1
|
Liu L, Tu B, Sun Y, Liao L, Lu X, Liu E, Huang Y. Nanobody-based drug delivery systems for cancer therapy. J Control Release 2025; 381:113562. [PMID: 39993634 DOI: 10.1016/j.jconrel.2025.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Targeted delivery can elevate the local drug concentration within tumor tissues, while minimizing drug distribution to normal tissues, thus enhancing the effectiveness of anti-tumor medications and reducing adverse effects and systemic toxicities. Nanobodies, the novel molecular pattern of antibodies characterized by their small size, high stability, strong specificity, and low immunogenicity, have been extensively applied in targeted drug delivery for tumor therapy. This review discusses structural disparities and functional advantages of nanobodies compared to other antibody fragments and full-length antibody. It also highlights nanobody applications in targeted tumor therapy, focusing on their use in modifying delivery systems, e.g., liposomes, EVs, micelles, albumin nanoparticles, gold nanoparticles, polymeric nanoparticles, and as nanobody-drug conjugates. This review delves into the methods applied for integrating nanobodies into different drug delivery carriers, in order to provide useful information for researchers developing nanobody-based targeted drug delivery systems.
Collapse
Affiliation(s)
- Lin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Bin Tu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yao Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Lingling Liao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiaoling Lu
- College of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yongzhuo Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| |
Collapse
|
2
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
3
|
Choi YJ, Haddadnezhad M, Baek SJ, Lee CN, Park S, Sim SJ. Plasmonic Nanogap-Enhanced Tunable Three-Dimensional Nanoframes in Application to Clinical Diagnosis of Alzheimer's Disease. ACS Sens 2024; 9:5587-5595. [PMID: 39356173 DOI: 10.1021/acssensors.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Advancements in nanotechnology led to significant improvements in synthesizing plasmon-enhanced nanoarchitectures for biosensor applications, and high-yield productivity at low cost is vital to step further into medical commerce. Metal nanoframes via wet chemistry are gaining attention for their homogeneous structure and outstanding catalytic and optical properties. However, nanoframe morphology should be considered delicately when brought to biosensors to utilize its superior characteristics thoroughly, and the need to prove its clinical applicability still remains. Herein, we controlled the frameworks of double-walled nanoframes (DWFs) precisely via wet chemistry to construct a homogeneous plasmon-enhanced nanotransducer for localized surface plasmon resonance biosensors. By tuning the physical properties considering the finite-difference time-domain simulation results, biomolecular interactions were feasible in the electromagnetic field-enhanced nanospace. As a result, DWF10 exhibited a 10-fold lower detection limit of 2.21 fM compared to DWF14 for tau detection. Further application into blood-based clinical and Alzheimer's disease (AD) diagnostics, notable improvement in classifying mild cognitive impairment patients against healthy controls and AD patients, was demonstrated along with impressive AUC values. Thus, in response to diverse detection methods, optimizing nanoframe dimensions such as nanogap and frame thickness to maximize sensor performance is critical to realize future POCT diagnosis.
Collapse
Affiliation(s)
- Young Jae Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - MohammadNavid Haddadnezhad
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Seung Jong Baek
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chan-Nyoung Lee
- Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Kim M, Kang DH, Choi JH, Choi DG, Lee J, Lee J, Jung JY. Highly sensitive and label-free protein immunoassay-based biosensor comprising infrared metamaterial absorber inducing strong coupling. Biosens Bioelectron 2024; 260:116436. [PMID: 38824701 DOI: 10.1016/j.bios.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
A mid-infrared label-free immunoassay-based biosensor is an effective device to help identify and quantify biomolecules. This biosensor employs a surface-enhanced infrared absorption spectroscopy, which is a highly potent sensing technique for detecting minute quantities of analytes. In this study, a biosensor was constructed using a metamaterial absorber, which facilitated strong coupling effects. For maximum coupling effect, it is necessary to enhance the near-field intensity and the spatial and spectral overlap between the optical cavity resonance and the vibrational mode of the analyte. Due to significant peak splitting, conventional baseline correction methods fail to adequately analyze such a coupling system. Therefore, we employed a coupled harmonic oscillation model to analyze the spectral distortion resulting from the peak splitting induced by the strong coupling effect. The proposed biosensor with a thrombin-binding aptamer-based immunoassay could achieve a limit of detection of 267.4 pM, paving the way for more efficient protein detection in clinical practice.
Collapse
Affiliation(s)
- Mingyun Kim
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Do Hyun Kang
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jun-Hyuk Choi
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Dae-Geun Choi
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jihye Lee
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea
| | - Jongwon Lee
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Joo-Yun Jung
- Nano-convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea.
| |
Collapse
|
5
|
Del Villar I, Gonzalez‐Valencia E, Kwietniewski N, Burnat D, Armas D, Pituła E, Janik M, Matías IR, Giannetti A, Torres P, Chiavaioli F, Śmietana M. Nano-Photonic Crystal D-Shaped Fiber Devices for Label-Free Biosensing at the Attomolar Limit of Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310118. [PMID: 39044375 PMCID: PMC11425293 DOI: 10.1002/advs.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/24/2024] [Indexed: 07/25/2024]
Abstract
Maintaining both high sensitivity and large figure of merit (FoM) is crucial in regard to the performance of optical devices, particularly when they are intended for use as biosensors with extremely low limit of detection (LoD). Here, a stack of nano-assembled layers in the form of 1D photonic crystal, deposited on D-shaped single-mode fibers, is created to meet these criteria, resulting in the generation of Bloch surface wave resonances. The increase in the contrast between high and low refractive index (RI) nano-layers, along with the reduction of losses, enables not only to achieve high sensitivity, but also a narrowed resonance bandwidth, leading to a significant enhancement in the FoM. Preliminary testing for bulk RI sensitivity is carried out, and the effect of an additional nano-layer that mimics a biological layer where binding interactions occur is also considered. Finally, the biosensing capability is assessed by detecting immunoglobulin G in serum at very low concentrations, and a record LoD of 70 aM is achieved. An optical fiber biosensor that is capable of attaining extraordinarily low LoD in the attomolar range is not only a remarkable technical outcome, but can also be envisaged as a powerful tool for early diagnosis of diseases.
