1
|
Pagnossin D, Smith A, Weir W, McDonald E, Coelho J, Ure R, Oravcová K. Epidemiological and genomic characterisation of an outbreak of Streptococcus pyogenes emm5.23. J Infect 2025; 90:106498. [PMID: 40319945 DOI: 10.1016/j.jinf.2025.106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES This retrospective cross-sectional study examined the epidemiology, clinical presentations, and genomics of Streptococcus pyogenes genotype emm5.23, linked to severe outcomes in Scotland. METHODS Between 2014 and 2022, 58 cases of invasive Group A Streptococcus (iGAS) disease associated with emm5.23 were reported in Scotland. Surveillance data from 45 cases were analysed for clinical characteristics and risk factors. Whole-genome sequencing (WGS) included all available emm5.23 strains from Scotland (n=58), a subset from England (n=29), and emm5 strains of non-5.23 subtypes from Scotland (n=10), England (n=2), and Canada (n=1). RESULTS Nearly all cases (96%, 43/45) were hospitalised, of whom 33% (15/45) required intensive care and 20% (9/45) died with iGAS. The most common presentations were bacteraemia (51%, 23/45) and pneumonia (24%, 11/45). WGS identified an emerging emm5.23 clade in Scotland, encompassing most isolates, which shared highly similar genomes and three non-synonymous polymorphisms. CONCLUSIONS Although genomic traits known to increase GAS virulence potential were not found, polymorphisms that may affect the emm5.23 phenotype were detected. This suggests this emm5.23 genotype was transiently successful rather than hypervirulent, with low population-level immunity contributing to its spread. This study emphasises the need for integration of real-time genomic data in public health surveillance to enhance source attribution and guide interventions.
Collapse
Affiliation(s)
| | - Andrew Smith
- University of Glasgow, Glasgow, Scotland, UK; Scottish Microbiology Reference Laboratories, Glasgow, Scotland, UK
| | | | | | | | - Roisin Ure
- Scottish Microbiology Reference Laboratories, Glasgow, Scotland, UK
| | | |
Collapse
|
2
|
Wang PY, Chen ZS, Jiao X, Bao YJ. Integrating Deep Learning Models with Genome-Wide Association Study-Based Identification Enhanced Phenotype Predictions in Group A Streptococcus. J Microbiol Biotechnol 2025; 35:e2411010. [PMID: 40147921 PMCID: PMC11994263 DOI: 10.4014/jmb.2411.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 03/29/2025]
Abstract
Group A Streptococcus (GAS) is a major pathogen with diverse clinical outcomes linked to its genetic variability, making accurate phenotype prediction essential. While previous studies have identified many GAS-associated genetic factors, translating these findings into predictive models remains challenging due to data complexity. The current study aimed to integrate deep learning models with genome-wide association study-derived genetic variants to predict pathogenic phenotypes in GAS. We evaluated the performance of several deep neural network models, including CNN, ResNet18, LSTM, and their ensemble approach in predicting GAS phenotypes. It was found that the ensemble model consistently achieved the highest prediction accuracy across phenotypes. Models trained on the full 4722-genotype set outperformed those trained on a reduced 175-genotype set, underscoring the importance of comprehensive variant data in capturing complex genotype-phenotype interactions. Performance changes in the reduced 175-genotype set compared to the full-set genotype scenarios revealed the impact of data dimensionality on model effectiveness, with CNN remaining robust, while ResNet18 and LSTM underperformed. Our findings emphasized the potential of deep learning in phenotype prediction and the critical role of data-model compatibility.
Collapse
Affiliation(s)
- Peng-Ying Wang
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Zhi-Song Chen
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Xiaoguo Jiao
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Yun-Juan Bao
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
3
|
Wu Q, Jiang Y, Lv P, Chen M. Emergence of T4SS-type-ICE-carrying emm28 Streptococcus pyogenes causing invasive infection in Shanghai, China. J Glob Antimicrob Resist 2025; 41:21-28. [PMID: 39675472 DOI: 10.1016/j.jgar.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE Invasive group A streptococcal (iGAS) infections have been increasing in Europe, Australia, and the USA, but few data from China are available. This study intended to provide local data to highlight the characteristics of iGAS infections in China. METHODS A retrospective analysis was performed on clinical iGAS infection data from 2014 to 2023 in a tertiary hospital in Shanghai, China. Genomic analysis was conducted to characterize antimicrobial resistance, virulence, prophages, and integrative and conjugative elements (ICEs), as well as phylogenetic clusters. RESULTS From 2014 to 2023, a total of 21 iGAS cases were discovered, with soft tissue infections accounting for 61.9% (13/21) and 85.7% (18/21) of isolates resistant to erythromycin and clindamycin, respectively. Three iGAS isolates from 2023 underwent genome sequencing, which indicated that two isolates were emm12 and one was emm28. Phylogenetic analysis showed that the two emm12 isolates were assigned to clade II and closely related to Chinese scarlet fever-causing isolates. The emm28 isolate was assigned to subclades of SC1A and discovered to possess a novel ICE (designated as ICE-SHemm28; Tn916-like) that carried both the ermB gene and the type IV secretion system. CONCLUSIONS Emergence of an emm28 iGAS strain harboring a novel macrolide resistance-carrying type IV secretion system ICE was identified in invasive infections in Shanghai.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Jiang
- Research and Translational Laboratory of Acute Injury and Secondary Infection, Minhang Hospital, Fudan University, Shanghai, China
| | - PanPan Lv
- Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Mingliang Chen
- Research and Translational Laboratory of Acute Injury and Secondary Infection, Minhang Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Brouwer S, Das S, Hayes AJ, Bertolla OM, Davies MR, Walker MJ, Whiley DM, Irwin AD, Tickner JA. A Rapid Molecular Detection Tool for Toxigenic M1UK Streptococcus pyogenes. J Infect Dis 2025; 231:e375-e384. [PMID: 39206960 PMCID: PMC11841628 DOI: 10.1093/infdis/jiae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The gradual replacement of the Streptococcus pyogenes M1global genotype by a newly emergent M1UK variant is a global public health threat warranting increased surveillance. M1UK differs from progenitor M1global genotype by 27 single-nucleotide polymorphisms and is characterized by increased speA superantigen expression in vitro. METHODS An allele-specific real-time polymerase chain reaction assay was developed for the rapid detection of M1UK strains. The assay was used in combination with whole genome sequencing to determine emm (sub)type distribution for 51 invasive (n = 9) and noninvasive (n = 42) S pyogenes clinical isolates. RESULTS Emm1 was the most prevalent S pyogenes emm serotype (n = 11) in this set of clinical isolates, with M1UK being the dominant emm1 genotype (4/5 invasive, 3/6 noninvasive isolates). The assay accurately detected M1UK strains. Whole genome sequencing revealed continued presence of Australian M1UK sublineages associated with epidemic scarlet fever-causing S pyogenes in Asia. CONCLUSIONS Our study establishes a suitable target for detection of the toxigenic M1UK and confirms the maintenance of M1UK strains in Queensland, Australia. This assay can be deployed in laboratories and provides a valuable, cost-effective tool to enhance surveillance of the expanding M1UK clone.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience
| | - Swairindhree Das
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria
| | - Olivia M Bertolla
- Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience
| | - David M Whiley
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
- Queensland Paediatric Infectious Diseases Sakzewski Laboratory, Centre for Children's Health Research
| | - Adam D Irwin
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
- Queensland Paediatric Infectious Diseases Sakzewski Laboratory, Centre for Children's Health Research
- Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Australia
| | - Jacob A Tickner
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane
- Queensland Paediatric Infectious Diseases Sakzewski Laboratory, Centre for Children's Health Research
| |
Collapse
|
5
|
Hankins JD, Johnson CL, Sanchez BC, Serrano AV, Runge JK, Spinler JK, Powell JW, Luna RA, Dunn JJ, Niles DT. Increased Incidence and Severity of Group A Streptococcal Infections in Children in Southeast Texas From June 2022 to May 2023. Pediatr Infect Dis J 2025; 44:118-124. [PMID: 39886927 DOI: 10.1097/inf.0000000000004577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
BACKGROUND Group A Streptococcus (GAS) infections can cause a range of disease manifestations and severity, including invasive infections that can lead to death. In 2022-2023, there was an increased number of cases of invasive GAS in the United States following a decline in 2020-2022. METHODS We investigated this surge at a 3-hospital system of children's hospitals in Southeast Texas. Cases of invasive GAS (n = 252) were retrospectively reviewed from peak periods of infection, beginning June 2019-May 2020 and continuing each successive year until May 2023. Cases were analyzed based on patient demographics, disease manifestations, coinfections, and hospital course. Isolates grown in culture were sequenced, and the emm types and genes associated with virulence were analyzed. RESULTS Compared with previous years, June 2022-May 2023 had the largest number of invasive GAS cases (n = 154, 2022-2023; 34, 2021-2022; 12, 2020-2021; 52, 2019-2020). Compared with the previous 3 years, patients from 2022 to 2023 were more likely to present with complicated pneumonia (23.4% vs. 7.1%; P = 0.0009), require respiratory support (34.4% vs. 14.3%; P < 0.001), be admitted to the intensive care unit (29.2% vs. 16.3; P = 0.0235), and be infected with emm type 12 isolates (40.6% vs. 10.3%; P = 0.0030). CONCLUSIONS In June 2022-May 2023, there was a 5-fold surge of invasive GAS infection cases in children at Texas Children's Hospital compared with the previous 3 years. These cases required greater intensive care unit hospitalization and respiratory support requirements due to higher rates of complicated pneumonia.
Collapse
Affiliation(s)
- Julia D Hankins
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
- Department of Pathology, University of Kansas Health System, Kansas City, Kansas
| | - Coreen L Johnson
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Belkys C Sanchez
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Angela V Serrano
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Jessica K Runge
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Jennifer K Spinler
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - John W Powell
- From the Department of Pathology and Immunology, Baylor College of Medicine
| | - Ruth Ann Luna
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - James J Dunn
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Denver T Niles
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
- Department of Pediatrics-Infectious Disease, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
Fernandez-Perez J, Senoo A, Caaveiro JMM, Nakakido M, de Vega S, Nakagawa I, Tsumoto K. Structural basis for the ligand promiscuity of the hydroxamate siderophore binding protein FtsB from Streptococcus pyogenes. Structure 2024; 32:2410-2421.e3. [PMID: 39395422 DOI: 10.1016/j.str.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Pathogenic bacteria must secure the uptake of nutritional metals such as iron for their growth, making their import systems attractive targets for the development of new antimicrobial modalities. In the pathogenic bacterium Streptococcus pyogenes, the iron uptake system FtsABCD transports iron encapsulated by siderophores of the hydroxamate class. However, the inability of S. pyogenes to produce these metabolites makes the biological and clinical relevance of this route unresolved. Herein, we demonstrated that the periplasmic binding protein FtsB recognizes not only the hydroxamate siderophore ferrichrome, as previously documented, but also ferrioxamine E (FOE), ferrioxamine B (FOB), and bisucaberin (BIS), each of them with high affinity (nM level). Up to seven aromatic residues in the binding pocket accommodate the variable backbones of the different siderophores through CH-π interactions, explaining ligand promiscuity. Collectively, our observations revealed how S. pyogenes exploits the diverse xenosiderophores produced by other microorganisms as iron sources to secure this precious nutrient.
