical/vaginal and ovarian PNET represent two distinct tumor types. Ovarian PNET have different pathogenetic pathways from their CNS and testicular counterparts most likely.
Collapse
MESH Headings
- Humans
- Female
- Retrospective Studies
- Adult
- Middle Aged
- RNA-Binding Protein EWS/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- In Situ Hybridization, Fluorescence
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/chemistry
- Neuroectodermal Tumors, Primitive/pathology
- Neuroectodermal Tumors, Primitive/genetics
- Neuroectodermal Tumors, Primitive/chemistry
- High-Throughput Nucleotide Sequencing
- Gene Rearrangement
- Vaginal Neoplasms/pathology
- Vaginal Neoplasms/genetics
- Vaginal Neoplasms/chemistry
- Young Adult
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/chemistry
- Immunohistochemistry
- 12E7 Antigen
- Adolescent
- Proto-Oncogene Protein c-fli-1/genetics
- Neuroectodermal Tumors, Primitive, Peripheral/pathology
- Neuroectodermal Tumors, Primitive, Peripheral/genetics
- Genital Neoplasms, Female/pathology
- Genital Neoplasms, Female/genetics
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Haiyan Shi
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ying Shao
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Bingjian Lu
- Department of Surgical Pathology and Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Cook SJ. Second MEK Inhibitor Shows Promise in Neurofibromatosis Type 1 With Symptomatic Plexiform Neurofibromas Signaling Hope for Other RASopathies. J Clin Oncol 2025; 43:730-734. [PMID: 39661912 DOI: 10.1200/jco-24-02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
11
|
Ali RH, Almanabri M, Ali NY, Alsaber AR, Khalifa NM, Hussein R, Alateeqi M, Mohammed EMA, Jama H, Almarzooq A, Benobaid N, Alqallaf Z, Ahmed AA, Bahzad S, Almurshed M. Clinicopathological analysis of BRAF and non-BRAF MAPK pathway-altered gliomas in paediatric and adult patients: a single-institution study of 40 patients. J Clin Pathol 2025; 78:177-186. [PMID: 38195220 PMCID: PMC11874301 DOI: 10.1136/jcp-2023-209318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
AIMS Mitogen-activated protein kinase (MAPK) pathway alteration is a major oncogenic driver in paediatric low-grade gliomas (LGG) and some adult gliomas, encompassing BRAF (most common) and non-BRAF alterations. The aim was to determine the frequency, molecular spectrum and clinicopathological features of MAPK-altered gliomas in paediatric and adult patients at our neuropathology site in Kuwait. METHODS We retrospectively searched the data of molecularly sequenced gliomas between 2018 and 2023 for MAPK alterations, revised the pathology in view of the 2021 WHO classification and evaluated the clinicopathological data for possible correlations. RESULTS Of 272 gliomas, 40 (15%) harboured a MAPK pathway alteration in 19 paediatric (median 9.6 years; 1.2-17.6) and 21 adult patients (median 37 years; 18.9-89.2), comprising 42% and 9% of paediatric and adult cases, respectively. Pilocytic astrocytoma and glioblastoma were the most frequent diagnoses in children (47%) and adults (43%), respectively. BRAF V600E (n=17, 43%) showed a wide distribution across age groups, locations and pathological diagnoses while KIAA1549::BRAF fusion (n=8, 20%) was spatially and histologically restricted to cerebellar paediatric LGGs. Non-V600E variants and BRAF amplifications accompanied other molecular aberrations in high-grade tumours. Non-BRAF MAPK alterations (n=8) included mutations and gene fusions involving FGFR1, NTRK2, NF1, ROS1 and MYB. Fusions included KANK1::NTRK2, GOPC::ROS1 (both infant hemispheric gliomas), FGFR1::TACC1 (diffuse LGG), MYB::QKI (angiocentric glioma) and BCR::NTRK2 (glioblastoma). Paradoxical H3 K27M/MAPK co-mutations were observed in two LGGs. CONCLUSION The study provided insights into MAPK-altered gliomas in Kuwait highlighting the differences among paediatric and adult patients and providing a framework for planning therapeutic polices.
Collapse
Affiliation(s)
- Rola H Ali
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Hawalli, Kuwait
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Mohamad Almanabri
- Department of Neurosurgery, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Nawal Y Ali
- Department of Radiology, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Ahmad R Alsaber
- Department of Management, College of Business and Economics, American University of Kuwait, Salmiya, Hawalli, Kuwait
| | - Nisreen M Khalifa
- Department of Pediatric Hematology/Oncology, NBK Children's Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Rania Hussein
- Department of Radiation Oncology, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Eiman M A Mohammed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Ammar Almarzooq
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Noelle Benobaid
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Zainab Alqallaf
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Amir A Ahmed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Maryam Almurshed
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| |
Collapse
|
12
|
Griessmair M, Delbridge C, Zimmer C, Mayr E, Wagner A, Canisius J, Metz MC, Wiestler B. Case report: an unusual long-term evolution of a diffuse midline glioma, H3K27 altered. Front Oncol 2025; 15:1480247. [PMID: 39995844 PMCID: PMC11847812 DOI: 10.3389/fonc.2025.1480247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Background As diffuse midline glioma, H3K27 altered, is a rare tumor entity with poor prognosis and few therapeutic options, only little is known so far about the genetic factors that influence tumorigenesis and the course of tumor development. Presentation We present the case of a 38-year-old female patient who suffered from nausea, fatigue, and intermittent walking impairment, which developed over the course of four weeks. Initial MRI showed an irregularly shaped, contrast-enhancing tumor around the third ventricle with central necrosis, most likely originating from the right thalamus. The patient underwent biopsy, followed by microsurgical resection with molecular analysis. Molecular neuropathology revealed the diagnosis of diffuse midline glioma with a H3K27M mutation WHO (World Health Organization) CNS (central nervous system) grade 4. Interestingly, MR imaging conducted for migraine diagnosis 6 years ago in retrospect already showed a small, nodular T2w hyperintense lesion in the right thalamus. Conclusion Despite a more precise, molecularly driven classification of pediatric HGG (high-grade glioma) in the 5th edition of the WHO classification of CNS tumors, many genetic factors influencing the biological tumor development as well as the precise molecular evolution of tumors remain unclear. Given the highly aggressive clinical course of these tumors, with a median overall survival around 16 to 18 months, our report of a (presumable) precursor lesion years before clinical manifestation point towards a complex, multi-stage evolution of this tumor entity. Better understanding this molecular cascade might help to identify novel targets for individualized therapies.
Collapse
Affiliation(s)
- Michael Griessmair
- Dept. of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Claire Delbridge
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Claus Zimmer
- Dept. of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
| | - Eva Mayr
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Arthur Wagner
- Dept. of Neurosurgery, Klinikum Rechts der Isar, Munich, Germany
| | - Julian Canisius
- Dept. of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
| | | | - Benedikt Wiestler
- Dept. of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
- TranslaTUM, Technical University of Munich, Munich, Germany
| |
Collapse
|
13
|
Gokden M. Letter to the Editor Regarding "An Extremely Rare Case of Collision Tumor: A Craniopharyngioma Coexists Pilocytic Astrocytoma". World Neurosurg 2025; 194:123578. [PMID: 39826422 DOI: 10.1016/j.wneu.2024.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
14
|
Zwaig M, Darmond C, Arseneault M, Riazalhosseini Y, Ragoussis J. Fusion Transcript Detection from Short-Read RNA-Seq. Methods Mol Biol 2025; 2880:159-177. [PMID: 39900758 DOI: 10.1007/978-1-0716-4276-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Fusion proteins have been shown to play an important role in many different cancers and other diseases. While the causal mutation can often be found in the genome as a structural variant (SV), differentiating between normal variation within individuals and somatic variants with functional consequences can be time-consuming as well as expensive since it requires a whole-genome sequencing (WGS) method. RNA Sequencing (RNA-Seq) provides a much cheaper and more straightforward approach to the detection of functional somatic events such as overexpression of proto-oncogenes as well as gene fusion. This chapter aims to discuss the utility of RNA-Seq for fusion detection as well as provide a detailed analysis pipeline for the detection of fusion transcripts.
Collapse
Affiliation(s)
- Melissa Zwaig
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Corinne Darmond
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Madeleine Arseneault
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Yasser Riazalhosseini
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Power P, Straehla JP, Fangusaro J, Bandopadhayay P, Manoharan N. Pediatric neuro-oncology: Highlights of the last quarter-century. Neoplasia 2025; 59:101098. [PMID: 39637686 DOI: 10.1016/j.neo.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The last quarter century has heralded dramatic changes in the field of pediatric neuro-oncology, with the era defined by profound developments in the understanding of the biological underpinnings of childhood central nervous system (CNS) tumors and translational therapeutics. Although there have been momentous strides forward in biologic, diagnostic, therapeutic, and experimental domains, considerable challenges remain and CNS tumors remain the leading cause of pediatric cancer-related mortality. Here, we review the significant advances in the field of pediatric neuro-oncology over the last 25 years and highlight ongoing hurdles facing future progress.