Collapse
Affiliation(s)
- Ignacio Del Villar
- Electrical, Electronic and Communications Engineering DepartmentPublic University of NavarrePamplona31006Spain
- Institute of Smart Cities (ISC)Public University of NavarraPamplona31006Spain
| | - Esteban Gonzalez‐Valencia
- Department of Electronic and Telecommunications EngineeringInstituto Tecnológico MetropolitanoMedellín050013Colombia
- Departamento de FísicaUniversidad Nacional de Colombia – Sede MedellínA.A. 3840Medellín050034Colombia
| | - Norbert Kwietniewski
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Dariusz Burnat
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Dayron Armas
- Electrical, Electronic and Communications Engineering DepartmentPublic University of NavarrePamplona31006Spain
| | - Emil Pituła
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Monika Janik
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
| | - Ignacio R. Matías
- Electrical, Electronic and Communications Engineering DepartmentPublic University of NavarrePamplona31006Spain
- Institute of Smart Cities (ISC)Public University of NavarraPamplona31006Spain
| | - Ambra Giannetti
- National Research Council of Italy (CNR)Institute of Applied Physics “Nello Carrara”Sesto Fiorentino50019Italy
| | - Pedro Torres
- Departamento de FísicaUniversidad Nacional de Colombia – Sede MedellínA.A. 3840Medellín050034Colombia
| | - Francesco Chiavaioli
- National Research Council of Italy (CNR)Institute of Applied Physics “Nello Carrara”Sesto Fiorentino50019Italy
| | - Mateusz Śmietana
- Warsaw University of TechnologyInstitute of Microelectronics and OptoelectronicsWarszawa00‐662Poland
- Łukasiewicz Research Network – Institute of Microelectronics and PhotonicsWarszawa02‐668Poland
| |
Collapse
|
6
|
Wang X, Ingavat N, Liew JM, Dzulkiflie N, Loh HP, Kok YJ, Bi X, Yang Y, Zhang W. Effects of molecule hydrophobicity and structural flexibility of appended bispecific antibody on Protein A chromatography. J Chromatogr A 2024; 1731:465206. [PMID: 39053253 DOI: 10.1016/j.chroma.2024.465206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Appended bispecific antibody (aBsAb) with two single chain variable fragments (scFv) linked at the c-terminus of its heavy chains is one of the promising formats in bispecific therapeutics. The presence of hydrophobic and flexible scFv fragments render aBsAb molecules higher molecule hydrophobicity and structural flexibility compared to monoclonal antibody (mAb), thus making its purification more challenging. We set out to investigate how the unique molecular properties of aBsAb affect its performance on Protein A chromatography. We showed that aBsAb has a high propensity for chromatography-induced aggregation due to its high molecule hydrophobicity, and this couldn't be improved by the addition of common chaotropic salts. Moreover, the presence of chaotropic salts, such as arginine hydrochloride (Arg-HCl), retarded aBsAb elution during Protein A chromatography rather than facilitating which was widely observed in mAb Protein A elution. Nevertheless, we were able to overcome the aggregation issue by optimizing elution condition and improved aBsAb purity from 29 % to 93 % in Protein A eluate with a high molecular weight (HMW) species of less than 5 %. We also showed that the high molecular flexibility of aBsAb leads to different hydrodynamic sizes of the aBsAb molecule post Protein A elution, neutralization, and re-acidification, which are pH dependent. This is different from mAbs where their sizes do not change post neutralization even with re-exposure to acid. The above unique observations of aBsAb in Protein A chromatography were clearly explained from the perspectives of its high molecular hydrophobicity and structural flexibility.
Collapse
Affiliation(s)
- Xinhui Wang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Nattha Ingavat
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Jia Min Liew
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Nuruljannah Dzulkiflie
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Han Ping Loh
- Cell Line Development, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yee Jiun Kok
- Analytical Science & Technology (Protein Analytics), Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Xuezhi Bi
- Analytical Science & Technology (Protein Analytics), Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuansheng Yang
- Cell Line Development, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Wei Zhang
- Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
7
|
Diodati NG, Dupee ZE, Lima FT, Famiglietti J, Smolchek RA, Qu G, Goddard Y, Nguyen DT, Sawyer WG, Phelps EA, Mehrad B, Schaller MA. 3D Culture Analysis of Cancer Cell Adherence to Ex Vivo Lung Microexplants. Tissue Eng Part C Methods 2024; 30:343-352. [PMID: 39078332 DOI: 10.1089/ten.tec.2024.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Ex vivo 3D culture of human tissue explants addresses many limitations of traditional monolayer cell culture techniques, namely the lack of cellular heterogeneity and absence of 3D intercellular spatial relationships, but presents challenges with regard to repeatability owing to the difficulty of acquiring multiple tissue samples from the same donor. In this study, we used a cryopreserved bank of human lung microexplants, ∼1 mm3 fragments of peripheral lung from donors undergoing lung resection surgery, and a liquid-like solid 3D culture matrix to describe a method for the analysis of non-small-cell lung cancer adhesion to human lung tissue. H226 (squamous cell carcinoma), H441 (lung adenocarcinoma), and H460 (large cell carcinoma) cell lines were cocultured with lung microexplants. Confocal fluorescence microscopy was used to visualize the adherence of each cell line to lung microexplants. Adherent cancer cells were quantified following filtration of nonadherent cells, digestion of cultured microexplants, and flow cytometry. This method was used to evaluate the role of integrins in cancer cell adherence. A statistically significant decrease in the adherence of H460 cells to lung microexplants was observed when anti-integrins were administered to H460 cells before coculture with lung microexplants.
