1
|
Latcu SC, Bardan R, Cumpanas AA, Barbos V, Baderca F, Gaje PN, Ceausu RA, Comsa S, Dumitru CS, Dumache R, Cut TG, Lazureanu VE, Petrica L. Immunotherapy Applications for Thymine Dimers and WT1 Antigen in Renal Cancers: A Comparative Statistical Analysis. J Pers Med 2024; 14:557. [PMID: 38929778 PMCID: PMC11205122 DOI: 10.3390/jpm14060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) remains incurable in advanced stages. Biomarkers have proven to be quite useful in cancer therapeutics. Herein, we provide a comparative/integrative statistical analysis of seminal immunohistochemistry (IHC) findings for Wilms' Tumor 1 antigen (WT1) and thymine dimers (TDs), emerging as atypical, yet promising, potential biomarkers for RCCs. We assessed WT1/TD reactivity in adult RCC tumor cells, tumor microenvironment (TME), and tumor-adjacent healthy renal tissue (HRT). WT1 positivity was scarce and strictly nuclear in tumor cells, whereas TD-reactive tumor tissues were prevalent. We report statistically significant positive correlations between the density of reactive RCC cellularity and the intensity of nuclear staining for both biomarkers (WT1 - rho = 0.341, p-value = 0.036; TDs - rho = 0.379, p-value = 0.002). RCC stromal TME TD-positivity was much more frequent than WT1 reactivity, apparently proportional to that of the proper RCC cellularity and facilitated by extensive RCC inflammatory infiltration. TDs exhibited nuclear reactivity for most TME cell lines, while RCC TME WT1 expression was rare and inconsistent. In HRTs, TDs were entirely restricted to renal tubular cells, the likely cellular progenitor of most conventional RCC subtypes. In lieu of proper validation, these early findings have significant implications regarding the origins/biology of RCCs and may inform RCC therapeutics, both accounting for the high frequency of immunotherapy-permissive frameshift indels in RCCs, but also hinting at novel predictive clinical tools for WT1-targeted immunotherapy. Overall, the current study represents a meek yet hopefully significant step towards understanding the molecular biology and potential therapeutic targets of RCCs.
Collapse
Affiliation(s)
- Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Razvan Bardan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vlad Barbos
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.)
| | - Flavia Baderca
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Pusa Nela Gaje
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Serban Comsa
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department VIII, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Talida Georgiana Cut
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Voichita Elena Lazureanu
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, Victor Babes University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Luo J, Tugade T, Sun E, Pena Diaz AM, O’Gorman DB. Sustained AWT1 expression by Dupuytren's disease myofibroblasts promotes a proinflammatory milieu. J Cell Commun Signal 2022; 16:677-690. [PMID: 35414143 PMCID: PMC9733761 DOI: 10.1007/s12079-022-00677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Palmar fibromatosis, also known as Dupuytren's disease (DD), is a common and heritable fibrosis of the hand. It is characterized by the formation of myofibroblastic nodules that can progress to palmar-digital contractures and permanent loss of dexterity. The presence of inflammatory cell infiltrate within these nodules has been interpreted to suggest a pathogenesis mediated by a proinflammatory microenvironment. However, the molecular mechanisms driving the formation of pro-fibrotic microenvironments in this and other fibroses remain unclear. To gain insights into this process, we have assessed the contributions of an alternatively spliced, multi-functional transcription factor, Wilms Tumor 1 (WT1), previously shown to be upregulated in primary myofibroblasts derived from DD tissues. Proinflammatory cytokine stimuli of DD myofibroblasts enhanced the expression of several distinct WT1 variants, the most sustained being a 5' truncated version of WT1, alternative WT1 (AWT1). Constitutive adenoviral expression of AWT1 in myofibroblasts derived from phenotypically non-fibrotic palmar fascia significantly induced the expression and secretion of proinflammatory cytokines, including some with potential as novel therapeutic targets. In summary, these data implicate roles for sustained AWT1 expression in DD as a transcriptional driver of a proinflammatory fascial milieu.
Collapse
Affiliation(s)
- Johnny Luo
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada
| | - Trisiah Tugade
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada
| | - Emmy Sun
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada
| | - Ana Maria Pena Diaz
- grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2 Canada
| | - David B. O’Gorman
- grid.39381.300000 0004 1936 8884Department of Biochemistry, University of Western Ontario, London, ON Canada ,grid.39381.300000 0004 1936 8884Department of Surgery, University of Western Ontario, London, ON Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, 268 Grosvenor Street, London, ON N6A 4V2 Canada
| |
Collapse
|
3
|
Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022; 10:biomedicines10040912. [PMID: 35453662 PMCID: PMC9026801 DOI: 10.3390/biomedicines10040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Collapse
|
4
|
Chen M, Cen C, Wang N, Shen Z, Wang M, Liu B, Li J, Cui X, Wang Y, Gao F. The functions of Wt1 in mouse gonad development and somatic cells differentiation. Biol Reprod 2022; 107:269-274. [PMID: 35244683 DOI: 10.1093/biolre/ioac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms' tumour 1 (Wt1) encodes a zinc finger nuclear transcription factor which is mutated in 15-20% of Wilms' tumor, a pediatric kidney tumor. Wt1 has been found to be involved in the development of many organs. In gonads, Wt1 is expressed in genital ridge somatic cells before sex determination, and its expression is maintained in Sertoli cells and granulosa cells after sex determination. It has been demonstrated that Wt1 is required for the survival of the genital ridge cells. Homozygous mutation of Wt1 causes gonad agenesis. Recent studies find that Wt1 plays important roles in lineage specification and maintenance of gonad somatic cells. In this review, we will summarize the recent research works about Wt1 in gonadal somatic cell differentiation.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yanbo Wang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Wang Y, Chen Q, Zhang F, Yang X, Shang L, Ren S, Pan Y, Zhou Z, Li G, Fang Y, Jin L, Wu Y, Zhang X. Whole exome sequencing identified a rare WT1 loss-of-function variant in a non-syndromic POI patient. Mol Genet Genomic Med 2022; 10:e1820. [PMID: 34845858 PMCID: PMC8801142 DOI: 10.1002/mgg3.1820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a highly heterogeneous disease, and up to 25% of cases can be explained by genetic causes. The transcription factor WT1 has long been reported to play a crucial role in ovary function. Wt1-mutated female mice exhibited POI-like phenotypes. METHODS AND RESULTS In this study, whole exome sequencing (WES) was applied to find the cause of POI in Han Chinese women. A nonsense variant in the WT1 gene: NM_024426.6:c.1387C>T(p.R463*) was identified in a non-syndromic POI woman. The variant is a heterozygous de novo mutation that is very rare in the human population. The son of the patient inherited the mutation and developed Wilms' tumor and urethral malformation at the age of 7. According to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines, the novel variant is categorized as pathogenic. Western blot analysis further demonstrated that the WT1 variant could produce a truncated WT1 isoform in vitro. CONCLUSIONS A rare heterozygous nonsense WT1 mutant is associated with non-syndromic POI and Wilms' tumor. Our finding characterized another pathogenic WT1 variant, providing insight into genetic counseling.
Collapse
Affiliation(s)
- Yingchen Wang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Qing Chen
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Feng Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Xi Yang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Lingyue Shang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Shuting Ren
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yuncheng Pan
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Zixue Zhou
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Guoqing Li
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yunzheng Fang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Li Jin
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yanhua Wu
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
- National Demonstration Center for Experimental Biology EducationSchool of Life SciencesFudan UniversityShanghaiChina
| | - Xiaojin Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| |
Collapse
|
6
|
Truncated WT1 Protein Isoform Expression Is Increased in MCF-7 Cells with Long-Term Estrogen Depletion. Int J Breast Cancer 2021; 2021:6282514. [PMID: 34845427 PMCID: PMC8627338 DOI: 10.1155/2021/6282514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background The wt1 gene codes for a transcription factor that presents several protein isoforms with diverse biological properties, capable of positively and negatively regulating genes involved in proliferation, differentiation, and apoptosis. WT1 protein is overexpressed in more than 90% of breast cancer; however, its role during tumor progression is still unknown. Methodology. In this work, we analyzed the expression of WT1 isoforms in several breast cancer cells with different tumor marker statuses and an in vitro assay using MCF-7 cells cultured with long-term estrogen depletion (MCF-7 LTED cells) with the finality to mimic the process of switching from hormone-dependent to hormone-independent. Moreover, growth kinetics, sensitivity to tamoxifen, and relative expression analysis of ER and Her2/neu were performed. Results Initially, the expression of 52-54 kDa protein isoform of WT1 in the breast cancer cell line ER (+) was detected by western blot and was absent in ER (-), and the 36-38 kDa protein isoform of WT1 was detected in all cell lines analyzed. The analysis of alternative splicing by RT-PCR shows that the 17AA (+)/KTS (-) isoform of WT1 was the most frequent in the four cell lines analyzed. In vitro, the MCF-7 cells in the estrogen depletion assay show an increase in the expression of the 52-54 kDa isoform of WT1 in the first 48 hours, and this was maintained until week 13, and later, this expression was decreased, and the 36-38 kDa isoform of WT1 did not show change during the first 48 hours but from week 1 showed an increase of expression, and this remained until week 27. Growth kinetic analysis showed that MCF-7 LTED cells presented a 1.4-fold decrease in cellular proliferation compared to MCF-7 cells cultured under normal conditions. In addition, MCF-7 LTED cells showed a decrease in sensitivity to the antiproliferative effect of tamoxifen (p ≤ 0.05). Samples collected until week 57 analyzed by qRT-PCR showed an increase in the relative expression of the Her2/neu and ER. Conclusions Modulation of protein isoforms showed differential expression of WT1 isoforms dependent on estrogen receptor. The absence of 52-54 kDa and the presence of the 36-38 kDa protein isoform of WT1 were detected in ER-negative breast cancer cell lines classified as advanced stage cells. Long-term estrogen depletion assay in MCF-7 cells increased the expression of the 36-38 kDa isoform and reduced the 52-54 kDa isoform, and these cells show an increase in the expression of tumor markers of ER and Her2/neu. MCF-7 LTED cells showed low proliferation and insensitivity to tamoxifen compared to MCF-7 cells in normal conditions. These results support the theory about the relationship of the 36-38 kDa isoform of WT1 and the absence of ER function in advanced breast cancer.