Collapse
Affiliation(s)
- Phoebe Power
- Department of Pediatric Oncology, Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA
| | - Joelle P Straehla
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA; Aflac Cancer Center, Atlanta, GA, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/ Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neevika Manoharan
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia; Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
16
|
Liang Q, Wu Z, Zhu S, Du Y, Cheng Z, Chen Y, Lin F, Wang J. A bibliometric analysis of research trends and hotspots of pilocytic astrocytoma from 2004 to 2023. Neurosurg Rev 2024; 48:3. [PMID: 39724457 DOI: 10.1007/s10143-024-03139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/02/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Pilocytic astrocytoma (PA) is a WHO grade I neoplasm with a favorable prognosis. It is the most common pediatric benign tumor. Recently, PA has attracted more and more attention and discussion from scholars. The aim of this study is to comprehensively generalize the evolution of this field over the past two decades through bibliometric analysis and to predict future research trends and hotspots. The literature over the last two decades (2004-2023) related to PA was obtained from the Web of Science Core Collection (WoSCC) database. Bibliometric analyses were conducted based on the following aspects: (1) Annual publication trends; (2) Publications, citations/co-citations of different countries/institutions/journals/authors; (3) the map of Bradford's Law and Lotka's Law for core journals and author productivity; (4) Co-occurrence, cluster, thematic map analysis of keywords. All analyses were performed on VOSviewer and R bibliometrix package, and Excel 2024. Our results showed that research on PA displayed a considerable development trend in the past 20 years. The USA had a leading position in terms of scientific outputs and collaborations. Meanwhile, German Cancer Research Center contributed the most publications. Child's Nervous System had the highest number of publications and Acta Neuropathologica was the most co-cited journal on this subject. Gutmann, D.H. and Louis, D.N. were the authors with the most articles and co-citations in this field. The research emphases were molecular mechanisms, neurofibromatosis, pilomyxoid astrocytoma, differential diagnosis, and therapy. We systematically analyzed the literature on PA from a bibliometric perspective. The demonstrated results of the knowledge mapping would provide valuable insights into the global research landscape.
Collapse
Affiliation(s)
- Qingtian Liang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zuqing Wu
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Sihan Zhu
- University Hospital Ludwig Maximilian University Munich, 81377, Munich, Germany
| | - Yizhi Du
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhuqing Cheng
- University Hospital Ludwig Maximilian University Munich, 81377, Munich, Germany
| | - Yinsheng Chen
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fuhua Lin
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Jian Wang
- Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
17
|
Sheikh SR, Klesse LJ, Mangum R, Bui A, Siegel BI, Abdelbaki MS, Patel NJ. The role of MEK inhibition in pediatric low-grade gliomas. Front Oncol 2024; 14:1503894. [PMID: 39759151 PMCID: PMC11695311 DOI: 10.3389/fonc.2024.1503894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumors in children. Many patients with unresectable tumors experience recurrence or long-term sequelae from standard chemotherapeutics. This mini-review explores the emerging role of MEK inhibitors in the management of pLGGs, highlighting their potential to transform current treatment paradigms. We review the molecular basis for therapeutic MEK inhibition in the context of pLGG, provide an evidence base for the use of the major MEK inhibitors currently available in the market for pLGG, and review the challenges in the use of MEKi inhibitors in this population.
Collapse
Affiliation(s)
- Shehryar R. Sheikh
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ross Mangum
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Ashley Bui
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Benjamin I. Siegel
- Brain Tumor Institute, Children’s National Hospital, Washington, DC, United States
- Division of Neurology, Children’s National Hospital, Washington, DC, United States
| | - Mohamed S. Abdelbaki
- Division of Hematology and Oncology, Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO, United States
| | - Neha J. Patel
- Department of Pediatric Hematology-Oncology and Blood and Marrow Transplant, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
18
|
Jang H, Moon S, Kwon HJ, Lee S, Choe G, Lee KS. Genetic alteration analysis of non-pediatric diffuse midline glioma, H3 K27-altered. Hum Pathol 2024; 154:105709. [PMID: 39701425 DOI: 10.1016/j.humpath.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Diffuse midline gliomas with H3 K27-alteration (DMGH3) are lethal and inoperable brain tumors. Although DMGH3s mainly occur in pediatric patients, they have also occurred in adult patients. This study aimed to analyze the clinicopathological significance of targetable genetic alterations in non-pediatric DMGH3. Next-generation sequencing (NGS) was conducted on 18 non-pediatric DMGH3 patients to analyze additional genetic alterations. The median age at diagnosis was 35 years, and the mean follow-up duration was 762 days. Fourteen cases involved the thalamus-hypothalamus (77.8%). Histologic high-grade features (WHO histologic grade ≥ 3) were observed in 11 (61.1%) patients. H3F3A (H3 K27 M) alterations were identified in all 18 patients using immunohistochemistry and NGS. TP53 mutations were found in 11 patients (61.1%), FGFR1 or PIK3CA in 3 (16.7%), ATRX in 6 (33.3%), NF1 in 4 (22.2%), and KRAS or ATM in 1 (5.6%). TP53 mutations were significantly correlated with high-grade histological features and worse overall survival (OS) (P < 0.05). Despite non-pediatric DMGH3 cases exhibiting superior OS compared to pediatric DMGH3 cases, TP53 mutations were associated with poorer OS outcomes. Notably, FGFR1 and PIK3CA mutations, which have been identified as potential targetable genes, were detected. In conclusion, non-pediatric DMGH3s showed predominant tumor localization within the thalamus and improved prognosis compared to those in pediatric cases, with TP53 alterations correlating with high-grade histology and shorter survival. Genetic profiling, particularly identifying targetable mutations like FGFR1 and PIK3CA, could inform personalized treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Hanbin Jang
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Seyoung Moon
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Hyun Jung Kwon
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
19
|
Kim DH, Kim S, Park S, Byun JM, Hong J, Shin D, Kim I, Bang SM, Lee J, Lee JY, Kim S, Kim KH, Chung Y, Jung S, Koh Y, Yoon S. Phase II trial of imatinib mesylate in patients with PDGFRA/B-negative hypereosinophilic syndrome. Br J Haematol 2024; 205:2305-2314. [PMID: 39389908 PMCID: PMC11637721 DOI: 10.1111/bjh.19828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The role of imatinib in PDGFRA/B-negative hypereosinophilic syndromes (HES) is controversial because of the heterogeneity of HES and the scarcity of prospective studies. We conducted a phase II clinical trial to evaluate the efficacy of imatinib in PDGFRA/B-negative HES. Thirty-two patients were treated with imatinib (100-400 mg daily), and the molecular basis of their response was identified using whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS). The haematological response rate was 46.9%, with a complete haematological response (CHR) rate of 18.8%. The median time to response was 1.5 months. Among the six patients who achieved CHR, five maintained it until the 24th cycle of imatinib and one lost response after 20 months. The median progression-free survival was 4.3 months. WES and WTS were conducted for 11 patients. The number of non-silent mutations did not differ between responders and non-responders. Nine differentially expressed genes, including SNORD15A, were downregulated in responders. STAT5B::RARA, PAK2::PIGX, and FIP1L1::CHIC2 fusions were identified in patients with sustained responses, and RNF130::BRAF and WNK1::KDM5A fusions were identified in non-responders. Imatinib, along with an appropriate biomarker, could be a promising option for PDGFRA/B-negative HES.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
| | - Seokhyeon Kim
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Seonyang Park
- Department of Internal MedicineInje University Haeundae Paik HospitalBusanKorea
| | - Ja Min Byun
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
| | - Junshik Hong
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| | - Dong‐Yeop Shin
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| | - Inho Kim
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Soo Mee Bang
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Jeong‐Ok Lee
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Ji Yun Lee
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Sang‐A Kim
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
| | - Ki Hwan Kim
- Department of Internal MedicineSeoul National University Boramae HospitalSeoulKorea
| | - Yeun‐Jun Chung
- Department of Microbiology, College of MedicineThe Catholic University of KoreaSeoulKorea
- Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Seung‐Hyun Jung
- Integrated Research Center for Genome Polymorphism, Precision Medicine Research Center, College of MedicineThe Catholic University of KoreaSeoulKorea
- Department of Biochemistry, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Youngil Koh
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| | - Sung‐Soo Yoon
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
- Cancer Research InstituteSeoul National University College of MedicineSeoulKorea
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
- Cancer for Medical InnovationSeoul National University HospitalSeoulKorea
| |
Collapse
|
20
|