Collapse
Affiliation(s)
- Nickolas G Diodati
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zadia E Dupee
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Felipe T Lima
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jack Famiglietti
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
| | - Ryan A Smolchek
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
| | - Ganlin Qu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yana Goddard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Duy T Nguyen
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
- Department of BioEngineering, Moffitt Cancer Center, Tampa, Florida, USA
| | - W Gregory Sawyer
- Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
- Department of BioEngineering, Moffitt Cancer Center, Tampa, Florida, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida Herbert, Gainesville, Florida, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Matthew A Schaller
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
8
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
9
|
Mitrut RE, Stranford DM, DiBiase BN, Chan JM, Bailey MD, Luo M, Harper CS, Meade TJ, Wang M, Leonard JN. HaloTag display enables quantitative single-particle characterisation and functionalisation of engineered extracellular vesicles. J Extracell Vesicles 2024; 13:e12469. [PMID: 38965984 PMCID: PMC11224594 DOI: 10.1002/jev2.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/01/2024] [Indexed: 07/06/2024] Open
Abstract
Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity and other properties. Measuring how incorporation varies across a population of EVs is important for characterising such materials and understanding their function, yet it remains challenging to quantitatively characterise the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterisation platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labelling to antibody-labelling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labelling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterisation tool which complements and expands existing methods.
Collapse
Affiliation(s)
- Roxana E. Mitrut
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Devin M. Stranford
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Beth N. DiBiase
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Jonathan M. Chan
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | | | - Minrui Luo
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
| | - Clare S. Harper
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
| | - Thomas J. Meade
- Department of ChemistryNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityEvanstonIllinoisUSA
| | - Muzhou Wang
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Joshua N. Leonard
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityEvanstonIllinoisUSA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIllinoisUSA
- Interdisciplinary Biological Sciences Training ProgramNorthwestern UniversityEvanstonIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
10
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
11
|
Mitrut RE, Stranford DM, DiBiase BN, Chan JM, Bailey MD, Luo M, Harper CS, Meade TJ, Wang M, Leonard JN. HaloTag display enables quantitative single-particle characterization and functionalization of engineered extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559433. [PMID: 37808729 PMCID: PMC10557717 DOI: 10.1101/2023.09.25.559433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Extracellular vesicles (EVs) play key roles in diverse biological processes, transport biomolecules between cells, and have been engineered for therapeutic applications. A useful EV bioengineering strategy is to express engineered proteins on the EV surface to confer targeting, bioactivity, and other properties. Measuring how incorporation varies across a population of EVs is important for characterizing such materials and understanding their function, yet it remains challenging to quantitatively characterize the absolute number of engineered proteins incorporated at single-EV resolution. To address these needs, we developed a HaloTag-based characterization platform in which dyes or other synthetic species can be covalently and stoichiometrically attached to engineered proteins on the EV surface. To evaluate this system, we employed several orthogonal quantification methods, including flow cytometry and fluorescence microscopy, and found that HaloTag-mediated quantification is generally robust across EV analysis methods. We compared HaloTag-labeling to antibody-labeling of EVs using single vesicle flow cytometry, enabling us to measure the substantial degree to which antibody labeling can underestimate proteins present on an EV. Finally, we demonstrate the use of HaloTag to compare between protein designs for EV bioengineering. Overall, the HaloTag system is a useful EV characterization tool which complements and expands existing methods.
Collapse
|
12
|
Longoria-García S, Sánchez-Domínguez CN, Sánchez-Domínguez M, Delgado-Balderas JR, Islas-Cisneros JF, Vidal-Gutiérrez O, Gallardo-Blanco HL. Design and Characterization of pMyc/pMax Peptide-Coupled Gold Nanosystems for Targeting Myc in Prostate Cancer Cell Lines. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2802. [PMID: 37887952 PMCID: PMC10609645 DOI: 10.3390/nano13202802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Myc and Max are essential proteins in the development of prostate cancer. They act by dimerizing and binding to E-box sequences. Disrupting the Myc:Max heterodimer interaction or its binding to E-box sequences to interrupt gene transcription represent promising strategies for treating cancer. We designed novel pMyc and pMax peptides from reference sequences, and we evaluated their ability to bind specifically to E-box sequences using an electrophoretic mobility shift assay (EMSA). Then, we assembled nanosystems (NSs) by coupling pMyc and pMax peptides to AuNPs, and determined peptide conjugation using UV-Vis spectroscopy. After that, we characterized the NS to obtain the nanoparticle's size, hydrodynamic diameter, and zeta potential. Finally, we evaluated hemocompatibility and cytotoxic effects in three different prostate adenocarcinoma cell lines (LNCaP, PC-3, and DU145) and a non-cancerous cell line (Vero CCL-81). EMSA results suggests peptide-nucleic acid interactions between the pMyc:pMax dimer and the E-box. The hemolysis test showed little hemolytic activity for the NS at the concentrations (5, 0.5, and 0.05 ng/µL) we evaluated. Cell viability assays showed NS cytotoxicity. Overall, results suggest that the NS with pMyc and pMax peptides might be suitable for further research regarding Myc-driven prostate adenocarcinomas.