Collapse
|
7
|
Ullmark T, Montano G, Gullberg U. DNA and RNA binding by the Wilms' tumour gene 1 (WT1) protein +KTS and −KTS isoforms-From initial observations to recent global genomic analyses. Eur J Haematol 2018; 100:229-240. [DOI: 10.1111/ejh.13010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tove Ullmark
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| | - Giorgia Montano
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| | - Urban Gullberg
- Department of Haematology and Transfusion Medicine; Lund University; Lund Sweden
| |
Collapse
|
8
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
9
|
CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev Biol 2017; 428:63-73. [PMID: 28527702 DOI: 10.1016/j.ydbio.2017.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/06/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Wilms tumor 1 (Wt1) is an essential factor for urogenital system development. Teleosts have two wt1s, named as wt1a and wt1b. In this study, the expression pattern of wt1a and wt1b and their functions on the urogenital system were analyzed by in situ hybridization and CRISPR/Cas9. wt1a was found to be expressed in the glomerulus at 3 dah (days after hatching), earlier than wt1b. wt1a and wt1b were simultaneously expressed in the somatic cells of gonads at 3 dah, while their cell locations were similar, but not identical in adult fish gonads. The wt1a-/- fish displayed pericardial edema and yolk sac edema at 3 dah and subsequently expanded as general body edema at 6 dah, failed to develop glomerulus and died during 6-10 dah, whereas the wt1b-/- fish were phenotypically normal. Immunohistochemical analyses revealed that the germ cell marker Vasa was expressed, while somatic cell genes Cyp19a1a, Amh, Gsdf and Dmrt1 were not expressed in the wt1a-/- gonads at 6 dah. The sex phenotypes of XX and XY in the wt1b-/- fish were not affected. Real-time PCR revealed that the ovarian cyp19a1a expression was up-regulated in XX wt1b-/- fish, compared with XX control at 90 dah. Serum estradiol-17β level was also up-regulated in XX wt1b-/- fish at 90 and 180 dah. The XY wt1b-/- fish had normal serum estradiol-17β and 11-ketotestosterone levels and remained fertile. These results suggest that Wt1a and Wt1b have different functions in the kidneys and gonads of tilapia.
Collapse
|
10
|
Bharathavikru R, Dudnakova T, Aitken S, Slight J, Artibani M, Hohenstein P, Tollervey D, Hastie N. Transcription factor Wilms' tumor 1 regulates developmental RNAs through 3' UTR interaction. Genes Dev 2017; 31:347-352. [PMID: 28289143 PMCID: PMC5358755 DOI: 10.1101/gad.291500.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
Abstract
Bharathavikru et al. show that Wilms’ tumour 1 (WT1) binds preferentially to 3′ UTRs of developmental targets, which are down-regulated upon WT1 depletion in cell culture and developing kidney mesenchyme. Combining experimental and computational analyses, they propose that WT1 influences key developmental and disease processes in part through regulating mRNA turnover. Wilms’ tumor 1 (WT1) is essential for the development and homeostasis of multiple mesodermal tissues. Despite evidence for post-transcriptional roles, no endogenous WT1 target RNAs exist. Using RNA immunoprecipitation and UV cross-linking, we show that WT1 binds preferentially to 3′ untranslated regions (UTRs) of developmental targets. These target mRNAs are down-regulated upon WT1 depletion in cell culture and developing kidney mesenchyme. Wt1 deletion leads to rapid turnover of specific mRNAs. WT1 regulates reporter gene expression through interaction with 3′ UTR-binding sites. Combining experimental and computational analyses, we propose that WT1 influences key developmental and disease processes in part through regulating mRNA turnover.
Collapse
Affiliation(s)
- Ruthrothaselvi Bharathavikru
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Tatiana Dudnakova
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Stuart Aitken
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Joan Slight
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Mara Artibani
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Peter Hohenstein
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.,Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Nick Hastie
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
11
|
Li H, Hou S, Hao T, Azam S, Liu C, Shi L, Lei H. HuR antagonizes the effect of an intronic pyrimidine-rich sequence in regulating WT1 +/-KTS isoforms. RNA Biol 2015; 12:1364-71. [PMID: 26512748 DOI: 10.1080/15476286.2015.1102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
WT1 + KTS and -KTS isoforms only differ in 3 amino acids in protein sequence but show significant functional difference. The +/-KTS isoforms were generated by alternative usage of 2 adjacent 5' splice sites at RNA level, however, how these 2 isoforms are regulated is still elusive. Here we report the identification of an intronic pyrimidine-rich sequence that is critical for the ratio of +/-KTS isoforms, deletion or partial replacement of the sequence led to full/significant shift to -KTS isoform. To identify trans-factors that can regulate +/-KTS isoforms via the binding to the element, we performed RNP assembly using in vitro transcribed RNA with or without the pyrimidine-rich sequence. Mass spectrometry analysis of purified RNPs showed that the element associated with many splicing factors. Co-transfection of these factors with WT1 reporter revealed that HuR promoted the production of -KTS isoform at the reporter level. RNA immuno-precipitation experiment indicated that HuR interacted with the pyrimidine-rich element in WT1 intron 9. We further presented evidence that transient or stable over-expression of HuR led to enhanced expression of endogenous -KTS isoform. Moreover, knockdown of HuR resulted in decreased expression of endogenous -KTS isoform in 293T, SW620, SNU-387 and AGS cell lines. Together, these data indicate that HuR binds to the pyrimidine-rich sequence and antagonize its effect in regulating WT1 +/-KTS isoforms.
Collapse
Affiliation(s)
- Hui Li
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China.,c Equal contribution
| | - Shuai Hou
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China.,c Equal contribution
| | - Tian Hao
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| | - Sikandar Azam
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| | - Caigang Liu
- b Breast Disease and Reconstruction Center; Breast Cancer Key Lab of Dalian; the Second Hospital of Dalian Medical University ; Dalian , P.R. China
| | - Lei Shi
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| | - Haixin Lei
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| |
Collapse
|
12
|
Mohamed AM, Thénoz M, Solly F, Balsat M, Mortreux F, Wattel E. How mRNA is misspliced in acute myelogenous leukemia (AML)? Oncotarget 2015; 5:9534-45. [PMID: 25375204 PMCID: PMC4259418 DOI: 10.18632/oncotarget.2304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023] Open
Abstract
Approximately one-third of expressed genes are misspliced in AML, opening the possibility that additional factors than splicing factor mutations might cause RNA missplicing in these diseases. AML cells harbor a constellation of epigenetic modifications and regularly express large amounts of WT1 transcripts. Histone acetylation/methylation and DNA CpG methylation favor either exon skipping or inclusion, mainly through interfering with RNA Pol II-mediated elongation. This can result either from the binding of various factors on Pol II or alternatively from the recruitment of DNA binding factors that create roadblocks to Pol II-induced elongation. WT1 exhibits pleiotropic effects on mRNA splicing, which mainly result from the binding properties of WT1 via its zinc fingers domains to DNA, RNA, and proteins. Through the repression of the kinase SRPK1, WT1 modifies the splicing of VEGF, which plays important roles in hematopoiesis and angiogenesis. At the protein level, WT1 interacts with the splicing factors U2AF2, WTAP, and RPM4. Therefore, AML cells appear to have acquired numerous properties known to interfere with mRNA splicing. The challenge is now to elucidate these links in order to trigger mRNA splicing at the therapeutic level.