Xu C, Lian B, Ou J, Wang Q, Wang W, Wang K, Wang D, Song Z, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Ge R, Dai E, Han Y, Pan W, Pang F, Huang J, Wang K, Wu F, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Zhai Z, Yang S, Kang J, Zhang J, Zhang C, Shi L, Wang Y, Li B, et alXu C, Lian B, Ou J, Wang Q, Wang W, Wang K, Wang D, Song Z, Liu A, Yu J, Zhong W, Wang Z, Zhang Y, Liu J, Zhang S, Cai X, Liu A, Li W, Mao L, Zhan P, Liu H, Lv T, Miao L, Min L, Chen Y, Yuan J, Wang F, Jiang Z, Lin G, Huang L, Pu X, Lin R, Liu W, Rao C, Lv D, Yu Z, Li X, Tang C, Zhou C, Zhang J, Xue J, Guo H, Chu Q, Meng R, Wu J, Zhang R, Zhou J, Zhu Z, Li Y, Qiu H, Xia F, Lu Y, Chen X, Ge R, Dai E, Han Y, Pan W, Pang F, Huang J, Wang K, Wu F, Xu B, Wang L, Zhu Y, Lin L, Xie Y, Lin X, Cai J, Xu L, Li J, Jiao X, Li K, Wei J, Feng H, Wang L, Du Y, Yao W, Shi X, Niu X, Yuan D, Yao Y, Huang J, Feng Y, Zhang Y, Sun P, Wang H, Ye M, Wang Z, Hao Y, Wang Z, Wan B, Lv D, Zhai Z, Yang S, Kang J, Zhang J, Zhang C, Shi L, Wang Y, Li B, Zhang Z, Li Z, Liu Z, Yang N, Wu L, Wang H, Jin G, Wang G, Wang J, Fang M, Fang Y, Li Y, Wang X, Chen J, Zhang Y, Zhu X, Shen Y, Ma S, Wang B, Si L, Lu Y, Li Z, Fang W, Song Y. Expert Consensus on the Diagnosis and Treatment of FGFR Gene-Altered Solid Tumors. Glob Med Genet 2024; 11:330-343. [PMID: 39583123 PMCID: PMC11405117 DOI: 10.1055/s-0044-1790230] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The fibroblast growth factor receptor (FGFR) is a crucial receptor tyrosine kinase involved in essential biological processes, including growth, development, and tissue repair. However, FGFR gene mutations, including amplification, fusion, and mutation, can disrupt epigenetics, transcriptional regulation, and tumor microenvironment interactions, leading to cancer development. Targeting these kinase mutations with small molecule drugs or antibodies has shown clinical benefits. For example, erdafitinib is approved for treating locally advanced or metastatic urothelial cancer patients with FGFR2/FGFR3 mutations, and pemigatinib is approved for treating cholangiocarcinoma with FGFR2 fusion/rearrangement. Effective screening of FGFR variant patients is crucial for the clinical application of FGFR inhibitors. Various detection methods, such as polymerase chain reaction, next-generation sequencing, fluorescence in situ hybridization, and immunohistochemistry, are available, and their selection should be based on diagnostic and treatment decision-making needs. Our developed expert consensus aims to standardize the diagnosis and treatment process for FGFR gene mutations and facilitate the practical application of FGFR inhibitors in clinical practice.
Collapse
Affiliation(s)
- Chunwei Xu
- Department of Scientific Research, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou Zhejiang 310022, People's Republic of China
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Wenxian Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Ke Wang
- National Health Commission Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi Jiangsu, People's Republic of China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Dong Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zhengbo Song
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Aijun Liu
- Senior Department of Pathology, the 7th Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Jinpu Yu
- Department of Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Wenzhao Zhong
- Department of Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou Guangdong, People's Republic of China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jingjing Liu
- Department of Thoracic Cancer, Jilin Cancer Hospital, Changchun, Jilin, People's Republic of China
| | - Shirong Zhang
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou Zhejiang, People's Republic of China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yet-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Anwen Liu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Ping Zhan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Hongbing Liu
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Liyun Miao
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Lingfeng Min
- Department of Respiratory Medicine, Clinical Medical School of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu, People's Republic of China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Feng Wang
- Department of Internal Medicine, Cancer Center of PLA, Qinhuai Medical Area, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zhansheng Jiang
- Derpartment of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Gen Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Long Huang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Rongbo Lin
- Department of Medical Oncology, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, Fuzhou, Fujian, People's Republic of China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, Beijing Ji Shui Tan Hospital, Peking University, Beijing, People's Republic of China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Zongyang Yu
- Department of Respiratory Medicine, the 900th Hospital of the Joint Logistics Team (the Former Fuzhou General Hospital), Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaoyan Li
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chuanhao Tang
- Department of Medical Oncology, Peking University International Hospital, Beijing, People's Republic of China
| | - Chengzhi Zhou
- Department of State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University), Guangzhou Guangdong, People's Republic of China
| | - Junping Zhang
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Rui Meng
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China
| | - Jingxun Wu
- Department of Medical Oncology, the First Affiliated Hospital of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Rui Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jin Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan, People's Republic of China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yuanyuan Lu
- Department of State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an Shaanxi, People's Republic of China
| | - Xiaofeng Chen
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Rui Ge
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Fei Pang
- Department of Medical, Shanghai OrigiMed Co, Ltd, Shanghai, People's Republic of China
| | - Jintao Huang
- Department of Medical, Shanghai OrigiMed Co, Ltd, Shanghai, People's Republic of China
| | - Kai Wang
- Department of Medical, Shanghai OrigiMed Co, Ltd, Shanghai, People's Republic of China
| | - Fan Wu
- Department of Medical, Menarini Silicon Biosystems Spa, Shanghai, People's Republic of China
| | - Bingwei Xu
- Department of Biotherapy, Cancer Institute, First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Liping Wang
- Department of Oncology, Baotou Cancer Hospital, Baotou Inner Mongolia, People's Republic of China
| | - Youcai Zhu
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Li Lin
- Department of Medical Oncology, Peking University International Hospital, Beijing, People's Republic of China
| | - Yanru Xie
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Xinqing Lin
- Department of State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University (The First Affiliated Hospital of Guangzhou Medical University), Guangzhou Guangdong, People's Republic of China
| | - Jing Cai
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ling Xu
- Department of Interventional Pulmonary Diseases, Anhui Chest Hospital, Hefei, Anhui, People's Republic of China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Kainan Li
- Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jia Wei
- Department of the Comprehensive Cancer Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huijing Feng
- Department of Thoracic Oncology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Lin Wang
- Department of Pathology, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yingying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yanwen Yao
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jianhui Huang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, People's Republic of China
| | - Yue Feng
- Department of Gynecologic Radiation Oncology, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Yinbin Zhang
- Department of Oncology, the Second Affiliated Hospital of Medical College, Xi′an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Pingli Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong Wang
- Senior Department of Oncology, The 5th Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaofeng Wang
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yue Hao
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Bin Wan
- Department of Respiratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Donglai Lv
- Department of Clinical Oncology, the 901 Hospital of Joint Logistics Support Force of People Liberation Army, Hefei, Anhui, People's Republic of China
| | - Zhanqiang Zhai
- Department of Thoracic Disease Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, The Third Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Shengjie Yang
- Department of Thoracic Surgery, Chuxiong Yi Autonomous Prefecture People's Hospital, Chuxiong, Yunnan, People's Republic of China
| | - Jing Kang
- Department of Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou Guangdong, People's Republic of China
| | - Jiatao Zhang
- Department of Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou Guangdong, People's Republic of China
| | - Chao Zhang
- Department of Guangdong Lung Cancer Institute, Guangdong Provincial Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangzhou Guangdong, People's Republic of China
| | - Lin Shi
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yina Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Bihui Li
- Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Zhang Zhang
- Department of International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Zhefeng Liu
- Senior Department of Oncology, The 5th Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Huijuan Wang
- Department of Internal Medicine, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, , People's Republic of China
| | - Gu Jin
- Department of Bone and Soft-tissue Surgery, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Guansong Wang
- Department of Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jiandong Wang
- Department of Pathology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Meiyu Fang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Xiaojia Wang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Jing Chen
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, People's Republic of China
| | - Yiping Zhang
- Department of Chemotherapy, Chinese Academy of Sciences University Cancer Hospital (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Xixu Zhu
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yi Shen
- Department of Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Shenglin Ma
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Biyun Wang
- Department of Breast Cancer and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Yuanzhi Lu
- Department of Clinical Pathology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yong Song