Collapse
Affiliation(s)
- Jorge Fernandez-Perez
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akinobu Senoo
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jose M M Caaveiro
- Laboratory of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Susana de Vega
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
7
|
Shaw PK, Hayes AJ, Langton M, Berkhout A, Grimwood K, Davies MR, Walker MJ, Brouwer S. Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital. Pathogens 2024; 13:956. [PMID: 39599509 PMCID: PMC11597359 DOI: 10.3390/pathogens13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a human-restricted pathogen that causes a wide range of diseases from pharyngitis and scarlet fever to more severe, invasive infections such as necrotising fasciitis and streptococcal toxic shock syndrome. There has been a global increase in both scarlet fever and invasive infections during the COVID-19 post-pandemic period. The aim of this study was the molecular characterisation of 17 invasive and non-invasive clinical non-emm1 GAS isolates from an Australian tertiary hospital collected between 2021 and 2022. Whole genome sequencing revealed a total of nine different GAS emm types with the most prevalent being emm22, emm12 and emm3 (each 3/17, 18%). Most isolates (14/17, 82%) carried at least one superantigen gene associated with contemporary scarlet fever outbreaks, and the carriage of these toxin genes was non-emm type specific. Several mutations within key regulatory genes were identified across the different GAS isolates, which may be linked to an increased expression of several virulence factors. This study from a single Australian centre provides a snapshot of non-emm1 GAS clinical isolates that are multiclonal and linked with distinct epidemiological markers commonly observed in high-income settings. These findings highlight the need for continual surveillance to monitor genetic markers that may drive future outbreaks.
Collapse
Affiliation(s)
- Phoebe K. Shaw
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| | - Andrew J. Hayes
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (A.J.H.); (M.R.D.)
| | - Maree Langton
- Gold Coast Laboratory, Pathology Queensland, Gold Coast, QLD 4215, Australia;
| | - Angela Berkhout
- Infection Management and Prevention Service, Queensland Specialist Immunisation Service, Children’s Health Queensland, South Brisbane, QLD 4101, Australia;
- Queensland Statewide Antimicrobial Stewardship Program, Department of Paediatrics, Royal Brisbane and Women’s Hospital, Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Keith Grimwood
- Gold Coast and Departments of Infectious Diseases and Paediatrics, Gold Coast Health, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Mark R. Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (A.J.H.); (M.R.D.)
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| |
Collapse
|
8
|
Deneubourg G, Schiavolin L, Lakhloufi D, Botquin G, Delforge V, Davies MR, Smeesters PR, Botteaux A. Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence. Microorganisms 2024; 12:2209. [PMID: 39597598 PMCID: PMC11596691 DOI: 10.3390/microorganisms12112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is responsible for over 500,000 deaths per year. Approximately 15% of these deaths are caused by necrotizing soft-tissue infections. In 2008, we isolated an M5 GAS, named the LO1 strain, responsible for the nosocomial transmission of necrotizing fasciitis between a baby and a nurse in Belgium. To understand this unusual transmission route, the LO1 strain was sequenced. A comparison of the LO1 genome and transcriptome with the reference M5 Manfredo strain was conducted. We found that the major differences were the presence of an additional DNase and a Tn916-like transposon in the LO1 and other invasive M5 genomes. RNA-seq analysis showed that genes present on the transposon were barely expressed. In contrast, the DNases presented different expression profiles depending on the tested conditions. We generated knock-out mutants in the LO1 background and characterized their virulence phenotype. We also determined their nuclease activity on different substrates. We found that DNases are dispensable for biofilm formation and adhesion to both keratinocytes and pharyngeal cells. Three of these were found to be essential for blood survival; Spd4 and Sdn are implicated in phagocytosis resistance, and Spd1 is responsible for neutrophil extracellular trap (NET) degradation.
Collapse
Affiliation(s)
- Geoffrey Deneubourg
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Lionel Schiavolin
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Dalila Lakhloufi
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Gwenaelle Botquin
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Valérie Delforge
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| | - Mark R. Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia;
| | - Pierre R. Smeesters
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
- Department of Pediatrics, Academic Children Hospital Queen Fabiola, Brussels University Hospital, Université Libre de Bruxelles, 1020 Bruxelles, Belgium
| | - Anne Botteaux
- Molecular Bacteriology, European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles, 1070 Bruxelles, Belgium; (G.D.); (L.S.); (D.L.); (G.B.); (V.D.); (P.R.S.)
| |
Collapse
|
9
|
Li D, Liu Y, Zhang W, Shi T, Zhao X, Zhao X, Zheng H, Li R, Wang T, Ren X. The association between the scarlet fever and meteorological factors, air pollutants and their interactions in children in northwest China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1989-2002. [PMID: 38884798 DOI: 10.1007/s00484-024-02722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Scarlet fever (SF) is an acute respiratory transmitted disease that primarily affects children. The influence of meteorological factors and air pollutants on SF in children has been proved, but the relevant evidence in Northwest China is still lacking. Based on the weekly reported cases of SF in children in Lanzhou, northwest China, from 2014 to 2018, we used geographical detectors, distributed lag nonlinear models (DLNM), and bivariate response models to explore the influence of meteorological factors and air pollutants with SF. It was found that ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), temperature, pressure, water vapor pressure and wind speed were significantly correlated with SF based on geographical detectors. With the median as reference, the influence of high temperature, low pressure and high pressure on SF has a risk effect (relative risk (RR) > 1), and under extreme conditions, the dangerous effect was still significant. High O3 had the strongest effect at a 6-week delay, with an RR of 5.43 (95%CI: 1.74,16.96). The risk effect of high SO2 was strongest in the week of exposure, and the maximum risk effect was 1.37 (95%CI: 1.08,1.73). The interactions showed synergistic effects between high temperatures and O3, high pressure and high SO2, high nitrogen dioxide (NO2) and high particulate matter with diameter of less than 10 μm (PM10), respectively. In conclusion, high temperature, pressure, high O3 and SO2 were the most important factors affecting the occurrence of SF in children, which will provide theoretical support for follow-up research and disease prevention policy formulation.
Collapse
Affiliation(s)
- Donghua Li
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Yanchen Liu
- Fu Wai Hospital, Chinese Academy of Medical Sciences, Shenzhen Hospital, Nanshan District, Shenzhen city, 518000, Guangdong Province, China
| | - Wei Zhang
- Lanzhou Center for Disease Control and Prevention, Chengguan District, Lanzhou City, 733000, Gansu Province, China
| | - Tianshan Shi
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Xiangkai Zhao
- School of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou City, 450001, Henan Province, China
| | - Xin Zhao
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Hongmiao Zheng
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Rui Li
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Tingrong Wang
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Xiaowei Ren
- School of Public Health, Lanzhou University, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
10
|
Cho KH. Molecular Targets in Streptococcus pyogenes for the Development of Anti-Virulence Agents. Genes (Basel) 2024; 15:1166. [PMID: 39336757 PMCID: PMC11430994 DOI: 10.3390/genes15091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus pyogenes, commonly known as Group A Streptococcus (GAS), is a significant human pathogen responsible for a wide range of diseases, from mild pharyngitis to severe conditions such as necrotizing fasciitis and toxic shock syndrome. The increasing antibiotic resistance, especially against macrolide antibiotics, poses a challenge to the effective treatment of these infections. This paper reviews the current state and mechanisms of antibiotic resistance in S. pyogenes. Furthermore, molecular targets for developing anti-virulence agents, which aim to attenuate virulence rather than killing it outright, are explored. This review specifically focuses on virulence regulators, proteins that coordinate the expression of multiple virulence factors in response to environmental signals, playing a crucial role in the pathogen's ability to cause disease. Key regulatory systems, such as RopB, Mga, CovRS, and the c-di-AMP signaling system, are discussed for their roles in modulating virulence gene expression. Additionally, potential molecular target sites for the development of anti-virulence agents are suggested. By concentrating on these regulatory pathways, it is proposed that anti-virulence strategies could enhance the effectiveness of existing antibiotics and reduce the selective pressure that drives the development of resistance.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, 600 Chestnut St. S224, Terre Haute, IN 47809, USA
| |
Collapse
|
11
|
Hall JN, Bah SY, Khalid H, Brailey A, Coleman S, Kirk T, Hussain N, Tovey M, Chaudhuri RR, Davies S, Tilley L, de Silva T, Turner CE. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022-2023 UK upsurge. Microb Genom 2024; 10:001277. [PMID: 39133528 PMCID: PMC11318961 DOI: 10.1099/mgen.0.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
At the end of 2022 into early 2023, the UK Health Security Agency reported unusually high levels of scarlet fever and invasive disease caused by Streptococcus pyogenes (StrepA or group A Streptococcus). During this time, we collected and genome-sequenced 341 non-invasive throat and skin S. pyogenes isolates identified during routine clinical diagnostic testing in Sheffield, a large UK city. We compared the data with that obtained from a similar collection of 165 isolates from 2016 to 2017. Numbers of throat-associated isolates collected peaked in early December 2022, reflecting the national scarlet fever upsurge, while skin infections peaked later in December. The most common emm-types in 2022-2023 were emm1 (28.7 %), emm12 (24.9 %) and emm22 (7.7 %) in throat and emm1 (22 %), emm12 (10 %), emm76 (18 %) and emm49 (7 %) in skin. While all emm1 isolates were the M1UK lineage, the comparison with 2016-2017 revealed diverse lineages in other emm-types, including emm12, and emergent lineages within other types including a new acapsular emm75 lineage, demonstrating that the upsurge was not completely driven by a single genotype. The analysis of the capsule locus predicted that only 51 % of throat isolates would produce capsule compared with 78% of skin isolates. Ninety per cent of throat isolates were also predicted to have high NADase and streptolysin O (SLO) expression, based on the promoter sequence, compared with only 56% of skin isolates. Our study has highlighted the value in analysis of non-invasive isolates to characterize tissue tropisms, as well as changing strain diversity and emerging genomic features which may have implications for spillover into invasive disease and future S. pyogenes upsurges.
Collapse
Affiliation(s)
- Jennifer N. Hall
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Saikou Y. Bah
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Henna Khalid
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Alison Brailey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sarah Coleman
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tracey Kirk
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Naveed Hussain
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mark Tovey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Roy R. Chaudhuri
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Steve Davies
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lisa Tilley
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thushan de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Odo CM, Vega LA, Mukherjee P, DebRoy S, Flores AR, Shelburne SA. Emergent emm4 group A Streptococcus evidences a survival strategy during interaction with immune effector cells. Infect Immun 2024; 92:e0015224. [PMID: 38888310 PMCID: PMC11238559 DOI: 10.1128/iai.00152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence among emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. By creating and analyzing isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates than the historic strains. Via the creation of isogenic mutant strains, we linked the emergent strain "survival" phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found a high ratio of mucosal (i.e., pharyngeal) relative to invasive infections among emm4 GAS. Since ever-increasing virulence is unlikely to be evolutionarily advantageous for a microbial pathogen, our data further understanding of the well-described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a "survival" strategy to outcompete previously circulating isolates.
