1
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 PMCID: PMC12145240 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Marek-Bukowiec K, Trybus M, Hryniewicz-Jankowska A, Czogalla A, Sikorski AF. A Potential Role of EFR3A in Human Disease States. Biomolecules 2025; 15:466. [PMID: 40305161 PMCID: PMC12024565 DOI: 10.3390/biom15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
EFR3A is a conserved peripheral membrane protein required for the plasma membrane localization of the phosphatidylinositol-4 kinase (PI4KIIIα/PI4KA) complex and for regulating the responsiveness of G-protein-coupled receptors. Additionally, it was implicated in several other potentially unrelated physiological functions. In metazoan organisms, EFR3A is ubiquitously co-expressed with its paralog EFR3B which shares similar biological roles. This brief review summarizes the current knowledge regarding the potential roles of EFR3A in human disease states, including neurological and cardiovascular disorders, as well as various neoplasia-based diseases.
Collapse
Affiliation(s)
- Karolina Marek-Bukowiec
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wroclaw, Poland; (K.M.-B.); (M.T.)
| | - Magdalena Trybus
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wroclaw, Poland; (K.M.-B.); (M.T.)
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wroclaw, Poland; (K.M.-B.); (M.T.)
| |
Collapse
|
3
|
Ben Issa A, Kamoun F, Khabou B, Bouchaala W, Fakhfakh F, Triki C. First description of novel compound heterozygous mutations in HYCC1: clinical evaluations and molecular analysis in patient with hypomyelinating leukodystrophy-5 with retrospective view. J Hum Genet 2025; 70:75-85. [PMID: 39468300 DOI: 10.1038/s10038-024-01300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Hypomyelinating leukodystrophy-5 (HLD5) is a rare autosomal recessive hypomyelination disorder characterized by congenital cataract, progressive neurologic impairment, and myelin deficiency in the central and peripheral nervous system, caused by mutations in the HYCC1 gene. Here we report a 23-year-old girl with HLD5 from unrelated families. Molecular analysis was performed using sequence screening of the HYCC1 gene. In addition, in silico prediction tools and molecular investigation were used to predict the structural effect of the mutations. Results showed a novel compound heterozygous mutation in the HYCC1 gene. Moreover, in silico tools and 3D structural modeling revealed that c.521C > A (p.Ala174Glu) and c.652C > G (p.Gln218Glu) mutations could affect the structure, stability, and conformational analyses in the N-ter domain of the Hyccin protein. We also, we compared the phenotype of our patient with those of previously reported cases with HLD5 syndrome and our findings indicate the absence of reliable genotype-phenotype correlations. To the best of our knowledge, this is the first report describing a Tunisian HLD5 patient with compound heterozygous mutations (c.521C > A (p.Ala174Glu) and c.652C > G (p.Gln218Glu)) in HYCC1 gene.
Collapse
Affiliation(s)
- Abir Ben Issa
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia.
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia.
- Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia.
| | - Fatma Kamoun
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
- Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Boudour Khabou
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Wafa Bouchaala
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
- Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax University, Sfax, Tunisia
| | - Chahnez Triki
- Research Laboratory (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
- Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Child Neurology Department, Hedi Chaker Hospital, Sfax, Tunisia
| |
Collapse
|
4
|
Shaw AL, Suresh S, Parson MAH, Harris NJ, Jenkins ML, Yip CK, Burke JE. Structure of calcineurin bound to PI4KA reveals dual interface in both PI4KA and FAM126A. Structure 2024; 32:1973-1983.e6. [PMID: 39216471 DOI: 10.1016/j.str.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phosphatidylinositol 4-kinase alpha (PI4KA) maintains the phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine pools of the plasma membrane. A key regulator of PI4KA is its association into a complex with TTC7 and FAM126 proteins. This complex can be regulated by the CNAβ1 isoform of the phosphatase calcineurin. We previously identified that CNAβ1 directly binds to FAM126A. Here, we report a cryoelectron microscopic (cryo-EM) structure of a truncated PI4KA complex bound to calcineurin, revealing a unique direct interaction between PI4KA and calcineurin. Hydrogen deuterium exchange mass spectrometry (HDX-MS) and computational analysis show that calcineurin forms a complex with an evolutionarily conserved IKISVT sequence in PI4KA's horn domain. We also characterized conserved LTLT and PSISIT calcineurin binding sequences in the C terminus of FAM126A. These dual sites in PI4KA and FAM126A are both in close proximity to phosphorylation sites in the PI4KA complex, suggesting key roles of calcineurin-regulated phosphosites in PI4KA regulation. This work reveals novel insight into how calcineurin can regulate PI4KA activity.
Collapse
Affiliation(s)
- Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
5
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
6
|
Suresh S, Burke JE. Structural basis for the conserved roles of PI4KA and its regulatory partners and their misregulation in disease. Adv Biol Regul 2023; 90:100996. [PMID: 37979461 DOI: 10.1016/j.jbior.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
The type III Phosphatidylinositol 4-kinase alpha (PI4KA) is an essential lipid kinase that is a master regulator of phosphoinositide signalling at the plasma membrane (PM). It produces the predominant pool of phosphatidylinositol 4-phosphate (PI4P) at the PM, with this being essential in lipid transport and in regulating the PLC and PI3K signalling pathways. PI4KA is essential and is highly conserved in all eukaryotes. In yeast, the PI4KA ortholog stt4 predominantly exists as a heterodimer with its regulatory partner ypp1. In higher eukaryotes, PI4KA instead primarily forms a heterotrimer with a TTC7 subunit (ortholog of ypp1) and a FAM126 subunit. In all eukaryotes PI4KA is recruited to the plasma membrane by the protein EFR3, which does not directly bind PI4KA, but instead binds to the TTC7/ypp1 regulatory partner. Misregulation in PI4KA or its regulatory partners is involved in myriad human diseases, including loss of function mutations in neurodevelopmental and inflammatory intestinal disorders and gain of function in human cancers. This review describes an in-depth analysis of the structure function of PI4KA and its regulatory partners, with a major focus on comparing and contrasting the differences in regulation of PI4KA throughout evolution.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Torii T, Yamauchi J. Molecular Pathogenic Mechanisms of Hypomyelinating Leukodystrophies (HLDs). Neurol Int 2023; 15:1155-1173. [PMID: 37755363 PMCID: PMC10538087 DOI: 10.3390/neurolint15030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) represent a group of congenital rare diseases for which the responsible genes have been identified in recent studies. In this review, we briefly describe the genetic/molecular mechanisms underlying the pathogenesis of HLD and the normal cellular functions of the related genes and proteins. An increasing number of studies have reported genetic mutations that cause protein misfolding, protein dysfunction, and/or mislocalization associated with HLD. Insight into the mechanisms of these pathways can provide new findings for the clinical treatments of HLD.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi 610-0394, Japan
- Center for Research in Neurodegenerative Disease, Doshisha University, Kyotanabe-shi 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku 157-8535, Japan
| |
Collapse
|
8
|
Son JH, Do H, Han J. Intragenic L1 Insertion: One Possibility of Brain Disorder. Life (Basel) 2022; 12:life12091425. [PMID: 36143463 PMCID: PMC9505610 DOI: 10.3390/life12091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE1, L1) is a retrotransposon comprising ~17% of the human genome. A subset of L1s maintains the potential to mobilize and alter the genomic landscape, consequently contributing to the change in genome integrity and gene expression. L1 retrotransposition occurs in the human brain regardless of disease status. However, in the brain of patients with various brain diseases, the expression level and copy number of L1 are significantly increased. In this review, we briefly introduce the methodologies applied to measure L1 mobility and identify genomic loci where new insertion of L1 occurs in the brain. Then, we present a list of genes disrupted by L1 transposition in the genome of patients with brain disorders. Finally, we discuss the association between genes disrupted by L1 and relative brain disorders.