- Department of Respiratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Oliver TRW, Behjati S. Developmental Dysregulation of Childhood Cancer. Cold Spring Harb Perspect Med 2024; 14:a041580. [PMID: 38692740 PMCID: PMC11529852 DOI: 10.1101/cshperspect.a041580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Most childhood cancers possess distinct clinicopathological profiles from those seen in adulthood, reflecting their divergent mechanisms of carcinogenesis. Rather than depending on the decades-long, stepwise accumulation of changes within a mature cell that defines adult carcinomas, many pediatric malignancies emerge rapidly as the consequence of random errors during development. These errors-whether they be genetic, epigenetic, or microenvironmental-characteristically block maturation, resulting in phenotypically primitive neoplasms. Only an event that falls within a narrow set of spatiotemporal parameters will forge a malignant clone; if it occurs too soon then the event might be lethal, or negatively selected against, while if it is too late or in an incorrectly primed precursor cell then the necessary intracellular conditions for transformation will not be met. The precise characterization of these changes, through the study of normal tissues and tumors from patients and model systems, will be essential if we are to develop new strategies to diagnose, treat, and perhaps even prevent childhood cancer.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
| |
Collapse
|
22
|
Pollack IF, Felker J, Frederico SC, Raphael I, Kohanbash G. Immunotherapy for pediatric low-grade gliomas. Childs Nerv Syst 2024; 40:3263-3275. [PMID: 38884777 DOI: 10.1007/s00381-024-06491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024]
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor types affecting children. Although gross-total resection remains the treatment of choice, many tumors are not amenable to complete removal, because they either involve midline structures, such as the optic chiasm or hypothalamus, and are not conducive to aggressive resection, or have diffuse biological features and blend with the surrounding brain. Historically, radiation therapy was used as the second-line option for disease control, but with the recognition that this often led to adverse long-term sequelae, particularly in young children, conventional chemotherapy assumed a greater role in initial therapy for unresectable tumors. A variety of agents demonstrated activity, but long-term disease control was suboptimal, with more than 50% of tumors exhibiting disease progression within 5 years. More recently, it has been recognized that a high percentage of these tumors in children exhibit constitutive activation of the mitogen-activated protein kinase (MAPK) pathway because of BRAF translocations or mutations, NFI mutations, or a host of other anomalies that converged on MAPK. This led to phase 1, 2, and 3 trials that explored the activity of blocking this signaling pathway, and the efficacy of this approach compared to conventional chemotherapy. Despite initial promise of these strategies, not all children tolerate this therapy, and many tumors resume growth once MAPK inhibition is stopped, raising concern that long-term and potentially life-long treatment will be required to maintain tumor control, even among responders. This observation has led to interest in other treatments, such as immunotherapy, that may delay or avoid the need for additional treatments. This chapter will summarize the place of immunotherapy in the current armamentarium for these tumors and discuss prior results and future options to improve disease control, with a focus on our prior efforts and experience in this field.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - James Felker
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Stephen C Frederico
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Itay Raphael
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Gary Kohanbash
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurosurgery, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
23
|
Sigaud R, Brummer T, Kocher D, Milde T, Selt F. MOST wanted: navigating the MAPK-OIS-SASP-tumor microenvironment axis in primary pediatric low-grade glioma and preclinical models. Childs Nerv Syst 2024; 40:3209-3221. [PMID: 38789691 PMCID: PMC11511703 DOI: 10.1007/s00381-024-06463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Understanding the molecular and cellular mechanisms driving pediatric low-grade glioma (pLGG)-the most prevalent brain tumor in children-is essential for the identification and evaluation of novel effective treatments. This review explores the intricate relationship between the mitogen-activated protein kinase (MAPK) pathway, oncogene-induced senescence (OIS), the senescence-associated secretory phenotype (SASP), and the tumor microenvironment (TME), integrating these elements into a unified framework termed the MAPK/OIS/SASP/TME (MOST) axis. This integrated approach seeks to deepen our understanding of pLGG and improve therapeutic interventions by examining the MOST axis' critical influence on tumor biology and response to treatment. In this review, we assess the axis' capacity to integrate various biological processes, highlighting new targets for pLGG treatment, and the need for characterized in vitro and in vivo preclinical models recapitulating pLGG's complexity to test targets. The review underscores the need for a comprehensive strategy in pLGG research, positioning the MOST axis as a pivotal approach in understanding pLGG. This comprehensive framework will open promising avenues for patient care and guide future research towards inventive treatment options.
Collapse
Affiliation(s)
- Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Tilman Brummer
- Institute, of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, University of Freiburg and German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
24
|
Levine AB, Hawkins CE. Molecular markers for pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3223-3228. [PMID: 39379532 DOI: 10.1007/s00381-024-06639-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Over the past decade, our understanding of the molecular drivers of pediatric low-grade glioma (PLGG) has expanded dramatically. These tumors are predominantly driven by RAS/MAPK pathway activating alterations (fusions and point mutations), most frequently in BRAF, FGFR1, and NF1. Furthermore, additional second hits in tumor suppressor genes (TP53, ATRX, CDKN2A) can portend more aggressive behaviour. Accordingly, comprehensive molecular profiling-specifically genetic sequencing, often plus copy number profiling-has become critical for guiding the diagnosis and management of PLGG. In this review, we discuss the most important genetic alterations that inform on classification and prognosis of PLGG, highlighting their diagnostic and therapeutic relevance.
Collapse
Affiliation(s)
- Adrian B Levine
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Cynthia E Hawkins
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
25
|
Kresbach C, Hack K, Ricklefs F, Schüller U. Specifics of spinal neuropathology in the molecular age. Neurooncol Adv 2024; 6:iii3-iii12. [PMID: 39430396 PMCID: PMC11485660 DOI: 10.1093/noajnl/vdad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Tumors located in the spinal cord and its coverings can be diagnostically challenging and require special consideration regarding treatment options. During the last decade, important advances regarding the molecular characterization of central and peripheral nervous system tumors were achieved, resulting in improved diagnostic precision, and understanding of the tumor spectrum of this compartment. In particular, array-based global DNA methylation profiling has emerged as a valuable tool to delineate biologically and clinically relevant tumor subgroups and has been incorporated in the current WHO classification for central nervous system tumors of 2021. In addition, several genetic drivers have been described, which may also help to define distinct tumor types and subtypes. Importantly, the current molecular understanding not only sharpens diagnostic precision but also provides the opportunity to investigate both targeted therapies as well as risk-adapted changes in treatment intensity. Here, we discuss the current knowledge and the clinical relevance of molecular neuropathology in spinal tumor entities.
Collapse
Affiliation(s)
- Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karoline Hack
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Lorincz KN, Gorodezki D, Schittenhelm J, Zipfel J, Tellermann J, Tatagiba M, Ebinger M, Schuhmann MU. Role of surgery in the treatment of pediatric low-grade glioma with various degrees of brain stem involvement. Childs Nerv Syst 2024; 40:3037-3050. [PMID: 39145885 PMCID: PMC11511697 DOI: 10.1007/s00381-024-06561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Posterior fossa pediatric low-grade glioma involving the brainstem and cerebellar peduncles (BS-pLGG) are a subgroup with higher risks at surgery. We retrospectively analyzed the role of surgery in the interdisciplinary armamentarium of treatment options in our institutional series of BS-pLGG with various degrees of brainstem involvement. MATERIAL AND METHODS We analyzed data of 52 children with BS-pLGG after surgical intervention for clinical/molecular characteristics, neurological outcome, factors influencing recurrence/progression pattern, and tumor volumetric analysis of exclusively surgically treated patients to calculate tumor growth velocity (TGV). Tumors were stratified according to primary tumor origin in four groups: (1) cerebellar peduncle, (2) 4th ventricle, (3) pons, (4) medulla oblongata. RESULTS The mean FU was 6.44 years. Overall survival was 98%. The mean PFS was 34.07 months. Two patients had biopsies only. Fifty-two percent of patients underwent remission or remained in stable disease (SD) after initial surgery. Patients with progression underwent further 23 resections, 15 chemotherapies, 4 targeted treatments, and 2 proton radiations. TGV decreased after the 2nd surgery compared to TGV after the 1st surgery (p < 0.05). The resection rates were significantly higher in Groups 1 and 2 and lowest in medulla oblongata tumors (Group 4) (p < 0.05). More extended resections were achieved in tumors with KIAA1549::BRAF fusion (p = 0.021), which mostly occurred in favorable locations (Groups 1 and 2). Thirty-one patients showed postoperatively new neurological deficits. A total of 27/31 improved within 12 months. At the end of FU, 6% had moderate deficits, 52% had mild deficits not affecting activities, and 36% had none. Fifty percent of patients were free of disease or showed remission, 38% were in SD, and 10% showed progression. CONCLUSION The first surgical intervention in BS-pLGG can control disease alone in overall 50% of cases, with rates differing greatly according to location (Groups 1 > 2 > 3 > 4), with acceptable low morbidity. The second look surgery is warranted except in medullary tumors. With multimodality treatments almost 90% of patients can obtain remission or stable disease after > 5 years of follow-up. An integrated multimodal and multidisciplinary approach aiming at minimal safe residual disease, combining surgery, chemo-, targeted therapy, and, as an exception, radiation therapy, is mandatory.