Collapse
Affiliation(s)
- Chioma M. Odo
- Microbiology and Infectious Disease, MD Anderson UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Luis A. Vega
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Piyali Mukherjee
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sruti DebRoy
- Department of Infectious Disease, MD Anderson Cancer Center, Houston, Texas, USA
| | - Anthony R. Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Sciences Center Houston, Houston, Texas, USA
| | - Samuel A. Shelburne
- Department of Infectious Disease, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Odo CM, Vega LA, Mukherjee P, DebRoy S, Flores AR, Shelburne SA. Emergent emm4 group A Streptococcus evidences a survival strategy during interaction with immune effector cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588776. [PMID: 38645060 PMCID: PMC11030381 DOI: 10.1101/2024.04.09.588776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence amongst emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. Through the creation and analysis of isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates relative to the historic strains. Via creation of isogenic mutant strains, we linked the emergent strain "survival" phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found high ratio of mucosal (i.e., pharyngeal) relative to invasive infections amongst emm4 GAS. Inasmuch as ever-increasing virulence is unlikely to be evolutionary advantageous for a microbial pathogen, our data furthers understanding of the well described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a "survival" strategy to outcompete previously circulating isolates.
Collapse
|
14
|
Chiang-Ni C, Hsu CY, Yeh YH, Chi CY, Wang S, Tsai PJ, Chiu CH. Detection of toxigenic M1 UK lineage group A Streptococcus clones in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:269-277. [PMID: 38278671 DOI: 10.1016/j.jmii.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND A new sublineage of emm1 group A Streptococcus (GAS), M1UK, has emerged in Europe, North America, and Australia. Notably, a significant portion of emm1 isolates in Asia, particularly in Hong Kong and mainland China, acquired scarlet fever-associated prophages following the 2011 Hong Kong scarlet fever outbreak. However, the presence of the M1UK sublineage has not yet been detected in Asia. METHODS This study included 181 GAS isolates (2011-2021). The emm type of these isolates were determined, and 21 emm1 isolates from blood or pleural fluid (2011-2021) and 10 emm1 isolates from throat swabs (2016-2018) underwent analysis. The presence of the scarlet fever-associated prophages and the specific single nucleotide polymorphisms of the M1UK clone were determined by polymerase chain reaction and the genome sequencing. RESULTS The M1UK lineage strains from throat swab and blood samples were identified. One of the M1UK strain in Taiwan carried the scarlet fever-associated prophage and therefore acquired the ssa, speC, and spd1 toxin repertoire. Nonetheless, the increase of M1UK was not observed until 2021, and there was a reduction in the diversity of emm types in 2020-2021, possibly due to the COVID-19 pandemic restriction policies in Taiwan. CONCLUSIONS Our results suggested that the M1UK lineage clone has introduced in Taiwan. In Taiwan, the COVID-19 restrictions were officially released in March 2023; therefore, it would be crucial to continuously monitor the M1UK expansion and its related diseases in the post COVID-19 era.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsuan Yeh
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yu Chi
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
15
|
Lacey JA, Bennett J, James TB, Hines BS, Chen T, Lee D, Sika-Paotonu D, Anderson A, Harwood M, Tong SY, Baker MG, Williamson DA, Moreland NJ. A worldwide population of Streptococcus pyogenes strains circulating among school-aged children in Auckland, New Zealand: a genomic epidemiology analysis. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100964. [PMID: 38035130 PMCID: PMC10684382 DOI: 10.1016/j.lanwpc.2023.100964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/20/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Background Acute rheumatic fever (ARF) is a serious post-infectious sequala of Group A Streptococcus (GAS, Streptococcus pyogenes). In New Zealand (NZ) ARF is a major cause of health inequity. This study describes the genomic analysis of GAS isolates associated with childhood skin and throat infections in Auckland NZ. Methods Isolates (n = 469) collected between March 2018 and October 2019 from the throats and skin of children (5-14 years) underwent whole genomic sequencing. Equal representation across three ethnic groups was ensured through sample quotas with isolates obtained from Indigenous Māori (n = 157, 33%), NZ European/Other (n = 149, 32%) and Pacific Peoples children (n = 163, 35%). Using in silico techniques isolates were classified, assessed for diversity, and examined for distribution differences between groups. Comparisons were also made with GAS strains identified globally. Findings Genomic analysis revealed a diverse population consisting of 65 distinct sequence clusters. These sequence clusters spanned 49 emm-types, with 11 emm-types comprised of several, distinct sequence clusters. There is evidence of multiple global introductions of different lineages into the population, as well as local clonal expansion. The M1UK lineage comprised 35% of all emm1 isolates. Interpretation The GAS population was characterized by a high diversity of strains, resembling patterns observed in low- and middle-income countries. However, strains associated with outbreaks and antimicrobial resistance commonly found in high-income countries were also observed. This unique combination poses challenges for vaccine development, disease management and control. Funding The work was supported by the Health Research Council of New Zealand (HRC), award number 16/005.
Collapse
Affiliation(s)
- Jake A. Lacey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Bennett
- The Department of Public Health, University of Otago, Wellington, New Zealand
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Taylah B. James
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin S. Hines
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Tiffany Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Darren Lee
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Anneka Anderson
- Te Kupenga Hauora Māori, The University of Auckland, New Zealand
| | - Matire Harwood
- Department of General Practice and Primary Healthcare, The University of Auckland, Auckland, New Zealand
| | - Steven Y.C. Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael G. Baker
- The Department of Public Health, University of Otago, Wellington, New Zealand
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Deborah A. Williamson
- Department of Infectious Diseases at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicole J. Moreland
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Zheng Q, Li L, Yin X, Che Y, Zhang T. Is ICE hot? A genomic comparative study reveals integrative and conjugative elements as "hot" vectors for the dissemination of antibiotic resistance genes. mSystems 2023; 8:e0017823. [PMID: 38032189 PMCID: PMC10734551 DOI: 10.1128/msystems.00178-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Different from other extensively studied mobile genetic elements (MGEs) whose discoveries were initiated decades ago (1950s-1980s), integrative and conjugative elements (ICEs), a diverse array of more recently identified elements that were formally termed in 2002, have aroused increasing concern for their crucial contribution to the dissemination of antibiotic resistance genes (ARGs). However, the comprehensive understanding on ICEs' ARG profile across the bacterial tree of life is still blurred. Through a genomic study by comparison with two key MGEs, we, for the first time, systematically investigated the ARG profile as well as the host range of ICEs and also explored the MGE-specific potential to facilitate ARG propagation across phylogenetic barriers. These findings could serve as a theoretical foundation for risk assessment of ARGs mediated by distinct MGEs and further to optimize therapeutic strategies aimed at restraining antibiotic resistance crises.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - Liguan Li
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - Xiaole Yin
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - You Che
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Yu W, Guo L, Shen X, Wang Z, Cai J, Liu H, Mao L, Yao W, Sun Y. Epidemiological characteristics and spatiotemporal clustering of scarlet fever in Liaoning Province, China, 2010-2019. Acta Trop 2023; 245:106968. [PMID: 37307889 DOI: 10.1016/j.actatropica.2023.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND To explore the epidemiological characteristics and spatiotemporal distribution of scarlet fever in Liaoning Province, which could provide scientific evidence for the formulation and improvement of prevention and control strategies and measures. METHODS Data on scarlet fever cases and population were obtained from the China Information System for Disease Control and Prevention in Liaoning Province between 2010 and 2019. We examined the spatial and spatiotemporal clusters of scarlet fever across Liaoning Province using the Moran's I, local indicators of spatial association, local Gi* hotspot statistics, and Kulldorff's retrospective space-time scan statistical analysis. RESULTS Between 1st January 2010 and 31st December 2019, 46,652 cases of scarlet fever were reported in Liaoning Province, with an annual average incidence of 10.67 per 100,000. The incidence of scarlet fever had obvious seasonality with high incidence in early summer June and early winter December. The male-to-female ratio was 1.53:1. The highest incidence of cases occurred in 3-9 year old children. The most likely spatiotemporal cluster and the secondary clusters were detected in urban regions of Shenyang and Dalian, Liaoning Province. CONCLUSIONS The incidence of scarlet fever has obvious spatiotemporal clustering, with the high-risk areas mainly concentrated in urban area of Shenyang and Dalian, Liaoning Province. Control strategies need to focus on high-risk season, high-risk areas and high-risk populations in order to reduce the incidence of scarlet fever.
Collapse
Affiliation(s)
- Weijun Yu
- Institute for Prevention and Control of Infection and Infectious Diseases, Liaoning Provincial Center for Disease Control and Prevention, No.168, Jin Feng Street, Shenyang, Liaoning 110172, China
| | - Lining Guo
- Hunnan District Center for Disease Control and Prevention, Shenyang, Liaoning 110015, China
| | - Xiulian Shen
- Epidemic Surveillance/Public Health Emergency Response Center, Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan 650022, China
| | - Zijiang Wang
- Institute for Prevention and Control of Infection and Infectious Diseases, Liaoning Provincial Center for Disease Control and Prevention, No.168, Jin Feng Street, Shenyang, Liaoning 110172, China; Department of Emergency Management, Liaoning Provincial Center for Disease Control and Prevention, No.168, Jin Feng Street, Shenyang, Liaoning 110172, China.
| | - Jian Cai
- Department of Communicable Disease Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Huihui Liu
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lingling Mao
- Institute for Prevention and Control of Infection and Infectious Diseases, Liaoning Provincial Center for Disease Control and Prevention, No.168, Jin Feng Street, Shenyang, Liaoning 110172, China
| | - Wenqing Yao
- Institute for Prevention and Control of Infection and Infectious Diseases, Liaoning Provincial Center for Disease Control and Prevention, No.168, Jin Feng Street, Shenyang, Liaoning 110172, China
| | - Yingwei Sun
- Institute for Prevention and Control of Infection and Infectious Diseases, Liaoning Provincial Center for Disease Control and Prevention, No.168, Jin Feng Street, Shenyang, Liaoning 110172, China.
| |
Collapse
|
18
|
Huang YC, Lai JF, Wu CJ, Huang IW, Kuo SC, Liao CL, Huang TW, Lauderdale TL. High-level levofloxacin-resistant emm12 group A Streptococcus, 2012-2018: A multicenter study in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:875-879. [PMID: 37188572 DOI: 10.1016/j.jmii.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
High-level levofloxacin-resistant group A Streptococcus emerged in Taiwan in 2012. Among the 24 isolates identified, 23 belonged to emm12/ST36, most harbored the same GyrA and ParC mutations and were highly clonal. wgMLST showed them to be closely related to the Hong Kong scarlet fever outbreak strains. Continuous surveillance is warranted.