Collapse
Affiliation(s)
- Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
- BioMedical Research Center, KAIST, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
9
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
10
|
Batrouni AG, Bag N, Phan HT, Baird BA, Baskin JM. A palmitoylation code controls PI4KIIIα complex formation and PI(4,5)P2 homeostasis at the plasma membrane. J Cell Sci 2022; 135:272297. [PMID: 34569608 DOI: 10.1242/jcs.259365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the major enzyme responsible for generating phosphatidylinositol (4)-phosphate [PI(4)P] at the plasma membrane. This lipid kinase forms two multicomponent complexes, both including a palmitoylated anchor, EFR3. Whereas both PI4KIIIα complexes support production of PI(4)P, the distinct functions of each complex and mechanisms underlying the interplay between them remain unknown. Here, we present roles for differential palmitoylation patterns within a tri-cysteine motif in EFR3B (Cys5, Cys7 and Cys8) in controlling the distribution of PI4KIIIα between these two complexes at the plasma membrane and corresponding functions in phosphoinositide homeostasis. Spacing of palmitoyl groups within three doubly palmitoylated EFR3B 'lipoforms' affects both interactions between EFR3B and TMEM150A, a transmembrane protein governing formation of a PI4KIIIα complex functioning in rapid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] resynthesis following phospholipase C signaling, and EFR3B partitioning within liquid-ordered and -disordered regions of the plasma membrane. This work identifies a palmitoylation code involved in controlling protein-protein and protein-lipid interactions that affect a plasma membrane-resident lipid biosynthetic pathway.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry T Phan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Zhang Q, Zhang B, Lim NKH, Zhang X, Meng S, Nyengaard JR, Huang F, Wang WA. Hyccin/FAM126A deficiency reduces glial enrichment and axonal sheath, which are rescued by overexpression of a plasma membrane-targeting PI4KIIIα in Drosophila. Biochem Biophys Res Commun 2022; 589:71-77. [PMID: 34894559 DOI: 10.1016/j.bbrc.2021.11.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Hyccin/FAM126A mutations are linked to hypomyelination and congenital cataract disease (HCC), but whether and how Hyccin/FAM126A deficiency causes hypomyelination remains undetermined. This study shows Hyccin/FAM126A expression was necessary for the expression of other components of the PI4KIIIα complex in Drosophila. Knockdown of Hyccin/FAM126A in glia reduced the enrichment of glial cells, disrupted axonal sheaths and visual ability in the visual system, and these defects could be fully rescued by overexpressing either human FAM126A or FAM126B, and partially rescued by overexpressing a plasma membrane-targeting recombinant mouse PI4KIIIα. Additionally, PI4KIIIα knockdown in glia phenocopied Hyccin/FAM126A knockdown, and this was partially rescued by overexpressing the recombinant PI4KIIIα, but not human FAM126A or FAM126B. This study establishes an animal model of HCC and indicates that Hyccin/FAM126A plays an essential role in glial enrichment and axonal sheath in a cell-autonomous manner in the visual system via controlling the expression and stabilization of the PI4KIIIα complex at the plasma membrane.
Collapse
Affiliation(s)
- Qichao Zhang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China; Sino-Danish Center for Education and Research, Beijing, 100190, China; Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201210, China; Department of Clinical Medicine, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, 8200, Denmark
| | - Baozhu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nastasia K H Lim
- Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201210, China; Nuo-beta Pharmaceutical Technology (Shanghai) Co. Ltd., Shanghai, 201210, China; Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shiquan Meng
- Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201210, China; Laboratory of Molecular Neurobiology, School of Life Sciences, Shanghai University, Shanghai, 200072, China
| | - Jens R Nyengaard
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China; Sino-Danish Center for Education and Research, Beijing, 100190, China; Department of Clinical Medicine, Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, 8200, Denmark
| | - Fude Huang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China; Sino-Danish Center for Education and Research, Beijing, 100190, China; Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201210, China; Nuo-beta Pharmaceutical Technology (Shanghai) Co. Ltd., Shanghai, 201210, China.
| | - Wen-An Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China; Department of Neurology, Xinhua Hospital Chongming Branch, Shanghai 202150, China.
| |
Collapse
|
12
|
Salter CG, Cai Y, Lo B, Helman G, Taylor H, McCartney A, Leslie JS, Accogoli A, Zara F, Traverso M, Fasham J, Lees JA, Ferla M, Chioza BA, Wenger O, Scott E, Cross HE, Crawford J, Warshawsky I, Keisling M, Agamanolis D, Melver CW, Cox H, Elawad M, Marton T, Wakeling M, Holzinger D, Tippelt S, Munteanu M, Valcheva D, Deal C, Van Meerbeke S, Vockley CW, Butte MJ, Acar U, van der Knaap MS, Korenke GC, Kotzaeridou U, Balla T, Simons C, Uhlig HH, Crosby AH, De Camilli P, Wolf NI, Baple EL. Biallelic PI4KA variants cause neurological, intestinal and immunological disease. Brain 2021; 144:3597-3610. [PMID: 34415310 PMCID: PMC8719846 DOI: 10.1093/brain/awab313] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα’s role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.
Collapse
Affiliation(s)
- Claire G Salter
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Yiying Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Guy Helman
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Henry Taylor
- Department of surgery and Cancer, Imperial College London, London, UK
| | - Amber McCartney
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | | | - James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Joshua A Lees
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Matteo Ferla
- Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Barry A Chioza
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joanna Crawford
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia
| | | | | | | | | | - Helen Cox
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, UK
| | - Mamoun Elawad
- Department of Gastroenterology, Sidra Medicine, Doha, Qatar
| | - Tamas Marton
- West Midlands Perinatal Pathology, Birmingham Women's Hospital, Edgbaston, Birmingham, UK
| | - Matthew Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Dirk Holzinger
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Stephan Tippelt
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Martin Munteanu
- Institute for Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Christin Deal
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Sara Van Meerbeke
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Catherine Walsh Vockley
- Children's Hospital of Pittsburgh, UPMC, Division of Genetic and Genomic Medicine, Pittsburgh, USA
| | - Manish J Butte
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Utkucan Acar
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, 26133 Oldenburg, Germany
| | - Urania Kotzaeridou
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxfordshire, UK.,Department of Paediatrics, University of Oxford, Oxfordshire, UK.,Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| |
Collapse
|
13
|
Kraoua I, Bouyacoub Y, Drissi C, Chargui M, Rebai I, Chebil A, Klaa H, Benrhouma H, Hassen A, Gouider-Khouja N, Abdelhak S, Boespflug-Tanguy O, Youssef-Turki IB, Dorboz I. Hypomyelination and Congenital Cataract: Clinical, Imaging, and Genetic Findings in Three Tunisian Families and Literature Review. Neuropediatrics 2021; 52:302-309. [PMID: 34192786 DOI: 10.1055/s-0041-1728654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hypomyelination and congenital cataract (HCC) is characterized by congenital cataract, progressive neurologic impairment, and diffuse myelin deficiency. This autosomal recessive disorder is caused by homozygous variant in the FAM126A gene. Five consanguineous Tunisian patients, belonging to three unrelated families, underwent routine blood tests, electroneuromyography, and magnetic resonance imaging of the brain. The direct sequencing of FAM126A exons was performed for the patients and their relatives. We summarized the 30 previously published HCC cases. All of our patients were carriers of a previously reported c.414 + 1G > T (IVS5 + 1G > T) variant, but the clinical spectrum was variable. Despite the absence of a phenotype-genotype correlation in HCC disease, screening of this splice site variant should be performed in family members at risk.
Collapse
Affiliation(s)
- Ichraf Kraoua
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Yosra Bouyacoub
- LR11IPT05, Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Cyrine Drissi
- Department of Neuroradiology, National Institute Mongi Ben Hmida of Neurology, Tunis, Tunisia
| | - Mariem Chargui
- LR11IPT05, Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ibtihel Rebai
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Ahmed Chebil
- Department B of Ophthalmology, Hedi Rais Institute of Ophthalmology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hédia Klaa
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Hanene Benrhouma
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Aida Hassen
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Neziha Gouider-Khouja
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- LR11IPT05, Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Odile Boespflug-Tanguy
- Université de Paris, NeuroDiderot, UMR 1141, INSERM, Neuropédiatrie, LEUKOFRANCE, APHP, Hôpital Robert Debré, France
| | - Ilhem Ben Youssef-Turki
- LR18SP04, Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, University of Tunis El Manar, Tunis, Tunisia
| | - Imen Dorboz
- Université de Paris, NeuroDiderot, UMR 1141, INSERM, Neuropédiatrie, LEUKOFRANCE, APHP, Hôpital Robert Debré, France
| |
Collapse
|
14
|
Barczykowski AL, Langan TJ, Vanderver A, Jalal K, Carter RL. Death rates in the U.S. due to Leukodystrophies with pediatric forms. Am J Med Genet A 2021; 185:2361-2373. [PMID: 33960638 PMCID: PMC11431180 DOI: 10.1002/ajmg.a.62248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 11/08/2022]
Abstract
To use national mortality and state death certificate records to estimate disease specific mortality rates among pediatric and adult populations for 23 leukodystrophies (LDs) with pediatric forms. Additionally, to calculate yearly prevalence and caseload of the most severe LD cases that will eventually result in pediatric death (i.e., pediatric fatality cases). Death certificate records describing cause of death were collected from states based on 10 ICD-10 codes associated with the 23 LDs. Deaths in the U.S. with these codes were distributed into categories based on proportions identified in state death certificate data. Mortality rates, prevalence, and caseload were calculated from resulting expected numbers, population sizes, and average lifetimes. An estimated 1.513 per 1,000,000 0-17 year old's died of these LDs at average age 5.2 years and 0.194 for those ≥18 at an average age of 42.3 years. Prevalence of pediatric fatality cases of these LDs declined from 1999 through 2007 and then remained constant at 6.2 per million children per year through 2012. Epidemiological information, currently lacking for rare diseases, is useful to newborn screening programs, research funding agencies, and care centers for LD patients. Methods used here are generally useful for studying rare diseases.
Collapse
Affiliation(s)
- Amy L. Barczykowski
- Population Health Observatory, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Thomas J. Langan
- Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Adeline Vanderver
- The Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- The Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kabir Jalal
- Population Health Observatory, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Randy L. Carter
- Population Health Observatory, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
15
|
Troncoso M, Balut F, Witting S, Rubilar C, Carrera J, Cartes F, Herrera L. Hypomyelination and Congenital Cataract: Identification of a Novel likely pathogenic c.414+1G>A in FAM126A gene Variant. Clin Case Rep 2021; 9:e04171. [PMID: 34026180 PMCID: PMC8133089 DOI: 10.1002/ccr3.4171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/28/2021] [Accepted: 03/27/2021] [Indexed: 11/08/2022] Open
Abstract
It is key to expand the differential diagnosis and consider possible genetic etiologies on a patient with congenital cataracts associated with clinical features, such as leukodystrophy or polyneuropathy.