Collapse
Affiliation(s)
- Katalin Nora Lorincz
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany.
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany.
| | - David Gorodezki
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Julian Zipfel
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Jonas Tellermann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Martin Ebinger
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Martin Ulrich Schuhmann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| |
Collapse
|
27
|
Siegel BI, Duke ES, Kilburn LB, Packer RJ. Molecular-targeted therapy for childhood low-grade glial and glioneuronal tumors. Childs Nerv Syst 2024; 40:3251-3262. [PMID: 38877124 DOI: 10.1007/s00381-024-06486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Since the discovery of the association between BRAF mutations and fusions in the development of childhood low-grade gliomas and the subsequent recognition that most childhood low-grade glial and glioneuronal tumors have aberrant signaling through the RAS/RAF/MAP kinase pathway, there has been a dramatic change in how these tumors are conceptualized. Many of the fusions and mutations present in these tumors are associated with molecular targets, which have agents in development or already in clinical use. Various agents, including MEK inhibitors, BRAF inhibitors, MTOR inhibitors and, in small subsets of patients NTRK inhibitors, have been used successfully to treat children with recurrent disease, after failure of conventional approaches such as surgery or chemotherapy. The relative benefits of chemotherapy as compared to molecular-targeted therapy for children with newly diagnosed gliomas and neuroglial tumors are under study. Already the combination of an MEK inhibitor and a BRAF inhibitor has been shown superior to conventional chemotherapy (carboplatin and vincristine) in newly diagnosed children with BRAF-V600E mutated low-grade gliomas and neuroglial tumors. However, the long-term effects of such molecular-targeted treatment are unknown. The potential use of molecular-targeted therapy in early treatment has made it mandatory that the molecular make-up of the majority of low-grade glial and glioneuronal tumors is known before initiation of therapy. The primary exception to this rule is in children with neurofibromatosis type 1 who, by definition, have NF1 loss; however, even in this population, gliomas arising in late childhood and adolescence or those not responding to conventional treatment may be candidates for biopsy, especially before entry on molecular-targeted therapy trials.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA.
- Division of Neurology, Children's National Hospital, Washington, DC, USA.
- Division of Oncology, Children's National Hospital, Washington, DC, USA.
| | - Elizabeth S Duke
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - Lindsay B Kilburn
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Oncology, Children's National Hospital, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
28
|
Stone TJ, Merve A, Valerio F, Yasin SA, Jacques TS. Paediatric low-grade glioma: the role of classical pathology in integrated diagnostic practice. Childs Nerv Syst 2024; 40:3189-3207. [PMID: 39294363 PMCID: PMC11511714 DOI: 10.1007/s00381-024-06591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
Low-grade gliomas are a cause of severe and often life-long disability in children. Pathology plays a key role in their management by establishing the diagnosis, excluding malignant alternatives, predicting outcomes and identifying targetable genetic alterations. Molecular diagnosis has reshaped the terrain of pathology, raising the question of what part traditional histology plays. In this review, we consider the classification and pathological diagnosis of low-grade gliomas and glioneuronal tumours in children by traditional histopathology enhanced by the opportunities afforded by access to comprehensive genetic and epigenetic characterisation.
Collapse
Affiliation(s)
- Thomas J Stone
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | - Ashirwad Merve
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Fernanda Valerio
- Department of Histopathology, Great Ormond Street Hospital, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shireena A Yasin
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Research and Teaching Department, UCL GOS Institute of Child Health, London, UK.
- Department of Histopathology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
29
|
Dezena RA, Correia MM, Fujita LGA, de Souza DG, Pereira LFA, Alberto GB, Marcolino LCM, Xavier LB, Silveira SPP. Upper brainstem pediatric low-grade gliomas: review and neuroendoscopic approach. Childs Nerv Syst 2024; 40:3099-3105. [PMID: 39207527 DOI: 10.1007/s00381-024-06527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Pediatric brain tumors, particularly those affecting the brainstem, present a significant challenge due to their intricate anatomical location and diverse classification. This review explores the classification, anatomical considerations, and surgical approaches for pediatric brainstem tumors, focusing on recent updates from the World Health Organization (WHO) classification. Brainstem tumors encompass a spectrum from diffuse gliomas to focal intrinsic and exophytic types, each presenting unique clinical and surgical challenges. Surgical strategies have evolved with advancements in neuroimaging and surgical techniques, emphasizing approaches such as neuroendoscopy and tailored incisions to minimize damage to critical structures. Despite the complexities involved, recent developments offer promising outcomes in tumor resection and patient management, highlighting ongoing advancements in neurosurgical care for pediatric brain tumors.
Collapse
Affiliation(s)
- Roberto Alexandre Dezena
- Division of Neurosurgery, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | - Murillo Martins Correia
- Division of Neurosurgery, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | | | | | | | | | - Larissa Batista Xavier
- Division of Neurosurgery, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
30
|
Pan Y, Chen X, Zhou H, Xu M, Li Y, Wang Q, Xu Z, Ren C, Liu L, Liu X. Identification and validation of SHC1 and FGFR1 as novel immune-related oxidative stress biomarkers of non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1356959. [PMID: 39391879 PMCID: PMC11466301 DOI: 10.3389/fendo.2024.1356959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 10/12/2024] Open
Abstract
Background Non-obstructive azoospermia (NOA) is a major contributor of male infertility. Herein, we used existing datasets to identify novel biomarkers for the diagnosis and prognosis of NOA, which could have great significance in the field of male infertility. Methods NOA datasets were obtained from the Gene Expression Omnibus (GEO) database. CIBERSORT was utilized to analyze the distributions of 22 immune cell populations. Hub genes were identified by applying weighted gene co-expression network analysis (WGCNA), machine learning methods, and protein-protein interaction (PPI) network analysis. The expression of hub genes was verified in external datasets and was assessed by receiver operating characteristic (ROC) curve analysis. Gene set enrichment analysis (GSEA) was applied to explore the important functions and pathways of hub genes. The mRNA-microRNA (miRNA)-transcription factors (TFs) regulatory network and potential drugs were predicted based on hub genes. Single-cell RNA sequencing data from the testes of patients with NOA were applied for analyzing the distribution of hub genes in single-cell clusters. Furthermore, testis tissue samples were obtained from patients with NOA and obstructive azoospermia (OA) who underwent testicular biopsy. RT-PCR and Western blot were used to validate hub gene expression. Results Two immune-related oxidative stress hub genes (SHC1 and FGFR1) were identified. Both hub genes were highly expressed in NOA samples compared to control samples. ROC curve analysis showed a remarkable prediction ability (AUCs > 0.8). GSEA revealed that hub genes were predominantly enriched in toll-like receptor and Wnt signaling pathways. A total of 24 TFs, 82 miRNAs, and 111 potential drugs were predicted based on two hub genes. Single-cell RNA sequencing data in NOA patients indicated that SHC1 and FGFR1 were highly expressed in endothelial cells and Leydig cells, respectively. RT-PCR and Western blot results showed that mRNA and protein levels of both hub genes were significantly upregulated in NOA testis tissue samples, which agree with the findings from analysis of the microarray data. Conclusion It appears that SHC1 and FGFR1 could be significant immune-related oxidative stress biomarkers for detecting and managing patients with NOA. Our findings provide a novel viewpoint for illustrating potential pathogenesis in men suffering from infertility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
31
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
33
|
Smeijers S, Brems H, Verhaeghe A, van Paesschen W, van Loon J, Van der Auweraer S, Sciot R, Thal DR, Lagae L, Legius E, Theys T. Encephalocraniocutaneous lipomatosis phenotype associated with mosaic biallelic pathogenic variants in the NF1 gene. J Med Genet 2024; 61:904-907. [PMID: 38825366 DOI: 10.1136/jmg-2023-109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic congenital condition characterised by ocular, cutaneous and central nervous system involvement. Mosaic activating variants in FGFR1 and KRAS have been reported in several individuals with this syndrome. We report on a patient with neurofibromatosis type 1 (NF1) with a germline pathogenic variant in the NF1 gene and an ECCL phenotype, suggesting ECCL to be part of a spectrum of malformations associated with NF1 pathogenic variants. An anatomical hemispherectomy was performed for intractable epilepsy. Through genetic analysis of blood, cerebral tissue and giant cell lesions in both jaws, we identified the germline NF1 pathogenic variant in all samples and a second-hit pathogenic NF1 variant in cerebral tissue and both giant cell lesions. Both NF1 variants were located on different alleles resulting in somatic mosaicism for a biallelic NF1 inactivation originating in early embryogenesis (second-hit mosaicism or Happle type 2 mosaicism). The biallelic deficit in NF1 in the left hemicranium explains the severe localised, congenital abnormality in this patient. Identical first and second-hit variants in a giant cell lesion of both upper and lower jaws provide confirmatory evidence for an early embryonic second hit involving at least the neural crest. We suggest that the ECCL phenotype may be part of a spectrum of congenital problems associated with mosaic NF1 nullisomy originating during early embryogenesis. The biallelic NF1 inactivation during early embryogenesis mimics the severe activation of the RAS-MAPK pathway seen in ECCL caused by embryonic mosaic activating FGFR1 and KRAS variants in the cranial region. We propose that distinct mechanisms of mosaicism can cause the ECCL phenotype through convergence on the RAS-MAPK pathway.