Collapse
Affiliation(s)
- Ying-Chi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Jui-Fen Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chi-Jung Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
19
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
20
|
Yu D, Guo D, Zheng Y, Yang Y. A review of penicillin binding protein and group A Streptococcus with reduced-β-lactam susceptibility. Front Cell Infect Microbiol 2023; 13:1117160. [PMID: 37065204 PMCID: PMC10102528 DOI: 10.3389/fcimb.2023.1117160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
With the widespread use of antibiotics, antimicrobial resistance (AMR) has become a global problem that endangers public health. Despite the global high prevalence of group A Streptococcus (GAS) infections and the global widespread use of β-lactams, β-lactams remain the first-line treatment option for GAS infection. β-hemolytic streptococci maintain a persistent susceptibility to β-lactams, which is an extremely special phenomenon in the genus Streptococci, while the exact current mechanism is not known. In recent years, several studies have found that the gene encoding penicillin binding protein 2X (pbp2x) is associated with GAS with reduced-β-lactam susceptibility. The purpose of this review is to summarize the current published data on GAS penicillin binding proteins and β-lactam susceptibility, to explore the relationship between them, and to be alert to the emergence of GAS with reduced susceptibility to β-lactams.
Collapse
Affiliation(s)
- Dingle Yu
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Danchun Guo
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuejie Zheng
- Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Yuejie Zheng, ; Yonghong Yang,
| | - Yonghong Yang
- Shenzhen Children’s Hospital, Shenzhen, China
- Microbiology Laboratory, National Center for Children’s Health, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuejie Zheng, ; Yonghong Yang,
| |
Collapse
|
21
|
Davies MR, Keller N, Brouwer S, Jespersen MG, Cork AJ, Hayes AJ, Pitt ME, De Oliveira DMP, Harbison-Price N, Bertolla OM, Mediati DG, Curren BF, Taiaroa G, Lacey JA, Smith HV, Fang NX, Coin LJM, Stevens K, Tong SYC, Sanderson-Smith M, Tree JJ, Irwin AD, Grimwood K, Howden BP, Jennison AV, Walker MJ. Detection of Streptococcus pyogenes M1 UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat Commun 2023; 14:1051. [PMID: 36828918 PMCID: PMC9951164 DOI: 10.1038/s41467-023-36717-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
A new variant of Streptococcus pyogenes serotype M1 (designated 'M1UK') has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor S. pyogenes 'M1global' and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 S. pyogenes. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing S. pyogenes in Asia. A single SNP in the 5' transcriptional leader sequence of the transfer-messenger RNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator read-through in the M1UK lineage. This represents a previously unappreciated mechanism of toxin expression and urges enhanced international surveillance.
Collapse
Affiliation(s)
- Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Nadia Keller
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nichaela Harbison-Price
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Olivia M Bertolla
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel G Mediati
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bodie F Curren
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen V Smith
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Ning-Xia Fang
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jai J Tree
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Adam D Irwin
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.,Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, QLD, Australia
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Wang J, Qi K, Bai X, Wu Z, Kang W, Liang P, Zheng H, Xu J. Characterization of integrative and conjugative elements carrying antibiotic resistance genes of Streptococcus suis isolated in China. Front Microbiol 2022; 13:1074844. [PMID: 36620002 PMCID: PMC9815147 DOI: 10.3389/fmicb.2022.1074844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Streptococcus suis, an emerging zoonotic pathogen, is important reservoirs of antibiotic resistance genes that play critical roles in the horizontal transfer of corresponding resistances. In the present study, 656 antibiotic resistance (AR) genes were detected in 154 of 155 genomes of S. suis strains isolated from the nasopharynx of slaughtered pigs and the lungs of diseased pigs in China. The AR genes were clustered into 11 categories, consisting of tetracycline, macrolides, lincosamide, streptogramin, aminoglycoside, trimethoprim, amphenicols, nucleoside, quinupristin/dalfopristin, glycopeptide, and oxazolidinones resistance genes. In order to investigate the transmission patterns of the AR genes, AR genes-associated the mobile genetic elements (MGEs) were extracted and investigated. Twenty ICEs, one defective ICE, one tandem ICE, and ten prophages were found, which mainly carried tetracycline, macrolides/lincosamides/streptogramin (MLS), and aminoglycosides resistance genes. Three types of DNA cargo with AR genes were integrated into specific sites of ICEs: integrative mobilizable elements (IMEs), cis-IMEs (CIMEs), and transposon Tn916. Obvious differences in AR gene categories were found among the three cargo types. IMEs mainly harbored tetracycline and MLS resistance genes. CIMEs mainly carried aminoglycoside resistance genes, while transposon Tn916 carried only the tet (M) gene. Nearly all AR genes in ICEs were carried by IMEs and CIMEs. IMEs were prevalent and were also detected in additional 29 S. suis genomes. The horizontal transfer of IMEs and CIMEs may play critical role in ICE evolution and AR gene transmission in the S. suis population. Our findings provide novel insights into the transmission patterns of AR genes and the evolutionary mechanisms of ICEs in S. suis.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kexin Qi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuemei Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zongfu Wu
- OIE Reference Lab for Swine Streptococcosis, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Weiming Kang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pujun Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China,*Correspondence: Han Zheng, ✉
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
23
|
Wang K, Peng X, Yang A, Huang Y, Tan Y, Qian Y, Lv F, Si H. Effects of Diets With Different Protein Levels on Lipid Metabolism and Gut Microbes in the Host of Different Genders. Front Nutr 2022; 9:940217. [PMID: 35782952 PMCID: PMC9240812 DOI: 10.3389/fnut.2022.940217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022] Open
Abstract
The purpose of this experiment was to investigate the effects of different protein levels on lipid metabolism and gut microbes in mice of different genders. A total of 60 mice (30 female and 30 male) were randomly assigned to six groups and fed female mice with low protein diet (FLP), basal protein diet (FBD), and high protein diet (FHP). Similarly, the male mice fed with low protein diet (MLP), basal protein diet (MBD), and high protein diet (MHP). The low protein diet contained 14% CP, the basal diet contained 20% CP, and the high protein diet contained 26% CP. The results of the study showed that both basal and high protein diets significantly reduced the perirenal adipose tissues (PEAT) index in male mice compared to low protein diet (p < 0.05). For the gut, the FHP significantly increased the relative gut weight compared to the FBD and FLP (p < 0.05). At the same time, the FHP also significantly increased the relative gut length compared with the FBD and FLP (p < 0.05). The MHP significantly increased TC concentration compared with the MLP (p < 0.05), and the MBD tended to increase TC concentration compared with the MLP in serum (p = 0.084). The histomorphology result of the jejunum and ileum showed that a low protein diet was beneficial to the digestion and absorption of nutrients in the small intestine of mice. While different protein levels had no effect on the total number of fecal microbial species in mice, different protein levels had a significant effect on certain fecal microbes in mice, the absolute abundance of Verrucomicrobia in the feces of male mice was significantly higher in both high and basal protein diets than in the low protein diet (p < 0.05). The high protein diet significantly reduced the absolute abundance of Patescibacteria in the feces of female mice compared to both the basal and low protein diets (p < 0.05). The absolute abundance of Patescibacteria in male feces was not affected by dietary protein levels (p > 0.05). Taken together, our results suggest that a low protein diet can alter fat deposition and lipid metabolism in mice, and that it benefited small intestinal epithelial structure and microbes.
Collapse
Affiliation(s)
- Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Anqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yiqin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxiao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yajing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|
24
|
Lyles KV, Thomas LS, Ouellette C, Cook LCC, Eichenbaum Z. HupZ, a Unique Heme-Binding Protein, Enhances Group A Streptococcus Fitness During Mucosal Colonization. Front Cell Infect Microbiol 2022; 12:867963. [PMID: 35774404 PMCID: PMC9237417 DOI: 10.3389/fcimb.2022.867963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS) is a major pathogen that causes simple and invasive infections. GAS requires iron for metabolic processes and pathogenesis, and heme is its preferred iron source. We previously described the iron-regulated hupZ in GAS, showing that a recombinant HupZ-His6 protein binds and degrades heme. The His6 tag was later implicated in heme iron coordination by HupZ-His6. Hence, we tested several recombinant HupZ proteins, including a tag-free protein, for heme binding and degradation in vitro. We established that HupZ binds heme but without coordinating the heme iron. Heme-HupZ readily accepted exogenous imidazole as its axial heme ligand, prompting degradation. Furthermore, HupZ bound a fragment of heme c (whose iron is coordinated by the cytochrome histidine residue) and exhibited limited degradation. GAS, however, did not grow on a heme c fragment as an iron source. Heterologous HupZ expression in Lactococcus lactis increased heme b iron use. A GAS hupZ mutant showed reduced growth when using hemoglobin as an iron source, increased sensitivity to heme toxicity, and decreased fitness in a murine model for vaginal colonization. Together, the data demonstrate that HupZ contributes to heme metabolism and host survival, likely as a heme chaperone. HupZ is structurally similar to the recently described heme c-degrading enzyme, Pden_1323, suggesting that the GAS HupZ might be divergent to play a new role in heme metabolism.
Collapse
Affiliation(s)
- Kristin V. Lyles
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lamar S. Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Corbett Ouellette
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Laura C. C. Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA, United States
- *Correspondence: Zehava Eichenbaum,
| |
Collapse
|
25
|
Rafei R, Al Iaali R, Osman M, Dabboussi F, Hamze M. A global snapshot on the prevalent macrolide-resistant emm types of Group A Streptococcus worldwide, their phenotypes and their resistance marker genotypes during the last two decades: A systematic review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105258. [PMID: 35219865 DOI: 10.1016/j.meegid.2022.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Watchful epidemiological surveillance of macrolide-resistant Group A Streptococcus (MRGAS) clones is important owing to the evolutionary and epidemiological dynamic of GAS. Meanwhile, data on the global distribution of MRGAS emm types according to macrolide resistance phenotypes and genotypes are scant and need to be updated. For this, the present systematic review analyses a global set of extensively characterized MRGAS isolates from patients of diverse ages and clinical presentations over approximately two decades (2000 to 2020) and recaps the peculiar epidemiological features of the dominant MRGAS clones. Based on the inclusion and exclusion criteria, 53 articles (3593 macrolide-resistant and 15,951 susceptible isolates) distributed over 23 countries were dissected with a predominance of high-income countries over low-income ones. Although macrolide resistance in GAS is highly variable in different countries, its within-GAS distribution seems not to be random. emm pattern E, 13 major emm types (emm12, 4, 28, 77, 75, 11, 22, 92, 58, 60, 94, 63, 114) and 4 emm clusters (A-C4, E1, E6, and E2) were significantly associated with macrolide resistance. emm patterns A-C and D, 14 major emm types (emm89, 3, 6, 2, 44, 82, 87, 118, 5, 49, 81, 59, 227, 78) and 3 well-defined emm clusters (A-C5, E3, and D4) were significantly associated with macrolide susceptibility. Scrutinizing the tendency of each MRGAS emm type to be significantly associated with specific macrolide resistance phenotype or genotype, interesting vignettes are also unveiled. The 30-valent vaccine covers ~95% of MRGAS isolates. The presented data urge the importance of comprehensive nationwide sustained surveillance of MRGAS circulating clones particularly in Low and Middle income countries where sampling bias is high and GAS epidemiology is obfuscated and needs to be demystified.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Rayane Al Iaali
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
26
|
Marini S, Mora RA, Boucher C, Robertson Noyes N, Prosperi M. Towards routine employment of computational tools for antimicrobial resistance determination via high-throughput sequencing. Brief Bioinform 2022; 23:bbac020. [PMID: 35212354 PMCID: PMC8921637 DOI: 10.1093/bib/bbac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health and farming at large. In clinical and veterinary practice, timely characterization of the antibiotic susceptibility profile of bacterial infections is a crucial step in optimizing treatment. High-throughput sequencing is a promising option for clinical point-of-care and ecological surveillance, opening the opportunity to develop genotyping-based AMR determination as a possibly faster alternative to phenotypic testing. In the present work, we compare the performance of state-of-the-art methods for detection of AMR using high-throughput sequencing data from clinical settings. We consider five computational approaches based on alignment (AMRPlusPlus), deep learning (DeepARG), k-mer genomic signatures (KARGA, ResFinder) or hidden Markov models (Meta-MARC). We use an extensive collection of 585 isolates with available AMR resistance profiles determined by phenotypic tests across nine antibiotic classes. We show how the prediction landscape of AMR classifiers is highly heterogeneous, with balanced accuracy varying from 0.40 to 0.92. Although some algorithms-ResFinder, KARGA and AMRPlusPlus-exhibit overall better balanced accuracy than others, the high per-AMR-class variance and related findings suggest that: (1) all algorithms might be subject to sampling bias both in data repositories used for training and experimental/clinical settings; and (2) a portion of clinical samples might contain uncharacterized AMR genes that the algorithms-mostly trained on known AMR genes-fail to generalize upon. These results lead us to formulate practical advice for software configuration and application, and give suggestions for future study designs to further develop AMR prediction tools from proof-of-concept to bedside.
