1
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
2
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Zhang Q, Hong Z, Zhu J, Zeng C, Tang Z, Wang W, Huang H. Biliopancreatic Limb Length of Small Intestinal Bypass in Non-obese Goto-Kakizaki (GK) Rats Correlates with Gastrointestinal Hormones, Adipokines, and Improvement in Type 2 Diabetes. Obes Surg 2021; 31:4419-4426. [PMID: 34312782 DOI: 10.1007/s11695-021-05604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The purpose of this study was to explore the effects on type 2 diabetes, gastrointestinal hormones, and adipokines after the small intestinal bypass of different biliopancreatic limb (BPL) lengths in non-obese type 2 diabetic rats. METHOD Small intestinal bypass with the BPL length at 10cm, 20cm, 30cm, and 40cm, respectively, and sham surgery were performed in non-obese GK rats. Fasting serum was collected at 2 days preoperatively and 1, 3, 6, and 9 weeks postoperatively. Body weight and fasting blood glucose (FBG) were measured during the experiment. Glycated hemoglobin (GHb), fasting insulin (FINS), C-peptide, ghrelin, leptin, adiponectin, and somatostatin were measured postoperatively. RESULT Rats with a bypassed length of 40cm died within 5-9 weeks. No statistically significant was observed in body weight between the sham group and the bypass groups at the 9th week postoperatively. FBG, GHb, FINS, C-peptide, and HOMA-IR in the bypass groups were lower than those in the sham group postoperatively and were negatively correlated with BPL length. Ghrelin and leptin declined compared with preoperative but were not associated with BPL length. Adiponectin of the bypass groups increased after operation and was positively correlated with BPL length. Somatostatin remained stable among groups during the experiment. CONCLUSION Ghrelin and leptin of non-obese GK rats decreased postoperatively without a linear relationship with the BPL length, while adiponectin increased with positively correlation with the BPL length. In addition, somatostatin remained steady after small intestinal bypass. Further studies are expected to confirm the effect of the BPL length of small intestinal bypass on gastrointestinal hormones and adipokines.
Collapse
Affiliation(s)
- Qiwei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhi Hong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jieyao Zhu
- Anhui Lujiang County People's Hospital, Chaohu, China
| | - Chao Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhen Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Weiqiang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - He Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China. .,, Wuhu City, China.
| |
Collapse
|
4
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
5
|
Lorberbaum DS, Docherty FM, Sussel L. Animal Models of Pancreas Development, Developmental Disorders, and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:65-85. [PMID: 32304069 DOI: 10.1007/978-981-15-2389-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pancreas is a glandular organ responsible for diverse homeostatic functions, including hormone production from the endocrine islet cells to regulate blood sugar levels and enzyme secretion from the exocrine acinar cells to facilitate food digestion. These pancreatic functions are essential for life; therefore, preserving pancreatic function is of utmost importance. Pancreas dysfunction can arise either from developmental disorders or adult onset disease, both of which are caused by defects in shared molecular pathways. In this chapter, we discuss what is known about the molecular mechanisms controlling pancreas development, how disruption of these mechanisms can lead to developmental defects and disease, and how essential pancreas functions can be modeled using human pluripotent stem cells. At the core of understanding of these molecular processes are animal model studies that continue to be essential for elucidating the mechanisms underlying human pancreatic functions and diseases.
Collapse
Affiliation(s)
- David S Lorberbaum
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Fiona M Docherty
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Lori Sussel
- Barbara Davis Center, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
6
|
Nagao M, Esguerra JLS, Wendt A, Asai A, Sugihara H, Oikawa S, Eliasson L. Selectively Bred Diabetes Models: GK Rats, NSY Mice, and ON Mice. Methods Mol Biol 2020; 2128:25-54. [PMID: 32180184 DOI: 10.1007/978-1-0716-0385-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The polygenic background of selectively bred diabetes models mimics the etiology of type 2 diabetes. So far, three different rodent models (Goto-Kakizaki rats, Nagoya-Shibata-Yasuda mice, and Oikawa-Nagao mice) have been established in the diabetes research field by continuous selective breeding for glucose tolerance from outbred rodent stocks. The origin of hyperglycemia in these rodents is mainly insulin secretion deficiency from the pancreatic β-cells and mild insulin resistance in insulin target organs. In this chapter, we summarize backgrounds and phenotypes of these rodent models to highlight their importance in diabetes research. Then, we introduce experimental methodologies to evaluate β-cell exocytosis as a putative common defect observed in these rodent models.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Exocytosis
- Gene Expression Profiling/methods
- Glucose Intolerance
- Insulin Resistance/physiology
- Insulin Secretion/physiology
- Insulin-Secreting Cells/chemistry
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/physiology
- Mice
- Mice, Inbred C3H
- Patch-Clamp Techniques/methods
- Phenotype
- Rats
- Rats, Wistar
- Selective Breeding/genetics
Collapse
Affiliation(s)
- Mototsugu Nagao
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden.
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Akira Asai
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinichi Oikawa
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Diabetes and Lifestyle-related Disease Center, Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
- Clinical Research Centre, Skåne University Hospital, Lund and Malmö, Sweden.
| |
Collapse
|
7
|
Otto GW, Kaisaki PJ, Brial F, Le Lay A, Cazier JB, Mott R, Gauguier D. Conserved properties of genetic architecture of renal and fat transcriptomes in rat models of insulin resistance. Dis Model Mech 2019; 12:dmm.038539. [PMID: 31213483 PMCID: PMC6679378 DOI: 10.1242/dmm.038539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
To define renal molecular mechanisms that are affected by permanent hyperglycaemia and might promote phenotypes relevant to diabetic nephropathy, we carried out linkage analysis of genome-wide gene transcription in the kidneys of F2 offspring from the Goto-Kakizaki (GK) rat model of type 2 diabetes and normoglycaemic Brown Norway (BN) rats. We mapped 2526 statistically significant expression quantitative trait loci (eQTLs) in the cross. More than 40% of eQTLs mapped in the close vicinity of the linked transcripts, underlying possible cis-regulatory mechanisms of gene expression. We identified eQTL hotspots on chromosomes 5 and 9 regulating the expression of 80-165 genes, sex or cross direction effects, and enriched metabolic and immunological processes by segregating GK alleles. Comparative analysis with adipose tissue eQTLs in the same cross showed that 496 eQTLs, in addition to the top enriched biological pathways, are conserved in the two tissues. Extensive similarities in eQTLs mapped in the GK rat and in the spontaneously hypertensive rat (SHR) suggest a common aetiology of disease phenotypes common to the two strains, including insulin resistance, which is a prominent pathophysiological feature in both GK rats and SHRs. Our data shed light on shared and tissue-specific molecular mechanisms that might underlie aetiological aspects of insulin resistance in the context of spontaneously occurring hyperglycaemia and hypertension. Summary: Kidney and fat expression QTL mapping in rat models of spontaneously occurring insulin resistance associated with either diabetes or hypertension reveals conserved gene expression regulation, suggesting shared aetiology of disease phenotypes.
Collapse
Affiliation(s)
- Georg W Otto
- Genetics and Genomic Medicine, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom
| | - Francois Brial
- University Paris Descartes, INSERM UMR 1124, 45 rue des Saint-Pères, 75006 Paris, France
| | - Aurélie Le Lay
- University Paris Descartes, INSERM UMR 1124, 45 rue des Saint-Pères, 75006 Paris, France
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard Mott
- University College London Genetics Institute, Gower Street, London WC1E 6BT, United Kingdom
| | - Dominique Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom .,University Paris Descartes, INSERM UMR 1124, 45 rue des Saint-Pères, 75006 Paris, France.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| |
Collapse
|
8
|
Null mutation of the endothelin receptor type B gene causes embryonic death in the GK rat. PLoS One 2019; 14:e0217132. [PMID: 31170185 PMCID: PMC6553694 DOI: 10.1371/journal.pone.0217132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
The Hirschsprung disease (HSCR) is an inherited disease that is controlled by multiple genes and has a complicated genetic mechanism. HSCR patients suffer from various extents of constipation due to dysplasia of the enteric nervous system (ENS), which can be so severe as to cause complete intestinal obstruction. Many genes have been identified as playing causative roles in ENS dysplasia and HSCR, among them the endothelin receptor type B gene (Ednrb) has been identified to play an important role. Mutation of Ednrb causes a series of symptoms that include deafness, pigmentary abnormalities, and aganglionosis. In our previous studies of three rat models carrying the same spotting lethal (sl) mutation on Ednrb, the haplotype of a region on chromosome (Chr) 2 was found to be responsible for the differing severities of the HSCR-like symptoms. To confirm that the haplotype of the responsible region on Chr 2 modifies the severity of aganglionosis caused by Ednrb mutation and to recreate a rat model with severe symptoms, we selected the GK inbred strain, whose haplotype in the responsible region on Chr 2 resembles that of the rat strain in which severe symptoms accompany the Ednrbsl mutation. An Ednrb mutation was introduced into the GK rat by crossing with F344-Ednrbsl and by genome editing. The null mutation of Ednrb was found to cause embryonic death in F2 progeny possessing the GK haplotype in the responsible region on Chr 2. The results of this study are unexpected, and they provide new clues and animal models that promise to contribute to studies on the genetic regulatory network in the development of ENS and on embryogenesis.