Collapse
Affiliation(s)
- Mónica Troncoso
- Hospital Clinico San Borja ArriaranPediatric Neurology. Pediatric DepartmentCentral CampusFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - Fernanda Balut
- Hospital Clinico San Borja ArriaranPediatric Neurology. Pediatric DepartmentCentral CampusFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - Scarlet Witting
- Hospital Clinico San Borja ArriaranPediatric Neurology. Pediatric DepartmentCentral CampusFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - Carla Rubilar
- Hospital Clinico San Borja ArriaranPediatric Neurology. Pediatric DepartmentCentral CampusFacultad de MedicinaUniversidad de ChileSantiagoChile
| | | | - Fabiola Cartes
- Human Genetics ProgramInstitute of Biomedical SciencesFacultad de MedicinaUniversidad de ChileSantiagoChile
| | - Luisa Herrera
- Human Genetics ProgramInstitute of Biomedical SciencesFacultad de MedicinaUniversidad de ChileSantiagoChile
| |
Collapse
|
16
|
Batrouni AG, Baskin JM. The chemistry and biology of phosphatidylinositol 4-phosphate at the plasma membrane. Bioorg Med Chem 2021; 40:116190. [PMID: 33965837 DOI: 10.1016/j.bmc.2021.116190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Phosphoinositides are an important class of anionic, low abundance signaling lipids distributed throughout intracellular membranes. The plasma membrane contains three phosphoinositides: PI(4)P, PI(4,5)P2, and PI(3,4,5)P3. Of these, PI(4)P has remained the most mysterious, despite its characterization in this membrane more than a half-century ago. Fortunately, recent methodological innovations at the chemistry-biology interface have spurred a renaissance of interest in PI(4)P. Here, we describe these new toolsets and how they have revealed novel functions for the plasma membrane PI(4)P pool. We examine high-resolution structural characterization of the plasma membrane PI 4-kinase complex that produces PI(4)P, tools for modulating PI(4)P levels including isoform-selective PI 4-kinase inhibitors, and fluorescent probes for visualizing PI(4)P. Collectively, these chemical and biochemical approaches have revealed insights into how cells regulate synthesis of PI(4)P and its downstream metabolites as well as new roles for plasma membrane PI(4)P in non-vesicular lipid transport, membrane homeostasis and trafficking, and cell signaling pathways.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Expanding Phenotype of Hypomyelination and Congenital Cataract (HCC) with a Novel Pathogenic Variant. Indian J Pediatr 2021; 88:312-313. [PMID: 32162147 DOI: 10.1007/s12098-020-03253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 10/24/2022]
|
18
|
Karalok ZS, Gurkasb E, Aydinc K, Ceylaner S. Hypomyelination and Congenital Cataract: Three Siblings Presentation. J Pediatr Neurosci 2021; 15:270-273. [PMID: 33531944 PMCID: PMC7847105 DOI: 10.4103/jpn.jpn_161_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/18/2019] [Accepted: 05/24/2020] [Indexed: 11/25/2022] Open
Abstract
Hypomyelination and congenital cataract (HCC) is a condition, which is caused by mutations in the FAM126A gene and is characterized by congenital cataract, progressive neurologic impairment, and myelin deficiency in both the central and peripheral nervous system. We present the findings of three siblings who applied to us with the same clinical features. These patients were referred to our clinic due to the presence of bilateral congenital cataract and progressive neurological impairment with peripheral neuropathy. Brain magnetic resonance imaging (MRI) showed diffuse hypomyelination, whereas neurophysiological studies showed sensorimotor peripheral polyneuropathy. Cases with hypomyelination in MRI represent the largest group of undiagnosed diseases among patients with leukoencephalopathies. To diagnose cases with peripheral neuropathy, their clinical and neuroradiological findings must be identified. These findings can guide clinicians to appropriate molecular investigations.
Collapse
Affiliation(s)
- Zeynep Selen Karalok
- Department of Pediatric Neurology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Esra Gurkasb
- Department of Pediatric Neurology, Ankara Children's Hospital Hematology-Oncology Research and Training Hospital, Ankara, Turkey
| | - Kursad Aydinc
- Department of Pediatric Neurology, Medipol University, İstanbul, Turkey
| | | |
Collapse
|
19
|
Calame DG, Hainlen M, Takacs D, Ferrante L, Pence K, Emrick LT, Chao HT. EIF2AK2-related Neurodevelopmental Disorder With Leukoencephalopathy, Developmental Delay, and Episodic Neurologic Regression Mimics Pelizaeus-Merzbacher Disease. NEUROLOGY-GENETICS 2020; 7:e539. [PMID: 33553620 PMCID: PMC7862097 DOI: 10.1212/nxg.0000000000000539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Objective To demonstrate that de novo missense single nucleotide variants (SNVs) in EIF2AK2 cause a neurodevelopmental disorder with leukoencephalopathy resembling Pelizaeus-Merzbacher disease (PMD). Methods A retrospective chart review was performed of 2 unrelated males evaluated at a single institution with de novo EIF2AK2 SNVs identified by clinical exome sequencing (ES). Clinical and radiographic data were reviewed and summarized. Results Both individuals presented in the first year of life with concern for seizures and developmental delay. Common clinical findings included horizontal and/or pendular nystagmus during infancy, axial hypotonia, appendicular hypertonia, spasticity, and episodic neurologic regression with febrile viral illnesses. MRI of the brain demonstrated severely delayed myelination in infancy. A hypomyelinating pattern was confirmed on serial imaging at age 4 years for proband 1. In proband 2, repeat imaging at age 13 months confirmed persistent delayed myelination. These clinical and radiographic features led to a strong suspicion of PMD. However, neither PLP1 copy number variants nor pathogenic SNVs were detected by chromosomal microarray and trio ES, respectively. Reanalysis of trio ES identified heterozygous de novo EIF2AK2 missense variant c.290C>T (p.Ser97Phe) in proband 1 and c.326C>T (p.Ala109Val) in proband 2. Conclusions The autosomal dominant EIF2AK2-related leukoencephalopathy, developmental delay, and episodic neurologic regression syndrome should be considered in the differential diagnosis for PMD and other hypomyelinating leukodystrophies (HLDs). A characteristic history of developmental regression with febrile illnesses may help distinguish it from other HLDs.
Collapse
Affiliation(s)
- Daniel G Calame
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Meagan Hainlen
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Danielle Takacs
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Leah Ferrante
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Kayla Pence
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| | - Hsiao-Tuan Chao
- Division of Neurology and Developmental Neuroscience (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Department of Pediatrics, BCM, Houston, TX; Texas Children's Hospital (D.G.C., D.T., L.F., K.P., L.T.E., H.-T.C.), Houston, TX; Department of Neurology and Neurotherapeutics (M.H.), UTSW, Dallas, TX; Department of Molecular and Human Genetics (L.T.E., H.-T.C.), BCM, Houston, TX; Department of Neuroscience (H.-T.C.), BCM, Houston, TX; Program in Development (H.-T.C.), Disease Models, and Therapeutics, BCM, Houston, TX; McNair Medical Institute (H.-T.C.), The Robert and Janice McNair Foundation, Houston, TX; and Jan and Dan Duncan Neurological Research Institute (H.-T.C.), Texas Children's Hospital, Houston, TX
| |
Collapse
|
20
|
Abstract
Hypomyelinating leukodystrophies constitute a subset of genetic white matter disorders characterized by a primary lack of myelin deposition. Most patients with severe hypomyelination present in infancy or early childhood and develop severe neurological deficits, but the clinical presentation can also be mild with onset of symptoms in adolescence or adulthood. MRI can be used to visualize the process of myelination in detail, and MRI pattern recognition can provide a clinical diagnosis in many patients. Next-generation sequencing provides a definitive diagnosis in 80-90% of patients. Genes associated with hypomyelination include those that encode structural myelin proteins but also many that encode proteins involved in RNA translation and some lysosomal proteins. The precise pathomechanisms remain to be elucidated. Improved understanding of the process of myelination, the metabolic axonal support functions of myelin and the proposed contribution of myelin to CNS plasticity provide possible explanations as to why almost all patients with hypomyelination experience slow clinical decline after a long phase of stability. In this Review, we provide an overview of the hypomyelinating leukodystrophies, the advances in our understanding of myelin biology and of the genes involved in these disorders, and the insights these advances have provided into their clinical presentations and evolution.