Collapse
Affiliation(s)
- Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Rodrigo A Mora
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Noelle Robertson Noyes
- Department of Veterinary Population Medicine, University of Minnesota, Gainesville, FL, USA
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Bi S, Wang J, Xu M, Li N, Wang B. Immunity to Sda1 Protects against Infection by Sda1 + and Sda1 - Serotypes of Group A Streptococcus. Vaccines (Basel) 2022; 10:vaccines10010102. [PMID: 35062763 PMCID: PMC8779841 DOI: 10.3390/vaccines10010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Group A Streptococcus (GAS) causes a variety of diseases globally. The DNases in GAS promote GAS evasion of neutrophil killing by degrading neutrophil extracellular traps (NETs). Sda1 is a prophage-encoded DNase associated with virulent GAS strains. However, protective immunity against Sda1 has not been determined. In this study, we explored the potential of Sda1 as a vaccine candidate. Sda1 was used as a vaccine to immunize mice intranasally. The effect of anti-Sda1 IgG in neutralizing degradation of NETs was determined and the protective role of Sda1 was investigated with intranasal and systemic challenge models. Antigen-specific antibodies were induced in the sera and pharyngeal mucosal site after Sda1 immunization. The anti-Sda1 IgG efficiently prevented degradation of NETs by supernatant samples from different GAS serotypes with or without Sda1. Sda1 immunization promoted clearance of GAS from the nasopharynx independent of GAS serotypes but did not reduce lethality after systemic GAS challenge. Anti-Sda1 antibody can neutralize degradation of NETs by Sda1 and other phage-encoded DNases and decrease GAS colonization at the nasopharynx across serotypes. These results indicate that Sda1 can be a potential vaccine candidate for reduction in GAS reservoir and GAS tonsillitis-associated diseases.
Collapse
Affiliation(s)
- Shuai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
| | - Jie Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
| | - Meiyi Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.B.); (J.W.); (M.X.); (N.L.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
28
|
Qiu J, Zhou Q, Ye W, Chen Q, Bao YJ. SweepCluster: A SNP clustering tool for detecting gene-specific sweeps in prokaryotes. BMC Bioinformatics 2022; 23:19. [PMID: 34991447 PMCID: PMC8734265 DOI: 10.1186/s12859-021-04533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The gene-specific sweep is a selection process where an advantageous mutation along with the nearby neutral sites in a gene region increases the frequency in the population. It has been demonstrated to play important roles in ecological differentiation or phenotypic divergence in microbial populations. Therefore, identifying gene-specific sweeps in microorganisms will not only provide insights into the evolutionary mechanisms, but also unravel potential genetic markers associated with biological phenotypes. However, current methods were mainly developed for detecting selective sweeps in eukaryotic data of sparse genotypes and are not readily applicable to prokaryotic data. Furthermore, some challenges have not been sufficiently addressed by the methods, such as the low spatial resolution of sweep regions and lack of consideration of the spatial distribution of mutations. RESULTS We proposed a novel gene-centric and spatial-aware approach for identifying gene-specific sweeps in prokaryotes and implemented it in a python tool SweepCluster. Our method searches for gene regions with a high level of spatial clustering of pre-selected polymorphisms in genotype datasets assuming a null distribution model of neutral selection. The pre-selection of polymorphisms is based on their genetic signatures, such as elevated population subdivision, excessive linkage disequilibrium, or significant phenotype association. Performance evaluation using simulation data showed that the sensitivity and specificity of the clustering algorithm in SweepCluster is above 90%. The application of SweepCluster in two real datasets from the bacteria Streptococcus pyogenes and Streptococcus suis showed that the impact of pre-selection was dramatic and significantly reduced the uninformative signals. We validated our method using the genotype data from Vibrio cyclitrophicus, the only available dataset of gene-specific sweeps in bacteria, and obtained a concordance rate of 78%. We noted that the concordance rate could be underestimated due to distinct reference genomes and clustering strategies. The application to the human genotype datasets showed that SweepCluster is also applicable to eukaryotic data and is able to recover 80% of a catalog of known sweep regions. CONCLUSION SweepCluster is applicable to a broad category of datasets. It will be valuable for detecting gene-specific sweeps in diverse genotypic data and provide novel insights on adaptive evolution.
Collapse
Affiliation(s)
- Junhui Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weicai Ye
- School of Computer Science and Engineering, Guangdong Province Key Laboratory of Computational Science, and National Engineering Laboratory for Big Data Analysis and Application, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qianjun Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Yun-Juan Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
29
|
Abstract
Streptococcus pyogenes (group A Streptococcus) is a globally disseminated and human-adapted bacterial pathogen that causes a wide range of infections, including scarlet fever. Scarlet fever is a toxin-mediated disease characterized by the formation of an erythematous, sandpaper-like rash that typically occurs in children aged 5 to 15. This infectious disease is caused by toxins called superantigens, a family of highly potent immunomodulators. Although scarlet fever had largely declined in both prevalence and severity since the late 19th century, outbreaks have now reemerged in multiple geographical regions over the past decade. Here, we review recent findings that address the role of superantigens in promoting a fitness advantage for S. pyogenes within human populations and discuss how superantigens may be suitable targets for vaccination strategies.
Collapse
Affiliation(s)
- Jacklyn R. Hurst
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (MJW); (JKM)
| | - John K. McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail: (MJW); (JKM)
| |
Collapse
|
30
|
Yu D, Liang Y, Lu Q, Meng Q, Wang W, Huang L, Bao Y, Zhao R, Chen Y, Zheng Y, Yang Y. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children With Different Diseases. Front Microbiol 2021; 12:722225. [PMID: 34956108 PMCID: PMC8696671 DOI: 10.3389/fmicb.2021.722225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is a bacterial pathogen that causes a wide spectrum of clinical diseases exclusively in humans. The distribution of emm type, antibiotic resistance and virulence gene expression for S. pyogenes varies temporally and geographically, resulting in distinct disease spectra. In this study, we analyzed antibiotic resistance and resistance gene expression patterns among S. pyogenes isolates from pediatric patients in China and investigated the relationship between virulence gene expression, emm type, and disease categories. Forty-two representative emm1.0 and emm12.0 strains (n = 20 and n = 22, respectively) isolated from patients with scarlet fever or obstructive sleep apnea-hypopnea syndrome were subjected to whole-genome sequencing and phylogenetic analysis. These strains were further analyzed for susceptibility to vancomycin. We found a high rate and degree of resistance to macrolides and tetracycline in these strains, which mainly expressed ermB and tetM. The disease category correlated with emm type but not superantigens. The distribution of vanuG and virulence genes were associated with emm type. Previously reported important prophages, such as φHKU16.vir, φHKU488.vir, Φ5005.1, Φ5005.2, and Φ5005.3 encoding streptococcal toxin, and integrative conjugative elements (ICEs) such as ICE-emm12 and ICE-HKU397 encoding macrolide and tetracycline resistance were found present amongst emm1 or emm12 clones from Shenzhen, China.
Collapse
Affiliation(s)
- Dingle Yu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Yunmei Liang
- Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Qinghua Lu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Qing Meng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Lu Huang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | | | - Yonghong Yang
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
31
|
Dietrich A, Steffens U, Sass P, Bierbaum G. The hypersusceptible antibiotic screening strain Staphylococcus aureus SG511-Berlin harbors multiple mutations in regulatory genes. Int J Med Microbiol 2021; 311:151545. [PMID: 34896903 DOI: 10.1016/j.ijmm.2021.151545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022] Open
Abstract
The genetic plasticity of Staphylococcus aureus has facilitated the evolution of many virulent and drug-resistant strains. Here we present the sequence of the 2.74 Mbp genome of S. aureus SG511-Berlin, which is frequently used for antibiotic screening. Although S. aureus SG511 and the related methicillin-resistant S. aureus MRSA252 share a high similarity in their core genomes, indicated by an average nucleotide identity (ANI) of 99.83%, the accessory genomes of these strains differed, as nearly no mobile elements and resistance determinants were identified in the genome of S. aureus SG511. Susceptibility testing showed that S. aureus SG511 was susceptible to most of the tested antibiotics of different classes. Intriguingly, and in contrast to the standard laboratory strain S. aureus HG001, S. aureus SG511 was even hyper-susceptible towards cell wall and membrane targeting agents, with the exception of the MurA-inhibitor fosfomycin. In depth comparative genome analysis revealed that, in addition to the loss of function mutation in the antibiotic sensor histidine kinase gene graS, further mutations had occurred in the lysyltransferase gene mprF, the structural giant protein gene ebh, and the regulator genes codY and saeR, which might contribute to antibiotic susceptibility. In addition, an insertion element in agrC abolishes Agr-activity in S. aureus SG511, and the spa and sarS genes, which encode the surface protein SpA and its transcriptional regulator, were deleted. Thus, the lack of mobile resistance genes together with multiple mutations affecting cell envelope morphology may render S. aureus SG511 hyper-susceptible towards most cell wall targeting agents.