Collapse
|
9
|
Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol 2018; 114:2. [PMID: 30443826 PMCID: PMC6244639 DOI: 10.1007/s00395-018-0711-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increases the risk of heart failure independent of co-existing hypertension and coronary artery disease. Although several molecular mechanisms for the development of diabetic cardiomyopathy have been identified, they are incompletely understood. The pathomechanisms are multifactorial and as a consequence, no causative treatment exists at this time to modulate or reverse the molecular changes contributing to accelerated cardiac dysfunction in diabetic patients. Numerous animal models have been generated, which serve as powerful tools to study the impact of type 1 and type 2 diabetes on the heart. Despite specific limitations of the models generated, they mimic various perturbations observed in the diabetic myocardium and continue to provide important mechanistic insight into the pathogenesis underlying diabetic cardiomyopathy. This article reviews recent studies in both diabetic patients and in these animal models, and discusses novel hypotheses to delineate the increased incidence of heart failure in diabetic patients.
Collapse
Affiliation(s)
- Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
| |
Collapse
|
10
|
Kuwabara WMT, Panveloski-Costa AC, Yokota CNF, Pereira JNB, Filho JM, Torres RP, Hirabara SM, Curi R, Alba-Loureiro TC. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: Are they reliable models to study Type 2 Diabetes mellitus? PLoS One 2017; 12:e0189622. [PMID: 29220408 PMCID: PMC5722336 DOI: 10.1371/journal.pone.0189622] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn't present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of this study, we may conclude that only GK rats shown to be a reliable model to study T2DM.
Collapse
Affiliation(s)
| | - Ana Carolina Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Joice Naiara Bertaglia Pereira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, São Paulo, Brazil
| | - Jorge Mancini Filho
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cruzeiro do Sul University, São Paulo, Brazil
| | | |
Collapse
|
11
|
Bihoreau MT, Dumas ME, Lathrop M, Gauguier D. Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie 2017; 143:56-65. [DOI: 10.1016/j.biochi.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
12
|
Estrogen deprivation aggravates cardiac hypertrophy in nonobese Type 2 diabetic Goto-Kakizaki (GK) rats. Biosci Rep 2017; 37:BSR20170886. [PMID: 28923829 PMCID: PMC5643740 DOI: 10.1042/bsr20170886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
Both Type 2 diabetes mellitus (T2DM) and estrogen deprivation have been shown to be associated with the development of cardiovascular disease and adverse cardiac remodeling. However, the role of estrogen deprivation on adverse cardiac remodeling in nonobese T2DM rats has not been clearly elucidated. We hypothesized that estrogen-deprivation aggravates adverse cardiac remodeling in Goto–Kakizaki (GK) rats. Wild-type (WT) and GK rats at the age of 9 months old were divided into two subgroups to have either a sham operation (WTS, GKS) or a bilateral ovariectomy (WTO, GKO) (n = 6/subgroup). Four months after the operation, the rats were killed, and the heart was excised rapidly. Metabolic parameters, cardiomyocytes hypertrophy, cardiac fibrosis, and biochemical parameters were determined. GK rats had hyperglycemia with hypoinsulinemia, and estrogen deprivation did not increase the severity of T2DM. Cardiac hypertrophy, cardiac oxidative stress, and phosphor-antinuclear factor κB were higher in WTO and GKS rats than WTS rats, and they markedly increased in GKO rats compared with GKS rats. Furthermore, cardiac fibrosis, transforming growth factor-β, Bax, phosphor-p38, and peroxisome proliferator- activated receptor γ coactivator-1α expression were increased in GKS and GKO rats compared with the lean rats. However, mitochondrial dynamics proteins including dynamin-related protein 1 and mitofusin-2 were not altered by T2DM and estrogen deprivation. Although estrogen deprivation did not aggravate T2DM in GK rats, it increased the severity of cardiac hypertrophy by provoking cardiac inflammation and oxidative stress in nonobese GK rats.
Collapse
|
13
|
Calderari S, Ria M, Gérard C, Nogueira TC, Villate O, Collins SC, Neil H, Gervasi N, Hue C, Suarez-Zamorano N, Prado C, Cnop M, Bihoreau MT, Kaisaki PJ, Cazier JB, Julier C, Lathrop M, Werner M, Eizirik DL, Gauguier D. Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics 2017; 110:98-111. [PMID: 28911974 DOI: 10.1016/j.ygeno.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023]
Abstract
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans‑nosology pathways in diabetes and its co-morbidities.
Collapse
Affiliation(s)
- Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Massimiliano Ria
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christelle Gérard
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stephan C Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Neil
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | | | - Christophe Hue
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Nicolas Suarez-Zamorano
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Cécilia Prado
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie-Thérèse Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Cécile Julier
- INSERM UMR-S 958, Faculté de Médecine Paris Diderot, University Paris 7 Denis-Diderot, Paris, Sorbonne Paris Cité, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| | - Michel Werner
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Gauguier
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France; The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
14
|
Harrill AH, McAllister KA. New Rodent Population Models May Inform Human Health Risk Assessment and Identification of Genetic Susceptibility to Environmental Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:086002. [PMID: 28886592 PMCID: PMC5783628 DOI: 10.1289/ehp1274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. OBJECTIVES This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. METHODS This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. DISCUSSION These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. CONCLUSIONS These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.
Collapse
Affiliation(s)
- Alison H Harrill
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Kimberly A McAllister
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Asrafuzzaman M, Cao Y, Afroz R, Kamato D, Gray S, Little PJ. Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomed Pharmacother 2017; 89:1242-1251. [PMID: 28320091 DOI: 10.1016/j.biopha.2017.03.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 01/24/2023] Open
Abstract
Type 2 diabetes mellitus is a complex and heterogeneous disorder which in its most common manifestation arises from insulin resistance and later insulin insufficiency. Type 2 diabetes is characterised by impaired insulin sensitivity and diagnosed as hyperglycaemia. Because of its cardiovascular consequences, Type 2 diabetes represents one of the world's leading causes of mortality and morbidity. Drug discovery and development are required to produce better ways to prevent, treat and manage diabetes and its complications. Diabetes is a human, not an animal disease, so animals do not get Type 2 diabetes. However there are animal models which are variously suitable for the investigation of new agents for the treatment of Type 2 diabetes. In this Review we have examined the various models that are available for the study of natural products with a focus on models (genetic, nutritional and spontaneous) for the metabolic abnormities of diabetes. These models are also relevant to the investigation of Western medicines for the treatment of diabetes. A suitable experimental model plays an important role in drug discovery for translational studies leading to increased understanding of the molecular basis and management of diabetes.
Collapse
Affiliation(s)
- Md Asrafuzzaman
- Asian Network of Research on Antidiabetic Plants (ANRAP), Bangladesh University of Health Science, Mirpur, Dhaka 1216, Bangladesh
| | - Yingnan Cao
- Department of Pharmacy, Xinhua College of Sun Yat-sen University,Tianhe District, Guangzhou 510520, China
| | - Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102 Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102 Australia
| | - Susan Gray
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102 Australia
| | - Peter J Little
- Department of Pharmacy, Xinhua College of Sun Yat-sen University,Tianhe District, Guangzhou 510520, China; School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102 Australia.
| |
Collapse
|
16
|
Transcriptome Profiling in Rat Inbred Strains and Experimental Cross Reveals Discrepant Genetic Architecture of Genome-Wide Gene Expression. G3-GENES GENOMES GENETICS 2016; 6:3671-3683. [PMID: 27646706 PMCID: PMC5100866 DOI: 10.1534/g3.116.033274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To test the impact of genetic heterogeneity on cis- and trans-mediated mechanisms of gene expression regulation, we profiled the transcriptome of adipose tissue in 20 inbred congenic strains derived from diabetic Goto-Kakizaki (GK) rats and Brown-Norway (BN) controls, which contain well-defined blocks (1-183 Mb) of genetic polymorphisms, and in 123 genetically heterogeneous rats of an (GK × BN)F2 offspring. Within each congenic we identified 73-1351 differentially expressed genes (DEGs), only 7.7% of which mapped within the congenic blocks, and which may be regulated in cis The remainder localized outside the blocks, and therefore must be regulated in trans Most trans-regulated genes exhibited approximately twofold expression changes, consistent with monoallelic expression. Altered biological pathways were replicated between congenic strains sharing blocks of genetic polymorphisms, but polymorphisms at different loci also had redundant effects on transcription of common distant genes and pathways. We mapped 2735 expression quantitative trait loci (eQTL) in the F2 cross, including 26% predominantly cis-regulated genes, which validated DEGs in congenic strains. A hotspot of >300 eQTL in a 10 cM region of chromosome 1 was enriched in DEGs in a congenic strain. However, many DEGs among GK, BN and congenic strains did not replicate as eQTL in F2 hybrids, demonstrating distinct mechanisms of gene expression when alleles segregate in an outbred population or are fixed homozygous across the entire genome or in short genomic regions. Our analysis provides conceptual advances in our understanding of the complex architecture of genome expression and pathway regulation, and suggests a prominent impact of epistasis and monoallelic expression on gene transcription.