Collapse
Affiliation(s)
- Samuel Longoria-García
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Celia N. Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico
| | - Jesús R. Delgado-Balderas
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Avenida Universidad s/n, Cd. Universitaria, San Nicolás de los Garza 66455, Mexico
| | - José F. Islas-Cisneros
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Oscar Vidal-Gutiérrez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, Mexico
| | - Hugo L. Gallardo-Blanco
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, Mexico
| |
Collapse
|
13
|
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. NANOTECHNOLOGY 2023; 34:492002. [PMID: 37625391 PMCID: PMC10523595 DOI: 10.1088/1361-6528/acf3f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.
Collapse
Affiliation(s)
- Sihan Chen
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Rashid Bashir
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
14
|
Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol 2023; 14:1207276. [PMID: 37638058 PMCID: PMC10450036 DOI: 10.3389/fimmu.2023.1207276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role in immunity by killing virally infected or tumor cells and secreting cytokines and chemokines. NK cell-mediated immunotherapy has emerged as a promising approach for cancer treatment due to its safety and effectiveness. NK cell engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE (trispecific killer cell engager), are a novel class of antibody-based therapeutics that exhibit several advantages over other cancer immunotherapies harnessing NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to tumor cell lysis. A growing number of NKCEs are currently undergoing development, with some already in clinical trials. However, there is a need for more comprehensive studies to determine how the molecular design of NKCEs affects their functionality and manufacturability, which are crucial for their development as off-the-shelf drugs for cancer treatment. In this review, we summarize current knowledge on NKCE development and discuss critical factors required for the production of effective NKCEs.
Collapse
Affiliation(s)
- Minchuan Zhang
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Pink D, Basu A, Wong M, Pham D, Valencia J, Triana V, Beatty PH, Rieger AM, Lewis JD. Antibody titrations are critical for microflow cytometric analysis of extracellular vesicles. Cytometry A 2023; 103:670-683. [PMID: 37314191 DOI: 10.1002/cyto.a.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 06/15/2023]
Abstract
Optimization of flow cytometry assays for extracellular vesicles (EVs) often fail to include appropriate reagent titrations - the most critically antibody titration is either not performed or is incomplete. Using nonoptimal antibody concentration is one of the main sources of error leading to a lack of reproducible data. Antibody titration for the analysis of antigens on the surface of EVs is challenging for a variety of technical reasons. Using platelets as surrogates for cells and platelet-derived particles as surrogates for EV populations, we demonstrate our process for antibody titration, highlighting some of the key analysis parameters that may confound and surprise new researchers moving into the field of EV research. Additional care must be exercised to ensure instrument and reagent controls are utilized appropriately. Complete graphical analysis of positive and negative signal intensities, concentration, and separation or stain index data is highly beneficial when paired with visual analysis of the cytometry data. Using analytical flow cytometry procedures optimized for cells for EV analysis can lead to misleading and nonreproducible results.
Collapse
Affiliation(s)
| | | | - Michael Wong
- Nanostics, Inc., Edmonton, Alberta, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Diana Pham
- Nanostics, Inc., Edmonton, Alberta, Canada
| | | | | | | | - Aja M Rieger
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John D Lewis
- Nanostics, Inc., Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Ercan Ş, Tat M. Determination of lipemia acceptance thresholds for 31 immunoassay analytes. Clin Chim Acta 2023; 548:117508. [PMID: 37572842 DOI: 10.1016/j.cca.2023.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Lipemia is one of common endogenous interferences that can compromises sample quality and potentially influence results of various laboratory methods. Determination of the lipemic index or triglyceride concentrations are used to define the degree of lipemia. This study was aimed to establish lipemic index (LI) and triglyceride thresholds above where significant interference exists for 31 immunoassay analytes measured on Roche Cobas 6000. MATERIALS AND METHODS The study was carried out following CLSI C56-A and EP07-ED3:2018 guidelines using sample pools spiked with increasing concentrations of lipid emulsion solution, reaching 70 mmol/L. To define the LI and triglyceride thresholds, the bias from concentration in the native sample was calculated at different lipemia degree and compared with allowable error limits based on biological variation or state-of-the-art technology. RESULTS No lipemia interference was observed for 27 out of 31 analytes even at the highest concentrations of lipid emulsion (LI ranging from 1737 to 2086 mg/dL, triglyceride concentration 60.34-73.99 mmol/L). However, progesterone, 25-OH vitamin D, testosterone, and estradiol were negatively affected by lipemia at 217 mg/dL (9.58 mmol/L), 222 mg/dL (10.66 mmol/L), 478 mg/dL (18.81 mmol/L), and 941 mg/dL (35.82 mmol/L) of the LI (triglyceride concentration), respectively. CONCLUSION Most immunoassays evaluated in this study were found to be robust to lipemia interference. By using these thresholds, laboratories can report the immunoassay results from analyzing a lipemic patient sample in many cases.