Collapse
Affiliation(s)
- Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| | - Ursula Steffens
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| | - Peter Sass
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| |
Collapse
|
32
|
Johnson AF, LaRock CN. Antibiotic Treatment, Mechanisms for Failure, and Adjunctive Therapies for Infections by Group A Streptococcus. Front Microbiol 2021; 12:760255. [PMID: 34803985 PMCID: PMC8601407 DOI: 10.3389/fmicb.2021.760255] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is a nearly ubiquitous human pathogen responsible for a significant global disease burden. No vaccine exists, so antibiotics are essential for effective treatment. Despite a lower incidence of antimicrobial resistance than many pathogens, GAS is still a top 10 cause of death due to infections worldwide. The morbidity and mortality are primarily a consequence of the immune sequelae and invasive infections that are difficult to treat with antibiotics. GAS has remained susceptible to penicillin and other β-lactams, despite their widespread use for 80 years. However, the failure of treatment for invasive infections with penicillin has been consistently reported since the introduction of antibiotics, and strains with reduced susceptibility to β-lactams have emerged. Furthermore, isolates responsible for outbreaks of severe infections are increasingly resistant to other antibiotics of choice, such as clindamycin and macrolides. This review focuses on the challenges in the treatment of GAS infection, the mechanisms that contribute to antibiotic failure, and adjunctive therapeutics. Further understanding of these processes will be necessary for improving the treatment of high-risk GAS infections and surveillance for non-susceptible or resistant isolates. These insights will also help guide treatments against other leading pathogens for which conventional antibiotic strategies are increasingly failing.
Collapse
Affiliation(s)
- Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Atlanta, GA, United States
| |
Collapse
|
33
|
Li Y, Dominguez S, Nanduri SA, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Van Beneden CA, Beall B, Miller L. Genomic Characterization of Group A Streptococci Causing Pharyngitis and Invasive Disease in Colorado, USA, June 2016 - April 2017. J Infect Dis 2021; 225:1841-1851. [PMID: 34788828 PMCID: PMC9125432 DOI: 10.1093/infdis/jiab565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The genomic features and transmission link of circulating Group A streptococcus (GAS) strains causing different disease types, such as pharyngitis and invasive disease, are not well understood. METHODS We used whole-genome sequencing (WGS) to characterize GAS isolates recovered from persons with pharyngitis and invasive disease in the Denver metropolitan area from June 2016 to April 2017. RESULTS GAS isolates were cultured from 236 invasive and 417 pharyngitis infections. WGS identified 34 emm types. Compared to pharyngitis isolates, invasive isolates were more likely to carry the erm family genes (23% vs. 7.4%, p<0.001), which confer resistance to erythromycin and clindamycin (including inducible resistance), and covS gene inactivation (7% vs. 0.5%, p<0.001). WGS identified 97 genomic clusters (433 isolates; 2-65 isolates per cluster) that consisted of genomically closely related isolates (median SNP (IQR) = 3 (1-4) within cluster). Thirty genomic clusters (200 isolates; 31% of all isolates) contained both pharyngitis and invasive isolates and were found in 11 emm types. CONCLUSIONS In the Denver metropolitan population, mixed disease types were commonly seen in clusters of closely related isolates, indicative of overlapping transmission networks. Antibiotic-resistance and covS inactivation was disproportionally associated with invasive disease.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel Dominguez
- University of Colorado School of Medicine Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chris A Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa Miller
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
34
|
Zhao J, Hu J, Ma X. Sodium caprylate improves intestinal mucosal barrier function and antioxidant capacity by altering gut microbial metabolism. Food Funct 2021; 12:9750-9762. [PMID: 34664601 DOI: 10.1039/d1fo01975a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Short-chain fatty acids (SCFA) produced by gut microbial metabolism have been reported to regulate the immunological response and intestinal health of the host by activating G protein-coupled receptors (GPR). It is unclear whether medium-chain fatty acids (MCFA) improve the intestinal barrier function by activating GPR. This study was conducted to investigate the effects of sodium caprylate and sodium butyrate on antioxidant capacity and intestinal barrier function in IPEC-J2 treated with H2O2 and C57/BL6 mouse models. For in vitro and in vivo assays, mice and oxidation-damaged IPEC-J2 (NC) were treated with sodium caprylate (SC) and sodium butyrate (PC) to determine intestinal barrier and antioxidant functions of the host. In vitro, SC treatment increased the concentrations of glutathione and total antioxidant capacity, and expression of claudin-1 and claudin-3 in oxidation-damaged IPEC-J2 (P < 0.05). In vivo, SC treatment improved growth performance, intestinal morphology, expression of claudin-3, and activity of superoxide dismutase in mice (P < 0.05), but decreased interleukin-1β and interferon-γ concentrations in serum compared to the NC group (P < 0.05). Treatment with SC increased the populations of Prevotella_9 in the ileum and Lachnoclostridium and Roseburia in the colon, but decreased the abundances of Streptococcus and Enterococcus in the ileum and Lactobacillus and Clostridium_sensu_stricto_1 in the colon compared with the NC group (P < 0.05). Concentrations of SCFA increased in the SC and PC groups than in the NC group (P < 0.05). Ileal protein expression of GPR 43 in the SC and PC groups was significantly greater than that in the NC group (P < 0.05). In conclusion, our findings confirmed the important role of sodium caprylate in improving intestinal barrier function and gut health by activating GPR 43 through regulating gut microbial metabolism.
Collapse
Affiliation(s)
- Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Jinhua Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
35
|
Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, Huang Y, Jia J, Dou T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J Basic Microbiol 2021; 61:1049-1070. [PMID: 34651331 DOI: 10.1002/jobm.202100201] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/11/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
The production and use of antibiotics are becoming increasingly common worldwide, and the problem of antibiotic resistance is increasing alarmingly. Drug-resistant infections threaten human life and health and impose a heavy burden on the global economy. The origin and molecular basis of bacterial resistance is the presence of antibiotic resistance genes (ARGs). Investigations on ARGs mostly focus on the environments in which antibiotics are frequently used, such as hospitals and farms. This literature review summarizes the current knowledge of the occurrence of antibiotic-resistant bacteria in nonclinical environments, such as air, aircraft wastewater, migratory bird feces, and sea areas in-depth, which have rarely been involved in previous studies. Furthermore, the mechanism of action of plasmid and phage during horizontal gene transfer was analyzed, and the transmission mechanism of ARGs was summarized. This review highlights the new mechanisms that enhance antibiotic resistance and the evolutionary background of multidrug resistance; in addition, some promising points for controlling or reducing the occurrence and spread of antimicrobial resistance are also proposed.
Collapse
Affiliation(s)
- Zonghui Jian
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zeng
- The Chenggong Department, Kunming Medical University Affiliated Stomatological Hospital, Kunming, Yunnan, China
| | - Taojie Xu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuai Sun
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shixiong Yan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lan Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junjing Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tengfei Dou
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
36
|
Berbel D, Càmara J, González-Díaz A, Cubero M, López de Egea G, Martí S, Tubau F, Domínguez MA, Ardanuy C. Deciphering mobile genetic elements disseminating macrolide resistance in Streptococcus pyogenes over a 21 year period in Barcelona, Spain. J Antimicrob Chemother 2021; 76:1991-2003. [PMID: 34015100 DOI: 10.1093/jac/dkab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To phenotypically and genetically characterize the antibiotic resistance determinants and associated mobile genetic elements (MGEs) among macrolide-resistant (MR) Streptococcus pyogenes [Group A streptococci (GAS)] clinical isolates collected in Barcelona, Spain. METHODS Antibiotic susceptibility testing was performed by microdilution. Isolates were emm and MLST typed and 55 were whole-genome sequenced to determine the nature of the macrolide resistance (MR) determinants and their larger MGE and chromosomal context. RESULTS Between 1998 and 2018, 142 of 1028 GAS (13.8%) were MR. Among 108 isolates available for molecular characterization, 41.7% had cMLSB, 30.5% iMLSB and 27.8% M phenotype. Eight erm(B)-containing strains were notable in having an MDR phenotype conferred by an MGE encoding several antibiotic resistance genes. MR isolates were comprised of several distinct genetic lineages as defined by the combination of emm and ST. Although most lineages were only transiently present, the emm11/ST403 clone persisted throughout the period. Two lineages, emm9/ST75 with erm(B) and emm77/ST63 with erm(TR), emerged in 2016-18. The erm(B) was predominantly encoded on the Tn916 family of transposons (21/31) with different genetic contexts, and in other MGEs (Tn6263, ICESpHKU372 and one harbouring an MDR cluster called ICESp1070HUB). The erm(TR) was found in ICESp2905 (8/17), ICESp1108-like (4/17), ICESpHKU165 (3/17) and two structures described in this study (IMESp316HUB and ICESp3729HUB). The M phenotype [mef(A)-msr(D)] was linked to phage φ1207.3. Eight integrative conjugative element/integrative mobilizable element (ICE/IME) cluster groups were classified on the basis of gene content within conjugation modules. These groups were found among MGEs, which corresponded with the MR-containing element or the site of integration. CONCLUSIONS We detected several different MGEs harbouring erm(B) or erm(TR). This is the first known description of Tn6263 in GAS and three MGEs [IMESp316HUB, ICESp3729HUB and ICESp1070HUB] associated with MR. Periods of high MR rates in our area were mainly associated with the expansion of certain predominant lineages, while in low MR periods different sporadic and low prevalence lineages were more frequent.
Collapse
Affiliation(s)
- Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Guillem López de Egea
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - M Angeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Tohya M, Dozaki S, Ishida-Kuroki K, Watanabe T, Sekizaki T. Basis of the persistence of capsule-negative Streptococcus suis in porcine endocarditis inferred from comparative genomics. FEMS Microbiol Lett 2021; 368:6315327. [PMID: 34223887 DOI: 10.1093/femsle/fnab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
The capsule (cap) of Streptococcus suis is an anti-phagocytic element and is one of the major virulence factors. However, we have found cap-positive and cap-negative isolates in porcine endocarditis. Here, we compared genome sequences of multiple cap-negative isolates with those of a cap-positive isolate from a single endocarditis. Cap-positive and cap-negative isolates from the same pig were phylogenetically closest compared with those from other pigs. Some of cap-negative isolates from the same pig showed different mutations in capsular polysaccharide synthesis (cps) genes, suggesting that these isolates arisen in pigs after infection. Different mutations in whole-genomes were also found among isolates with identical mutations in cps genes, indicating that mutations in cps genes and the whole-genome occurred independently. Since cap-negative isolates are rarely found in lesions of other diseases, these results suggest that endocarditis lesions may simply favored cap-negative mutants to survive the niches, leading to their persistence in the lesions.