Collapse
|
17
|
Dumas ME, Domange C, Calderari S, Martínez AR, Ayala R, Wilder SP, Suárez-Zamorano N, Collins SC, Wallis RH, Gu Q, Wang Y, Hue C, Otto GW, Argoud K, Navratil V, Mitchell SC, Lindon JC, Holmes E, Cazier JB, Nicholson JK, Gauguier D. Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series. Genome Med 2016; 8:101. [PMID: 27716393 PMCID: PMC5045612 DOI: 10.1186/s13073-016-0352-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
Background The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. Methods We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Results Despite strong genomic similarities (95–99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. Conclusions These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0352-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc-Emmanuel Dumas
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK. .,Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, 5 rue de la Doua, Villeurbanne, 69100, France. .,Metabometrix Ltd, Prince Consort Road, London, SW7 2BP, UK.
| | - Céline Domange
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, 5 rue de la Doua, Villeurbanne, 69100, France.,UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, 75005, France
| | - Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S 1138, Cordeliers Research Centre, Paris, 75006, France
| | - Andrea Rodríguez Martínez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Rafael Ayala
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Steven P Wilder
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Nicolas Suárez-Zamorano
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S 1138, Cordeliers Research Centre, Paris, 75006, France
| | - Stephan C Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Robert H Wallis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Quan Gu
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Yulan Wang
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK.,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Christophe Hue
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, 75005, France
| | - Georg W Otto
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Karène Argoud
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Vincent Navratil
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, 5 rue de la Doua, Villeurbanne, 69100, France
| | | | - John C Lindon
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Jean-Baptiste Cazier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK.,Centre for Computational Biology, University of Birmingham, Haworth Building, Birmingham, B15 2TT, UK
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Dominique Gauguier
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK. .,Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S 1138, Cordeliers Research Centre, Paris, 75006, France. .,The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK.
| |
Collapse
|
18
|
Comparative Genome of GK and Wistar Rats Reveals Genetic Basis of Type 2 Diabetes. PLoS One 2015; 10:e0141859. [PMID: 26529237 PMCID: PMC4631338 DOI: 10.1371/journal.pone.0141859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022] Open
Abstract
The Goto-Kakizaki (GK) rat, which has been developed by repeated inbreeding of glucose-intolerant Wistar rats, is the most widely studied rat model for Type 2 diabetes (T2D). However, the detailed genetic background of T2D phenotype in GK rats is still largely unknown. We report a survey of T2D susceptible variations based on high-quality whole genome sequencing of GK and Wistar rats, which have generated a list of GK-specific variations (228 structural variations, 2660 CNV amplification and 2834 CNV deletion, 1796 protein affecting SNVs or indels) by comparative genome analysis and identified 192 potential T2D-associated genes. The genes with variants are further refined with prior knowledge and public resource including variant polymorphism of rat strains, protein-protein interactions and differential gene expression. Finally we have identified 15 genetic mutant genes which include seven known T2D related genes (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4, Icam1, and Pkd2l1) and eight high-confidence new candidate genes (Ldlr, Ccl2, Erbb3, Akr1b1, Pik3c2a, Cd5, Eef2k, and Cpd). Our result reveals that the T2D phenotype may be caused by the accumulation of multiple variations in GK rat, and that the mutated genes may affect biological functions including adipocytokine signaling, glycerolipid metabolism, PPAR signaling, T cell receptor signaling and insulin signaling pathways. We present the genomic difference between two closely related rat strains (GK and Wistar) and narrow down the scope of susceptible loci. It also requires further experimental study to understand and validate the relationship between our candidate variants and T2D phenotype. Our findings highlight the importance of sequenced-based comparative genomics for investigating disease susceptibility loci in inbreeding animal models.
Collapse
|
19
|
Abstract
The genetic basis of type 2 diabetes remains incompletely defined despite the use of multiple genetic strategies. Multiparental populations such as heterogeneous stocks (HS) facilitate gene discovery by allowing fine mapping to only a few megabases, significantly decreasing the number of potential candidate genes compared to traditional mapping strategies. In the present work, we employed expression and sequence analysis in HS rats (Rattus norvegicus) to identify Tpcn2 as a likely causal gene underlying a 3.1-Mb locus for glucose and insulin levels. Global gene expression analysis on liver identified Tpcn2 as the only gene in the region that is differentially expressed between HS rats with glucose intolerance and those with normal glucose regulation. Tpcn2 also maps as a cis-regulating expression QTL and is negatively correlated with fasting glucose levels. We used founder sequence to identify variants within this region and assessed association between 18 variants and diabetic traits by conducting a mixed-model analysis, accounting for the complex family structure of the HS. We found that two variants were significantly associated with fasting glucose levels, including a nonsynonymous coding variant within Tpcn2. Studies in Tpcn2 knockout mice demonstrated a significant decrease in fasting glucose levels and insulin response to a glucose challenge relative to those in wild-type mice. Finally, we identified variants within Tpcn2 that are associated with fasting insulin in humans. These studies indicate that Tpcn2 is a likely causal gene that may play a role in human diabetes and demonstrate the utility of multiparental populations for positionally cloning genes within complex loci.
Collapse
|
20
|
Nagao M, Asai A, Sugihara H, Oikawa S. Transgenerational changes of metabolic phenotypes in two selectively bred mouse colonies for different susceptibilities to diet-induced glucose intolerance. Endocr J 2015; 62:371-8. [PMID: 25736065 DOI: 10.1507/endocrj.ej14-0241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We recently established 2 mouse lines with different susceptibilities (prone and resistant) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-prone [SDG-P] and -resistant [SDG-R], respectively). In the present study, we analyzed transgenerational changes in metabolic phenotypes in these 2 mouse colonies to explore how the distinct phenotypes have emerged through the repetitive selection. Using C57BL/6, C3H, and AKR as background strains, mice showing inferior and superior glucose tolerance after HFD feeding were selected and bred repetitively over 20 generations to produce SDG-P and SDG-R, respectively. In addition to the blood glucose levels, HFD intake and body weight were also measured over the selective breeding period. As the generations proceeded, SDG-P mice became more susceptible to HFD-induced glucose intolerance and body weight gain, whereas SDG-R mice had gradually reduced HFD intake. The differences in fasting and post-glucose challenge blood glucose levels, body weight, and HFD intake became more evident between the 2 colonies through the selective breeding, mainly due to the HFD-induced glucose metabolism impairment and body weight gain in SDG-P mice and the reduction of HFD intake in SDG-R mice. These transgenerational changes in the metabolic phenotypes suggest that the genetic loci associated with the quantitative traits have been selectively enriched in SDG-P and SDG-R.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | | | | | | |
Collapse
|
21
|
Maternal diabetes, programming of beta-cell disorders and intergenerational risk of type 2 diabetes. DIABETES & METABOLISM 2014; 40:323-30. [PMID: 24948417 DOI: 10.1016/j.diabet.2014.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/31/2014] [Accepted: 02/05/2014] [Indexed: 01/01/2023]
Abstract
A substantial body of evidence suggests that an abnormal intra-uterine milieu elicited by maternal metabolic disturbances as diverse as malnutrition, placental insufficiency, diabetes and obesity may be able to programme susceptibility of the foetus to later develop chronic degenerative diseases such as obesity, hypertension, cardiovascular diseases and type 2 diabetes (T2D). As insulin-producing cells have been placed centre stage in the development of T2D, this review examines developmental programming of the beta-cell mass (BCM) in various rodent models of maternal protein restriction, calorie restriction, overnutrition and diabetes. The main message is that whatever the initial maternal insult (F0 generation) and whether alone or in combination, it gives rise to the same programmed BCM outcome in the daughter generation (F1). The altered BCM phenotype in F1 females prohibits normal BCM adaptation during pregnancy and, thus, diabetes (gestational diabetes) ensues. This gestational diabetes is then passed from one generation (F1) to the next (F2, F3 and so on). This review highlights a number of studies that have identified epigenetic mechanisms that may contribute to altered BCM development and beta-cell failure, as observed in diabetes. In addition to their role in instilling the programmed defect, these non-genomic mechanisms may also be involved in its intergenerational transmission.
Collapse
|
22
|
Kaisaki PJ, Otto GW, McGouran JF, Toubal A, Argoud K, Waller-Evans H, Finlay C, Caldérari S, Bihoreau MT, Kessler BM, Gauguier D, Mott R. Genetic control of differential acetylation in diabetic rats. PLoS One 2014; 9:e94555. [PMID: 24743600 PMCID: PMC3990556 DOI: 10.1371/journal.pone.0094555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/18/2014] [Indexed: 01/22/2023] Open
Abstract
Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression.