Collapse
Affiliation(s)
- Steven Smeijers
- Department of Neurosurgery, KU Leuven University Hospitals, Leuven, Belgium
| | - Hilde Brems
- Center for Human Genetics and Department of Human Genetics, KU Leuven University Hospitals, Leuven, Belgium
| | | | - Wim van Paesschen
- Department of Neurology, KU Leuven University Hospitals, Leuven, Belgium
| | - Johannes van Loon
- Department of Neurosurgery, KU Leuven University Hospitals, Leuven, Belgium
| | - Seppe Van der Auweraer
- Center for Human Genetics and Department of Human Genetics, KU Leuven University Hospitals, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, KU Leuven University Hospitals, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Department of Pathology, KU Leuven University Hospitals, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KULeuven, Leuven, Belgium
| | - Lieven Lagae
- Department of Paediatric Neurology, University of Leuven, Leuven, Belgium
| | - Eric Legius
- Center for Human Genetics and Department of Human Genetics, KU Leuven University Hospitals, Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, KU Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
34
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Körner M, Spohn M, Schüller U, Bockmayr M. Transcriptomics-based characterization of the immuno-stromal microenvironment in pediatric low-grade glioma. Oncoimmunology 2024; 13:2386789. [PMID: 39135890 PMCID: PMC11318680 DOI: 10.1080/2162402x.2024.2386789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Immunologic treatment options are uncommon in low-grade gliomas, although such therapies might be beneficial for inoperable and aggressive cases. Knowledge of the immune and stromal cells in low-grade gliomas is highly relevant for such approaches but still needs to be improved. Published gene-expression data from 400 low-grade gliomas and 193 high-grade gliomas were gathered to quantify 10 microenvironment cell populations with a deconvolution method designed explicitly for brain tumors. First, we investigated general differences in the microenvironment of low- and high-grade gliomas. Lower-grade and high-grade tumors cluster together, respectively, and show a general similarity within and distinct differences between these groups, the main difference being a higher infiltration of fibroblasts and T cells in high-grade gliomas. Among the analyzed entities, gangliogliomas and pleomorphic xanthoastrocytomas presented the highest overall immune cell infiltration. Further analyses of the low-grade gliomas presented three distinct microenvironmental signatures of immune cell infiltration, which can be divided into T-cell/dendritic/natural killer cell-, neutrophilic/B lineage/natural killer cell-, and monocytic/vascular/stromal-cell-dominated immune clusters. These clusters correlated with tumor location, age, and histological diagnosis but not with sex or progression-free survival. A survival analysis showed that the prognosis can be predicted from gene expression, clinical data, and a combination of both with a support vector machine and revealed the negative prognostic relevance of vascular markers. Overall, our work shows that low- and high-grade gliomas can be characterized and differentiated by their immune cell infiltration. Low-grade gliomas cluster into three distinct immunologic tumor microenvironments, which may be of further interest for upcoming immunotherapeutic research.
Collapse
Affiliation(s)
- Meik Körner
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- bAIome - Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Wang J, Yang M, Ali O, Dragland JS, Bjørås M, Farkas L. Predicting regulatory mutations and their target genes by new computational integrative analysis: A study of follicular lymphoma. Comput Biol Med 2024; 178:108787. [PMID: 38901187 DOI: 10.1016/j.compbiomed.2024.108787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Mutations in DNA regulatory regions are increasingly being recognized as important drivers of cancer and other complex diseases. These mutations can regulate gene expression by affecting DNA-protein binding and epigenetic profiles, such as DNA methylation in genome regulatory elements. However, identifying mutation hotspots associated with expression regulation and disease progression in non-coding DNA remains a challenge. Unlike most existing approaches that assign a mutation score to individual single nucleotide polymorphisms (SNP), a mutation block (MB)-based approach was introduced in this study to assess the collective impact of a cluster of SNPs on transcription factor-DNA binding affinity, differential gene expression (DEG), and nearby DNA methylation. Moreover, the long-distance target genes of functional MBs were identified using a new permutation-based algorithm that assessed the significance of correlations between DNA methylation at regulatory regions and target gene expression. Two new Python packages were developed. The Differential Methylation Region (DMR-analysis) analysis tool was used to detect DMR and map them to regulatory elements. The second tool, an integrated DMR, DEG, and SNP analysis tool (DDS-analysis), was used to combine the omics data to identify functional MBs and long-distance target genes. Both tools were validated in follicular lymphoma (FL) cohorts, where not only known functional MBs and their target genes (BCL2 and BCL6) were recovered, but also novel genes were found, including CDCA4 and JAG2, which may be associated with FL development. These genes are linked to target gene expression and are significantly correlated with the methylation of nearby DNA sequences in FL. The proposed computational integrative analysis of multiomics data holds promise for identifying regulatory mutations in cancer and other complex diseases.
Collapse
Affiliation(s)
- Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway.
| | - Mingyi Yang
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Omer Ali
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Jenny Sofie Dragland
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Embryology and Healthy Development (CRESCO), University of Oslo, Oslo, 0373, Norway
| | - Lorant Farkas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS/Oslo, Norway; Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
37
|
Gorodezki D, Schuhmann MU, Ebinger M, Schittenhelm J. Dissecting the Natural Patterns of Progression and Senescence in Pediatric Low-Grade Glioma: From Cellular Mechanisms to Clinical Implications. Cells 2024; 13:1215. [PMID: 39056798 PMCID: PMC11274692 DOI: 10.3390/cells13141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pediatric low-grade gliomas (PLGGs) comprise a heterogeneous set of low-grade glial and glioneuronal tumors, collectively representing the most frequent CNS tumors of childhood and adolescence. Despite excellent overall survival rates, the chronic nature of the disease bears a high risk of long-term disease- and therapy-related morbidity in affected patients. Recent in-depth molecular profiling and studies of the genetic landscape of PLGGs led to the discovery of the paramount role of frequent upregulation of RAS/MAPK and mTOR signaling in tumorigenesis and progression of these tumors. Beyond, the subsequent unveiling of RAS/MAPK-driven oncogene-induced senescence in these tumors may shape the understanding of the molecular mechanisms determining the versatile progression patterns of PLGGs, potentially providing a promising target for novel therapies. Recent in vitro and in vivo studies moreover indicate a strong dependence of PLGG formation and growth on the tumor microenvironment. In this work, we provide an overview of the current understanding of the multilayered cellular mechanisms and clinical factors determining the natural progression patterns and the characteristic biological behavior of these tumors, aiming to provide a foundation for advanced stratification for the management of these tumors within a multimodal treatment approach.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin U. Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Packer RJ. Optic pathway gliomas: Long-term outcomes and challenges. Neuro Oncol 2024; 26:1325-1326. [PMID: 38628133 PMCID: PMC11226861 DOI: 10.1093/neuonc/noae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Affiliation(s)
- Roger J Packer
- Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, USA
| |
Collapse
|
39
|