Collapse
|
13
|
WT1 expression is increased in primary fibroblasts derived from Dupuytren's disease tissues. J Cell Commun Signal 2015; 9:347-52. [PMID: 26123754 DOI: 10.1007/s12079-015-0293-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/16/2015] [Indexed: 11/27/2022] Open
Abstract
Dupuytren's disease (DD) is a fibroproliferative and contractile fibrosis of the palmar fascia that, like all other heritable fibroses, is currently incurable. While DD is invariably benign, it exhibits some molecular similarities to malignant tumours, including increased levels of ß-catenin, onco-fetal fibronectin, periostin and insulin-like growth factor (IGF)-II. To gain additional insights into the pathogenesis of DD, we have assessed the expression of WT1, encoding Wilm's tumour 1, an established tumour biomarker that is syntenic with IGF2, the gene encoding IGF-II in humans. We found that WT1 expression is robustly and consistently up regulated in primary fibroblasts derived from the fibrotic palmar fascia of patients with DD (DD cells), whereas syngeneic fibroblasts derived from the macroscopically unaffected palmar fascia in these patients and allogeneic fibroblasts derived from normal palmar fascia exhibited very low or undetectable WT1 transcript levels. WT1 immunoreactivity was evident in a subset of cells in the fibrotic palmar fascia of patients with DD, but not in macroscopically unaffected palmar fascia. These findings identify WT1 expression as a novel biomarker of fibrotic palmar fascia and are consistent with the hypothesis that the pathogeneses of DD and malignant tumours have molecular similarities.
Collapse
|
14
|
Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms. PLoS One 2015; 10:e0130578. [PMID: 26090994 PMCID: PMC4474557 DOI: 10.1371/journal.pone.0130578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 05/22/2015] [Indexed: 01/10/2023] Open
Abstract
The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpression of the truncated Ex4a(+)WT1 isoform inhibited the major WT1-mediated transcriptional activation of anti-apoptotic Bcl-xL gene promoter and induced mitochondrial damage and apoptosis. Conversely, suppression of the Ex4a(+)WT1 isoform by Ex4a-specific siRNA attenuated apoptosis. These results indicated that the Ex4a(+)WT1 isoform exerted dominant negative effects on anti-apoptotic function of major WT1 isoforms. Ex4a(+)WT1 isoform was endogenously expressed as a minor isoform in myeloid leukemia and solid tumor cells and increased regardless of decrease in major WT1 isoforms during apoptosis, suggesting the dominant negative effects on anti-apoptotic function of major WT1 isoforms. These results indicated that Ex4a(+)WT1 isoform had an important physiological function that regulated oncogenic function of major WT1 isoforms.
Collapse
|
15
|
Bandiera R, Sacco S, Vidal VPI, Chaboissier MC, Schedl A. Steroidogenic organ development and homeostasis: A WT1-centric view. Mol Cell Endocrinol 2015; 408:145-55. [PMID: 25596547 DOI: 10.1016/j.mce.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 01/09/2023]
Abstract
Adrenal and gonads are the main steroidogenic organs and are central to regulate body homeostasis in the vertebrate organism. Although adrenals and gonads are physically separated in the adult organism, both organs share a common developmental origin, the adrenogonadal primordium. One of the key genes involved in the development of both organs is the Wilms' tumor suppressor WT1, which encodes a zinc finger protein that has fascinated the scientific community for more than two decades. This review will provide an overview of the processes leading to the development of these unique organs with a particular focus on the multiple functions WT1 serves during adrenogonadal development. In addition, we will highlight some recent findings and open questions on how maintenance of steroidogenic organs is achieved in the adult organism.
Collapse
Affiliation(s)
- Roberto Bandiera
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sonia Sacco
- Institute of Biology Valrose, Université de Nice-Sophia, F-06108 Nice, France; Inserm, UMR1091, F-06108, France; CNRS, UMR7277, F-06108, France
| | - Valerie P I Vidal
- Institute of Biology Valrose, Université de Nice-Sophia, F-06108 Nice, France; Inserm, UMR1091, F-06108, France; CNRS, UMR7277, F-06108, France
| | - Marie-Christine Chaboissier
- Institute of Biology Valrose, Université de Nice-Sophia, F-06108 Nice, France; Inserm, UMR1091, F-06108, France; CNRS, UMR7277, F-06108, France
| | - Andreas Schedl
- Institute of Biology Valrose, Université de Nice-Sophia, F-06108 Nice, France; Inserm, UMR1091, F-06108, France; CNRS, UMR7277, F-06108, France.
| |
Collapse
|
16
|
Busch M, Schwindt H, Brandt A, Beier M, Görldt N, Romaniuk P, Toska E, Roberts S, Royer HD, Royer-Pokora B. Classification of a frameshift/extended and a stop mutation in WT1 as gain-of-function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation. Hum Mol Genet 2014; 23:3958-74. [PMID: 24619359 PMCID: PMC4082364 DOI: 10.1093/hmg/ddu111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022] Open
Abstract
The WT1 gene encodes a zinc finger transcription factor important for normal kidney development. WT1 is a suppressor for Wilms tumour development and an oncogene for diverse malignant tumours. We recently established cell lines from primary Wilms tumours with different WT1 mutations. To investigate the function of mutant WT1 proteins, we performed WT1 knockdown experiments in cell lines with a frameshift/extension (p.V432fsX87 = Wilms3) and a stop mutation (p.P362X = Wilms2) of WT1, followed by genome-wide gene expression analysis. We also expressed wild-type and mutant WT1 proteins in human mesenchymal stem cells and established gene expression profiles. A detailed analysis of gene expression data enabled us to classify the WT1 mutations as gain-of-function mutations. The mutant WT1(Wilms2) and WT1(Wilms3) proteins acquired an ability to modulate the expression of a highly significant number of genes from the G2/M phase of the cell cycle, and WT1 knockdown experiments showed that they are required for Wilms tumour cell proliferation. p53 negatively regulates the activity of a large number of these genes that are also part of a core proliferation cluster in diverse human cancers. Our data strongly suggest that mutant WT1 proteins facilitate expression of these cell cycle genes by antagonizing transcriptional repression mediated by p53. We show that mutant WT1 can physically interact with p53. Together the findings show for the first time that mutant WT1 proteins have a gain-of-function and act as oncogenes for Wilms tumour development by regulating Wilms tumour cell proliferation.
Collapse
Affiliation(s)
- Maike Busch
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Heinrich Schwindt
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Artur Brandt
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Manfred Beier
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Nicole Görldt
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Paul Romaniuk
- Institute of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - Eneda Toska
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Stefan Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Hans-Dieter Royer
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| | - Brigitte Royer-Pokora
- Institute of Human Genetics and Anthropology, Heinrich-Heine University, Medical Faculty, Düsseldorf D-40225, Germany
| |
Collapse
|
17
|
Schnerwitzki D, Perner B, Hoppe B, Pietsch S, Mehringer R, Hänel F, Englert C. Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions. Dev Biol 2014; 393:24-32. [PMID: 25014653 DOI: 10.1016/j.ydbio.2014.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/06/2014] [Accepted: 06/26/2014] [Indexed: 12/11/2022]
Abstract
The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor that is essential for development of multiple organs including kidneys, gonads, spleen and heart. In mammals Wt1 comprises 10 exons with two characteristic splicing events: inclusion or skipping of exon 5 and alternative usage of two splice donor sites between exons 9 and 10. Most fish including zebrafish and medaka possess two wt1 paralogs, wt1a and wt1b, both lacking exon 5. Here we have characterized wt1 in guppy, platyfish and the short-lived African killifish Nothobranchius furzeri. All fish except zebrafish show alternative splicing of exon 4 of wt1a but not of wt1b with the wt1a(-exon 4) isoform being the predominant splice variant. With regard to function, Wt1a(+exon 4) showed less dimerization but stimulated transcription more effectively than the Wt1a(-exon 4) isoform. A specific knockdown of wt1a exon 4 in zebrafish was associated with anomalies in kidney development demonstrating a physiological function for Wt1a exon 4. Interestingly, alternative splicing of exon 4 seems to be an early evolutionary event as it is observed in the single wt1 gene of the sturgeon, a species that has not gone through teleost-specific genome duplication.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Birgit Perner
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Beate Hoppe
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Stefan Pietsch
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Rebecca Mehringer
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Frank Hänel
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christoph Englert
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; Friedrich Schiller University, Fürstengraben 1, 07743 Jena, Germany.
| |
Collapse
|
18
|
Bandiera R, Vidal VPI, Motamedi FJ, Clarkson M, Sahut-Barnola I, von Gise A, Pu WT, Hohenstein P, Martinez A, Schedl A. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev Cell 2013; 27:5-18. [PMID: 24135228 DOI: 10.1016/j.devcel.2013.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/12/2013] [Accepted: 09/04/2013] [Indexed: 12/26/2022]
Abstract
Adrenal glands and gonads share a common primordium (AGP), but the molecular events driving differentiation are poorly understood. Here we demonstrate that the Wilms tumor suppressor WT1 is a key factor defining AGP identity by inhibiting the steroidogenic differentiation process. Indeed, ectopic expression of WT1 precludes differentiation into adrenocortical steroidogenic cells by locking them into a progenitor state. Chromatin immunoprecipitation experiments identify Tcf21 and Gli1 as direct targets of WT1. Moreover, cell lineage tracing analyses identify a long-living progenitor population within the adrenal gland, characterized by the expression of WT1, GATA4, GLI1, and TCF21, that can generate steroidogenic cells in vivo. Strikingly, gonadectomy dramatically activates these WT1(+) cells and leads to their differentiation into gonadal steroidogenic tissue. Thus, our data describe a mechanism of response to organ loss by recreating hormone-producing cells at a heterotopic site.