Collapse
Affiliation(s)
- Pamela J. Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom
| | - Georg W. Otto
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom
| | - Joanna F. McGouran
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Amine Toubal
- INSERM, U872, Cordeliers Research Centre, Paris, France
- Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, University Pierre & Marie-Curie, Paris, France
| | - Karène Argoud
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom
| | - Helen Waller-Evans
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom
| | - Clare Finlay
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom
| | - Sophie Caldérari
- INSERM, U872, Cordeliers Research Centre, Paris, France
- Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, University Pierre & Marie-Curie, Paris, France
| | | | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dominique Gauguier
- INSERM, U872, Cordeliers Research Centre, Paris, France
- Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, University Pierre & Marie-Curie, Paris, France
| | - Richard Mott
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom
| |
Collapse
|
23
|
Calderari S, Irminger JC, Giroix MH, Ehses JA, Gangnerau MN, Coulaud J, Rickenbach K, Gauguier D, Halban P, Serradas P, Homo-Delarche F. Regenerating 1 and 3b gene expression in the pancreas of type 2 diabetic Goto-Kakizaki (GK) rats. PLoS One 2014; 9:e90045. [PMID: 24587207 PMCID: PMC3936001 DOI: 10.1371/journal.pone.0090045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Regenerating (REG) proteins are associated with islet development, β-cell damage, diabetes and pancreatitis. Particularly, REG-1 and REG-3-beta are involved in cell growth/survival and/or inflammation and the Reg1 promoter contains interleukin-6 (IL-6)-responsive elements. We showed by transcriptome analysis that islets of Goto-Kakizaki (GK) rats, a model of spontaneous type 2 diabetes, overexpress Reg1, 3α, 3β and 3γ, vs Wistar islets. Goto-Kakizaki rat islets also exhibit increased cytokine/chemokine expression/release, particularly IL-6. Here we analyzed Reg1 and Reg3β expression and REG-1 immuno-localization in the GK rat pancreas in relationship with inflammation. Isolated pancreatic islets and acinar tissue from male adult Wistar and diabetic GK rats were used for quantitative RT-PCR analysis. REG-1 immunohistochemistry was performed on paraffin sections with a monoclonal anti-rat REG-1 antibody. Islet cytokine/chemokine release was measured after 48 h-culture. Islet macrophage-positive area was quantified on cryostat sections using anti-CD68 and major histocompatibility complex (MHC) class II antibodies. Pancreatic exocrine-to-endocrine Reg1 and Reg3β mRNA ratios were markedly increased in Wistar vs GK rats. Conversely, both genes were upregulated in isolated GK rat islets. These findings were unexpected, because Reg genes are expressed in the pancreatic acinar tissue. However, we observed REG-1 protein labeling in acinar peri-ductal tissue close to islets and around large, often disorganized, GK rat islets, which may retain acinar cells due to their irregular shape. These large islets also showed peri-islet macrophage infiltration and increased release of various cytokines/chemokines, particularly IL-6. Thus, IL-6 might potentially trigger acinar REG-1 expression and secretion in the vicinity of large diabetic GK rat islets. This increased acinar REG-1 expression might reflect an adaptive though unsuccessful response to deleterious microenvironment.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Chemokines/blood
- Chemokines/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation
- Islets of Langerhans/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lithostathine/genetics
- Lithostathine/metabolism
- Macrophages/metabolism
- Male
- Pancreatitis-Associated Proteins
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Sophie Calderari
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Jean-Claude Irminger
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Marie-Hélène Giroix
- Equipe associée au Centre National de la Recherche Scientifique (CNRS) 4413-Unité de Biologie Fonctionnelle et Adaptative (BFA), Team 1 (Biologie et Pathologie du Pancréas Endocrine (B2PE)), Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Jan A. Ehses
- Department of Surgery, Faculty of Medicine, University of British Columbia and Child and Family Research Institute, Vancouver, BC, Canada
| | - Marie-Noëlle Gangnerau
- Equipe associée au Centre National de la Recherche Scientifique (CNRS) 4413-Unité de Biologie Fonctionnelle et Adaptative (BFA), Team 1 (Biologie et Pathologie du Pancréas Endocrine (B2PE)), Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Josiane Coulaud
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Katharina Rickenbach
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Dominique Gauguier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Philippe Halban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Patricia Serradas
- INSERM UMRS 872, Team 9, CRC, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Françoise Homo-Delarche
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 872, Team 6, Centre de Recherche des Cordeliers (CRC), Université Pierre et Marie Curie, Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Chavey A, Bailbé D, Maulny L, Renard JP, Movassat J, Portha B. A euglycaemic/non-diabetic perinatal environment does not alleviate early beta cell maldevelopment and type 2 diabetes risk in the GK/Par rat model. Diabetologia 2013; 56:194-203. [PMID: 23064288 DOI: 10.1007/s00125-012-2733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/30/2012] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS We used the GK/Par rat, a spontaneous model of type 2 diabetes with early defective beta cell neogenesis, to determine whether the development of GK/Par offspring in a non-diabetic intrauterine/postnatal environment would prevent the alteration of fetal beta cell mass (BCM) and ultimately decrease the risk of diabetes later in adult life. METHODS We used an embryo-transfer approach, with fertilised GK/Par ovocytes (oGK) being transferred into pregnant Wistar (W) or GK/Par females (pW and pGK). Offspring were phenotyped at fetal age E18.5 and at 10 weeks of age, for BCM, expression of genes of pancreatic progenitor cell regulators (Igf2, Igf1r, Sox9, Pdx1 and Ngn3), glucose tolerance and insulin secretion. RESULTS (1) Alterations in neogenesis markers/regulators and BCM were as severe in the oGK/pW E18.5 fetuses as in the oGK/pGK group. (2) Adult offspring from oGK transfers into GK (oGK/pGK/sGK) had the expected diabetic phenotype compared with unmanipulated GK rats. (3) Adult offspring from oGK reared in pW mothers and milked by GK foster mothers had reduced BCM, basal hyperglycaemia, glucose intolerance and low insulin, to an extent similar to that of oGK/pGK/sGK offspring. (4) In adult offspring from oGK transferred into pW mothers and milked by their W mothers (oGK/pW/sW), the phenotype was similar to that in oGK/pGK/sGK or oGK/pW/sGK offspring. CONCLUSIONS/INTERPRETATION These data support the conclusion that early BCM alteration and subsequent diabetes risk in the GK/Par model are not removed despite normalisation of the prenatal and postnatal environments, either isolated or combined.
Collapse
Affiliation(s)
- A Chavey
- Université Paris-Diderot, Sorbonne Paris Cité, Laboratoire B2PE, Unité BFA, CNRS EAC 4413, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Okamura T, Pei XY, Miyoshi I, Shimizu Y, Takanashi-Yanobu R, Mototani Y, Kanai T, Satoh J, Kimura N, Kasai N. Phenotypic Characterization of LEA Rat: A New Rat Model of Nonobese Type 2 Diabetes. J Diabetes Res 2013; 2013:986462. [PMID: 23691528 PMCID: PMC3647576 DOI: 10.1155/2013/986462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/26/2012] [Indexed: 01/09/2023] Open
Abstract
Animal models have provided important information for the genetics and pathophysiology of diabetes. Here we have established a novel, nonobese rat strain with spontaneous diabetes, Long-Evans Agouti (LEA) rat derived from Long-Evans (LE) strain. The incidence of diabetes in the males was 10% at 6 months of age and 86% at 14 months, while none of the females developed diabetes. The blood glucose level in LEA male rats was between 200 and 300 mg/dl at 120 min according to OGTT. The glucose intolerance in correspondence with the impairment of insulin secretion was observed in male rats, which was the main cause of diabetes in LEA rats. Histological examination revealed that the reduction of β-cell mass was caused by progressive fibrosis in pancreatic islets in age-dependent manner. The intracytoplasmic hyaline droplet accumulation and the disappearance of tubular epithelial cell layer associated with thickening of basement membrane were evident in renal proximal tubules. The body mass index and glycaemic response to exogenous insulin were comparable to those of control rats. The unique characteristics of LEA rat are a great advantage not only to analyze the progression of diabetes, but also to disclose the genes involved in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tadashi Okamura
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Xiang Yuan Pei
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ichiro Miyoshi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Rieko Takanashi-Yanobu
- Department of Laboratory Animal Medicine, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasumasa Mototani
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takao Kanai
- Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Jo Satoh
- Division of Diabetes and Metabolism, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka 020-8505, Japan
| | - Noriko Kimura
- Pathology Section, Department of Clinical Research, National Hospital Organization Hakodate National Hospital, Hakodate 041-8512, Japan
| | - Noriyuki Kasai
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- *Noriyuki Kasai:
| |
Collapse
|
26
|
Géresi K, Benkő K, Szabó B, Megyeri A, Peitl B, Szilvássy Z, Benkő I. Toxicity of cytotoxic agents to granulocyte–macrophage progenitors is increased in obese Zucker and non-obese but insulin resistant Goto-Kakizaki rats. Eur J Pharmacol 2012; 696:172-8. [DOI: 10.1016/j.ejphar.2012.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 09/03/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
27
|
Genetic dissection of complex genetic factor involved in NIDDM of OLETF rat. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:582546. [PMID: 23118743 PMCID: PMC3478749 DOI: 10.1155/2012/582546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 11/17/2022]
Abstract
The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an animal model for obese-type, noninsulin-dependent diabetes mellitus (NIDDM) in humans. NIDDM in this rat model was shown to be regulated by multiple genes. We have identified 14 quantitative trait loci (QTLs) responsible for NIDDM (Nidd1-14/of) on chromosomes 1, 5, 7, 8, 9, 11, 12, 14, 16, and 17 by a whole genome search in 160 F2 progenies obtained by mating the OLETF and the F344 rats. Among these loci, two QTLs, Nidd1 and 2/of, were declared significant loci at a genome-wide level. Nidd3, 8, 9, and 13/of exhibited heterosis: heterozygotes showing significantly higher glucose levels than OLETF or F344 homozygotes. We also found evidence for interaction (epistasis) between Nidd1/of and Nidd2/of, between Nidd1/of and Nidd10/of, between Nidd2/of and Nidd8/of, and between Nidd2/of and Nidd14/of. Furthermore, Nidd6 and 11/of showed linkage with body weight, and Nidd1, 2, 8, 9, 10, and 12/of had an interaction with body weight. These indicated that NIDDM in the OLETF would have a higher degree of genetic complexity. We suggest several interesting candidate genes located in rat genomic regions for Nidd1-14/of or the syntenic regions in human genome.