Collapse
Affiliation(s)
- Şerif Ercan
- Lüleburgaz State Hospital, Department of Medical Biochemistry, Kırklareli, Turkey.
| | - Mustafa Tat
- Kırklareli Education and Research Hospital, Department of Medical Biochemistry, Kırklareli, Turkey
| |
Collapse
|
17
|
Sarcina L, Scandurra C, Di Franco C, Caputo M, Catacchio M, Bollella P, Scamarcio G, Macchia E, Torsi L. A stable physisorbed layer of packed capture antibodies for high-performance sensing applications. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:9093-9106. [PMID: 37457868 PMCID: PMC10341389 DOI: 10.1039/d3tc01123b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
Antibody physisorption at a solid interface is a very interesting phenomenon that has important effects on applications such as the development of novel biomaterials and the rational design and fabrication of high-performance biosensors. The strategy selected to immobilize biorecognition elements can determine the performance level of a device and one of the simplest approaches is physical adsorption, which is cost-effective, fast, and compatible with printing techniques as well as with green-chemistry processes. Despite its huge advantages, physisorption is very seldom adopted, as there is an ingrained belief that it does not lead to high performance because of its lack of uniformity and long-term stability, which, however, have never been systematically investigated, particularly for bilayers of capture antibodies. Herein, the homogeneity and stability of an antibody layer against SARS-CoV-2-Spike1 (S1) protein physisorbed onto a gold surface have been investigated by means of multi-parametric surface plasmon resonance (MP-SPR). A surface coverage density of capture antibodies as high as (1.50 ± 0.06) × 1012 molecules per cm-2 is measured, corresponding to a thickness of 12 ± 1 nm. This value is compatible with a single monolayer of homogeneously deposited antibodies. The effect of the ionic strength (is) of the antibody solution in controlling physisorption of the protein was thoroughly investigated, demonstrating an enhancement in surface coverage at lower ionic strength. An atomic force microscopy (AFM) investigation shows a globular structure attributed to is-related aggregations of antibodies. The long-term stability over two weeks of the physisorbed proteins was also assessed. High-performance sensing was proven by evaluating figures of merit, such as the limit of detection (2 nM) and the selectivity ratio between a negative control and the sensing experiment (0.04), which is the best reported performance for an SPR S1 protein assay. These figures of merit outmatch those measured with more sophisticated biofunctionalization procedures involving chemical bonding of the capture antibodies to the gold surface. The present study opens up interesting new pathways toward the achievement of a cost-effective and scalable biofunctionalization protocol, which could guarantee the prolonged stability of the biolayer and easy handling of the biosensing system.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
| | - Cinzia Di Franco
- CNR - Institute of Photonics and Nanotechnologies 70126 Bari Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro 70126 Bari Italy
| | - Michele Catacchio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro 70126 Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
| | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro 70126 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro 70126 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
- The Faculty of Science and Engineering, Åbo Akademi University 20500 Turku Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
- The Faculty of Science and Engineering, Åbo Akademi University 20500 Turku Finland
| |
Collapse
|
18
|
Evans DCS, Khamas AB, Marcussen L, Rasmussen KS, Klitgaard JK, Kallipolitis BH, Nielsen J, Otzen DE, Leake MC, Meyer RL. GFP fusions of Sec-routed extracellular proteins in Staphylococcus aureus reveal surface-associated coagulase in biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:145-156. [PMID: 37395997 PMCID: PMC10311078 DOI: 10.15698/mic2023.07.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Staphylococcus aureus is a major human pathogen that utilises many surface-associated and secreted proteins to form biofilms and cause disease. However, our understanding of these processes is limited by challenges of using fluorescent protein reporters in their native environment, because they must be exported and fold correctly to become fluorescent. Here, we demonstrate the feasibility of using the monomeric superfolder GFP (msfGFP) exported from S. aureus. By fusing msfGFP to signal peptides for the Secretory (Sec) and Twin Arginine Translocation (Tat) pathways, the two major secretion pathways in S. aureus, we quantified msfGFP fluorescence in bacterial cultures and cell-free supernatant from the cultures. When fused to a Tat signal peptide, we detected msfGFP fluorescence inside but not outside bacterial cells, indicating a failure to export msfGFP. However, when fused to a Sec signal peptide, msfGFP fluorescence was present outside cells, indicating successful export of the msfGFP in the unfolded state, followed by extracellular folding and maturation to the photoactive state. We applied this strategy to study coagulase (Coa), a secreted protein and a major contributor to the formation of a fibrin network in S. aureus biofilms that protects bacteria from the host immune system and increases attachment to host surfaces. We confirmed that a genomically integrated C-terminal fusion of Coa to msfGFP does not impair the activity of Coa or its localisation within the biofilm matrix. Our findings demonstrate that msfGFP is a good candidate fluorescent reporter to consider when studying proteins secreted by the Sec pathway in S. aureus.
Collapse
Affiliation(s)
- Dominique C. S. Evans
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Department of Physics, University of York, York, UK
| | - Amanda B. Khamas
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Lisbeth Marcussen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Kristian S. Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Janne K. Klitgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Mark C. Leake
- Department of Physics, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Li Y, Kučera O, Cuvelier D, Rutkowski DM, Deygas M, Rai D, Pavlovič T, Vicente FN, Piel M, Giannone G, Vavylonis D, Akhmanova A, Blanchoin L, Théry M. Compressive forces stabilize microtubules in living cells. NATURE MATERIALS 2023; 22:913-924. [PMID: 37386067 PMCID: PMC10569437 DOI: 10.1038/s41563-023-01578-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.
Collapse
Affiliation(s)
- Yuhui Li
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
| | - Ondřej Kučera
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
- Department of Engineering Technology, South East Technological University, Waterford, Ireland
| | - Damien Cuvelier
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
- Sorbonne Université, F-75005, Paris, France
| | | | - Mathieu Deygas
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Dipti Rai
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tonja Pavlovič
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Matthieu Piel
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | | | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laurent Blanchoin
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| | - Manuel Théry
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| |
Collapse
|
20
|
Manso T, Kushwaha A, Abdollahi N, Duroux P, Giudicelli V, Kossida S. Mechanisms of action of monoclonal antibodies in oncology integrated in IMGT/mAb-DB. Front Immunol 2023; 14:1129323. [PMID: 37215135 PMCID: PMC10196129 DOI: 10.3389/fimmu.2023.1129323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.