Collapse
Affiliation(s)
- Roberto Bandiera
- Institute of Biology Valrose, iBV, University of Nice Sophia-Antipolis, 06108 Nice Cedex 2, France; INSERM UMR 1091, CNRS UMR 7277 Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Depping R, Schindler SG, Jacobi C, Kirschner KM, Scholz H. Nuclear transport of Wilms' tumour protein Wt1 involves importins α and β. Cell Physiol Biochem 2012; 29:223-32. [PMID: 22415091 DOI: 10.1159/000337603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS Wilms' tumour protein, Wt1, is a zinc finger molecule, which is required for normal embryonic development. Mutations of the WT1 gene can give rise to childhood cancer of the kidneys. Different Wt1 isoforms exist, which function either as transcription factors or have a presumed role in mRNA processing. Previous studies suggested that Wt1 undergoes nucleocytoplasmic shuttling, and cytoplasmic Wt1 was higher in malignant than in normal cells. The aim of this study was to analyse the molecular pathways along which Wt1 shuttles between the cytoplasm and nucleus. METHODS Interaction of Wt1 protein with various importin α subtypes and importin β was assessed in pull-down assays and co-immunoprecipitation experiments. Nuclear localisation signals (NLS) were identified by combining site-directed mutagenesis with subcellular immunodetection of the transfected Wt1 variants. RESULTS Wt1(+/-KTS) proteins were found to interact with importin α1 and importin β in vitro and in living cells in vivo. A NLS that was necessary and sufficient for nuclear import could be mapped to the third Wt1 zinc finger. Mutation of this NLS strongly weakened binding of Wt1 to importins. CONCLUSION Nuclear translocation of Wilms' tumour protein involves importins α and β, and a NLS in the third zinc finger.
Collapse
Affiliation(s)
- Reinhard Depping
- Institut für Physiologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|
20
|
Scholz H, Kirschner KM. Oxygen-Dependent Gene Expression in Development and Cancer: Lessons Learned from the Wilms' Tumor Gene, WT1. Front Mol Neurosci 2011; 4:4. [PMID: 21430823 PMCID: PMC3047294 DOI: 10.3389/fnmol.2011.00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 02/11/2011] [Indexed: 11/13/2022] Open
Abstract
Adequate tissue oxygenation is a prerequisite for normal development of the embryo. Most fetal organs are exquisitely susceptible to hypoxia which occurs when the delivery of oxygen is exceeded by the actual demand. Developmental abnormalities due to insufficient supply with oxygen can result from the impaired expression of genes with essential functions during embryogenesis. As such, the Wilms' tumor gene, WT1, is among the fetal genes that are regulated by the local oxygen tension. WT1 was originally discovered as a tumor suppressor gene owing to loss-of-function mutations in a subset of pediatric renal neoplasias, known as nephroblastomas or Wilms' tumors. Wilms' tumors can arise when pluripotent progenitor cells in the embryonic kidney continue to proliferate rather than differentiating to glomeruli and tubules. WT1 encodes a zinc finger protein, of which multiple isoforms exist due to alternative mRNA splicing in addition to translational and post-translational modifications. While some WT1 isoforms function as transcription factors, other WT1 proteins are presumably involved in post-transcriptional mRNA processing. However, the role of WT1 reaches far beyond that of a tumor suppressor as homozygous disruption of Wt1 in mice caused embryonic lethality with a failure of normal development of the kidneys, gonads, heart, and other tissues. WT1 mutations in humans are associated with malformation of the genitourinary system. A common paradigm of WT1 expressing cells is their capacity to switch between a mesenchymal and epithelial state. Thus, WT1 likely acts as a master switch that enables cells to undergo reciprocal epithelial-to-mesenchymal transition. Impairment of renal precursor cells to differentiate along the epithelial lineage due to WT1 mutations may favor malignant tumor growth. This article shall provide a concise review of the function of WT1 in development and disease with special consideration of its regulation by molecular oxygen.
Collapse
Affiliation(s)
- Holger Scholz
- Institut für Vegetative Physiologie, Charité - Universitätsmedizin Berlin Berlin, Germany
| | | |
Collapse
|
21
|
Nurmemmedov E, Yengo RK, Ladomery MR, Thunnissen MMGM. Kinetic behaviour of WT 1's zinc finger domain in binding to the alpha-actinin-1 mRNA. Arch Biochem Biophys 2010; 497:21-7. [PMID: 20193655 DOI: 10.1016/j.abb.2010.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 12/13/2022]
Abstract
The zinc finger transcription factor Wilms tumour protein (WT 1) is known for its essential involvement in the development of the genitourinary system as well as of other organs and tissues. WT 1 is capable of selectively binding either DNA or mRNA targets. A KTS insertion due to alternative splicing between the zinc fingers 3 and 4 and an unconventional zinc finger 1 are the unique features that distinguish WT 1 from classical DNA-binding C(2)H(2)-type zinc finger proteins. The DNA binding characteristics of WT 1 are well studied. Due to lack of information about its native RNA targets, no extensive research has been directed at how WT 1 binds RNA. Using surface plasmon resonance, this study attempts to understand the binding behaviour of WT 1 zinc fingers with its recently reported and first putative mRNA target, ACT 34, whose stem-loop structure is believed to be critical for the interactions with WT 1. We have analysed the interactions of five WT 1 zinc finger truncations with wild-type ACT 34 and four variants. Our results indicate that WT 1 zinc fingers bind ACT 34 in a specific manner, and that this occurs as interplay of all four zinc fingers. We also report that a sensitive kinetic balance, which is equilibrated by both zinc finger 1 and KTS, regulates the interaction with ACT 34. The stem-loop and the flanking nucleotides are important elements for specific recognition by WT 1 zinc fingers.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Molecular Biophysics, Chemical Center, Lund University, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
22
|
Bradford ST, Wilhelm D, Bandiera R, Vidal V, Schedl A, Koopman P. A cell-autonomous role for WT1 in regulating Sry in vivo. Hum Mol Genet 2009; 18:3429-38. [DOI: 10.1093/hmg/ddp283] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
Morrison AA, Viney RL, Ladomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta Rev Cancer 2007; 1785:55-62. [PMID: 17980713 DOI: 10.1016/j.bbcan.2007.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 11/19/2022]
Abstract
WT1 was first described in 1990 as a tumour suppressor gene associated with Wilms tumour (nephroblastoma). It encodes a typical transcription factor with four C(2)-H(2) zinc fingers in the C-terminus. However WT1 is surprisingly complex at multiple levels: it is involved in the development of several organ systems; and is both a tumour suppressor and oncogene. Here we review evidence that has accumulated over the past decade to suggest that as well as binding DNA, WT1 also binds mRNA targets via its zinc fingers and interacts with several splice factors. WT1's first reported post-transcriptional function is also reviewed. WT1's complex roles in development and disease now need to be understood in terms of both DNA and mRNA targets.
Collapse
Affiliation(s)
- Avril A Morrison
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | | | | |
Collapse
|
24
|
Morrison AA, Venables JP, Dellaire G, Ladomery MR. The Wilms tumour suppressor protein WT1 (+KTS isoform) binds alpha-actinin 1 mRNA via its zinc-finger domain. Biochem Cell Biol 2007; 84:789-98. [PMID: 17167543 DOI: 10.1139/o06-065] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in WT1 are associated with developmental syndromes that affect the urogenital system and neoplasms, including Wilms tumour, acute myeloid leukemia, and breast and prostate cancers. The WT1 protein belongs to the early growth response family of zinc-finger transcription factors. Uniquely to WT1, an evolutionarily conserved alternative splice event inserts the tripeptide KTS, between zinc fingers 3 and 4. Whereas -KTS isoforms bind DNA and activate or repress transcription, +KTS isoforms bind DNA less efficiently and interact with splice factors and RNA in vitro and in vivo. Although candidate DNA targets have been found, physiological mRNA targets are yet to be defined. We examined the distribution of WT1 in ribonucleoprotein (RNP) complexes in nuclear extract prepared from M15 cells, a mouse mesonephric fetal kidney cell line. WT1 cofractionated with the splice factor PSF in large RNP particles >or=2 MDa. We also found that PSF co-immunoprecipitated with WT1, suggesting a functional interaction between these 2 multifunctional proteins. Using yeast three-hybrid library constructed from the co-immunoprecipitated RNA we found that WT1 (+KTS) binds close to or at the start codon of alpha-actinin 1 (ACTN1) mRNA. A band shift assay confirmed the ability of the WT1 zinc-finger domain (+KTS) to bind this sequence in vitro. ACTN1 is the first likely physiological mRNA target of WT1.