Collapse
|
28
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Solberg Woods LC, Holl KL, Oreper D, Xie Y, Tsaih SW, Valdar W. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats. Physiol Genomics 2012; 44:1013-26. [PMID: 22947656 DOI: 10.1152/physiolgenomics.00040.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Department of Pediatrics, Human and Molecular Genetics Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Beddow SA, Samuel VT. Fasting hyperglycemia in the Goto-Kakizaki rat is dependent on corticosterone: a confounding variable in rodent models of type 2 diabetes. Dis Model Mech 2012; 5:681-5. [PMID: 22864022 PMCID: PMC3424465 DOI: 10.1242/dmm.009035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 07/10/2012] [Indexed: 01/08/2023] Open
Abstract
The Goto-Kakizaki (GK) rat is an inbred model of type 2 diabetes (T2D); GK rats are lean but have hyperglycemia and increased gluconeogenesis. However, fasting hyperglycemia in other commonly used rodent models of T2D is associated with increased corticosterone, and thus the underlying mechanism for hyperglycemia differs significantly from T2D in humans. Information regarding corticosterone in the GK rat is not readily available. We studied 14- to 16-week-old GK rats in comparison with age-matched control Wistar-Kyoto (WK) rats. GK rats had lower body weights (WK: 343±10 g vs GK: 286±9 g, P<0.01), but higher plasma glucose concentrations (WK: 132±1.5 mg/dl vs GK: 210±11.7 mg/dl, P<0.01). This was associated with an ∼twofold increase in PEPCK1 expression (P<0.05). However, these findings were also associated with elevations in plasma corticosterone and urinary corticosterone excretion. Ketoconazole (KTZ) treatment in GK rats reduced plasma corticosterone, fasting glucose (GK: 218±15 mg/dl vs GK-KTZ: 135±19 mg/dl, P<0.01) and rates of glucose production [GK: 16.5±0.6 mg/(kg-minute) vs GK-KTZ: 12.2±0.9 mg/(kg-minute), P<0.01]. This was associated with an ∼40% reduction in hepatic PEPCK1 expression as well as a 20% reduction in alanine turnover. Thus, hypercorticosteronemia might contribute to the diabetic phenotype of GK rats and should be considered as a potential confounder in rodent models of T2D.
Collapse
Affiliation(s)
- Sara A. Beddow
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- West Haven VAMC, West Haven, CT 06516, USA
| | - Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- West Haven VAMC, West Haven, CT 06516, USA
| |
Collapse
|
32
|
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 933:125-59. [PMID: 22893405 DOI: 10.1007/978-1-62703-068-7_9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of β-cell secretory dysfunction and/or decreased β-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK abnormalities so far identified is proposed in this perspective, together with their time-course and interactions. A special focus is given toward the pathogenesis of defective β-cell number and function in the GK model. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (1) several susceptibility loci containing genes responsible for some diabetic traits; (2) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas and the major insulin target tissues; and (3) environmentally induced loss of β-cell differentiation due to chronic exposure to hyperglycemia/hyperlipidemia, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), Université Paris-Diderot, CNRS EAC 4413, Paris, France.
| | | | | | | | | |
Collapse
|
33
|
Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:105076. [PMID: 22110471 PMCID: PMC3202114 DOI: 10.1155/2011/105076] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/13/2022]
Abstract
A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission.
Collapse
|
34
|
Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat. Mol Cell Biochem 2011; 361:305-14. [DOI: 10.1007/s11010-011-1116-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/07/2011] [Indexed: 01/28/2023]
|
35
|
Chen Z, Gao X, Lei T, Chen X, Zhou L, Yu A, Lei P, Zhang R, Long H, Yang Z. Molecular characterization, expression and chromosomal localization of porcine PNPLA3 and PNPLA4. Biotechnol Lett 2011; 33:1327-1337. [PMID: 21400235 DOI: 10.1007/s10529-011-0591-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/07/2011] [Indexed: 01/04/2023]
Abstract
Patatin-like phospholipases (PNPLAs) comprise a protein family whose members contain a conserved patatin-like domain with lipid acyl hydrolase activity. The cloning and characterization of full-length cDNAs of PNPLA3 and PNPLA4 in pigs is reported and, for the first time, an alternative splicing variant of porcine PNPLA4, which skips exon 5 of the normal transcript, was identified. Subsequently, tissue expression analysis by quantitative PCR indicated that porcine PNPLA3 was mainly expressed in both adipose and liver whereas porcine PNPLA4 was abundant in liver. Porcine PNPLA3 and PNPLA4 were assigned respectively to chromosome 5p11-p15 and Xp24.
Collapse
Affiliation(s)
- Zhilong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou H, Saito S, Piao G, Liu ZP, Wang J, Horimoto K, Chen L. Network screening of Goto-Kakizaki rat liver microarray data during diabetic progression. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 1:S16. [PMID: 21689475 PMCID: PMC3121116 DOI: 10.1186/1752-0509-5-s1-s16] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a complex systemic disease, with significant disorders of metabolism. The liver, a central energy metabolic organ, plays a critical role in the development of diabetes. Although gene expression levels are able to be measured via microarray since 1996, it is difficult to evaluate the contributions of one altered gene expression to a specific disease. One of the reasons is that a whole network picture responsible for a specific phase of diabetes is missing, while a single gene has to be put into a network picture to evaluate its importance. In the aim of identifying significant transcriptional regulatory networks in the liver contributing to diabetes, we have performed comprehensive active regulatory network survey by network screening in 4 weeks (w), 8-12 w, and 18-20 w Goto-Kakizaki (GK) rat liver microarray data. Results We identify active regulatory networks in GK rat by network screening in the following procedure. First, the regulatory networks are compiled by using the known binary relationships between the transcriptional factors and their regulated genes and the biological classification scheme, and second, the consistency of each regulatory network with the microarray data measured in GK rat is estimated to detect the active networks under the corresponding conditions. The comprehensive survey of the consistency between the networks and the measured data by the network screening approach in the case of non-insulin dependent diabetes in the GK rat reveals: 1. More pathways are active during inter-middle stage diabetes; 2. Inflammation, hypoxia, increased apoptosis, decreased proliferation, and altered metabolism are characteristics and display as early as 4weeks in GK strain; 3. Diabetes progression accompanies insults and compensations; 4. Nuclear receptors work in concert to maintain normal glycemic robustness system. Conclusion Notably this is the first comprehensive network screening study of non-insulin dependent diabetes in the GK rat based on high throughput data of the liver. Several important pathways have been revealed playing critical roles in the diabetes progression. Our findings also implicate that network screening is able to help us understand complex disease such as diabetes, and demonstrate the power of network systems biology approach to elucidate the essential mechanisms which would escape conventional single gene-based analysis.
Collapse
Affiliation(s)
- Huarong Zhou
- Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lagerholm S, Park HB, Luthman H, Nilsson M, McGuigan F, Swanberg M, Akesson K. Genetic loci for bone architecture determined by three-dimensional CT in crosses with the diabetic GK rat. Bone 2010; 47:1039-47. [PMID: 20699128 DOI: 10.1016/j.bone.2010.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/30/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The F344 rat carries alleles contributing to bone fragility while the GK rat spontaneously develops type-2 diabetes. These characteristics make F344×GK crosses well suited for the identification of genes related to bone size and allow for future investigation on the association with type-2 diabetes. The aim of this study was to identify quantitative trait loci (QTLs) for bone size phenotypes measured by a new application of three-dimensional computed tomography (3DCT) and to investigate the effects of sex- and reciprocal cross. Tibia from male and female GK and F344 rats, representing the parental, F1 and F2 generations, were examined with 3DCT and analyzed for: total and cortical volumetric BMD, straight and curved length, peri- and endosteal area at mid-shaft. F2 progeny (108 male and 98 female) were genotyped with 192 genome-wide microsatellite markers (average distance 10 cM). Sex- and reciprocal cross-separated QTL analyses were performed for the identification of QTLs linked to 3DCT phenotypes and true interactions were confirmed by likelihood ratio analysis in all F2 animals. Several genome-wide significant QTLs were found in the sex- and reciprocal cross-separated progeny on chromosomes (chr) 1, 3, 4, 9, 10, 14, and 17. Overlapping QTLs for both males and females in the (GK×F344)F2 progeny were located on chr 1 (39-67 cM). This region confirms previously reported pQCT QTLs and overlaps loci for fasting glucose. Sex separated linkage analysis confirmed a male specific QTL on chr 9 (67-82 cM) for endosteal area at the fibula site. Analyses separating the F2 population both by sex and reciprocal cross identified cross specific QTLs on chr 14 (males) and chr 3 and 4 (females). Two loci, chr 4 and 6, are unique to 3DCT and separate from pQCT generated loci. The 3DCT method was highly reproducible and provided high precision measurements of bone size in the rat enabling identification of new sex- and cross-specific loci. The QTLs on chr 1 indicate potential genetic association between bone-related phenotypes and traits affecting type-2 diabetes. The results illustrate the complexity of the genetic architecture of bone size phenotypes and demonstrate the importance of complementary methods for bone analysis.