Collapse
|
21
|
Miyamoto Y, Tanaka M, Ito H, Ooizumi H, Ohbuchi K, Mizoguchi K, Torii T, Yamauchi J. Expression of kinase-deficient MEK2 ameliorates Pelizaeus-Merzbacher disease phenotypes in mice. Biochem Biophys Res Commun 2020; 531:445-451. [PMID: 32800341 DOI: 10.1016/j.bbrc.2020.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is characterized as a congenital hypomyelinating disorder in oligodendrocytes, myelin-forming glial cells in the central nervous system (CNS). The responsible gene of PMD is plp1, whose multiplication, deletion, or mutation is associated with PMD. We previously reported that primary oligodendrocytes overexpressing proteolipid protein 1 (PLP1) do not have the ability to differentiate morphologically, whereas inhibition of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) by its cognate siRNA or chemical inhibitor reverses their undifferentiated phenotypes. Here, we show that oligodendrocyte-specific expression of kinase-deficient dominant-inhibitory mutant (MEK2K101A) of MAPK/ERK kinase 2 (MEK2), as the direct upstream molecule of MAPK/ERK in PMD model mice, promotes myelination in CNS tissues. Expression of MEK2K101A in PMD model mice also improves Rotor-rod test performance, which is often used to assess motor coordination in a rodent model with neuropathy. These results suggest that in PMD model mice, MEK2K101A can ameliorate impairments of myelination and motor function and that the signaling through MAPK/ERK may involve potential therapeutic target molecules of PMD in vivo.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan
| | - Hisanaka Ito
- Laboratory of Bioorganic Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Hachioji, Tokyo, 192-0392, Japan; Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
22
|
Takeuchi Y, Tanaka M, Okura N, Fukui Y, Noguchi K, Hayashi Y, Torii T, Ooizumi H, Ohbuchi K, Mizoguchi K, Miyamoto Y, Yamauchi J. Rare Neurologic Disease-Associated Mutations of AIMP1 are Related with Inhibitory Neuronal Differentiation Which is Reversed by Ibuprofen. MEDICINES 2020; 7:medicines7050025. [PMID: 32384815 PMCID: PMC7281511 DOI: 10.3390/medicines7050025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023]
Abstract
Background: Hypomyelinating leukodystrophy 3 (HLD3), previously characterized as a congenital diseases associated with oligodendrocyte myelination, is increasingly regarded as primarily affecting neuronal cells. Methods: We used N1E-115 cells as the neuronal cell model to investigate whether HLD3-associated mutant proteins of cytoplasmic aminoacyl-tRNA synthase complex-interacting multifunctional protein 1 (AIMP1) aggregate in organelles and affect neuronal differentiation. Results: 292CA frame-shift type mutant proteins harboring a two-base (CA) deletion at the 292th nucleotide are mainly localized in the lysosome where they form aggregates. Similar results are observed in mutant proteins harboring the Gln39-to-Ter (Q39X) mutation. Interestingly, the frame-shift mutant-specific peptide specifically interacts with actin to block actin fiber formation. The presence of actin with 292CA mutant proteins, but not with wild type or Q39X ones, in the lysosome is detectable by immunoprecipitation of the lysosome. Furthermore, expression of 292CA or Q39X mutants in cells inhibits neuronal differentiation. Treatment with ibuprofen reverses mutant-mediated inhibitory differentiation as well as the localization in the lysosome. Conclusions: These results not only explain the cell pathological mechanisms inhibiting phenotype differentiation in cells expressing HLD3-associated mutants but also identify the first chemical that restores such cells in vitro.
Collapse
Affiliation(s)
- Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Marina Tanaka
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Nanako Okura
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Yasuyuki Fukui
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
| | - Ko Noguchi
- Laboratory of Applied Ecology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Yoshihiro Hayashi
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan;
| | - Hiroaki Ooizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki 200-1192, Japan; (H.O.); (K.O.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (Y.T.); (M.T.); (N.O.); (Y.F.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: (+81)-42-676-7164
| |
Collapse
|
23
|
Matsumoto N, Watanabe N, Iibe N, Tatsumi Y, Hattori K, Takeuchi Y, Oizumi H, Ohbuchi K, Torii T, Miyamoto Y, Yamauchi J. Hypomyelinating leukodystrophy-associated mutation of RARS leads it to the lysosome, inhibiting oligodendroglial morphological differentiation. Biochem Biophys Rep 2019; 20:100705. [PMID: 31737794 PMCID: PMC6849085 DOI: 10.1016/j.bbrep.2019.100705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 01/25/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a central nervous system (CNS) demyelinating disease in human, currently known as prototypic hypomyelinating leukodystrophy 1 (HLD1). The gene responsible for HLD1 encodes proteolipid protein 1 (PLP1), which is the major myelin protein produced by oligodendrocytes. HLD9 is an autosomal recessive disorder responsible for the gene differing from the plp1 gene. The hld9 gene encodes arginyl-tRNA synthetase (RARS), which belongs to a family of cytoplasmic aminoacyl-tRNA synthetases. Herein we show that HLD9-associated missense mutation of Ser456-to-Leu (S456L) localizes RARS proteins as aggregates into the lysosome but not into the endoplasmic reticulum (ER) and the Golgi body. In contrast, wild-type proteins indeed distribute throughout the cytoplasm. Expression of S456L mutant constructs in cells decreases lysosome-related signaling through ribosomal S6 protein phosphorylation, which is known to be required for myelin formation. Cells harboring the S456L mutant constructs fail to exhibit phenotypes with myelin web-like structures following differentiation in FBD-102b cells, as part of the mammalian oligodendroglial cell model, whereas parental cells exhibit them. Collectively, HLD9-associated RARS mutant proteins are specifically localized in the lysosome with downregulation of S6 phosphorylation involved in myelin formation, inhibiting differentiation in FBD-102b cells. These results present some of the molecular and cellular pathological mechanisms for defect in myelin formation underlying HLD9.
Collapse
Affiliation(s)
- Naoto Matsumoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Noriko Iibe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuriko Tatsumi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kohei Hattori
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yu Takeuchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki, Ibaraki, 200-1192, Japan
| | - Tomohiro Torii
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
24
|
Owczarek-Lipska M, Mulahasanovic L, Obermaier CD, Hörtnagel K, Neubauer BA, Korenke GC, Biskup S, Neidhardt J. Novel mutations in the GJC2 gene associated with Pelizaeus–Merzbacher-like disease. Mol Biol Rep 2019; 46:4507-4516. [DOI: 10.1007/s11033-019-04906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
|
25
|
Dornan GL, Dalwadi U, Hamelin DJ, Hoffmann RM, Yip CK, Burke JE. Probing the Architecture, Dynamics, and Inhibition of the PI4KIIIα/TTC7/FAM126 Complex. J Mol Biol 2018; 430:3129-3142. [PMID: 30031006 DOI: 10.1016/j.jmb.2018.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022]
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the lipid kinase primarily responsible for generating the lipid phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, which acts as the substrate for generation of the signaling lipids PIP2 and PIP3. PI4KIIIα forms a large heterotrimeric complex with two regulatory partners, TTC7 and FAM126. We describe using an integrated electron microscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach to probe the architecture and dynamics of the complex of PI4KIIIα/TTC7/FAM126. HDX-MS reveals that the majority of the PI4KIIIα sequence was protected from exchange in short deuterium pulse experiments, suggesting presence of secondary structure, even in putative unstructured regions. Negative stain electron microscopy reveals the shape and architecture of the full-length complex, revealing an overall dimer of PI4KIIIα/TTC7/FAM126 trimers. HDX-MS reveals conformational changes in the TTC7/FAM126 complex upon binding PI4KIIIα, including both at the direct TTC7-PI4KIIIα interface and at the putative membrane binding surface. Finally, HDX-MS experiments of PI4KIIIα bound to the highly potent and selective inhibitor GSK-A1 compared to that bound to the non-specific inhibitor PIK93 revealed substantial conformational changes throughout an extended region of the kinase domain. Many of these changes were distant from the putative inhibitor binding site, showing a large degree of allosteric conformational changes that occur upon inhibitor binding. Overall, our results reveal novel insight into the regulation of PI4KIIIα by its regulatory proteins TTC7/FAM126, as well as additional dynamic information on how selective inhibition of PI4KIIIα is achieved.
Collapse
Affiliation(s)
- Gillian L Dornan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David J Hamelin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2.
| |
Collapse
|
26
|
Hypomyelinating disorders in China: The clinical and genetic heterogeneity in 119 patients. PLoS One 2018; 13:e0188869. [PMID: 29451896 PMCID: PMC5815574 DOI: 10.1371/journal.pone.0188869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Hypomyelinating disorders are a group of clinically and genetically heterogeneous diseases characterized by neurological deterioration with hypomyelination visible on brain MRI scans. This study was aimed to clarify the clinical and genetic features of HMDs in Chinese population. METHODS 119 patients with hypomyelinating disorders in Chinese population were enrolled and evaluated based on their history, clinical manifestation, laboratory examinations, series of brain MRI with follow-up, genetic etiological tests including chromosomal analysis, multiplex ligation probe amplification, Sanger sequencing, targeted enrichment-based next-generation sequencing and whole exome sequencing. RESULTS Clinical and genetic features of hypomyelinating disorders were revealed. Nine different hypomyelinating disorders were identified in 119 patients: Pelizaeus-Merzbacher disease (94, 79%), Pelizaeus-Merzbacher-like disease (10, 8%), hypomyelination with atrophy of the basal ganglia and cerebellum (3, 3%), GM1 gangliosidosis (5, 4%), GM2 gangliosidosis (3, 3%), trichothiodystrophy (1, 1%), Pol III-related leukodystrophy (1, 1%), hypomyelinating leukodystrophy type 9 (1, 1%), and chromosome 18q deletion syndrome (1, 1%). Of the sample, 94% (112/119) of the patients were genetically diagnosed, including 111 with mutations distributing across 9 genes including PLP1, GJC2, TUBB4A, GLB1, HEXA, HEXB, ERCC2, POLR3A, and RARS and 1 with mosaic chromosomal change of 46, XX,del(18)(q21.3)/46,XX,r(18)(p11.32q21.3)/45,XX,-18. Eighteen novel mutations were discovered. Mutations in POLR3A and RARS were first identified in Chinese patients with Pol III-related leukodystrophy and hypomyelinating leukodystrophy, respectively. SIGNIFICANCE This is the first report on clinical and genetic features of hypomyelinating disorders with a large sample of patients in Chinese population, identifying 18 novel mutations especially mutations in POLR3A and RARS in Chinese patients, expanding clinical and genetic spectrums of hypomyelinating disorders.