Collapse
Affiliation(s)
- A A Morrison
- Bristol Genomics Research Institute, Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | | | | | | |
Collapse
|
25
|
Abstract
Arguably the most defining moment in our lives is fertilization, the point at which we inherit either an X or a Y chromosome from our father. The profoundly different journeys of male and female life are thus decided by a genetic coin toss. These differences begin to unfold during fetal development, when the Y-chromosomal Sry ("sex-determining region Y") gene is activated in males and acts as a switch that diverts the fate of the undifferentiated gonadal primordia, the genital ridges, towards testis development. This sex-determining event sets in train a cascade of morphological changes, gene regulation, and molecular interactions that directs the differentiation of male characteristics. If this does not occur, alternative molecular cascades and cellular events drive the genital ridges toward ovary development. Once testis or ovary differentiation has occurred, our sexual fate is further sealed through the action of sex-specific gonadal hormones. We review here the molecular and cellular events (differentiation, migration, proliferation, and communication) that distinguish testis and ovary during fetal development, and the changes in gene regulation that underpin these two alternate pathways. The growing body of knowledge relating to testis development, and the beginnings of a picture of ovary development, together illustrate the complex mechanisms by which these organ systems develop, inform the etiology, diagnosis, and management of disorders of sexual development, and help define what it is to be male or female.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development and Australian Research Council Centre of Excellence in Biotechnology and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
26
|
Kirschner KM, Wagner N, Wagner KD, Wellmann S, Scholz H. The Wilms Tumor Suppressor Wt1 Promotes Cell Adhesion through Transcriptional Activation of the α4integrin Gene. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Kirschner KM, Wagner N, Wagner KD, Wellmann S, Scholz H. The Wilms tumor suppressor Wt1 promotes cell adhesion through transcriptional activation of the alpha4integrin gene. J Biol Chem 2006; 281:31930-9. [PMID: 16920711 DOI: 10.1074/jbc.m602668200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-matrix interaction through specific adhesion molecules is a critical step during organ development. In addition, down-regulation of cell adhesion receptors may promote tumor invasion and metastasis. We show here that the Wilms tumor suppressor Wt1, which is necessary for normal development of the epicardium, coronary vessels, genitourinary system, and other tissues, activates transcription of the alpha4integrin gene. Binding of the Wt1(-KTS) form, which is transcriptionally active, to the proximal alpha4integrin promoter was demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation. A reporter construct harboring approximately 1.9 kb of the human alpha4integrin gene promoter was activated significantly by transient co-transfection of a Wt1(-KTS) expression plasmid. Introducing mutations in two identified Wt1(-KTS) binding motifs in the proximal promoter of the alpha4integrin gene abrogated this stimulatory effect. Endogenous alpha4integrin transcripts were increased more than 3-fold in human embryonic kidney 293 cells with stable expression of the Wt1(-KTS) protein. Wt1-overexpressing cells showed augmented adhesion to the alpha4integrin ligand vascular cell adhesion molecule-1 that was abolished upon incubation with an inhibitory alpha4integrin antibody. Double immunofluorescent staining revealed co-localization of Wt1 and alpha4integrin in the developing epicardium of mouse embryos. Cardiac expression of alpha4integrin was reduced significantly in embryos with a homozygous Wt1 defect (Wt1-/-). These findings demonstrate that Wt1 can support cell adhesion through enhanced expression of alpha4integrin. This transcriptional activation of the alpha4integrin gene by Wt1(-KTS) might contribute to normal formation of the epicardium and other tissues in the developing embryo.
Collapse
Affiliation(s)
- Karin M Kirschner
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
28
|
Geng J, Carstens RP. Two methods for improved purification of full-length mammalian proteins that have poor expression and/or solubility using standard Escherichia coli procedures. Protein Expr Purif 2006; 48:142-50. [PMID: 16529945 DOI: 10.1016/j.pep.2006.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/16/2006] [Accepted: 01/27/2006] [Indexed: 11/16/2022]
Abstract
Many mammalian proteins are multifunctional proteins with biological activities whose characterization often requires in vitro studies. However, these studies depend on generation of sufficient quantities of recombinant protein and many mammalian proteins cannot be easily expressed and purified as full-length products. One example is the Wilm's tumor gene product, WT1, which has proven difficult to express as a full-length purified recombinant protein using standard approaches. To facilitate expression of full-length WT1 we have developed approaches that optimized its expression and purification in Escherichia coli and mammalian cells. First, using a bicistronic vector system, we successfully expressed and purified WT1 containing a C-terminal tandem affinity tag in 293T cells. Second, using a specific strain of E. coli transformed with a modified GST vector, we successfully expressed and purified N-terminal GST tagged and C-terminal 2x FLAG tagged full-length human WT1. The benefits of these approaches include: (1) two-step affinity purification to allow high quality of protein purification, (2) large soluble tags that can be used for a first affinity purification step, but then conveniently removed with the highly site-specific TEV protease, and (3) the use of non-denaturing purification and elution conditions that are predicted to preserve native protein conformation and function.
Collapse
Affiliation(s)
- Jinming Geng
- Renal-Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19014, USA
| | | |
Collapse
|
29
|
Hossain A, Nixon M, Kuo MT, Saunders GF. N-terminally truncated WT1 protein with oncogenic properties overexpressed in leukemia. J Biol Chem 2006; 281:28122-30. [PMID: 16698800 DOI: 10.1074/jbc.m512391200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WT1 was originally identified as an inactivated gene in Wilms tumor, a childhood kidney cancer. Alternative splicing of the WT1 transcript generates four major protein isoforms, each having different functional properties. Here we characterized a short transcript originating from a second promoter located within intron 1 of WT1. This 2.3-kb sWT1 transcript encodes a protein of approximately 35-37 kDa that retains intact DNA-binding and transactivation domains but lacks the 147 amino acids at the N terminus required for transcriptional repression. We found sWT1 to be a more potent transcriptional activator than WT1 for cyclin E and insulin-like growth factor 1 receptor promoters, which are normally repressed by WT1. The expression patterns of the sWT1 and WT1 transcripts differed slightly in various organs; we found sWT1 protein in tissue samples from adult testis and fetal kidney, with low-level expression in adult kidney as well. The sWT1 transcript, but not the full-length transcript, was over-expressed in the leukemia samples tested. sWT1-specific small interfering RNA retarded the proliferation of leukemia cell line K562 in vitro. Finally, sWT1 cooperated with Ras in transforming primary fibroblasts in vitro. Further studies are needed to clarify the oncogenic behavior of this isoform and to determine the mechanism underlying its up-regulation in leukemia and other forms of cancer.
Collapse
Affiliation(s)
- Anwar Hossain
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, 77054, USA.
| | | | | | | |
Collapse
|
30
|
Wagner N, Wagner KD, Scholz H, Kirschner KM, Schedl A. Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms' tumor suppressor Wt1. Am J Physiol Regul Integr Comp Physiol 2006; 291:R779-87. [PMID: 16614054 DOI: 10.1152/ajpregu.00219.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nestin is an intermediate filament protein originally described in neural stem cells and a variety of progenitor cells. More recently, nestin was detected in rat kidney podocytes. We show here that nestin is expressed in a developmentally regulated pattern in the kidney. Nestin was detected by immunohistochemistry in the condensing mesenchyme surrounding the ureter, in developing glomeruli, in podocytes of the adult kidney, and in a podocyte cell line. Nestin shared a striking overlap in expression with the Wilms' tumor suppressor Wt1. Nestin was significantly upregulated in a cell line with inducible Wt1 expression upon induction of Wt1. Cotransfection experiments in human embryonic kidney cells (HEK293) revealed stimulation of a nestin intron 2 enhancer element up to six-fold by the Wt1(-KTS) splice variant. Nestin expression was significantly reduced in an inducible mouse model of glomerular disease. This model is based on podocyte-specific overexpression of Pax2 and associated with a loss of Wt1 expression. Furthermore, also in the developing heart, nestin was found in an overlapping pattern with Wt1 in the epicardium and the forming coronary vessels. Strikingly, in the hearts of Wt1 knockout mice, nestin was barely detectable compared with the hearts of wild-type embryos. Our results show that nestin is expressed at different stages of kidney and cardiac development and suggest that its expression in these organs might be regulated by the Wilms' tumor suppressor Wt1.