Collapse
|
21
|
Abebe EC, Dejenie TA. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front Immunol 2023; 14:1055457. [PMID: 36742320 PMCID: PMC9892939 DOI: 10.3389/fimmu.2023.1055457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neutralizing antibodies (NAbs) are central players in the humoral immunity that defends the body from SARS-CoV-2 infection by blocking viral entry into host cells and neutralizing their biological effects. Even though NAbs primarily work by neutralizing viral antigens, on some occasions, they may also combat the SARS-CoV-2 virus escaping neutralization by employing several effector mechanisms in collaboration with immune cells like natural killer (NK) cells and phagocytes. Besides their prophylactic and therapeutic roles, antibodies can be used for COVID-19 diagnosis, severity evaluation, and prognosis assessment in clinical practice. Furthermore, the measurement of NAbs could have key implications in determining individual or herd immunity against SARS-CoV-2, vaccine effectiveness, and duration of the humoral protective response, as well as aiding in the selection of suitable individuals who can donate convalescent plasma to treat infected people. Despite all these clinical applications of NAbs, using them in clinical settings can present some challenges. This review discusses the protective functions, possible protective mechanisms against SARS-CoV-2, and potential clinical applications of NAbs in COVID-19. This article also highlights the possible challenges and solutions associated with COVID-19 antibody-based prophylaxis, therapy, and vaccination.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
22
|
Kim S, Sabatini BL. Analytical approaches to examine gamma-aminobutyric acid and glutamate vesicular co-packaging. Front Synaptic Neurosci 2023; 14:1076616. [PMID: 36685083 PMCID: PMC9846491 DOI: 10.3389/fnsyn.2022.1076616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Multi-transmitter neurons, i.e., those that release more than one type of neurotransmitter, have been found in many organisms and brain areas. Given the peculiar biology of these cells, as well as the potential for diverse effects of each of the transmitters released, new tools, and approaches are necessary to parse the mechanisms and functions of synaptic co-transmission. Recently, we and others have studied neurons that project to the lateral habenula and release both gamma-aminobutyric acid (GABA) and glutamate, in some cases by packaging both transmitters in the same synaptic vesicles. Here, we discuss the main challenges with current electrophysiological approaches to studying the mechanisms of glutamate/GABA co-release, a novel statistical analysis that can identify co-packaging of neurotransmitters versus release from separate vesicle, and the implications of glutamate/GABA co-release for synapse function and plasticity.
Collapse
Affiliation(s)
| | - Bernardo L. Sabatini
- Department of Neurobiology and Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| |
Collapse
|
23
|
Salehirozveh M, Porro A, Thei F. Large-scale production of polyimide micropore-based flow cells for detecting nano-sized particles in fluids. RSC Adv 2023; 13:873-880. [PMID: 36686911 PMCID: PMC9811244 DOI: 10.1039/d2ra07423k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
In diagnostic and sequencing applications, solid-state nanopores hold significant promise as a single-molecule sensing platform. The fabrication of precisely sized pores has traditionally been challenging, laborious, expensive, and inefficient, which has limited its applications until recently. To overcome this problem, this paper proposes a novel, reliable, cost-effective, portable, mass-productive, robust, and ease-of-use micropore flow cell that works based on the resistive pulse sensor (RPS) technique in order to distinguish the different sizes of c nanoparticles. RPS is a robust and informative technique that can provide valuable details of the size, shape, charge, and individual particle concentrations in the media. By femtosecond laser drilling of a polyimide substrate as an alternate material, translocation of 100, 300, and 350 nm polystyrene nanoparticles in PBS buffer was distinguished by 0.1, 1, and 2 nA current blockade levels, respectively. This is the first time a micropore has been opened in a polyimide membrane using a femtosecond laser in a single step. The experimental and theoretical investigation, scanning electron microscopy and focused ion beam spectroscopy were performed to comprehensively explain the micropore's performance. We showed that our innovative micropore-based flow cell could distinguish nano-sized particles in fluids, and it can be used in large-scale production because of its simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Department Of Physics And Astronomy, University of BolognaBolognaItaly,Elements SRLCesenaItaly
| | - Alessandro Porro
- Department of Biosciences, University of MilanMilanItaly,Elements SRLCesenaItaly
| | | |
Collapse
|
24
|
Nguyen DT, Mun S, Park H, Jeong U, Kim GH, Lee S, Jun CS, Sung MM, Kim D. Super-Resolution Fluorescence Imaging for Semiconductor Nanoscale Metrology and Inspection. NANO LETTERS 2022; 22:10080-10087. [PMID: 36475711 DOI: 10.1021/acs.nanolett.2c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The increase in the number and complexity of process levels in semiconductor production has driven the need for the development of new measurement methods that can evaluate semiconductor devices at the critical dimensions of fine patterns and simultaneously inspect nanoscale contaminants or defects. However, conventional optical inspection methods often fail to resolve device patterns or defects at the level of tens of nanometers required for device development owing to their diffraction-limited resolutions. In this study, we used the stochastic optical reconstruction microscopy (STORM) technique to image semiconductor nanostructures with feature sizes as small as 30 nm and detect individual 20 nm-diameter contaminants. STORM imaging of semiconductor nanopatterns is based on the development of a selective labeling method of fluorophores for a negative silicon oxide surface using the charge interaction of positive polyethylenimine molecules. This study demonstrates the potential of STORM for nanoscale metrology and in-line defect inspection of semiconductor integrated circuits.