Collapse
|
27
|
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutations in the PLP1 gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination associated with early neurologic dysfunction, progressive deterioration, and ultimately death. PMD has been classified into three major subtypes, according to the age of presentation: connatal PMD, classic PMD, and transitional PMD, combining features of both connatal and classic forms. Two other less severe phenotypes were subsequently described, including the spastic paraplegia syndrome and PLP1-null disease. These disorders may be associated with duplications, as well as with point, missense, and null mutations within the PLP1 gene. A number of clinically similar Pelizaeus-Merzbacher-like disorders (PMLD) are considered in the differential diagnosis of PMD, the most prominent of which is PMLD-1, caused by misexpression of the GJC2 gene encoding connexin-47. No effective therapy for PMD exists. Yet, as a relatively pure central nervous system hypomyelinating disorder, with limited involvement of the peripheral nervous system and little attendant neuronal pathology, PMD is an attractive therapeutic target for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of centers internationally.
Collapse
Affiliation(s)
- M Joana Osório
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
28
|
Dorboz I, Aiello C, Simons C, Stone RT, Niceta M, Elmaleh M, Abuawad M, Doummar D, Bruselles A, Wolf NI, Travaglini L, Boespflug-Tanguy O, Tartaglia M, Vanderver A, Rodriguez D, Bertini E. Biallelic mutations in the homeodomain of NKX6-2 underlie a severe hypomyelinating leukodystrophy. Brain 2017; 140:2550-2556. [PMID: 28969374 DOI: 10.1093/brain/awx207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/04/2017] [Indexed: 11/14/2022] Open
Abstract
Hypomyelinating leukodystrophies are genetically heterogeneous disorders with overlapping clinical and neuroimaging features reflecting variable abnormalities in myelin formation. We report on the identification of biallelic inactivating mutations in NKX6-2, a gene encoding a transcription factor regulating multiple developmental processes with a main role in oligodendrocyte differentiation and regulation of myelin-specific gene expression, as the cause underlying a previously unrecognized severe variant of hypomyelinating leukodystrophy. Five affected subjects (three unrelated families) were documented to share biallelic inactivating mutations affecting the NKX6-2 homeobox domain. A trio-based whole exome sequencing analysis in the first family detected a homozygous frameshift change [c.606delinsTA; p.(Lys202Asnfs*?)]. In the second family, homozygosity mapping coupled to whole exome sequencing identified a homozygous nucleotide substitution (c.565G>T) introducing a premature stop codon (p.Glu189*). In the third family, whole exome sequencing established compound heterozygosity for a non-conservative missense change affecting a key residue participating in DNA binding (c.599G>A; p.Arg200Gln) and a nonsense substitution (c.589C>T; p.Gln197*), in both affected siblings. The clinical presentation was homogeneous, with four subjects having severe motor delays, nystagmus and absent head control, and one individual showing gross motor delay at the age of 6 months. All exhibited neuroimaging that was consistent with hypomyelination. These findings define a novel, severe form of leukodystrophy caused by impaired NKX6-2 function.
Collapse
Affiliation(s)
- Imen Dorboz
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, France, Paris 06, Paris, France
| | - Chiara Aiello
- Unit of Neuromuscular and Neurodegnerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Hospital, Rome, Italy.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Robert Thompson Stone
- Pediatric Multiple Sclerosis and Neuroimmunology Program, University of Rochester, Rochester, USA
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Monique Elmaleh
- AP-HP, Department of Child Radiology, Robert Debré Hospital, Paris, France
| | - Mohammad Abuawad
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, France, Paris 06, Paris, France
| | - Diane Doummar
- APHP, Department of Neuropediatrics, National Reference Center for Neurogenetic Disorders, Hôpital Armand-Trousseau, GHUEP, Paris, France.,GRC ConCer-LD, Sorbonne Universités, UPMC Université, Paris, France
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Nicole I Wolf
- Department of Child Neurology, VU University Medical Center, Amsterdam, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegnerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Hospital, Rome, Italy.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Odile Boespflug-Tanguy
- INSERM UMR 1141, DHU PROTECT, Paris Diderot University, Sorbonne Paris Cité, France, Paris 06, Paris, France.,AP-HP, Department of Neuropediatrics and Metabolic Diseases, National Reference Center for Leukodystrophies, Robert Debré Hospital, Paris, France
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, USA.,Department of Neurology, University of Pennsylvania, USA
| | - Diana Rodriguez
- APHP, Department of Neuropediatrics, National Reference Center for Neurogenetic Disorders, Hôpital Armand-Trousseau, GHUEP, Paris, France.,GRC ConCer-LD, Sorbonne Universités, UPMC Université, Paris, France
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegnerative Disorders, Laboratory of Molecular Medicine, Bambino Gesu' Children's Hospital, Rome, Italy.,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| |
Collapse
|
29
|
Zhou XL, He LX, Yu LJ, Wang Y, Wang XJ, Wang ED, Yang T. Mutations inKARScause early-onset hearing loss and leukoencephalopathy: Potential pathogenic mechanism. Hum Mutat 2017; 38:1740-1750. [PMID: 28887846 DOI: 10.1002/humu.23335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 09/03/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Xiao-Long Zhou
- State Key Laboratory of Molecular Biology; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Long-Xia He
- Department of Otolaryngology-Head and Neck Surgery; Shanghai Ninth People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
- Department of Otorhinolaryngology-Head and Neck Surgery; Chengdu Integrated TCM & Western Medicine Hospital; Sichuan Province China
| | - Li-Jia Yu
- Department of Neurology; Xinhua Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yong Wang
- School of Life Science and Technology; Shanghai Tech University; Shanghai China
| | - Xi-Jin Wang
- Department of Neurology; Xinhua Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
- School of Life Science and Technology; Shanghai Tech University; Shanghai China
| | - Tao Yang
- Department of Otolaryngology-Head and Neck Surgery; Shanghai Ninth People's Hospital; Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
30
|
Hu J, Khodadadi-Jamayran A, Mao M, Shah K, Yang Z, Nasim MT, Wang Z, Jiang H. AKAP95 regulates splicing through scaffolding RNAs and RNA processing factors. Nat Commun 2016; 7:13347. [PMID: 27824034 PMCID: PMC5105168 DOI: 10.1038/ncomms13347] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing of pre-mRNAs significantly contributes to the complexity of gene expression in higher organisms, but the regulation of the splice site selection remains incompletely understood. We have previously demonstrated that a chromatin-associated protein, AKAP95, has a remarkable activity in enhancing chromatin transcription. In this study, we show that AKAP95 interacts with many factors involved in transcription and RNA processing, including selective groups of hnRNP proteins, through its N-terminal region, and directly regulates pre-mRNA splicing. AKAP95 binds preferentially to proximal intronic regions on pre-mRNAs in human transcriptome, and this binding requires its zinc-finger domains. By selectively coordinating with hnRNP H/F and U proteins, AKAP95 appears to mainly promote the inclusion of many exons in the genome. AKAP95 also directly interacts with itself. Taken together, our results establish AKAP95 as a mostly positive regulator of pre-mRNA splicing and a possible integrator of transcription and splicing regulation. The chromatin-associated protein AKAP95 is known for its chromatin-related functions including enhancing transcription. Here the authors show that AKAP95 interacts with the splicing regulatory factors as well as RNAs to regulate the inclusion of exons and pre-mRNA splicing.