Collapse
Affiliation(s)
- Nicole Wagner
- Institut National de la Santé et de la Recherche Médicale U636, Centre de Biochimie, Faculté des Sciences, Université de Nice, 06108 Nice, France.
| | | | | | | | | |
Collapse
|
31
|
Drakos E, Rassidakis GZ, Tsioli P, Lai R, Jones D, Medeiros LJ. Differential Expression of WT1 Gene Product in Non-Hodgkin Lymphomas. Appl Immunohistochem Mol Morphol 2005; 13:132-7. [PMID: 15894924 DOI: 10.1097/01.pai.0000143786.62974.66] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The tumor suppressor gene wt1 (Wilms tumor 1) encodes a zinc finger transcription factor reported to be expressed in many tumors, including mesotheliomas, carcinomas, and acute leukemias. However, WT1 expression in non-Hodgkin lymphomas (NHLs) has not been studied. The authors assessed for WT1 expression in six lymphoma/leukemia cell lines using Western blot methods after subcellular fractionation. We also assessed for WT1 expression in 167 NHLs using immunohistochemical methods. The B-cell NHLs analyzed were 18 diffuse large B-cell lymphomas, 13 marginal zone B-cell lymphomas, 9 small lymphocytic lymphomas, (DLBCLs), 8 follicular lymphomas, 6 mantle cell lymphomas, 5 Burkitt lymphomas, 3 lymphoplasmacytic lymphomas, and 2 B-cell lymphoblastic lymphomas. The T-cell NHLs analyzed were 43 anaplastic large cell lymphomas (ALCLs), 26 peripheral T-cell lymphomas unspecified, 13 angioimmunoblastic T-cell lymphomas, 6 cutaneous ALCLs, 6 cases of mycosis fungoides, 5 extranodal NK/T-cell lymphomas of nasal type, and 4 T-cell lymphoblastic lymphomas. WT1 levels were higher in cytoplasmic extracts than in nuclear extracts of the Karpas 299 and SU-DHL-1 lymphoma cell lines but were higher in nuclear extracts than in the cytoplasmic extracts of the Jurkat, HH, U-937, and K562 leukemia cell lines. In NHLs, WT1 was positive in 4 of 5 (80%) Burkitt lymphomas, 9 of 12 (75%) ALK-positive ALCLs, 3 of 6 (50%) lymphoblastic lymphomas (2 of 4 T-cell, 1 of 2 B-cell), 14 of 31 (45%) ALK-negative ALCLs, 6 of 18 (33%) DLBCLs, and 1 of 6 (17%) cutaneous ALCLs. WT1 was negative in all other NHLs tested. WT1 immunoreactivity was primarily cytoplasmic in all positive NHLs except T-cell lymphoblastic lymphoma. In conclusion, WT1 protein is frequently detected in the cytoplasm of a subset of high-grade NHLs.
Collapse
Affiliation(s)
- Elias Drakos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ortega A. Localization of the Drosophila protein FL(2)D in somatic cells and female gonads. Cell Tissue Res 2005; 320:361-7. [PMID: 15778853 DOI: 10.1007/s00441-004-1049-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
The Drosophila gene female-lethal(2)d [fl(2)d] has been implicated in the alternative splicing regulation of genes involved in sexual determination, such as Sex-lethal and transformer, and in the alternative splicing of the gene Ultrabithorax. Here, the expression and subcellular localization of the FL(2)D protein is reported. FL(2)D is ubiquitously expressed in embryos, in imaginal discs of larvae and in ovaries. In Schneider cells, the protein is detected throughout the nucleoplasm, excluding the nucleolus, and partially co-localizes with SXL in nuclear speckles. In addition, FL(2)D associates with multiple transcriptionally active loci on salivary gland polytene chromosomes, consistent with the proposal that the protein is involved in the post-transcriptional regulation of a variety of genes. Interestingly, the localization of FL(2)D in nurse cells changes during oogenesis, from a rather diffuse early nuclear pattern in the germarium to a preferential accumulation at the nuclear periphery of nurse cells of developing cysts.
Collapse
Affiliation(s)
- A Ortega
- European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
33
|
Wagner N, Wagner KD, Hammes A, Kirschner KM, Vidal VP, Schedl A, Scholz H. A splice variant of the Wilms' tumour suppressor Wt1 is required for normal development of the olfactory system. Development 2005; 132:1327-36. [PMID: 15716344 DOI: 10.1242/dev.01682] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuronal lineage formation in the developing olfactory epithelium has been extensively studied at the cellular level, but little is known about the genes that control proliferation and differentiation of neuronal progenitor cells. Here, we report that the Wilms' tumour zinc-finger protein, Wt1, is required for normal formation of the olfactory epithelium. Wt1 was detected by immunohistochemistry in the developing olfactory epithelium of wild-type embryos between gestational days E9.5 and E18.5. Embryos with complete lack of Wt1 and embryos with selective ablation of the alternatively spliced Wt1(+KTS) isoform both had thinner olfactory epithelia and fewer neuronal progenitor cells than do normal animals. Mash1 and neurogenin 1, two basic helix-loop-helix transcription factors with critical functions during olfactory neuron development, were reduced in the Wt1(+KTS)-/- mutants compared with the wild-type mice. Stable expression of the Wt1(+KTS) isoform, but not of the Wt1(-KTS) variant, upregulated Mash1 mRNA and protein in vitro. The olfactory epithelia of mouse embryos, which lacked the Wt1(-KTS) protein, appeared normal. However, formation of the neural retina was severely impaired in the Wt1(-KTS)-/- mutants. These findings demonstrate that the Wt1(+KTS) protein, which has been proposed to play a role in mRNA processing, acts upstream of Mash1 to promote the development of the olfactory epithelium. Furthermore, neuron formation depends on distinct functions of alternatively spliced Wt1 products in the embryonic retina and the olfactory epithelium.
Collapse
Affiliation(s)
- Nicole Wagner
- INSERM U636, Centre de Biochimie, Faculté des Sciences, Nice, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Wilms’ tumor (nephroblastoma) represents a unique example of an aberrant kidney formation that can result from mutations in a tumor suppressor gene, Wilms’ tumor 1 ( WT1). Targeted gene inactivation in mice testifies that WT1 is a master switch for the development of the genitourinary system and other organs.
Collapse
Affiliation(s)
- Holger Scholz
- Johannes-Müller-Institut für Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
35
|
Vajjhala PR, Macmillan E, Gonda T, Little M. The Wilms' tumour suppressor protein, WT1, undergoes CRM1-independent nucleocytoplasmic shuttling. FEBS Lett 2003; 554:143-8. [PMID: 14596929 DOI: 10.1016/s0014-5793(03)01144-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Wilms' tumour suppressor gene (WT1) encodes a zinc finger-containing nuclear protein essential for kidney and urogenital development. Initially considered a transcription factor, there is mounting evidence that WT1 has a role in post-transcriptional processing. Using the interspecies heterokaryon assay, we have demonstrated that WT1 can undergo nucleocytoplasmic shuttling. We have also mapped the region responsible for nuclear export to residues 182-324. Our data add further complexity to the role of WT1 in transcriptional and post-transcriptional regulation.
Collapse
Affiliation(s)
- P R Vajjhala
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.
| | | | | | | |
Collapse
|
36
|
Penalva LOF, Sánchez L. RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev 2003; 67:343-59, table of contents. [PMID: 12966139 PMCID: PMC193869 DOI: 10.1128/mmbr.67.3.343-359.2003] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the past two decades, scientists have elucidated the molecular mechanisms behind Drosophila sex determination and dosage compensation. These two processes are controlled essentially by two different sets of genes, which have in common a master regulatory gene, Sex-lethal (Sxl). Sxl encodes one of the best-characterized members of the family of RNA binding proteins. The analysis of different mechanisms involved in the regulation of the three identified Sxl target genes (Sex-lethal itself, transformer, and male specific lethal-2) has contributed to a better understanding of translation repression, as well as constitutive and alternative splicing. Studies using the Drosophila system have identified the features of the protein that contribute to its target specificity and regulatory functions. In this article, we review the existing data concerning Sxl protein, its biological functions, and the regulation of its target genes.
Collapse
Affiliation(s)
- Luiz O F Penalva
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
37
|
Ladomery M, Sommerville J, Woolner S, Slight J, Hastie N. Expression in Xenopus oocytes shows that WT1 binds transcripts in vivo, with a central role for zinc finger one. J Cell Sci 2003; 116:1539-49. [PMID: 12640038 DOI: 10.1242/jcs.00324] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Wilms' tumour suppressor gene WT1 encodes a protein involved in urogenital development and disease. The salient feature of WT1 is the presence of four 'Krüppel'-type C(2)-H(2) zinc fingers in the C-terminus. Uniquely to WT1, an evolutionarily conserved alternative splicing event inserts three amino acids (KTS) between the third and fourth zinc fingers, which disrupts DNA binding. The ratio of +KTS:-KTS isoforms is crucial for normal development. Previous work has shown that WT1 (+KTS) interacts with splice factors and that WT1 zinc fingers, particularly zinc finger one, bind to RNA in vitro. In this study we investigate the role of zinc finger one and the +KTS splice in vivo by expressing tagged proteins in mammalian cells and Xenopus oocytes. We find that both full-length +/-KTS isoforms and deletion constructs that include zinc finger one co-sediment with ribonucleoprotein particles (RNP) on density gradients. In Xenopus oocytes both isoforms located to the lateral loops of lampbrush chromosomes. Strikingly, only the +KTS isoform was detected in B-snurposomes, but not when co-expressed with -KTS. However, co-expression of the C-terminus (amino acids 233-449, +KTS) resulted in snurposome staining, which is consistent with an in vivo interaction between isoforms via the N-terminus. Expressed WT1 was also detected in the RNA-rich granular component of nucleoli and co-immunoprecipitated with oocyte transcripts. Full-length WT1 was most stably bound to transcripts, followed by the C-terminus; the least stably bound was CTDeltaF1 (C-terminus minus zinc finger one). Expression of the transcription factor early growth response 1 (EGR1), whose three zinc fingers correspond to WT1 zinc fingers 2-4, caused general chromosomal loop retraction and transcriptional shut-down. However, a construct in which WT1 zinc finger one was added to EGR1 mimicked the properties of WT1 (-KTS). We suggest that in evolution, WT1 has acquired the ability to interact with transcripts and splice factors because of the modification of zinc finger one and the +KTS alternative splice.