Collapse
Affiliation(s)
- Mari Tohya
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Department of Microbiology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shinichi Dozaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kasumi Ishida-Kuroki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Aoba-cho 4-2-1, Higashimurayama, Tokyo, 189-0002, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Department of Chemistry, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
38
|
Chiang-Ni C, Liu YS, Lin CY, Hsu CY, Shi YA, Chen YYM, Lai CH, Chiu CH. Incidence and Effects of Acquisition of the Phage-Encoded ssa Superantigen Gene in Invasive Group A Streptococcus. Front Microbiol 2021; 12:685343. [PMID: 34149675 PMCID: PMC8212969 DOI: 10.3389/fmicb.2021.685343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The acquisition of the phage-encoded superantigen ssa by scarlet fever-associated group A Streptococcus (Streptococcus pyogenes, GAS) is found in North Asia. Nonetheless, the impact of acquiring ssa by GAS in invasive infections is unclear. This study initially analyzed the prevalence of ssa+ GAS among isolates from sterile tissues and blood. Among 220 isolates in northern Taiwan, the prevalence of ssa+ isolates increased from 1.5% in 2008–2010 to 40% in 2017–2019. Spontaneous mutations in covR/covS, which result in the functional loss of capacity to phosphorylate CovR, are frequently recovered from GAS invasive infection cases. Consistent with this, Phostag western blot results indicated that among the invasive infection isolates studied, 10% of the ssa+ isolates lacked detectable phosphorylated CovR. Transcription of ssa is upregulated in the covS mutant. Furthermore, in emm1 and emm12 covS mutants, ssa deletion significantly reduced their capacity to grow in human whole blood. Finally, this study showed that the ssa gene could be transferred from emm12-type isolates to the emm1-type wild-type strain and covS mutants through phage infection and lysogenic conversion. As the prevalence of ssa+ isolates increased significantly, the role of streptococcal superantigen in GAS pathogenesis, particularly in invasive covR/covS mutants, should be further analyzed.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yen-Shan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
39
|
Degala S, Puleston R, Bates R, Borges-Stewart R, Coelho J, Kapatai G, Chalker V, Mair-Jenkins J. A protracted iGAS outbreak in a long-term care facility 2014-2015: control measures and the use of whole-genome sequencing. J Hosp Infect 2021; 105:70-77. [PMID: 32386676 DOI: 10.1016/j.jhin.2019.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND In 2014, two residents of a long-term care facility (LTCF) developed invasive group A streptococcal (iGAS) infections with identical typing (emm 11), resulting in one death. The second resident recovered but had a subsequent episode of emm 11 iGAS infection 10 months later. This second episode was linked to a third case, within 12 days, leading to a further outbreak investigation. AIM To combine different techniques to establish whether this was a protracted outbreak, understand transmission pathways and inform appropriate control measures. METHODS Following a routine response to the first cluster, the second investigation included a care record review. This informed network analysis of case interactions with staff and visitors during 10 days prior to infection. These data were combined with post-outbreak whole-genome sequencing (WGS) using isolates from cases, and staff and resident screening (44 GAS isolates: 11 outbreak-related and 33 sporadic isolates). FINDINGS Two of the three confirmed iGAS cases died (one suffered two episodes). All iGAS cases, and six non-invasive isolates from 2015, were emm 11 (monophylogenetic WGS clade). Network analysis highlighted only indirect contact through staff-visitor interactions between iGAS cases in 2015. This suggested a common source and transmission propagation through carriage and/or environmental contamination over an 11-month period. CONCLUSIONS This outbreak highlighted benefits of staff/resident screening and typing as part of routine response. Network analysis and highly discriminatory WGS clarified the protracted nature of the outbreak, supporting findings of hygiene and infection control issues and adding to our understanding of the epidemiology.
Collapse
Affiliation(s)
- S Degala
- Field Epidemiology, Field Service, National Infection Service, Public Health England, Nottingham, UK.
| | - R Puleston
- Field Epidemiology, Field Service, National Infection Service, Public Health England, Nottingham, UK
| | - R Bates
- Local Knowledge and Intelligence Service, Public Health England, Nottingham, UK
| | | | - J Coelho
- Respiratory and Systemic Bacteria Section, Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Nottingham, UK
| | - G Kapatai
- Respiratory and Systemic Bacteria Section, Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Nottingham, UK
| | - V Chalker
- Respiratory and Systemic Bacteria Section, Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Nottingham, UK
| | | |
Collapse
|
40
|
Remmington A, Haywood S, Edgar J, Green LR, de Silva T, Turner CE. Cryptic prophages within a Streptococcus pyogenes genotype emm4 lineage. Microb Genom 2021; 7:mgen000482. [PMID: 33245690 PMCID: PMC8115907 DOI: 10.1099/mgen.0.000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
The major human pathogen Streptococcus pyogenes shares an intimate evolutionary history with mobile genetic elements, which in many cases carry genes encoding bacterial virulence factors. During recent whole-genome sequencing of a longitudinal sample of S. pyogenes isolates in England, we identified a lineage within emm4 that clustered with the reference genome MEW427. Like MEW427, this lineage was characterized by substantial gene loss within all three prophage regions, compared to MGAS10750 and isolates outside of the MEW427-like lineage. Gene loss primarily affected lysogeny, replicative and regulatory modules, and to a lesser and more variable extent, structural genes. Importantly, prophage-encoded superantigen and DNase genes were retained in all isolates. In isolates where the prophage elements were complete, like MGAS10750, they could be induced experimentally, but not in MEW427-like isolates with degraded prophages. We also found gene loss within the chromosomal island SpyCIM4 of MEW427-like isolates, although surprisingly, the SpyCIM4 element could not be experimentally induced in either MGAS10750-like or MEW427-like isolates. This did not, however, appear to abolish expression of the mismatch repair operon, within which this element resides. The inclusion of further emm4 genomes in our analyses ratified our observations and revealed an international emm4 lineage characterized by prophage degradation. Intriguingly, the USA population of emm4 S. pyogenes appeared to constitute predominantly MEW427-like isolates, whereas the UK population comprised both MEW427-like and MGAS10750-like isolates. The degraded and cryptic nature of these elements may have important phenotypic and fitness ramifications for emm4 S. pyogenes, and the geographical distribution of this lineage raises interesting questions on the population dynamics of the genotype.
Collapse
Affiliation(s)
- Alex Remmington
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Samuel Haywood
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Julia Edgar
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
41
|
Rafei R, Hawli M, Osman M, Khelissa S, Salloum T, Dabboussi F, Tokajian S, Hamze M. Molecular epidemiology of nonpharyngeal group A streptococci isolates in northern Lebanon. Future Microbiol 2020; 15:1555-1569. [PMID: 33236928 DOI: 10.2217/fmb-2020-0072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: To characterize the epidemiology of group A Streptococcus (GAS) involved in nonpharyngeal infections sparingly addressed in Lebanon. Materials & methods: A collection of 63 nonpharyngeal GAS isolates recovered between 2010 and 2019 from northern Lebanon were analyzed through emm typing, virulence gene profiling, FCT typing and antibiotic susceptibility analysis. Results & conclusion: A total of 29 emm subtypes was detected, with emm1 being the most dominant. A great intraclonal divergence driven by the loss and gain of superantigens or by the structural variability within the FCT regions was unraveled. The resistance rates for erythromycin and tetracycline were 8 and 20.6%, respectively. The 30-valent vaccine coverage was 76%. This study evidences the complexity of the neglected GAS pathogen in Lebanon.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - Malaik Hawli
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - Simon Khelissa
- Université de Lille, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centrale Lille, Unité Mixte de Recherche 8207 - Unité Matériaux et Transformations, Lille, 59000, France
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Byblos campus, Postal Box 36, Byblos, 1401, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts & Sciences, Lebanese American University, Byblos campus, Postal Box 36, Byblos, 1401, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School for Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, 1300, Lebanon
| |
Collapse
|
42
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
43
|
Buckley SJ, Davies MR, McMillan DJ. In silico characterisation of stand-alone response regulators of Streptococcus pyogenes. PLoS One 2020; 15:e0240834. [PMID: 33075055 PMCID: PMC7571705 DOI: 10.1371/journal.pone.0240834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial “stand-alone” response regulators (RRs) are pivotal to the control of gene transcription in response to changing cytosolic and extracellular microenvironments during infection. The genome of group A Streptococcus (GAS) encodes more than 30 stand-alone RRs that orchestrate the expression of virulence factors involved in infecting multiple tissues, so causing an array of potentially lethal human diseases. Here, we analysed the molecular epidemiology and biological associations in the coding sequences (CDSs) and upstream intergenic regions (IGRs) of 35 stand-alone RRs from a collection of global GAS genomes. Of the 944 genomes analysed, 97% encoded 32 or more of the 35 tested RRs. The length of RR CDSs ranged from 297 to 1587 nucleotides with an average nucleotide diversity (π) of 0.012, while the IGRs ranged from 51 to 666 nucleotides with average π of 0.017. We present new evidence of recombination in multiple RRs including mga, leading to mga-2 switching, emm-switching and emm-like gene chimerization, and the first instance of an isolate that encodes both mga-1 and mga-2. Recombination was also evident in rofA/nra and msmR loci with 15 emm-types represented in multiple FCT (fibronectin-binding, collagen-binding, T-antigen)-types, including novel emm-type/FCT-type pairings. Strong associations were observed between concatenated RR allele types, and emm-type, MLST-type, core genome phylogroup, and country of sampling. No strong associations were observed between individual loci and disease outcome. We propose that 11 RRs may form part of future refinement of GAS typing systems that reflect core genome evolutionary associations. This subgenomic analysis revealed allelic traits that were informative to the biological function, GAS strain definition, and regional outbreak detection.
Collapse
Affiliation(s)
- Sean J. Buckley
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J. McMillan
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
44
|
Brouwer S, Barnett TC, Ly D, Kasper KJ, De Oliveira DMP, Rivera-Hernandez T, Cork AJ, McIntyre L, Jespersen MG, Richter J, Schulz BL, Dougan G, Nizet V, Yuen KY, You Y, McCormick JK, Sanderson-Smith ML, Davies MR, Walker MJ. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat Commun 2020; 11:5018. [PMID: 33024089 PMCID: PMC7538557 DOI: 10.1038/s41467-020-18700-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 09/01/2020] [Indexed: 02/03/2023] Open
Abstract
The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Katherine J Kasper
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Johanna Richter
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, Hong Kong, China
| | - Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - John K McCormick
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Martina L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Mark R Davies
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
45
|
Spring S, Premathilake H, Bradway C, Shili C, DeSilva U, Carter S, Pezeshki A. Effect of very low-protein diets supplemented with branched-chain amino acids on energy balance, plasma metabolomics and fecal microbiome of pigs. Sci Rep 2020; 10:15859. [PMID: 32985541 PMCID: PMC7523006 DOI: 10.1038/s41598-020-72816-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Feeding pigs with very-low protein (VLP) diets while supplemented with limiting amino acids (AA) results in decreased growth. The objective of this study was to determine if supplementing VLP diets with branched-chain AA (BCAA) would reverse the negative effects of these diets on growth and whether this is associated with alterations in energy balance, blood metabolomics and fecal microbiota composition. Twenty-four nursery pigs were weight-matched, individually housed and allotted into following treatments (n = 8/group): control (CON), low protein (LP) and LP supplemented with BCAA (LP + BCAA) for 4 weeks. Relative to CON, pigs fed with LP had lower feed intake (FI) and body weight (BW) throughout the study, but those fed with LP + BCAA improved overall FI computed for 4 weeks, tended to increase the overall average daily gain, delayed the FI and BW depression for ~ 2 weeks and had transiently higher energy expenditure. Feeding pigs with LP + BCAA impacted the phenylalanine and protein metabolism and fatty acids synthesis pathways. Compared to CON, the LP + BCAA group had higher abundance of Paludibacteraceae and Synergistaceae and reduced populations of Streptococcaceae, Oxyphotobacteria_unclassified, Pseudomonadaceae and Shewanellaceae in their feces. Thus, supplementing VLP diets with BCAA temporarily annuls the adverse effects of these diets on growth, which is linked with alterations in energy balance and metabolic and gut microbiome profile.