Collapse
Affiliation(s)
- Duyen Thi Nguyen
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Seohyun Mun
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - HyunBum Park
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Uidon Jeong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Geun-Ho Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Seongsil Lee
- Advanced Manufacturing Engineering Team, Semiconductor R&D Center, Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, Republic of Korea
| | - Chung-Sam Jun
- Advanced Manufacturing Engineering Team, Semiconductor R&D Center, Samsung Electronics, Hwaseong-si, Gyeonggi-do 18448, Republic of Korea
| | - Myung Mo Sung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Institute of Nano Science and Technology, and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
25
|
Poulie CBM, Sporer E, Hvass L, Jørgensen JT, Kempen PJ, Lopes van den Broek SI, Shalgunov V, Kjaer A, Jensen AI, Herth MM. Bioorthogonal Click of Colloidal Gold Nanoparticles to Antibodies In vivo. Chemistry 2022; 28:e202201847. [PMID: 35851967 DOI: 10.1002/chem.202201847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Emanuel Sporer
- Center for Nanomedicine and Theranostics, DTU Health Technology, Technical University of Denmark (DTU), Ørsteds Plads 345C, 2800, Lyngby, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Paul J Kempen
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), Ørsteds Plads 347, 2800, Lyngby, Denmark
| | - Sara I Lopes van den Broek
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Andreas I Jensen
- Center for Nanomedicine and Theranostics, DTU Health Technology, Technical University of Denmark (DTU), Ørsteds Plads 345C, 2800, Lyngby, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
26
|
Hao X, Yang X, Zou S, Cao X. Surface Modification of Poly(styrene) 96-well Plates Using Aptamers via a Dendrimer-templated Strategy to Enhance ELISA Performances. Colloids Surf B Biointerfaces 2022; 221:113003. [DOI: 10.1016/j.colsurfb.2022.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/05/2022]
|
27
|
Payandehpeyman J, Parvini N, Moradi K, Hashemian N. Design and finite element modeling of two-dimensional nanomechanical biosensors for SARS-CoV-2 detection. DIAMOND AND RELATED MATERIALS 2022; 128:109263. [PMID: 35891677 PMCID: PMC9303063 DOI: 10.1016/j.diamond.2022.109263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 disease. The development of different variants has increased the prevalence, pathogenicity, and mortality of the SARS-CoV-2. Prompt diagnosis and timely initiation of therapy can undoubtedly minimize the damage caused by this virus. In this study, a wide range of emerging single layer two-dimensional materials (SL2DMs), including graphene, grapheme oxide (GO), reduced graphene oxide (rGO), hexagonal boron nitride (h-BN), Ti3C2Tx MXene, and MoS2that can be used to fabricate highly sensitive biosensors, are analyzed using the finite element method based on antigen-antibody interaction. Important design parameters including sensor size, sensor aspect ratio, number of viruses, and applying in-plane strain on sensor performance are analyzed using frequency shift technique. In the following, an analytical relationship that can predict the limit of detection (LOD) according to the above parameters is proposed. The results show that all the above materials have a good performance in detecting viruses in the sample range of 10-100 viruses. This range can be reduced significantly by applying strains of less than 0.1. Also, applying strain increases shift frequency index by 2 to 3 times, which is a significant result. The maximum and minimum sensor performance are obtained for GO and Ti3C2Tx, respectively. The results of this paper can be used to build a new generation of two-dimensional biosensors for rapid detection of COVID-19 and other viruses.
Collapse
Affiliation(s)
- J Payandehpeyman
- Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - N Parvini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - K Moradi
- Department of Mechanical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - N Hashemian
- Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Chen Y, Yang Y, Feng J, Carrier AJ, Tyagi D, Yu X, Wang C, Oakes KD, Zhang X. A universal monoclonal antibody-aptamer conjugation strategy for selective non-invasive bioparticle isolation from blood on a regenerative microfluidic platform. Acta Biomater 2022; 152:210-220. [PMID: 36087870 DOI: 10.1016/j.actbio.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Simultaneous isolation of various circulating tumor cell (CTC) subtypes from whole blood is useful in cancer diagnosis and prognosis. Microfluidic affinity separation devices are promising for CTC separation because of their high throughput capacity and automatability. However, current affinity agents, such as antibodies (mAbs) and aptamers (Apts) alone, are still suboptimal for efficient, consistent, and versatile cell analysis. By introducing a hybrid affinity agent, i.e., an aptamer-antibody (Apt-mAb) conjugate, we developed a universal and regenerative microchip with high efficiency and non-invasiveness in the separation and profiling of various CTCs from blood. The Apt-mAb conjugate consists of a monoclonal antibody that specifically binds the target cell receptor and a surface-bound aptamer that recognizes the conserved Fc region of the mAb. The aptamer then indirectly links the surface functionalization of the microfluidic channels to the mAbs. This hybrid affinity agent and the microchip platform may be widely useful for various bio-particle separations in different biological matrices. Further, the regeneration capability of the microchip improves data consistency between multiple uses and minimizes plastic waste while promoting environmental sustainability. STATEMENT OF SIGNIFICANCE: A hybrid affinity agent, Apt-mAb, consisting of a universal aptamer (Apt) that binds the conserved Fc region of monoclonal antibodies (mAbs) was developed. The invented nano-biomaterial combines the strengths and overcomes the weakness of both Apts and mAbs, thus changing the paradigm of affinity separation of cell subtypes. When Apt-mAb was used to fabricate microfluidic chips using a "universal screwdriver" approach, the microchip could be easily tuned to bind any cell type, exhibiting great universality. Besides high sensitivity and selectivity, the superior regenerative capacity of the microchips makes them reusable, which provides improved consistency and repeatability in cell profiling and opens a new approach towards in vitro diagnostic point-of-care testing devices with environmental sustainability and cost-effectiveness.