Collapse
Affiliation(s)
- Michael Ladomery
- MRC Human Genetics Unit, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| | | | | | | | | |
Collapse
|
38
|
Ortega A, Niksic M, Bachi A, Wilm M, Sánchez L, Hastie N, Valcárcel J. Biochemical function of female-lethal (2)D/Wilms' tumor suppressor-1-associated proteins in alternative pre-mRNA splicing. J Biol Chem 2003; 278:3040-7. [PMID: 12444081 DOI: 10.1074/jbc.m210737200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic and molecular data have implicated the Drosophila gene female-lethal (2)d (fl (2)d) in alternative splicing regulation of genes involved in sexual determination. Sex-specific splicing is under the control of the female-specific regulatory protein sex-lethal (SXL). Co-immunoprecipitation and mass spectrometry results indicate that SXL and FL (2)D form a complex and that the protein VIRILIZER and a Ran-binding protein implicated in protein nuclear import are also present in complexes containing FL (2)D. A human homolog of FL (2)D was identified and cloned. Interestingly, this gene encodes a protein (WTAP) that was previously found to interact with the Wilms' tumor suppressor-1 (WT1), an isoform of which binds to and co-localizes with splicing factors. Alternative splicing of transformer pre-mRNA, a target of SXL regulation, was affected by immunodepletion of hFL (2)D/WTAP from HeLa nuclear extracts, thus arguing for a biochemical function of FL (2)D/WTAP proteins in splicing regulation.
Collapse
Affiliation(s)
- Angeles Ortega
- Gene Expression Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Avram D, Fields A, Senawong T, Topark-Ngarm A, Leid M. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem J 2002; 368:555-63. [PMID: 12196208 PMCID: PMC1223006 DOI: 10.1042/bj20020496] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Revised: 08/22/2002] [Accepted: 08/27/2002] [Indexed: 11/17/2022]
Abstract
Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems.
Collapse
Affiliation(s)
- Dorina Avram
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331-3507, U.S.A
| | | | | | | | | |
Collapse
|
40
|
Algar E. A review of the Wilms' tumor 1 gene (WT1) and its role in hematopoiesis and leukemia. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2002; 11:589-99. [PMID: 12201948 DOI: 10.1089/15258160260194749] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the first clones of the Wilms tumor 1 (WT1) gene, WT33, was isolated from a B cell leukemia cell line in 1990. Now, 12 years on, WT1 has emerged as a potentially important target for antileukemic therapies. Our understanding of the role that WT1 plays during normal hematopoiesis is still limited, and there is a large amount of conflicting data concerning the precise manner in which WT1 gene expression contributes to leukemogenesis. However, interest in this field has intensified in the past 5 years. This review surveys the progress made in this area.
Collapse
Affiliation(s)
- Elizabeth Algar
- Department of Clinical Haematology and Oncology and the Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia, 3052.
| |
Collapse
|
41
|
Abstract
WT1 encodes a zinc finger transcription factor implicated in normal development and tumorigenesis. Germline mutation or deletion of WT1 results in a spectrum of abnormal kidney development, male-to-female intersex disorders, and predisposition to pediatric nephroblastoma, Wilms tumor. Initially thought to encode a transcriptional repressor, WT1-dependent functions are now more clearly linked to its property as a transcriptional activator of genes involved in renal development and sex determination. WT1 is expressed in 4 isoforms as a result of 2 alternative messenger RNA splicing events, the more significant of which encodes the 3 amino acids lysine, threonine, and serine (KTS) between zinc fingers 3 and 4. Although WT1 isoforms lacking KTS act as sequence-specific DNA binding factors, a large body of evidence now implicates the KTS-containing isoforms in RNA processing. In keeping with distinct biochemical mechanisms for these isoforms, genetic data from humans and mice point to separate but partially overlapping roles for WT1 (+KTS) and (-KTS) during genitourinary development. Recently, a hematopoietic model system has been used to study functional properties of WT1 in vitro. WT1 expression in primary hematopoietic cells leads to stage-specific effects that may be relevant to WT1-mediated tumor suppression.
Collapse
Affiliation(s)
- Leif W Ellisen
- Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
42
|
Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001; 106:319-29. [PMID: 11509181 DOI: 10.1016/s0092-8674(01)00453-6] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alternative splicing of Wt1 results in the insertion or omission of the three amino acids KTS between zinc fingers 3 and 4. In vitro experiments suggest distinct molecular functions for + and -KTS isoforms. We have generated mouse strains in which specific isoforms have been removed. Heterozygous mice with a reduction of +KTS levels develop glomerulosclerosis and represent a model for Frasier syndrome. Homozygous mutants of both strains die after birth due to kidney defects. Strikingly, mice lacking +KTS isoforms show a complete XY sex reversal due to a dramatic reduction of Sry expression levels. Our data demonstrate distinct functions for the two splice variants and place the +KTS variants as important regulators for Sry in the sex determination pathway.
Collapse
Affiliation(s)
- A Hammes
- MDC for Molecular Medicine, Developmental Genetics, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The Wilms' tumor 1 gene (WT1) has been identified as a tumor suppressor gene involved in the etiology of Wilms' tumor. Approximately 10% of all Wilms' tumors carry mutations in the WT1 gene. Alterations in the WT1 gene have also been observed in other tumor types, such as leukemia, mesothelioma and desmoplastic small round cell tumor. Dependent on the tumor type, WT1 proteins might either function as tumor suppressor proteins or as survival factors. Mutations in the WT1 gene can also result in congenital abnormalities as observed in Denys-Drash and Frasier syndrome patients. Mouse models have proven the critical importance of WT1 expression for the development of several organs, including the kidneys, the gonads and the spleen. The WT1 proteins seem to perform two main functions. They regulate the transcription of a variety of target genes and may be involved in post-transcriptional processing of RNA. The WT1 gene encodes at least 24 protein forms. These isoforms have partially distinct biological functions and effects, which in many cases are also specific for the model system in which WT1 is studied. This review discusses the molecular mechanisms by which the various WT1 isoforms exert their functions in normal development and how alterations in WT1 may lead to developmental abnormalities and tumor growth.
Collapse
Affiliation(s)
- V Scharnhorst
- Department of Molecular and Cellular Biology and Center for Biomedical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, The, Leiden, Netherlands
| | | | | |
Collapse
|
44
|
Herzer U, Lutz B, Hartmann K, Englert C. The speckling domain of the Wilms tumor suppressor WT1 overlaps with the transcriptional repression domain. FEBS Lett 2001; 494:69-73. [PMID: 11297737 DOI: 10.1016/s0014-5793(01)02313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Wilms tumor suppressor gene WT1 encodes a zinc finger protein, expressed as different splicing variants, that has all the hallmarks of a transcription factor. The -KTS form of WT1 displays a homogeneous localization within the nucleus and has been shown to activate or repress the activity of various target genes. In contrast, the WT1(+KTS) variant demonstrates a speckled pattern of expression within the nucleus. This and its association with factors of the splicing machinery has led to the hypothesis that WT1(+KTS) might play a role in post-transcriptional processes. By the generation of a series of deletion constructs and subsequent immunofluorescence analysis, we have identified and characterized the domain which is responsible for the localization of WT1 variants in nuclear speckles. The speckling domain comprises amino acids 76-120 within the N-terminus of WT1 and is sufficient to target other proteins into distinct nuclear domains. Interestingly the WT1 speckling domain does not overlap with the domain required for interaction with the splicing factor U2AF65 but overlaps with the transcriptional repression domain. Thus our data challenge the view that association of WT1 with spliceosomes is responsible for the speckling phenotype.