Collapse
Affiliation(s)
- Sofia Lagerholm
- Lund University, Department of Clinical Sciences-Malmö, Clinical and Molecular Osteoporosis Unit, Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
38
|
Analyses of copy number variation of GK rat reveal new putative type 2 diabetes susceptibility loci. PLoS One 2010; 5:e14077. [PMID: 21124896 PMCID: PMC2990713 DOI: 10.1371/journal.pone.0014077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/31/2010] [Indexed: 01/15/2023] Open
Abstract
Large efforts have been taken to search for genes responsible for type 2 diabetes (T2D), but have resulted in only about 20 in humans due to its complexity and heterogeneity. The GK rat, a spontanous T2D model, offers us a superior opportunity to search for more diabetic genes. Utilizing array comparative genome hybridization (aCGH) technology, we identifed 137 non-redundant copy number variation (CNV) regions from the GK rats when using normal Wistar rats as control. These CNV regions (CNVRs) covered approximately 36 Mb nucleotides, accounting for about 1% of the whole genome. By integrating information from gene annotations and disease knowledge, we investigated the CNVRs comprehensively for mining new T2D genes. As a result, we prioritized 16 putative protein-coding genes and two microRNA genes (rno-mir-30b and rno-mir-30d) as good candidates. The catalogue of CNVRs between GK and Wistar rats identified in this work served as a repository for mining genes that might play roles in the pathogenesis of T2D. Moreover, our efforts in utilizing bioinformatics methods to prioritize good candidate genes provided a more specific set of putative candidates. These findings would contribute to the research into the genetic basis of T2D, and thus shed light on its pathogenesis.
Collapse
|
39
|
Finlay C, Argoud K, Wilder SP, Ouali F, Ktorza A, Kaisaki PJ, Gauguier D. Chromosomal mapping of pancreatic islet morphological features and regulatory hormones in the spontaneously diabetic (Type 2) Goto-Kakizaki rat. Mamm Genome 2010; 21:499-508. [PMID: 20878524 PMCID: PMC2974204 DOI: 10.1007/s00335-010-9285-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 09/01/2010] [Indexed: 12/02/2022]
Abstract
Insulin resistance and altered endocrine pancreas function are central pathophysiological features of type 2 diabetes mellitus (T2DM). The Goto-Kakizaki (GK) rat is a model of spontaneous T2DM characterised by reduced beta cell mass and genetically determined glucose intolerance and altered insulin secretion. To identify genetic determinants of endocrine pancreas histopathology, we carried out quantitative trait locus (QTL) mapping of histological phenotypes (beta cell mass -BCM and insulin-positive cell area -IPCA) and plasma concentration of hormones and growth factors in a F2 cohort derived from GK and normoglycemic Brown Norway rats. Although IPCA and BCM in the duodenal region of the pancreas were highly positively correlated (P < 10−6), and similarly in the splenic region, both measures were poorly correlated when comparing duodenal and splenic phenotypes. Strongest evidence of linkage to pancreas morphological traits was obtained between BCM and chromosome 10 (LOD 3.2). Evidence of significant linkage (LOD 4.2) to plasma corticosterone was detected in a region of chromosome 1 distal to other QTLs previously identified in the GK. Male-specific genetic effects were detected, including linkages (LOD > 4) to growth hormome (GH) on chromosome 6 and prolactin on chromosome 17. These data suggest independent genetic control of the structure and function of ontologically different regions of the endocrine pancreas. Novel QTLs for corticosterone, prolactin and GH may contribute to diabetes in the GK. The QTLs that we have identified in this, and previous genetic studies collectively underline the complex and multiple mechanisms involved in diabetes in the GK strain.
Collapse
Affiliation(s)
- Clare Finlay
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Chen W, Chang B, Li L, Chan L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 2010; 52:1134-42. [PMID: 20648554 PMCID: PMC2932863 DOI: 10.1002/hep.23812] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED PNPLA3 (adiponutrin), a novel patatin-like phospholipase domain-containing enzyme, is expressed at high level in fat, but also in other tissues including liver. Polymorphisms in PNPLA3 have been linked to obesity and insulin sensitivity. Notably, a nonsynonymous variant rs738409(G) allele of the PNPLA3 gene was found to be strongly associated with both nonalcoholic and alcoholic fatty liver disease. We have generated Pnpla3(-/-) mice by gene targeting. Loss of Pnpla3 has no effect on body weight or composition, adipose mass, or development, whether the mice were fed regular chow or high-fat diet or bred into the genetic obese Lep(ob/ob) background. Plasma and liver triglyceride content and plasma aspartate aminotransferase and alanine aminotransferase levels were not different between Pnpla3(+/+) and Pnpla3(-/-) mice while they were on regular chow, fed three different fatty liver-inducing diets, or after they were bred into Lep(ob/ob) background. Hepatic Pnpla5 messenger RNA (mRNA) levels were similar in wild-type and Pnpla3(-/-) mice, although adipose Pnpla5 mRNA level was increased in Pnpla3(-/-) mice. A high-sucrose lipogenic diet stimulated hepatic Pnpla3 and Pnpla5 mRNA levels to a similar degree, but it did not affect adipose or liver triglyceride lipase (ATGL, known also as Pnpla2) mRNA in Pnpla3(+/+) and Pnpla3(-/-) mice. Finally, Pnpla3(+/+) and Pnpla3(-/-) mice displayed similar glucose tolerance and insulin tolerance tests while on regular chow or three different fatty liver-inducing diets. CONCLUSION Loss of Pnpla3 does not cause fatty liver, liver enzyme elevation, or insulin resistance in mice.
Collapse
Affiliation(s)
- Weiqin Chen
- Diabetes and Endocrinology Research Center (DERC), Section of Diabetes and Endocrinology, Departments of Medicine, Molecular & Cellular Biology and Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Benny Chang
- Diabetes and Endocrinology Research Center (DERC), Section of Diabetes and Endocrinology, Departments of Medicine, Molecular & Cellular Biology and Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lan Li
- Diabetes and Endocrinology Research Center (DERC), Section of Diabetes and Endocrinology, Departments of Medicine, Molecular & Cellular Biology and Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lawrence Chan
- Diabetes and Endocrinology Research Center (DERC), Section of Diabetes and Endocrinology, Departments of Medicine, Molecular & Cellular Biology and Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, USA, St. Luke’s Episcopal Hospital, Houston, Texas, USA,Contact Information: Lawrence Chan, Diabetes and Endocrinology Research Center R614, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. Tel: 713-798-4478, Fax: 713-798-8764,
| |
Collapse
|
41
|
Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME, Grew JP, Randall JC, Gloyn AL, Gauguier D, McCarthy MI, Lindgren CM. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 2010; 53:1099-109. [PMID: 20198361 PMCID: PMC2860560 DOI: 10.1007/s00125-010-1667-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/17/2009] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS MicroRNAs regulate a broad range of biological mechanisms. To investigate the relationship between microRNA expression and type 2 diabetes, we compared global microRNA expression in insulin target tissues from three inbred rat strains that differ in diabetes susceptibility. METHODS Using microarrays, we measured the expression of 283 microRNAs in adipose, liver and muscle tissue from hyperglycaemic (Goto-Kakizaki), intermediate glycaemic (Wistar Kyoto) and normoglycaemic (Brown Norway) rats (n = 5 for each strain). Expression was compared across strains and validated using quantitative RT-PCR. Furthermore, microRNA expression variation in adipose tissue was investigated in 3T3-L1 adipocytes exposed to hyperglycaemic conditions. RESULTS We found 29 significantly differentiated microRNAs (p(adjusted) < 0.05): nine in adipose tissue, 18 in liver and two in muscle. Of these, five microRNAs had expression patterns that correlated with the strain-specific glycaemic phenotype. MiR-222 (p(adjusted) = 0.0005) and miR-27a (p(adjusted) = 0.006) were upregulated in adipose tissue; miR-195 (p(adjusted) = 0.006) and miR-103 (p(adjusted) = 0.04) were upregulated in liver; and miR-10b (p(adjusted) = 0.004) was downregulated in muscle. Exposure of 3T3-L1 adipocytes to increased glucose concentration upregulated the expression of miR-222 (p = 0.008), miR-27a (p = 0.02) and the previously reported miR-29a (p = 0.02). Predicted target genes of these differentially expressed microRNAs are involved in pathways relevant to type 2 diabetes. CONCLUSION The expression patterns of miR-222, miR-27a, miR-195, miR-103 and miR-10b varied with hyperglycaemia, suggesting a role for these microRNAs in the pathophysiology of type 2 diabetes, as modelled by the Gyoto-Kakizaki rat. We observed similar patterns of expression of miR-222, miR-27a and miR-29a in adipocytes as a response to increased glucose levels, which supports our hypothesis that altered expression of microRNAs accompanies primary events related to the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- B. M. Herrera
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| | - H. E. Lockstone
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - J. M. Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - M. Ria
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - A. Barrett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| | - S. Collins
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| | - P. Kaisaki
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - K. Argoud
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - C. Fernandez
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - M. E. Travers
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| | - J. P. Grew
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| | - J. C. Randall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - A. L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| | - D. Gauguier