Ahmed J, Torrado C, Chelariu A, Kim SH, Ahnert JR. Fusion Challenges in Solid Tumors: Shaping the Landscape of Cancer Care in Precision Medicine. JCO Precis Oncol 2024; 8:e2400038. [PMID: 38986029 PMCID: PMC11371109 DOI: 10.1200/po.24.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Targeting actionable fusions has emerged as a promising approach to cancer treatment. Next-generation sequencing (NGS)-based techniques have unveiled the landscape of actionable fusions in cancer. However, these approaches remain insufficient to provide optimal treatment options for patients with cancer. This article provides a comprehensive overview of the actionability and clinical development of targeted agents aimed at driver fusions. It also highlights the challenges associated with fusion testing, including the evaluation of patients with cancer who could potentially benefit from testing and devising an effective strategy. The implementation of DNA NGS for all tumor types, combined with RNA sequencing, has the potential to maximize detection while considering cost effectiveness. Herein, we also present a fusion testing strategy aimed at improving outcomes in patients with cancer.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anca Chelariu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Munich, Germany
| | - Sun-Hee Kim
- Precision Oncology Decision Support, Khalifa Institute for Personalized Cancer Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
40
|
Yang W, Meyer AN, Jiang Z, Jiang X, Donoghue DJ. Critical domains for NACC2-NTRK2 fusion protein activation. PLoS One 2024; 19:e0301730. [PMID: 38935636 PMCID: PMC11210774 DOI: 10.1371/journal.pone.0301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Neurotrophic receptor tyrosine kinases (NTRKs) belong to the receptor tyrosine kinase (RTK) family. NTRKs are responsible for the activation of multiple downstream signaling pathways that regulate cell growth, proliferation, differentiation, and apoptosis. NTRK-associated mutations often result in oncogenesis and lead to aberrant activation of downstream signaling pathways including MAPK, JAK/STAT, and PLCγ1. This study characterizes the NACC2-NTRK2 oncogenic fusion protein that leads to pilocytic astrocytoma and pediatric glioblastoma. This fusion joins the BTB domain (Broad-complex, Tramtrack, and Bric-a-brac) domain of NACC2 (Nucleus Accumbens-associated protein 2) with the transmembrane helix and tyrosine kinase domain of NTRK2. We focus on identifying critical domains for the biological activity of the fusion protein. Mutations were introduced in the charged pocket of the BTB domain or in the monomer core, based on a structural comparison of the NACC2 BTB domain with that of PLZF, another BTB-containing protein. Mutations were also introduced into the NTRK2-derived portion to allow comparison of two different breakpoints that have been clinically reported. We show that activation of the NTRK2 kinase domain relies on multimerization of the BTB domain in NACC2-NTRK2. Mutations which disrupt BTB-mediated multimerization significantly reduce kinase activity and downstream signaling. The ability of these mutations to abrogate biological activity suggests that BTB domain inhibition could be a potential treatment for NACC2-NTRK2-induced cancers. Removal of the transmembrane helix leads to enhanced stability of the fusion protein and increased activity of the NACC2-NTRK2 fusion, suggesting a mechanism for the oncogenicity of a distinct NACC2-NTRK2 isoform observed in pediatric glioblastoma.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Xuan Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
41
|
Roberto K, Keith J, Levine A, Pirouzmand F, Soliman H, Lim-Fat MJ. MEK Inhibition in a Pilocytic Astrocytoma With a Rare KRAS Q61R Mutation in a Young Adult Patient: A Case Report. JCO Precis Oncol 2024; 8:e2400174. [PMID: 38905571 PMCID: PMC11371098 DOI: 10.1200/po.24.00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024] Open
Abstract
This case illustrates the utility and impact of molecular testing and molecular tumor board discussion in the management of AYA patients with brain tumors.
Collapse
Affiliation(s)
- Katrina Roberto
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Adrian Levine
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Farhad Pirouzmand
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Miyagishima KJ, Qiao F, Stasheff SF, Nadal-Nicolás FM. Visual Deficits and Diagnostic and Therapeutic Strategies for Neurofibromatosis Type 1: Bridging Science and Patient-Centered Care. Vision (Basel) 2024; 8:31. [PMID: 38804352 PMCID: PMC11130890 DOI: 10.3390/vision8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder primarily affecting children and adolescents characterized by multisystemic clinical manifestations. Mutations in neurofibromin, the protein encoded by the Nf1 tumor suppressor gene, result in dysregulation of the RAS/MAPK pathway leading to uncontrolled cell growth and migration. Neurofibromin is highly expressed in several cell lineages including melanocytes, glial cells, neurons, and Schwann cells. Individuals with NF1 possess a genetic predisposition to central nervous system neoplasms, particularly gliomas affecting the visual pathway, known as optic pathway gliomas (OPGs). While OPGs are typically asymptomatic and benign, they can induce visual impairment in some patients. This review provides insight into the spectrum and visual outcomes of NF1, current diagnostic techniques and therapeutic interventions, and explores the influence of NF1-OPGS on visual abnormalities. We focus on recent advancements in preclinical animal models to elucidate the underlying mechanisms of NF1 pathology and therapies targeting NF1-OPGs. Overall, our review highlights the involvement of retinal ganglion cell dysfunction and degeneration in NF1 disease, and the need for further research to transform scientific laboratory discoveries to improved patient outcomes.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Fengyu Qiao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Steven F. Stasheff
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
- Center for Neuroscience and Behavioral Medicine, Gilbert Neurofibromatosis Institute, Children’s National Health System, Washington, DC 20010, USA
- Neurology Department, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Francisco M. Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| |
Collapse
|
43
|
Ebrahimi A, Waha A, Schittenhelm J, Gohla G, Schuhmann MU, Pietsch T. BCOR::CREBBP fusion in malignant neuroepithelial tumor of CNS expands the spectrum of methylation class CNS tumor with BCOR/BCOR(L1)-fusion. Acta Neuropathol Commun 2024; 12:60. [PMID: 38637838 PMCID: PMC11025138 DOI: 10.1186/s40478-024-01780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.
Collapse
Affiliation(s)
- Azadeh Ebrahimi
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany.
| | - Andreas Waha
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Jens Schittenhelm
- Institute of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Georg Gohla
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| |
Collapse
|
44
|
Soni N, Agarwal A, Ajmera P, Mehta P, Gupta V, Vibhute M, Gubbiotti M, Mark IT, Messina SA, Mohan S, Bathla G. High-Grade Astrocytoma with Piloid Features: A Dual Institutional Review of Imaging Findings of a Novel Entity. AJNR Am J Neuroradiol 2024; 45:468-474. [PMID: 38485198 PMCID: PMC11288576 DOI: 10.3174/ajnr.a8166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 04/10/2024]
Abstract
High-grade astrocytoma with piloid features (HGAP) is a recently identified brain tumor characterized by a distinct DNA methylation profile. Predominantly located in the posterior fossa of adults, HGAP is notably prevalent in individuals with neurofibromatosis type 1. We present an image-centric review of HGAP and explore the association between HGAP and neurofibromatosis type 1. Data were collected from 8 HGAP patients treated at two tertiary care institutions between January 2020 and October 2023. Demographic details, clinical records, management, and tumor molecular profiles were analyzed. Tumor characteristics, including location and imaging features on MR imaging, were reviewed. Clinical or imaging features suggestive of neurofibromatosis 1 or the presence of NF1 gene alteration were documented. The mean age at presentation was 45.5 years (male/female = 5:3). Tumors were midline, localized in the posterior fossa (n = 4), diencephalic/thalamic (n = 2), and spinal cord (n = 2). HGAP lesions were T1 hypointense, T2-hyperintense, mostly without diffusion restriction, predominantly peripheral irregular enhancement with central necrosis (n = 3) followed by mixed heterogeneous enhancement (n = 2). Two NF1 mutation carriers showed signs of neurofibromatosis type 1 before HGAP diagnosis, with one diagnosed during HGAP evaluation, strengthening the HGAP-NF1 link, particularly in patients with posterior fossa masses. All tumors were IDH1 wild-type, often with ATRX, CDKN2A/B, and NF1 gene alteration. Six patients underwent surgical resection followed by adjuvant chemoradiation. Six patients were alive, and two died during the last follow-up. Histone H3 mutations were not detected in our cohort, such as the common H3K27M typically seen in diffuse midline gliomas, linked to aggressive clinical behavior and poor prognosis. HGAP lesions may involve the brain or spine and tend to be midline or paramedian in location. Underlying neurofibromatosis type 1 diagnosis or imaging findings are important diagnostic cues.