Collapse
Affiliation(s)
- U Herzer
- Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Hermann von Helmholtz-Platz 1, 76021, Karlsruhe, Germany
| | | | | | | |
Collapse
|
45
|
Abstract
Wilms tumor or nephroblastoma is a pediatric kidney cancer arising from pluripotent embryonic renal precursors. Multiple genetic loci have been linked to Wilms tumorigenesis; positional cloning strategies have led to the identification of the WT1 tumor suppressor gene at chromosome 11p13. WT1 encodes a zinc finger transcription factor that is inactivated in the germline of children with genetic predisposition to Wilms tumor and in a subset of sporadic cancers. When present in the germline, specific heterozygous dominant-negative mutations are associated with severe abnormalities of renal and sexual differentiation, pointing to the essential role of WT1 for normal genitourinary development. The role of this tumor suppressor in normal organ-specific differentiation is also supported by the highly restricted temporal and spatial expression of WT1 in glomerular precursors of the developing kidney and by the failure of kidney development in wt1-null mice. Of two major alternative splicing products encoded by WT1, the (-KTS) isoform appears to mediate transcriptional activation of genes implicated in cellular differentiation, possibly also repressing proliferation-associated genes. The (+KTS) isoform, whose DNA-binding domain is disrupted by the insertion of three amino acids, may be involved in some aspect of mRNA processing. In addition to its function in genitourinary development, a role for WT1 in hematopoiesis is suggested by its aberrant expression and/or mutation in a subset of acute human leukemias. WT1 is also expressed in mesothelial cells; a specific oncogenic chromosomal translocation fusing the N-terminal domain of the Ewing sarcoma gene EWS to the three C-terminal zinc fingers of WT1 underlies desmoplastic small round cell tumor, an abdominal tumor thought to arise from the peritoneal lining. Understanding the distinct functional properties of WT1 isoforms and tumor-associated variants will provide unique insight into the link between normal organ-specific differentiation and malignancy.
Collapse
Affiliation(s)
- S B Lee
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachussetts 02129, USA
| | | |
Collapse
|
46
|
Abstract
WT1, a tumor suppressor gene responsible for the development of childhood kidney tumors, is now also thought to be involved in the occurrence of human leukemia. First, evidence has shown that WT1 functions during hematopoiesis and regulates the proliferation and differentiation of blood cells. Second, specific expression patterns of this gene correlate with the malignant phenotype of leukemia compared with the physiological situation. Third, mutations of WT1 can be detected, though not frequently, in human leukemia but not in normal hematopoietic cells. Thus, a possible role of WT1 in human leukemogenesis has been proposed. Because the expression of this gene is relatively high during the so-called myelodysplastic stages and in all subtypes of human leukemia compared with normal blood cells, the notion has been raised that WT1 can be used as a "panleukemic marker" for the diagnosis of leukemia at the molecular level. The expression level of WT1 may have significance in predicting prognosis and monitoring relapse. Moreover, with a deeper understanding of its role in leukemogenesis, WT1 may serve as a target molecule in the strategy of gene therapy for leukemia.
Collapse
Affiliation(s)
- Z Chen
- Jiangsu Institute of Hematology, First Affiliated Hospital, Suzhou University, China.
| |
Collapse
|
47
|
Abstract
Abstract.Normal development of the kidney is a highly complex process that requires precise orchestration of proliferation, differentiation, and apoptosis. In the past few years, a number of genes that regulate these processes, and hence play pivotal roles in kidney development, have been identified. The Wilms' tumor suppressor geneWT1has been shown to be one of these essential regulators of kidney development, and mutations in this gene result in the formation of tumors and developmental abnormalities such as the Denys-Drash and Frasier syndromes. A fascinating aspect of theWT1gene is the multitude of isoforms produced from its genomic locus. In this review, our current understanding of the structural features ofWT1, how they modulate the transcriptional and post-transcriptional activities of the protein, and how mutations affecting individual isoforms can lead to diseased kidneys is summarized. In addition, results from transgenic experiments, which have yielded important findings regarding the function of WT1in vivo, are discussed. Finally, data on the unusual feature of RNA editing ofWT1transcripts are presented, and the relevance of RNA editing for the normal functioning of the WT1 protein in the kidney is discussed.
Collapse
|
48
|
Salicioni AM, Xi M, Vanderveer LA, Balsara B, Testa JR, Dunbrack RL, Godwin AK. Identification and structural analysis of human RBM8A and RBM8B: two highly conserved RNA-binding motif proteins that interact with OVCA1, a candidate tumor suppressor. Genomics 2000; 69:54-62. [PMID: 11013075 DOI: 10.1006/geno.2000.6315] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The OVCA1 gene is a candidate for the breast and ovarian tumor suppressor gene at chromosome 17p13.3. To help determine the function(s) of OVCA1, we used a yeast two-hybrid screening approach to identify OVCA1-associating proteins. One such protein, which we initially referred to as BOV-1 (binder of OVCA1-1) is 173 or 174 amino acids in length and appears to be a new member of a highly conserved RNA-binding motif (RBM) protein family that is highly conserved evolutionarily. Northern blot analysis revealed that BOV-1 is ubiquitously expressed and that three distinct messenger RNA species are expressed, 1-, 3.2-, and 5.8-kb transcripts. The 1-kb transcript is the most abundant and is expressed at high levels in the testis, heart, placenta, spleen, thymus, and lymphocytes. Using fluorescence in situ hybridization and the 5.8-kb complementary DNA probe, we determined that BOV-1 maps to both chromosome 5q13-q14 and chromosome 14q22-q23. Further sequence analysis determined that the gene coding the 1- and the 3.2-kb transcripts (HGMW-approved gene symbol RBM8A) maps to 14q22-q23, whereas a second highly related gene coding for the 5.8-kb transcript resides at chromosome 5q13-q14 (HGMW-approved gene symbol RBM8B). The predicted proteins encoded by RBM8A and RBM8B are identical except that RBM8B is 16 amino acids shorter at its N-terminus. Molecular modeling of the RNA-binding domain of RBM8A and RBM8B, based on homology to the sex-lethal protein of Drosophila, identifies conserved residues in the RBM8 protein family that are likely to contact RNA in a protein-RNA complex. The conservation of sequence and structure through such an evolutionarily divergent group of organisms suggests an important function for the RBM8 family of proteins.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- COS Cells
- Chromosome Mapping
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 5/genetics
- Cloning, Molecular
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Female
- Gene Expression
- Genes, Tumor Suppressor
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Microscopy, Fluorescence
- Minor Histocompatibility Antigens
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- A M Salicioni
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The Wilms' tumour suppressor gene WT1 is essential for the normal development of the genitourinary system. It appears to play a role in both transcriptional and post-transcriptional regulation of certain cellular genes. However, the mechanisms behind WT1 function are not clearly understood despite the identification of numerous potential target genes and the isolation of several WT1-binding proteins. This study therefore sets out to identify other WT1-associating proteins to help to unravel how WT1 interacts with the cellular machinery. We report the identification of a novel human WT1-associating protein, WTAP, which was isolated using the yeast two-hybrid system. Both in vitro and in vivo assays have shown that the interaction between WTAP and WT1 is specific and occurs endogenously in cells. The mouse homologue of WTAP was isolated and found to be >90% conserved at the nucleotide and protein levels. The human and mouse genes were mapped using fluorescence in situ hybridization to regions in chromosomes 6 (which is thought to harbour a tumour suppressor gene) and 17, respectively. The expression pattern of WTAP was investigated and shown to be ubiquitous, perhaps reflecting a housekeeping role. WTAP is a nuclear protein, which like WT1 localizes throughout the nucleoplasm as well as in speckles and partially co-localizes with splicing factors. Although the significance of this interaction is not yet known, WTAP promises to be an interesting WT1-binding partner.
Collapse
Affiliation(s)
- N A Little
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | |
Collapse
|
50
|
Fitzgerald J, Kennedy D, Viseshakul N, Cohen BN, Mattick J, Bateman JF, Forsayeth JR. UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res 2000; 877:110-23. [PMID: 10980252 DOI: 10.1016/s0006-8993(00)02692-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We isolated a mammalian homologue of the C. elegans gene unc-50 that we have named UNCL. The 777 kb rat UNCL cDNA encodes a 259 amino acid protein that is expressed in a wide variety of tissues with highest mRNA levels in brain, kidney and testis. Hydropathy plot analysis and in vitro translation experiments with microsomal membranes indicate that UNCL is a transmembrane protein. Hemagglutinin tagged UNCL was stably transfected into SaOS-2 osteosarcoma cells and exhibited a nuclear rim staining pattern which was retained following extraction with 1% Triton X-100, suggesting that UNCL localizes to the inner nuclear membrane. UNCL-HA was extractable in 350 mM NaCl, suggesting that UNCL is not associated with the nuclear matrix. Homopolymer RNA-binding assays performed on in vitro translated UNCL protein and 'structural modeling by homology' suggest that UNCL binds RNA via an amino-terminal RNA Recognition-like Motif. Since unc-50 is required for expression of assembled muscle-type nicotinic receptors in the nematode we investigated whether UNCL had a similar function for mammalian nicotinic receptors. When UNCL was co-expressed with neural nicotinic receptors in Xenopus oocytes or COS cells it increased expression of functional cell surface receptors up to 1. 6-fold. We conclude that UNCL is a novel inner nuclear membrane protein that associates with RNA and is involved in the cell-surface expression of neuronal nicotinic receptors. UNCL plays a broader role because UNCL homologues are present in two yeast and a plant species, none of which express nicotinic receptors and it is also found in tissues that lack nicotinic receptors.
Collapse
Affiliation(s)
- J Fitzgerald
- Murdoch Childrens Research Institute, and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 3052, Parkville, Australia.
| | | | | | | | | | | | | |
Collapse
|