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
- INSERM U872, Centre de Recherche des Cordeliers, Paris, France
| | - M. I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| | - C. M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, The Churchill Hospital, Oxford, UK
| |
Collapse
|
42
|
Matsumoto T, Ishida K, Taguchi K, Kobayashi T, Kamata K. Short-term angiotensin-1 receptor antagonism in type 2 diabetic Goto-Kakizaki rats normalizes endothelin-1-induced mesenteric artery contraction. Peptides 2010; 31:609-17. [PMID: 20026366 DOI: 10.1016/j.peptides.2009.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 12/12/2022]
Abstract
Endothelin (ET)-1 and angiotensin II (Ang II) are likely candidates for a key role in diabetic vascular complications. We demonstrated previously that an enhanced ET-1-induced contraction is present in mesenteric arteries from Goto-Kakizaki (GK) rats at the chronic stage of type 2 diabetes. Here, we investigated whether short-term treatment of such rats with losartan, an angiotensin type 1 receptor antagonist, might normalize the ET-1-induced contraction. In mesenteric arteries from GK rats at the chronic stage (34-38 weeks) (vs. those from age-matched control Wistar rats): (1) the ET-1-induced contraction was enhanced, (2) the levels of ET-1 and Ang II were increased, (3) ET-1-stimulated ERK2 phosphorylation was increased, and (4) the ACh-induced endothelium-dependent relaxation was reduced. Mesenteric arteries isolated from such GK rats following treatment with losartan (25mg/kg/day for 2 weeks) exhibited reduced ET-1- and Ang II-induced contractions, suppressed ET-1-stimulated ERK phosphorylation, and increased ACh-induced relaxation, while the rats exhibited normalized plasma NO metabolism and their mesenteric arteries exhibited increased basal NO formation. However, such losartan treatment did not alter the increased levels of ET-1 and Ang II seen in GK mesenteric arteries. Our data suggest that within the timescale studied here, losartan normalizes ET-1-induced mesenteric artery contraction through a suppression of ERK activities and/or by normalizing endothelial function.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 4-41 Ebara 2-Chome, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | |
Collapse
|
43
|
Solberg Woods LC, Holl K, Tschannen M, Valdar W. Fine-mapping a locus for glucose tolerance using heterogeneous stock rats. Physiol Genomics 2010; 41:102-8. [PMID: 20068026 DOI: 10.1152/physiolgenomics.00178.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Heterogeneous stock (HS) animals provide the ability to map quantitative trait loci at high resolution [<5 Megabase (Mb)] in a relatively short time period. In the current study, we hypothesized that the HS rat colony would be useful for fine-mapping a region on rat chromosome 1 that has previously been implicated in glucose regulation. We administered a glucose tolerance test to 515 HS rats and genotyped these animals with 69 microsatellite markers, spaced an average distance of <1 Mb apart, on a 67 Mb region of rat chromosome 1. Using regression modeling of inferred haplotypes based on a hidden Markov model reconstruction and mixed model analysis in which we accounted for the complex family structure of the HS, we identified one sharp peak within this region. Using positional bootstrapping, we determined the most likely location of this locus is from 205.04 to 207.48 Mb. This work demonstrates the utility of HS rats for fine-mapping complex traits and emphasizes the importance of taking into account family structure when using highly recombinant populations.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
44
|
Portha B, Lacraz G, Chavey A, Figeac F, Fradet M, Tourrel-Cuzin C, Homo-Delarche F, Giroix MH, Bailbé D, Gangnerau MN, Movassat J. Islet structure and function in the GK rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:479-500. [PMID: 20217511 DOI: 10.1007/978-90-481-3271-3_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of beta-cell secretory dysfunction and/or decreased beta-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto-Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK islet abnormalities so far identified is proposed in this perspective. The pathogenesis of defective beta-cell number and function in the GK model is also discussed. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (i) several susceptibility loci containing genes responsible for some diabetic traits (distinct loci encoding impairment of beta-cell metabolism and insulin exocytosis, but no quantitative trait locus for decreased beta-cell mass); (ii) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas (decreased beta-cell neogenesis and proliferation) transmitted over generations; and (iii) loss of beta-cell differentiation related to chronic exposure to hyperglycaemia/hyperlipidaemia, islet inflammation, islet oxidative stress, islet fibrosis and perturbed islet vasculature.
Collapse
Affiliation(s)
- Bernard Portha
- Laboratoire B2PE, Unité BFA, Université Paris-Diderot et CNRS EAC4413, F - 75205 Paris Cedex13, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsumoto T, Ishida K, Taguchi K, Kobayashi T, Kamata K. Mechanisms underlying enhanced vasorelaxant response to protease-activated receptor 2-activating peptide in type 2 diabetic Goto-Kakizaki rat mesenteric artery. Peptides 2009; 30:1729-34. [PMID: 19540892 DOI: 10.1016/j.peptides.2009.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 01/06/2023]
Abstract
Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor that is proteolytically activated by certain endogenous proteases, such as trypsin, tryptase, and factor Xa. PAR2 can also be activated by synthetic peptides if their sequence mimics the tethered ligand exposed after receptor cleavage. Although it is known that PAR2 modulates vascular reactivity, it is unclear whether at the chronic stage of type 2 diabetes there are alterations in PAR2-mediated vascular responses. We investigated this issue by exposing mesenteric artery rings to PAR2-activating peptide (PAR2-AP; SLIGRL-NH(2)), the arteries used being obtained from later-stage (32-40-week-old) type 2 diabetic Goto-Kakizaki (GK) rats. The PAR2-AP-induced relaxation was enhanced in GK rats (vs. age-matched Wistar rats), whereas the ACh-induced relaxation was weaker in GK than in Wistar rats. In both groups, the PAR2-AP-induced relaxation was largely blocked by endothelial denudation or by N(G)-nitro-L-arginine [nitric oxide (NO) synthase inhibitor] treatment, but it was unaffected by indomethacin (cyclooxygenase inhibitor) treatment. Both the NO production induced by PAR2-AP and the PAR2 protein expression were significantly increased in mesenteric arteries from GK rats (vs. Wistar rats). These data are the first to indicate that the PAR2-AP-induced endothelium-dependent relaxation is enhanced in mesenteric arteries isolated from type 2 diabetic GK rats at the chronic stage, and they further suggest that the enhancement may be due to an increased expression of PAR2 receptors in this artery.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
46
|
Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, Fernandez C, Ragoussis J, Gauguier D, McCarthy MI, Lindgren CM. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Med Genomics 2009; 2:54. [PMID: 19689793 PMCID: PMC2754496 DOI: 10.1186/1755-8794-2-54] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 08/18/2009] [Indexed: 12/02/2022] Open
Abstract
Background MicroRNAs (miRNAs) are non-coding RNA molecules involved in post-transcriptional control of gene expression of a wide number of genes, including those involved in glucose homeostasis. Type 2 diabetes (T2D) is characterized by hyperglycaemia and defects in insulin secretion and action at target tissues. We sought to establish differences in global miRNA expression in two insulin-target tissues from inbred rats of spontaneously diabetic and normoglycaemic strains. Methods We used a miRNA microarray platform to measure global miRNA expression in two insulin-target tissues: liver and adipose tissue from inbred rats of spontaneously diabetic (Goto-Kakizaki [GK]) and normoglycaemic (Brown-Norway [BN]) strains which are extensively used in genetic studies of T2D. MiRNA data were integrated with gene expression data from the same rats to investigate how differentially expressed miRNAs affect the expression of predicted target gene transcripts. Results The expression of 170 miRNAs was measured in liver and adipose tissue of GK and BN rats. Based on a p-value for differential expression between GK and BN, the most significant change in expression was observed for miR-125a in liver (FC = 5.61, P = 0.001, Padjusted = 0.10); this overexpression was validated using quantitative RT-PCR (FC = 13.15, P = 0.0005). MiR-125a also showed over-expression in the GK vs. BN analysis within adipose tissue (FC = 1.97, P = 0.078, Padjusted = 0.99), as did the previously reported miR-29a (FC = 1.51, P = 0.05, Padjusted = 0.99). In-silico tools assessing the biological role of predicted miR-125a target genes suggest an over-representation of genes involved in the MAPK signaling pathway. Gene expression analysis identified 1308 genes with significantly different expression between GK and BN rats (Padjusted < 0.05): 233 in liver and 1075 in adipose tissue. Pathways related to glucose and lipid metabolism were significantly over-represented among these genes. Enrichment analysis suggested that differentially expressed genes in GK compared to BN included more predicted miR-125a target genes than would be expected by chance in adipose tissue (FDR = 0.006 for up-regulated genes; FDR = 0.036 for down-regulated genes) but not in liver (FDR = 0.074 for up-regulated genes; FDR = 0.248 for down-regulated genes). Conclusion MiR-125a is over-expressed in liver in hyperglycaemic GK rats relative to normoglycaemic BN rats, and our array data also suggest miR-125a is over-expressed in adipose tissue. We demonstrate the use of in-silico tools to provide the basis for further investigation of the potential role of miR-125a in T2D. In particular, the enrichment of predicted miR-125a target genes among differentially expressed genes has identified likely target genes and indicates that integrating global miRNA and mRNA expression data may give further insights into miRNA-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Blanca M Herrera