Collapse
Affiliation(s)
- Neetu Soni
- From the Mayo Clinic (N.S., A.A., V.G.), Jacksonville, Florida
| | - Amit Agarwal
- From the Mayo Clinic (N.S., A.A., V.G.), Jacksonville, Florida
| | - Pranav Ajmera
- Mayo Clinic (P.A., P.M., I.T.M., S.A.M., G.B.), Rochester, Minnesota
| | - Parv Mehta
- Mayo Clinic (P.A., P.M., I.T.M., S.A.M., G.B.), Rochester, Minnesota
| | - Vivek Gupta
- From the Mayo Clinic (N.S., A.A., V.G.), Jacksonville, Florida
| | - Mukta Vibhute
- College of Medicine (M.V.), St. George's University, Grenada, West Indies
| | - Maria Gubbiotti
- MD Anderson Cancer Center (M.G.), University of Texas, Houston, Texas
| | - Ian T Mark
- Mayo Clinic (P.A., P.M., I.T.M., S.A.M., G.B.), Rochester, Minnesota
| | - Steven A Messina
- Mayo Clinic (P.A., P.M., I.T.M., S.A.M., G.B.), Rochester, Minnesota
| | - Suyash Mohan
- Perelman School of Medicine (S.M.), University of Pennsylvania, Philadelphia, Pennsylvania
| | - Girish Bathla
- Mayo Clinic (P.A., P.M., I.T.M., S.A.M., G.B.), Rochester, Minnesota
| |
Collapse
|
45
|
Pizzimenti C, Fiorentino V, Germanò A, Martini M, Ieni A, Tuccari G. Pilocytic astrocytoma: The paradigmatic entity in low‑grade gliomas (Review). Oncol Lett 2024; 27:146. [PMID: 38385109 PMCID: PMC10879958 DOI: 10.3892/ol.2024.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Among low-grade gliomas, representing 10-20% of all primary brain tumours, the paradigmatic entity is constituted by pilocytic astrocytoma (PA), considered a grade 1 tumour by the World Health Organization. Generally, this tumour requires surgical treatment with an infrequent progression towards malignant gliomas. The present review focuses on clinicopathological characteristics, and reports imaging, neurosurgical and molecular features using a multidisciplinary approach. Macroscopically, PA is a slow-growing soft grey tissue, characteristically presenting in association with a cyst and forming a small mural nodule, typically located in the cerebellum, but sometimes occurring in the spinal cord, basal ganglia or cerebral hemisphere. Microscopically, it may appear as densely fibrillated areas composed of elongated pilocytic cells with bipolar 'hairlike' processes or densely fibrillated areas composed of elongated pilocytic cells with Rosenthal fibres alternating with loosely fibrillated areas with a varied degree of myxoid component. A wide range of molecular alterations have been encountered in PA, mostly affecting the MAPK signalling pathway. In detail, the most frequent alteration is a rearrangement of the BRAF gene, although other alterations include neurofibromatosis type-1 mutations, BRAFV600E mutations, KRAS mutations, fibroblast growth factor receptor-1 mutations of fusions, neurotrophic receptor tyrosine kinase family receptor tyrosine kinase fusions and RAF1 gene fusions. The gold standard of PA treatment is surgical excision with complete margin resection, achieving minimal neurological damage. Conventional radiotherapy is not required; the more appropriate treatment appears to be serial follow-up. Chemotherapy should only be applied in younger children to avoid the risk of long-term growth and developmental issues associated with radiation. Finally, if PA recurs, a new surgical approach should be performed. At present, novel therapy involving agents targeting MAPK signalling pathway dysregulation is in development, defining BRAF and MEK inhibitors as target therapeutical agents.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Sections of Pathology and Neurosurgery, University of Messina, I-98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonino Germanò
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, Sections of Pathology and Neurosurgery, University of Messina, I-98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, I-98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
46
|
Zander C, Diebold M, Shah MJ, Malzkorn B, Prinz M, Urbach H, Erny D, Taschner CA. Freiburg Neuropathology Case Conference: : 68-Year-Old Patient with Slurred Speech, Double Vision, and Increasing Gait Disturbance. Clin Neuroradiol 2024; 34:279-286. [PMID: 38345610 PMCID: PMC10881640 DOI: 10.1007/s00062-024-01385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Affiliation(s)
- C Zander
- Departments of Neuroradiology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - M Diebold
- Neuropathology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - M J Shah
- Neurosurgery, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - B Malzkorn
- Institute of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - M Prinz
- Neuropathology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - H Urbach
- Departments of Neuroradiology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - D Erny
- Neuropathology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - C A Taschner
- Departments of Neuroradiology, University of Freiburg, Freiburg, Germany.
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany.
| |
Collapse
|
47
|
Heilmann AM, Riess JW, McLaughlin-Drubin M, Huang RSP, Hjulstrom M, Creeden J, Alexander BM, Erlich RL. Insights of Clinical Significance From 109 695 Solid Tumor Tissue-Based Comprehensive Genomic Profiles. Oncologist 2024; 29:e224-e236. [PMID: 37682776 PMCID: PMC10836312 DOI: 10.1093/oncolo/oyad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/06/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND FoundationOneCDx is approved in the US and Japan as a companion diagnostic test to identify patients with cancer who may benefit from treatment with 30 drug therapies in the US and 23 in Japan. Tumor profiling with FoundationOneCDx also detects genomic findings with evidence of clinical significance that may inform clinical care decisions beyond companion diagnostic claims. This observational study reports the breadth and impact of clinical decision insights from FoundationOneCDx solid tumor profiles. MATERIALS AND METHODS Consecutive test result reports for patients with solid tumor diagnoses (n = 109 695) were retrospectively analyzed for clinically significant predictive, prognostic, and diagnostic genomic alterations and signatures, determined in accordance with professional guidelines. Interventional clinical trials with targeted therapies or immune checkpoint inhibitors were matched to tumor profiles based on evidence that the genomic finding may be an actionable, investigational, or hypothetical target in the patient's tumor type. RESULTS In 14 predefined cancer types (80.7% of analyzed solid tumors), predictive, prognostic, and diagnostic markers were reported in 47.6%, 13.2%, and 4.5% of samples, respectively, accounting for a total of 51.2% of tumor profiles. Pan-cancer predictive markers of tumor mutational burden (TMB) of 10 or more mutations per megabase, high microsatellite instability (MSI), or NTRK1/2/3 fusions were observed in 15.6%, 2.0%, and 0.1% of solid tumors, respectively. Most solid tumor profiles (89.2%) had genomic results that could theoretically inform decisions on the selection of immunotherapy and targeted therapy clinical trials. CONCLUSION For this real-world population of patients with FoundationOneCDx solid tumor profiles in the routine course of clinical care, clinically significant findings were reported for approximately half of patients with genomic results.
Collapse
Affiliation(s)
| | - Jonathan W Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
van Tilburg CM, Kilburn LB, Perreault S, Schmidt R, Azizi AA, Cruz-Martínez O, Zápotocký M, Scheinemann K, Meeteren AYNSV, Sehested A, Opocher E, Driever PH, Avula S, Ziegler DS, Capper D, Koch A, Sahm F, Qiu J, Tsao LP, Blackman SC, Manley P, Milde T, Witt R, Jones DTW, Hargrave D, Witt O. LOGGIC/FIREFLY-2: a phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration. BMC Cancer 2024; 24:147. [PMID: 38291372 PMCID: PMC10826080 DOI: 10.1186/s12885-024-11820-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, Münster, Germany
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ofelia Cruz-Martínez
- Neuro-oncology Unit, Pediatric Cancer Center, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Michal Zápotocký
- Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Pediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| | | | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Enrico Opocher
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Pablo Hernáiz Driever
- German HIT-LOGGIC-Registry for LGG in Children and Adolescents, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DKTK Partner Site, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Sahm
- Department of Neuropathology, German Cancer Research Center (DKFZ), University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | - Li-Pen Tsao
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | | | | | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ruth Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
49
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
50
|
郑 婷, 朱 倍, 王 智, 李 青. [Gene therapy strategies and prospects for neurofibromatosis type 1]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1-8. [PMID: 38225833 PMCID: PMC10796236 DOI: 10.7507/1002-1892.202309071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the gene therapy strategies for neurofibromatosis type 1 (NF1) and related research progress. Methods The recent literature on gene therapy for NF1 at home and abroad was reviewed. The structure and function of the NF1 gene and its mutations were analyzed, and the current status as well as future prospects of the transgenic therapy and gene editing strategies were summarized. Results NF1 is an autosomal dominantly inherited tumor predisposition syndrome caused by mutations in the NF1 tumor suppressor gene, which impair the function of the neurofibromin and lead to the disease. It has complex clinical manifestations and is not yet curable. Gene therapy strategies for NF1 are still in the research and development stage. Existing studies on the transgenic therapy for NF1 have mainly focused on the construction and expression of the GTPase-activating protein-related domain in cells that lack of functional neurofibromin, confirming the feasibility of the transgenic therapy for NF1. Future research may focus on split adeno-associated virus (AAV) gene delivery, oversized AAV gene delivery, and the development of new vectors for targeted delivery of full-length NF1 cDNA. In addition, the gene editing tools of the new generation have great potential to treat monogenic genetic diseases such as NF1, but need to be further validated in terms of efficiency and safety. Conclusion Gene therapy, including both the transgenic therapy and gene editing, is expected to become an important new therapeutic approach for NF1 patients.
Collapse
Affiliation(s)
- 婷婷 郑
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 倍瑶 朱
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 智超 王
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 青峰 李
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|