Collapse
Affiliation(s)
- Jing Hu
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Miaowei Mao
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Kushani Shah
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Zhenhua Yang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| | - Md Talat Nasim
- University of Bradford School of Pharmacy, Bradford BD7 1DP, UK
| | - Zefeng Wang
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294, USA
| |
Collapse
|
31
|
Charzewska A, Wierzba J, Iżycka-Świeszewska E, Bekiesińska-Figatowska M, Jurek M, Gintowt A, Kłosowska A, Bal J, Hoffman-Zacharska D. Hypomyelinating leukodystrophies - a molecular insight into the white matter pathology. Clin Genet 2016; 90:293-304. [DOI: 10.1111/cge.12811] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/23/2022]
Affiliation(s)
- A. Charzewska
- Institute of Mother and Child, Department of Medical Genetics; Warsaw Poland
| | - J. Wierzba
- Medical University of Gdańsk; Department of Paediatrics, Haemathology & Oncology, Department of General Nursery; Gdańsk Poland
| | - E. Iżycka-Świeszewska
- Medical University of Gdańsk; Department of Pathology & Neuropathology; Copernicus Hospital, Department of Patomorphology; Gdańsk Poland
| | | | - M. Jurek
- Institute of Mother and Child, Department of Medical Genetics; Warsaw Poland
| | - A. Gintowt
- Medical University of Gdańsk; Department of Biology and Genetics; Gdańsk Poland
| | - A. Kłosowska
- Medical University of Gdańsk; Department of Paediatrics, Haemathology & Oncology, Department of General Nursery; Gdańsk Poland
| | - J. Bal
- Institute of Mother and Child, Department of Medical Genetics; Warsaw Poland
| | | |
Collapse
|
32
|
Barkovich AJ, Deon S. Reprint of "Hypomyelinating disorders: An MRI approach. Neurobiol Dis 2016; 92:46-54. [PMID: 27235001 DOI: 10.1016/j.nbd.2015.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022] Open
Abstract
In recent years, the concept of hypomyelinating disorders has been proposed as a group of disorders with varying systemic manifestations that are identified by MR findings of absence or near absence of the T2 hypointensity that develops in white matter as a result of myelination. Initially proposed as a separate group because they were the largest single category of undiagnosed leukodystrophies, their separation as a distinct group that can be recognized by looking for a specific MRI feature has resulted in a marked increase in their diagnosis and a better understanding of the different causes of hypomyelination. This review will discuss the clinical presentations, imaging findings on standard MRI, and new MRI-related techniques that allow a better understanding of these disorders and proposed methods for quantifying the myelination as a potential means of assessing disease course and the effects of proposed treatments. Disorders with hypomyelination of white matter, or hypomyelinating disorders (HMDs), represent the single largest category among undiagnosed genetic leukoencephalopathies (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010). This group of inborn errors of metabolism is characterized by a magnetic resonance imaging (MRI) appearance of reduced or absent myelin development: delay in the development of T2 hypointensity and, often, T1 hyperintensity in the white matter of the brain. The concept of hypomyelination was first conceptualized by (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010; Schiffmann et al., 1994) in a series of papers that showed that these MRI characteristics were easily recognized, were different from the MRI characteristics of dysmyelinating and demyelinating disorders, and that the combination of these imaging findings with specific other clinical and imaging features could be used to make diagnoses with some confidence. In this manuscript, we will discuss the physiologic and genetic bases of hypomyelinating disorders, as well as their classification, clinical manifestations and imaging characteristics.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, UCSF-Benioff Children's Hospital, San Francisco, Q6 CA, United States.
| | - Sean Deon
- University of Colorado Medical Center and Prof. Petra Pouwels, University of Amsterdam
| |
Collapse
|
33
|
Duncan ID, Radcliff AB. Inherited and acquired disorders of myelin: The underlying myelin pathology. Exp Neurol 2016; 283:452-75. [PMID: 27068622 PMCID: PMC5010953 DOI: 10.1016/j.expneurol.2016.04.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/26/2023]
Abstract
Remyelination is a major therapeutic goal in human myelin disorders, serving to restore function to demyelinated axons and providing neuroprotection. The target disorders that might be amenable to the promotion of this repair process are diverse and increasing in number. They range primarily from those of genetic, inflammatory to toxic origin. In order to apply remyelinating strategies to these disorders, it is essential to know whether the myelin damage results from a primary attack on myelin or the oligodendrocyte or both, and whether indeed these lead to myelin breakdown and demyelination. In some disorders, myelin sheath abnormalities are prominent but demyelination does not occur. This review explores the range of human and animal disorders where myelin pathology exists and focusses on defining the myelin changes in each and their cause, to help define whether they are targets for myelin repair therapy. We reviewed myelin disorders of the CNS in humans and animals. Myelin damage results from primary attack on the oligodendrocyte or myelin sheath. All major categories of disease can affect CNS myelin. Myelin vacuolation is common, yet does not always result in demyelination.
Collapse
Affiliation(s)
- Ian D Duncan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| | - Abigail B Radcliff
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
34
|
Kertai MD, Qi W, Li YJ, Lombard FW, Liu Y, Smith MP, Stafford-Smith M, Newman MF, Milano CA, Mathew JP, Podgoreanu MV. Gene signatures of postoperative atrial fibrillation in atrial tissue after coronary artery bypass grafting surgery in patients receiving β-blockers. J Mol Cell Cardiol 2016; 92:109-15. [PMID: 26860460 PMCID: PMC4967350 DOI: 10.1016/j.yjmcc.2016.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/30/2016] [Accepted: 02/05/2016] [Indexed: 02/04/2023]
Abstract
Atrial tissue gene expression profiling may help to determine how differentially expressed genes in the human atrium before cardiopulmonary bypass (CPB) are related to subsequent biologic pathway activation patterns, and whether specific expression profiles are associated with an increased risk for postoperative atrial fibrillation (AF) or altered response to β-blocker (BB) therapy after coronary artery bypass grafting (CABG) surgery. Right atrial appendage (RAA) samples were collected from 45 patients who were receiving perioperative BB treatment, and underwent CABG surgery. The isolated RNA samples were used for microarray gene expression analysis, to identify probes that were expressed differently in patients with and without postoperative AF. Gene expression analysis was performed to identify probes that were expressed differently in patients with and without postoperative AF. Gene set enrichment analysis (GSEA) was performed to determine how sets of genes might be systematically altered in patients with postoperative AF. Of the 45 patients studied, genomic DNA from 42 patients was used for target sequencing of 66 candidate genes potentially associated with AF, and 2,144 single-nucleotide polymorphisms (SNPs) were identified. We then performed expression quantitative trait loci (eQTL) analysis to determine the correlation between SNPs identified in the genotyped patients, and RAA expression. Probes that met a false discovery rate<0.25 were selected for eQTL analysis. Of the 17,678 gene expression probes analyzed, 2 probes met our prespecified significance threshold of false discovery rate<0.25. The most significant probe corresponded to vesicular overexpressed in cancer - prosurvival protein 1 gene (VOPP1; 1.83 fold change; P=3.47×10(-7)), and was up-regulated in patients with postoperative AF, whereas the second most significant probe, which corresponded to the LOC389286 gene (0.49 fold change; P=1.54×10(-5)), was down-regulated in patients with postoperative AF. GSEA highlighted the role of VOPP1 in pathways with biologic relevance to myocardial homeostasis, and oxidative stress and redox modulation. Candidate gene eQTL showed a trans-acting association between variants of G protein-coupled receptor kinase 5 gene, previously linked to altered BB response, and high expression of VOPP1. In patients undergoing CABG surgery, RAA gene expression profiling, and pathway and eQTL analysis suggested that VOPP1 plays a novel etiological role in postoperative AF despite perioperative BB therapy.
Collapse
Affiliation(s)
- Miklos D Kertai
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC 27710, USA.
| | - Wenjing Qi
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA; Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Frederick W Lombard
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912
| | - Michael P Smith
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark Stafford-Smith
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark F Newman
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Carmelo A Milano
- Department of Surgery, Division of Cardiothoracic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Mihai V Podgoreanu
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Baskin JM, Wu X, Christiano R, Oh MS, Schauder CM, Gazzerro E, Messa M, Baldassari S, Assereto S, Biancheri R, Zara F, Minetti C, Raimondi A, Simons M, Walther TC, Reinisch KM, De Camilli P. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat Cell Biol 2016; 18:132-8. [PMID: 26571211 PMCID: PMC4689616 DOI: 10.1038/ncb3271] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.