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Solberg Woods LC, Ahmadiyeh N, Baum A, Shimomura K, Li Q, Steiner DF, Turek FW, Takahashi JS, Churchill GA, Redei EE. Identification of genetic loci involved in diabetes using a rat model of depression. Mamm Genome 2009; 20:486-97. [PMID: 19697080 PMCID: PMC2775460 DOI: 10.1007/s00335-009-9211-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/22/2009] [Indexed: 11/29/2022]
Abstract
While diabetic patients often present with comorbid depression, the underlying mechanisms linking diabetes and depression are unknown. The Wistar Kyoto (WKY) rat is a well-known animal model of depression and stress hyperreactivity. In addition, the WKY rat is glucose intolerant and likely harbors diabetes susceptibility alleles. We conducted a quantitative trait loci (QTL) analysis in the segregating F(2) population of a WKY x Fischer 344 (F344) intercross. We previously published QTL analyses for depressive behavior and hypothalamic-pituitary-adrenal (HPA) activity in this cross. In this study we report results from the QTL analysis for multiple metabolic phenotypes, including fasting glucose, post-restraint stress glucose, postprandial glucose and insulin, and body weight. We identified multiple QTLs for each trait and many of the QTLs overlap with those previously identified using inbred models of type 2 diabetes (T2D). Significant correlations were found between metabolic traits and HPA axis measures, as well as forced swim test behavior. Several metabolic loci overlap with loci previously identified for HPA activity and forced swim behavior in this F(2) intercross, suggesting that the genetic mechanisms underlying these traits may be similar. These results indicate that WKY rats harbor diabetes susceptibility alleles and suggest that this strain may be useful for dissecting the underlying genetic mechanisms linking diabetes, HPA activity, and depression.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hu Y, Kaisaki PJ, Argoud K, Wilder SP, Wallace KJ, Woon PY, Blancher C, Tarnow L, Groop PH, Hadjadj S, Marre M, Parving HH, Farrall M, Cox RD, Lathrop M, Vionnet N, Bihoreau MT, Gauguier D. Functional annotations of diabetes nephropathy susceptibility loci through analysis of genome-wide renal gene expression in rat models of diabetes mellitus. BMC Med Genomics 2009; 2:41. [PMID: 19586551 PMCID: PMC2717999 DOI: 10.1186/1755-8794-2-41] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 07/09/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hyperglycaemia in diabetes mellitus (DM) alters gene expression regulation in various organs and contributes to long term vascular and renal complications. We aimed to generate novel renal genome-wide gene transcription data in rat models of diabetes in order to test the responsiveness to hyperglycaemia and renal structural changes of positional candidate genes at selected diabetic nephropathy (DN) susceptibility loci. METHODS Both Affymetrix and Illumina technologies were used to identify significant quantitative changes in the abundance of over 15,000 transcripts in kidney of models of spontaneous (genetically determined) mild hyperglycaemia and insulin resistance (Goto-Kakizaki-GK) and experimentally induced severe hyperglycaemia (Wistar-Kyoto-WKY rats injected with streptozotocin [STZ]). RESULTS Different patterns of transcription regulation in the two rat models of diabetes likely underlie the roles of genetic variants and hyperglycaemia severity. The impact of prolonged hyperglycaemia on gene expression changes was more profound in STZ-WKY rats than in GK rats and involved largely different sets of genes. These included genes already tested in genetic studies of DN and a large number of protein coding sequences of unknown function which can be considered as functional and, when they map to DN loci, positional candidates for DN. Further expression analysis of rat orthologs of human DN positional candidate genes provided functional annotations of known and novel genes that are responsive to hyperglycaemia and may contribute to renal functional and/or structural alterations. CONCLUSION Combining transcriptomics in animal models and comparative genomics provides important information to improve functional annotations of disease susceptibility loci in humans and experimental support for testing candidate genes in human genetics.
Collapse
Affiliation(s)
- Yaomin Hu
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Karène Argoud
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Steven P Wilder
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Karin J Wallace
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Peng Y Woon
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christine Blancher
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | - Per-Henrik Groop
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Samy Hadjadj
- CHU Poitiers, University Hospital, Endocrinology and INSERM, ERM 324, Poitiers, France
| | - Michel Marre
- Department of Diabetology, Bichat Hospital and INSERM, U695, Xavier Bichat University of Medicine, Paris, France
| | - Hans-Henrik Parving
- Department of Medical Endocrinology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Martin Farrall
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Roger D Cox
- MRC Mammalian Genome Unit, Harwell OX11 0RD, UK
| | | | - Nathalie Vionnet
- INSERM, UMR S 525, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Marie-Thérèse Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dominique Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
49
|
Nobrega MA, Solberg Woods LC, Fleming S, Jacob HJ. Distinct genetic regulation of progression of diabetes and renal disease in the Goto-Kakizaki rat. Physiol Genomics 2009; 39:38-46. [PMID: 19584172 DOI: 10.1152/physiolgenomics.90389.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Goto-Kakizaki (GK) rats develop early-onset type 2 diabetes (T2D) symptoms, with signs of diabetic nephropathy becoming apparent with aging. To determine whether T2D and renal disease share similar genetic architecture, we ran a quantitative trait locus (QTL) analysis in the F2 progeny of a GK x Brown Norway (BN) rat cross. Further, to determine whether genetic components change over time, we ran the QTL analysis on phenotypes collected longitudinally, at 3, 6, 9 and 12 mo, from the same animals. We confirmed three chromosomal regions that are linked to early diabetes phenotypes (chromosomes 1, 5, and 10) and a single region involved in the late progression of the disorder (chromosome 4). A single region was identified for the onset of the renal phenotype proteinuria (chromosome 5). This region overlaps the diabetic QTL, although it is not certain whether similar genes are involved in both phenotypes. A second QTL linked to the progression of the renal phenotype was found on chromosome 7. Linkage for triglyceride and cholesterol levels were also identified (chromosomes 7 and 8, respectively). These results demonstrate that, in general, different genetic components control diabetic and renal phenotypes in a diabetic nephropathy model. Furthermore, these results demonstrate that, over time, different genetic components are involved in progression of disease from those that were involved in disease onset. This observation would suggest that clinical studies collecting participants over a wide age distribution may be diluting genetic effects and reducing power to detect true effects.
Collapse
Affiliation(s)
- Marcelo A Nobrega
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53266, USA.
| | | | | | | |
Collapse
|
50
|
Liepinsh E, Vilskersts R, Zvejniece L, Svalbe B, Skapare E, Kuka J, Cirule H, Grinberga S, Kalvinsh I, Dambrova M. Protective effects of mildronate in an experimental model of type 2 diabetes in Goto-Kakizaki rats. Br J Pharmacol 2009; 157:1549-56. [PMID: 19594753 DOI: 10.1111/j.1476-5381.2009.00319.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Mildronate [3-(2,2,2-trimethylhydrazinium) propionate] is an anti-ischaemic drug whose mechanism of action is based on its inhibition of L-carnitine biosynthesis and uptake. As L-carnitine plays a pivotal role in the balanced metabolism of fatty acids and carbohydrates, this study was carried out to investigate whether long-term mildronate treatment could influence glucose levels and prevent diabetic complications in an experimental model of type 2 diabetes in Goto-Kakizaki (GK) rats. EXPERIMENTAL APPROACH GK rats were treated orally with mildronate at doses of 100 and 200 mg.kg(-1) daily for 8 weeks. Plasma metabolites reflecting glucose and lipids, as well as fructosamine and beta-hydroxybutyrate, were assessed. L-carnitine concentrations were measured by ultra performance liquid chromatography with tandem mass spectrometry. An isolated rat heart ischaemia-reperfusion model was used to investigate possible cardioprotective effects. Pain sensitivity was measured with a tail-flick latency test. KEY RESULTS Mildronate treatment significantly decreased L-carnitine concentrations in rat plasma and gradually decreased both the fed- and fasted-state blood glucose. Mildronate strongly inhibited fructosamine accumulation and loss of pain sensitivity and also ameliorated the enhanced contractile responsiveness of GK rat aortic rings to phenylephrine. In addition, in mildronate-treated hearts, the necrosis zone following coronary occlusion was significantly decreased by 30%. CONCLUSIONS AND IMPLICATIONS These results demonstrate for the first time that in GK rats, an experimental model of type 2 diabetes, mildronate decreased L-carnitine contents and exhibited cardioprotective effects, decreased blood glucose concentrations and prevented the loss of pain sensitivity. These findings indicate that mildronate treatment could be beneficial in diabetes patients with cardiovascular problems.
Collapse
|