Collapse
Affiliation(s)
- Shelby Spring
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Hasitha Premathilake
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Chloe Bradway
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Cedrick Shili
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Udaya DeSilva
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Scott Carter
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA.
| |
Collapse
|
46
|
Tsai WC, Shen CF, Lin YL, Shen FC, Tsai PJ, Wang SY, Lin YS, Wu JJ, Chi CY, Liu CC. Emergence of macrolide-resistant Streptococcus pyogenes emm12 in southern Taiwan from 2000 to 2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:1086-1093. [PMID: 32994137 DOI: 10.1016/j.jmii.2020.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group A Streptococcus (GAS) is an important pathogen causing morbidity and mortality worldwide. Surveillance of resistance and emm type has important implication to provide helpful information on the changing GAS epidemiology and empirical treatment. METHODS To study the emergence of resistant GAS in children with upper respiratory tract infection (URTI), a retrospective study was conducted from 2000 to 2019 in southern Taiwan. Microbiological studies, including antibiotic susceptibility, were performed. GAS emm types and sequences were determined by molecular methods. The population was divided into two separate decades to analyze potential changes over time. The 1st decade was 2000-2009; the 2nd decade was 2010-2019. Multivariate analyses were performed to identify independent risk factors associated with macrolide resistance between these periods. RESULTS A total of 320 GAS from 339 children were enrolled. Most of the children (75%) were under 9 years of age. The most common diagnosis was scarlet fever (225, 66.4%), and the frequency increased from 54.8% in the 1st to 77.9% in the 2nd decade (p < 0.0001). There was a significant increase in resistance to erythromycin and azithromycin from 18.1%, 19.3% in the 1st to 58.4%, 61.0% in the 2nd decade (p < 0.0001). This was associated with clonal expansion of the GAS emm12-ST36 which carrying erm(B) and tet(M) from 3.0% in the 1st to 53.2% in the 2nd decade (p < 0.0001). CONCLUSIONS Significant emergence of macrolide-resistant GAS emm12-ST36 in children supports the need for continuing surveillance and investigation for the clonal virulence.
Collapse
Affiliation(s)
- Wei-Chun Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Fan-Ching Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Shu-Ying Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Chia-Yu Chi
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan; Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
47
|
Walker MJ, Brouwer S, Forde BM, Worthing KA, McIntyre L, Sundac L, Maloney S, Roberts LW, Barnett TC, Richter J, Cork AJ, Irwin AD, You Y, Zhang J, Dougan G, Yuen KY, Nizet V, Beatson SA, Grimwood K, Davies MR. Detection of Epidemic Scarlet Fever Group A Streptococcus in Australia. Clin Infect Dis 2020; 69:1232-1234. [PMID: 30721938 DOI: 10.1093/cid/ciz099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Sentinel hospital surveillance was instituted in Australia to detect the presence of pandemic group A Streptococcus strains causing scarlet fever. Genomic and phylogenetic analyses indicated the presence of an Australian GAS emm12 scarlet fever isolate related to United Kingdom outbreak strains. National surveillance to monitor this pandemic is recommended.
Collapse
Affiliation(s)
- Mark J Walker
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Brian M Forde
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Kate A Worthing
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Lana Sundac
- Pathology Queensland, Gold Coast Laboratory, Brisbane, Australia
| | - Sam Maloney
- Pathology Queensland, Gold Coast Laboratory, Brisbane, Australia
| | - Leah W Roberts
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Johanna Richter
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Adam D Irwin
- University of Queensland Centre for Clinical Research, Brisbane, Australia.,Queensland Children's Hospital, Brisbane, Australia
| | - Yuanhai You
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation, Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation, Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Kwok Y Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong Special Administrative Region, China.,Research Centre of Infection and Immunology, University of Hong Kong, Hong Kong Special Administrative Region, China.,State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane
| | - Keith Grimwood
- Menzies Health Institute Queensland, Griffith University, Gold Coast.,Departments of Infectious Diseases and Pediatrics, Gold Coast Health, Queensland, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| |
Collapse
|
48
|
Epidemiological analysis of Group A Streptococcus infections in a hospital in Beijing, China. Eur J Clin Microbiol Infect Dis 2020; 39:2361-2371. [PMID: 32676802 DOI: 10.1007/s10096-020-03987-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Our study aimed to investigate the epidemiological and molecular characteristics of isolates collected from Group A Streptococcus (GAS) infections in children in Beijing China during the year 2019. Emm typing, superantigens, and erythromycin resistance genotypes were determined by PCR. Antimicrobial susceptibility testing was performed as recommended by Clinical Laboratory Standards Institute (CLSI). A total of 271 GAS isolates were collected. Thirteen different emm types, including 31 subtypes, were identified. The most prevalent emm types were emm12 (52.77%), emm1 (36.9%), emm3.1 (2.95%), and emm75.0 (2.95%). Two variant subtypes, STC36.0 and STG840.2, were identified. There was no difference in the portion of emm12 and emm1 isolates in scarlet fever, impetigo, and psoriasis. The majority of superantigens detected were smeZ (94.46%), speC (91.14%), and ssa (74.91%), followed by speH (56.46%), speI (45.76%), speJ (36.9%), and speA (34.32%). More scarlet fever isolates harbored speA (35.6%) and speJ (38.4%), more psoriasis isolates harbored speI (57.9%), and more impetigo isolates harbored ssa (89.7%). Isolates were universally susceptible to penicillin and resistant to erythromycin (94.83%). Moreover, 89.67% erythromycin resistance isolates harbored the ermB gene. The erythromycin resistance rate of the isolates from the three diseases was different. Scarlet fever is the common streptococcal infectious disease in dermatology. Emm12 and emm1 were the most prevalent emm types. The most prevalent superantigens detected were smeZ, spec, and ssa. There is association between diversity of superantigens and disease manifestation. Hence, continuous surveillance of GAS molecular epidemiological characterizations in different diseases is needed.
Collapse
|
49
|
Kale SD, Mehrkens BN, Stegman MM, Kastelberg B, Carnes H, McNeill RJ, Rizzo A, Karyala SV, Coutermarsh-Ott S, Fretz JA, Sun Y, Koff JL, Rajagopalan G. "Small" Intestinal Immunopathology Plays a "Big" Role in Lethal Cytokine Release Syndrome, and Its Modulation by Interferon-γ, IL-17A, and a Janus Kinase Inhibitor. Front Immunol 2020; 11:1311. [PMID: 32676080 PMCID: PMC7333770 DOI: 10.3389/fimmu.2020.01311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor T cell (CART) therapy, administration of certain T cell-agonistic antibodies, immune check point inhibitors, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) and Toxic shock syndrome (TSS) caused by streptococcal as well as staphylococcal superantigens share one common complication, that is T cell-driven cytokine release syndrome (CRS) accompanied by multiple organ dysfunction (MOD). It is not understood whether the failure of a particular organ contributes more significantly to the severity of CRS. Also not known is whether a specific cytokine or signaling pathway plays a more pathogenic role in precipitating MOD compared to others. As a result, there is no specific treatment available to date for CRS, and it is managed only symptomatically to support the deteriorating organ functions and maintain the blood pressure. Therefore, we used the superantigen-induced CRS model in HLA-DR3 transgenic mice, that closely mimics human CRS, to delineate the immunopathogenesis of CRS as well as to validate a novel treatment for CRS. Using this model, we demonstrate that (i) CRS is characterized by a rapid rise in systemic levels of several Th1/Th2/Th17/Th22 type cytokines within a few hours, followed by a quick decline. (ii) Even though multiple organs are affected, small intestinal immunopathology is the major contributor to mortality in CRS. (iii) IFN-γ deficiency significantly protected from lethal CRS by attenuating small bowel pathology, whereas IL-17A deficiency significantly increased mortality by augmenting small bowel pathology. (iv) RNA sequencing of small intestinal tissues indicated that IFN-γ-STAT1-driven inflammatory pathways combined with enhanced expression of pro-apoptotic molecules as well as extracellular matrix degradation contributed to small bowel pathology in CRS. These pathways were further enhanced by IL-17A deficiency and significantly down-regulated in mice lacking IFN-γ. (v) Ruxolitinib, a selective JAK-1/2 inhibitor, attenuated SAg-induced T cell activation, cytokine production, and small bowel pathology, thereby completely protecting from lethal CRS in both WT and IL-17A deficient HLA-DR3 mice. Overall, IFN-γ-JAK-STAT-driven pathways contribute to lethal small intestinal immunopathology in T cell-driven CRS.
Collapse
Affiliation(s)
- Shiv D Kale
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Brittney N Mehrkens
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Molly M Stegman
- College of Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bridget Kastelberg
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Henry Carnes
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States
| | - Rachel J McNeill
- Research and Graduate Studies, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Amy Rizzo
- Office of the University Veterinarian, Virginia Tech, Blacksburg, VA, United States
| | - Saikumar V Karyala
- Genomics Sequencing Center, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jackie A Fretz
- Histology and Histomorphometry Laboratory, Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Ying Sun
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Jonathan L Koff
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Govindarajan Rajagopalan
- The Discipline of Microbiology and Immunology, Edward via College of Osteopathic Medicine, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
50
|
Increase of emm1 isolates among group A Streptococcus strains causing scarlet fever in Shanghai, China. Int J Infect Dis 2020; 98:305-314. [PMID: 32562850 DOI: 10.1016/j.ijid.2020.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Scarlet fever epidemics caused by group A Streptococcus (GAS) have been ongoing in China since 2011. However, limited data are available on the dynamic molecular characterizations of the epidemic strains. METHOD Epidemiological data of scarlet fever in Shanghai were obtained from the National Notifiable Infectious Disease Surveillance System. Throat swabs of patients with scarlet fever and asymptomatic school-age children were cultured. Illumina sequencing was performed on 39emm1 isolates. RESULTS The annual incidence of scarlet fever was 7.5-19.4/100,000 persons in Shanghai during 2011-2015, with an average GAS carriage rate being 7.6% in school-age children. The proportion ofemm1 GAS strains increased from 3.8% in 2011 to 48.6% in 2014; they harbored a superantigen profile similar to emm12 isolates, except for the speA gene. Two predominant clones, SH001-emm12, and SH002-emm1, circulated in 66.9% of scarlet fever cases and 44.8% of carriers. Genomic analysis showed emm1 isolates throughout China constituted distinct clades, enriched by the presence of mobile genetic elements carrying the multidrug-resistant determinants ermB and tetM and virulence genes speA, speC, and spd1. CONCLUSION A significant increase in the proportion ofemm1 strains occurred in the GAS population, causing scarlet fever in China. Ongoing surveillance is warranted to monitor the dynamic changes of GAS clones.
Collapse
|