Collapse
Affiliation(s)
- Jeremy M. Baskin
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven CT 06510 USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven CT 06510 USA
| | - Xudong Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
| | - Romain Christiano
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
| | - Michael S. Oh
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven CT 06510 USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven CT 06510 USA
| | - Curtis M. Schauder
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
| | | | - Mirko Messa
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven CT 06510 USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven CT 06510 USA
| | - Simona Baldassari
- Unit of Pediatric Neurology, Giannina Gaslini Institute, Genova, Italy
| | - Stefania Assereto
- Unit of Pediatric Neurology, Giannina Gaslini Institute, Genova, Italy
| | - Roberta Biancheri
- Department of Neuroscience, Giannina Gaslini Institute, Genova, Italy
| | - Federico Zara
- Unit of Pediatric Neurology, Giannina Gaslini Institute, Genova, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology, Giannina Gaslini Institute, Genova, Italy
- University of Genova, Italy
| | - Andrea Raimondi
- San Raffaele Scientific Institute, Imaging Research Center, Milan, Italy
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, University of Göttingen, 37075 Göttingen, Germany
- Department of Neurology, University of Göttingen, 37075 Göttingen, Germany
| | - Tobias C. Walther
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven CT 06510 USA
- Department of Neurobiology, Yale University School of Medicine, New Haven CT 06510 USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven CT 06510 USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven CT 06510 USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven CT 06510 USA
| |
Collapse
|
36
|
Barkovich AJ, Deon S. Hypomyelinating disorders: An MRI approach. Neurobiol Dis 2015; 87:50-8. [PMID: 26477299 DOI: 10.1016/j.nbd.2015.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
In recent years, the concept of hypomyelinating disorders has been proposed as a group of disorders with varying systemic manifestations that are identified by MR findings of absence or near absence of the T2 hypointensity that develops in white matter as a result of myelination. Initially proposed as a separate group because they were the largest single category of undiagnosed leukodystrophies, their separation as a distinct group that can be recognized by looking for a specific MRI feature has resulted in a marked increase in their diagnosis and a better understanding of the different causes of hypomyelination. This review will discuss the clinical presentations, imaging findings on standard MRI, and new MRI-related techniques that allow a better understanding of these disorders and proposed methods for quantifying the myelination as a potential means of assessing disease course and the effects of proposed treatments. Disorders with hypomyelination of white matter, or hypomyelinating disorders (HMDs), represent the single largest category among undiagnosed genetic leukoencephalopathies (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010). This group of inborn errors of metabolism is characterized by a magnetic resonance imaging (MRI) appearance of reduced or absent myelin development: delay in the development of T2 hypointensity and, often, T1 hyperintensity in the white matter of the brain. The concept of hypomyelination was first conceptualized by (Schiffmann and van der Knaap, 2009; Steenweg et al., 2010; Schiffmann et al., 1994) in a series of papers that showed that these MRI characteristics were easily recognized, were different from the MRI characteristics of dysmyelinating and demyelinating disorders, and that the combination of these imaging findings with specific other clinical and imaging features could be used to make diagnoses with some confidence. In this manuscript, we will discuss the physiologic and genetic bases of hypomyelinating disorders, as well as their classification, clinical manifestations and imaging characteristics.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Section, Department of Radiology and Biomedical Imaging, UCSF-Benioff Children's Hospital, San Francisco, Q6 CA, United States.
| | - Sean Deon
- University of Colorado Medical Center and Prof. Petra Pouwels, University of Amsterdam
| |
Collapse
|
37
|
Shao DW, Yang CY, Liu B, Chen W, Wang H, Ru HX, Zhang M, Wang Y. Bioinformatics Analysis of Potential Candidates for Therapy of TDRD7 Deficiency-Induced Congenital Cataract. Ophthalmic Res 2015; 54:10-7. [PMID: 25997407 DOI: 10.1159/000381478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022]
Abstract
AIMS The aim of this study was to identify potential candidates and explore the possible mechanism in congenital cataract induced by tudor domain-containing 7 (TDRD7) deficiency. METHODS The gene expression profile GSE25812 generated from 18 samples was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between disease and normal groups were identified. Then, gene ontology and pathway enrichment analysis of DEGs were performed. The protein-protein interaction (PPI) network and transcription factor (TF) regulatory network were constructed. The modules in the PPI network were identified. Significant target genes were selected from the TF regulatory network. RESULTS A total of 329 DEGs were obtained, and downregulated DEGs were significantly enriched in biological processes including defense response and immune response. In the PPI network, high-degree genes of complement component 1, q subcomponent, A/B/C chain (C1QA/C1QB/C1QC), lymphocyte antigen 86 (LY86) and neuroblastoma RAS viral oncogene homolog (NRAS) were identified. From the TF regulatory network, the heat shock 27 kDa protein 1 (HSPB1) was the target of the estrogen receptor 1, and LY86 was the target of the v-myc avian myelocytomatosis viral oncogene homolog. CONCLUSION HSPB1, NRAS, immune response, defense response and the related genes LY86, C1QA/C1QB/C1QC may play an important role in the development of congenital cataract induced by TDRD7 deficiency. However, further experiments are still needed.
Collapse
Affiliation(s)
- De-Wang Shao
- Department of Ophthalmology, Air Force General Hospital of PLA, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Miyamoto Y, Eguchi T, Kawahara K, Hasegawa N, Nakamura K, Funakoshi-Tago M, Tanoue A, Tamura H, Yamauchi J. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics. Biochem Biophys Res Commun 2015; 462:275-81. [PMID: 25957474 DOI: 10.1016/j.bbrc.2015.04.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/19/2023]
Abstract
Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Takahiro Eguchi
- The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
| | - Kazuko Kawahara
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Nanami Hasegawa
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan; Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | | | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Hiroomi Tamura
- Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan.
| |
Collapse
|
39
|
Torii T, Miyamoto Y, Yamauchi J, Tanoue A. Pelizaeus-Merzbacher disease: cellular pathogenesis and pharmacologic therapy. Pediatr Int 2014; 56:659-66. [PMID: 25040584 DOI: 10.1111/ped.12450] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 01/18/2023]
Abstract
Pelizaeus-Merzbacher disease (PMD) is a rare leukodystrophy that causes severe dysmyelination in the central nervous system in infancy and early childhood. Many previous studies showed that various proteolipid protein 1 (plp1) mutations, including duplications, point mutations, and deletions, lead to oligodendrocyte dysfunction in patients with PMD. PMD onset and clinical severity range widely, depending on the type of plp1 mutation. Patients with PMD exhibit a delayed mental and physical development phenotype, but specific pharmacological therapy and clinical treatment for PMD are not yet well established. This review describes PMD pathology and establishment of new clinical treatment for PMD. These findings support the development of a new therapy for PMD and these treatments may improve the quality of life in patients with PMD.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | |
Collapse
|
40
|
Xie C, Li Z, Zhang GX, Guan Y. Wnt signaling in remyelination in multiple sclerosis: friend or foe? Mol Neurobiol 2014; 49:1117-1125. [PMID: 24243343 DOI: 10.1007/s12035-013-8584-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/01/2013] [Indexed: 12/22/2022]
Abstract
Myelination is critical to normal functioning of the vertebrate nervous system. In demyelinating diseases such as multiple sclerosis, oligodendrocytes, the myelinating cells in the central nervous system, are targeted, resulting in myelin loss, axonal damage, and severe functional impairment. While spontaneous remyelination has been proven a failure in multiple sclerosis, understanding the molecular mechanism underlying oligodendrocyte biology, myelination, and remyelination becomes crucial. To date, a series of signaling pathways in regulating oligodendrocyte development and remyelination have been suggested and, among them, the Wnt/β-catenin/Tcf pathway has been considered a negative factor in the myelinating process. However, this notion has been challenged by recent studies, which showed a pro-myelinating effect of this pathway. This review summarizes the current contradictory concepts concerning the role of the Wnt pathway in the oligodendrocyte development and remyelination process, attempts to address the potential mechanism underlying this controversy, and recommends caution in targeting the Wnt pathway as a potential demyelinating therapy.
Collapse
Affiliation(s)
- Chong Xie
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | | | | | | |
Collapse
|
41
|
Yang E, Prabhu SP. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol Clin North Am 2014; 52:279-319. [PMID: 24582341 DOI: 10.1016/j.rcl.2013.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The leukodystrophies are a diverse set of inherited white matter disorders and are uncommonly encountered by radiologists in everyday practice. As a result, it is challenging to recognize these disorders and to provide a useful differential for the referring physician. In this article, leukodystrophies are reviewed from the perspective of 4 imaging patterns: global myelination delay, periventricular/deep white matter predominant, subcortical white matter predominant, and mixed white/gray matter involvement patterns. Special emphasis is placed on pattern recognition and unusual combinations of findings that may suggest a specific diagnosis.
Collapse
Affiliation(s)
- Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
42
|
Epidemiological, clinical, and genetic landscapes of hypomyelinating leukodystrophies. J Neurol 2014; 261:752-8. [DOI: 10.1007/s00415-014-7263-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/08/2023]
|
43
|
Miyamoto Y, Torii T, Eguchi T, Nakamura K, Tanoue A, Yamauchi J. Hypomyelinating leukodystrophy-associated missense mutant of FAM126A/hyccin/DRCTNNB1A aggregates in the endoplasmic reticulum. J Clin Neurosci 2013; 21:1033-9. [PMID: 24417797 DOI: 10.1016/j.jocn.2013.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 08/07/2013] [Accepted: 09/22/2013] [Indexed: 11/25/2022]
Abstract
Hypomyelinating leukodystrophies (HLD) are hereditary central nervous system diseases in which the myelin sheath does not form properly. The disease prototype is the X-linked recessive Pelizaeus-Merzbacher disease (also now known as HLD1), which is caused by the mutation, multiplication, or deletion of the plp1 gene. PLP1 missense mutations lead to protein aggregation and accumulation in subcellular compartments such as the endoplasmic reticulum (ER). The gene responsible for an autosomal recessive Pelizaeus-Merzbacher-like disease called HLD5 is named fam126a (also known as hyccin or drctnnb1a). While the gene mutations often cause FAM126A protein deficiency, one known missense mutation, Leu-53-to-Pro (L53P), allows some protein to be produced. Here, we show that the L53P mutant aggregates in cells, accumulating primarily in the ER. This is in contrast to the wild type FAM126A, which distributes throughout the cytoplasm. In addition, the L53P mutant expression promotes the activities of kinases involved in unfolded protein response. These results suggest that a disease-associated FAM126A missense mutation causes protein accumulation in subcellular compartments, possibly to mediate a disease-associated phenotype, which is similar to what is seen with PLP1.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Takahiro Eguchi
- The Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan; Japan Health Sciences Foundation, Chuo, Tokyo, Japan.
| |
Collapse
|
44
|
Traverso M, Assereto S, Gazzerro E, Savasta S, Abdalla EM, Rossi A, Baldassari S, Fruscione F, Ruffinazzi G, Fassad MR, El Beheiry A, Minetti C, Zara F, Biancheri R. Novel FAM126A mutations in hypomyelination and congenital cataract disease. Biochem Biophys Res Commun 2013; 439:369-72. [PMID: 23998934 DOI: 10.1016/j.bbrc.2013.08.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 08/24/2013] [Indexed: 02/01/2023]
Abstract
Hypomyelination and congenital cataract (HCC, OMIM #610532) is a rare autosomal recessive disorder due to FAM126A mutations characterized by congenital cataract, progressive neurologic impairment, and myelin deficiency in the central and peripheral nervous system. We have identified two novel mutations in three affected members of two unrelated families. Two sibs harbouring a microdeletion causing a premature stop in the protein showed the classical clinical and neuroradiologic HCC picture. The third patient carrying a missense mutation showed a relatively mild clinical picture without peripheral neuropathy. A residual amount of hyccin protein in primary fibroblasts was demonstrated by functional studies indicating that missense mutations are likely to have less detrimental effects if compared with splice-site mutations or deletions that cause the full-blown HCC phenotype, including peripheral nervous system involvement.
Collapse
Affiliation(s)
- M Traverso
- Department of Neuroscience, Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kevelam SH, Rodenburg RJ, Wolf NI, Ferreira P, Lunsing RJ, Nijtmans LG, Mitchell A, Arroyo HA, Rating D, Vanderver A, van Berkel CGM, Abbink TEM, Heutink P, van der Knaap MS. NUBPL mutations in patients with complex I deficiency and a distinct MRI pattern. Neurology 2013; 80:1577-83. [PMID: 23553477 DOI: 10.1212/wnl.0b013e31828f1914] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the mutated gene in a group of patients with an unclassified heritable white matter disorder sharing the same, distinct MRI pattern. METHODS We used MRI pattern recognition analysis to select a group of patients with a similar, characteristic MRI pattern. We performed whole-exome sequencing to identify the mutated gene. We examined patients' fibroblasts for biochemical consequences of the mutant protein. RESULTS We identified 6 patients from 5 unrelated families with a similar MRI pattern showing predominant abnormalities of the cerebellar cortex, deep cerebral white matter, and corpus callosum. The 4 tested patients had a respiratory chain complex І deficiency. Exome sequencing revealed mutations in NUBPL, encoding an iron-sulfur cluster assembly factor for complex І, in all patients. Upon identification of the mutated gene, we analyzed the MRI of a previously published case with NUBPL mutations and found exactly the same pattern. A strongly decreased amount of NUBPL protein and fully assembled complex I was found in patients' fibroblasts. Analysis of the effect of mutated NUBPL on the assembly of the peripheral arm of complex I indicated that NUBPL is involved in assembly of iron-sulfur clusters early in the complex I assembly pathway. CONCLUSION Our data show that NUBPL mutations are associated with a unique, consistent, and recognizable MRI pattern, which facilitates fast diagnosis and obviates the need for other tests, including assessment of mitochondrial complex activities in muscle or fibroblasts.
Collapse
Affiliation(s)
- Sietske H Kevelam
- Department of Child Neurology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Naidu S, Lin DDM. Advances in the diagnosis of leukoencephalopathies. ACTA ACUST UNITED AC 2013; 6:259-73. [PMID: 23480738 DOI: 10.1517/17530059.2012.665869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Introduction : Leukoencephalopathies (LEs) are a diverse group of diseases involving cerebral white matter. Some of the disorders may be infectious or immunologically mediated and, therefore, tend to be more amenable to treatment. Most of these disorders have a genetic basis, for which genetic counseling becomes important as currently very few of them have effective therapies. Areas covered : This review calls attention to the diagnostic dilemmas, highlights the diagnostic tests of choice for separating conditions with similar clinical, laboratory or neuroimaging findings, and describes several LEs that have been newly discovered within the last 20 years. Imaging of LEs has progressed rapidly since the introduction of magnetic resonance imaging (MRI) and spectroscopy (MRS), allowing recognition of new diseases, with and without identifiable corresponding biochemical or genetic defects. The distinguishing MRI and MRS features of LEs are described, as well as the resources available for biochemical, CSF and blood sample testing for diagnosis and differentiation from previously known LEs. Expert opinion : Although there is no treatment at present for many of the LEs, their detection as a cause of intellectual and motor disabilities, and as inherited disorders, makes it necessary to accurately categorize them. This knowledge will then allow further elucidation of the etiology, understanding the biological underpinnings, and eventually progress toward rational therapies.
Collapse
Affiliation(s)
- Sakkubai Naidu
- Johns Hopkins University School of Medicine, Hugo Moser Research Institute, Kennedy Krieger Institute , 707, N. Broadway, Baltimore, MD 21205 , USA +1 443 923 2778 ; +1 443 923 2779 ;
| | | |
Collapse
|
47
|
Kevelam SH, Bugiani M, Salomons GS, Feigenbaum A, Blaser S, Prasad C, Häberle J, Barić I, Bakker IMC, Postma NL, Kanhai WA, Wolf NI, Abbink TEM, Waisfisz Q, Heutink P, van der Knaap MS. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain 2013; 136:1534-43. [DOI: 10.1093/brain/awt054] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Abstract
Magnetic resonance spectroscopy (MRS) is a powerful clinical tool for investigating the metabolic characteristics of neurologic diseases. Proton ((1)H)-MRS is the most commonly used and widely available method. In this article, a brief introduction regarding technical issues of (1)H-MRS applied to the study of metabolic diseases is followed by a description of findings in some of the most common entities in this large, heterogeneous group of neurologic disorders. The aim was to provide a focused representation of the most common applications of (1)H-MRS to metabolic disorders in a routine clinical setting.
Collapse
Affiliation(s)
- Andrea Rossi
- Pediatric Neuroradiology Unit, Istituto Giannina Gaslini, Genoa 16147, Italy.
| | | |
Collapse
|
49
|
Traverso M, Yuregir OO, Mimouni-Bloch A, Rossi A, Aslan H, Gazzerro E, Baldassari S, Fruscione F, Minetti C, Zara F, Biancheri R. Hypomyelination and congenital cataract: identification of novel mutations in two unrelated families. Eur J Paediatr Neurol 2013; 17:108-11. [PMID: 22749724 DOI: 10.1016/j.ejpn.2012.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/08/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Hypomyelination and congenital cataract (HCC) is a rare autosomal recessive white matter disorder characterized by congenital cataract, progressive neurologic impairment, and myelin deficiency in the central and peripheral nervous system, caused by mutations in the FAM126A gene. AIMS To report three patients of two unrelated families segregating novel mutations. METHODS clinical, neurophysiological, neuroradiologic and molecular investigations were carried out. RESULTS All patients show bilateral congenital cataract and progressive neurological impairment with peripheral neuropathy. The clinical phenotype is consistent with the severe form of HCC. Brain magnetic resonance imaging show the combination of a diffuse hypomyelination with superimposed periventricular white matter signal abnormalities. CONCLUSIONS this study describes three additional HCC patients indicating that this recently defined leukoencephalopathy should be included in the differential diagnosis of hypomyelination in childhood. The peculiar clinical and neuroradiologic findings are useful to properly address molecular investigations and allow the differential diagnosis between HCC and other hypomyelinating forms.
Collapse
Affiliation(s)
- Monica Traverso
- Department of Neuroscience, Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Boespflug-Tanguy O. Inborn errors of brain myelin formation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1581-92. [PMID: 23622380 DOI: 10.1016/b978-0-444-59565-2.00027-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inborn errors of brain myelin formation or hypomyelinating leukodystrophies (HLD) represent a heterogeneous group of white matter diseases related to a primitive impairment of oligodendrocytes to produce myelin in the central nervous system (CNS). Cerebral magnetic resonance imaging (MRI) allows an assessment of the myelination pattern. The clinical presentation is related to the degree of hypomyelination and its consequences on axonal functions. When the gene defect interferes with the active infantile phase of myelination, the consequences might be severe, with delayed and loss of psychomotor development, absence of myelin signal on cerebral MRI and of identifiable waves on cerebral evoked potentials, as described by Pelizaeus and Merzbacher (PMD). When the pathophysiological mechanism is less severe, myelin production is maintained, although signs of progressive axonopathy are observed, related to progressive spastic paraplegia (SPG) associated with cognitive or behavioral disturbances. HLDs have been classified according to gene defects or associated signs. The X-linked HDL1 (PMD and SPG2) is related to the gene that controls the production of the major CNS myelin proteins, the proteolipid proteins (PLP). The gap junction protein, gamma 2 gene (GJC2) encoding oligodendrocyte-specific connexin, has been shown to be involved in the autosomal recessive HLD2 (PMLD1 and SPG44).
Collapse
Affiliation(s)
- Odile Boespflug-Tanguy
- National Reference Center for Rare Diseases "leukodystrophies", INSERM U676, Université Paris Diderot, Sorbonne Paris Cité Université and Pediatric Neurology and Metabolic Disease Service, Hôpital Robert Debré, Paris, France.
| |
Collapse
|