Collapse
Affiliation(s)
- Yongli Chen
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Yikun Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China.
| | - Jinglong Feng
- Department of Biological Applied Engineering, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Deependra Tyagi
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Xin Yu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Chunguang Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Ken D Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia, B1P 6L2, Canada.
| |
Collapse
|
29
|
Yin R, Zhu X, Zeng M, Wu P, Li M, Kwoh CK. A framework for predicting variable-length epitopes of human-adapted viruses using machine learning methods. Brief Bioinform 2022; 23:6645487. [PMID: 35849093 DOI: 10.1093/bib/bbac281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
The coronavirus disease 2019 pandemic has alerted people of the threat caused by viruses. Vaccine is the most effective way to prevent the disease from spreading. The interaction between antibodies and antigens will clear the infectious organisms from the host. Identifying B-cell epitopes is critical in vaccine design, development of disease diagnostics and antibody production. However, traditional experimental methods to determine epitopes are time-consuming and expensive, and the predictive performance using the existing in silico methods is not satisfactory. This paper develops a general framework to predict variable-length linear B-cell epitopes specific for human-adapted viruses with machine learning approaches based on Protvec representation of peptides and physicochemical properties of amino acids. QR decomposition is incorporated during the embedding process that enables our models to handle variable-length sequences. Experimental results on large immune epitope datasets validate that our proposed model's performance is superior to the state-of-the-art methods in terms of AUROC (0.827) and AUPR (0.831) on the testing set. Moreover, sequence analysis also provides the results of the viral category for the corresponding predicted epitopes with high precision. Therefore, this framework is shown to reliably identify linear B-cell epitopes of human-adapted viruses given protein sequences and could provide assistance for potential future pandemics and epidemics.
Collapse
Affiliation(s)
- Rui Yin
- Department of Biomedical Informatics, Harvard Medical School, Boston, USA
| | - Xianghe Zhu
- Department of Statistics, University of Oxford, Oxford, UK
| | - Min Zeng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Pengfei Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
30
|
Xu L, Ramadan S, Rosa BG, Zhang Y, Yin T, Torres E, Shaforost O, Panagiotopoulos A, Li B, Kerherve G, Kim DK, Mattevi C, Jiao LR, Petrov PK, Klein N. On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium. SENSORS & DIAGNOSTICS 2022; 1:719-730. [PMID: 35923775 PMCID: PMC9280445 DOI: 10.1039/d2sd00076h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 01/12/2023]
Abstract
Graphene field-effect transistor (GFET) biosensors exhibit high sensitivity due to a large surface-to-volume ratio and the high sensitivity of the Fermi level to the presence of charged biomolecules near the surface. For most reported GFET biosensors, bulky external reference electrodes are used which prevent their full-scale chip integration and contribute to higher costs per test. In this study, GFET arrays with on-chip integrated liquid electrodes were employed for COVID-19 detection and functionalized with either antibody or aptamer to selectively bind the spike proteins of SARS-CoV-2. In the case of the aptamer-functionalized GFET (aptasensor, Apt-GFET), the limit-of-detection (LOD) achieved was about 103 particles per mL for virus-like particles (VLPs) in clinical transport medium, outperforming the Ab-GFET biosensor counterpart. In addition, the aptasensor achieved a LOD of 160 aM for COVID-19 neutralizing antibodies in serum. The sensors were found to be highly selective, fast (sample-to-result within minutes), and stable (low device-to-device signal variation; relative standard deviations below 0.5%). A home-built portable readout electronic unit was employed for simultaneous real-time measurements of 12 GFETs per chip. Our successful demonstration of a portable GFET biosensing platform has high potential for infectious disease detection and other health-care applications.
Collapse
Affiliation(s)
- Lizhou Xu
- Department of Materials, Imperial College LondonLondonSW7 2AZUK,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang UniversityHangzhou311200China
| | - Sami Ramadan
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | | | - Yuanzhou Zhang
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Tianyi Yin
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Elias Torres
- Graphenea SemiconductorPaseo Mikeletegi 83San Sebastián20009Spain
| | - Olena Shaforost
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | | | - Bing Li
- Department of Brain Sciences, Imperial College LondonLondonW12 0BZUK,Care Research & Technology Centre, UK Dementia Research InstituteW12 0BZUK,Institute for Materials Discovery, University College LondonRoberts BuildingLondonWC1E 7JEUK
| | | | - Dong Kuk Kim
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Cecilia Mattevi
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Long R. Jiao
- Department of Hepatobiliary Surgery, Division of Surgery & Cancer, Imperial College LondonHammersmith Hospital Campus, Du Cane RoadLondonW12 0NNUK
| | - Peter K. Petrov
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| | - Norbert Klein
- Department of Materials, Imperial College LondonLondonSW7 2AZUK
| |
Collapse
|
31
|
Ingram SP, Warmenhoven JW, Henthorn NT, Chadiwck AL, Santina EE, McMahon SJ, Schuemann J, Kirkby NF, Mackay RI, Kirkby KJ, Merchant MJ. A computational approach to quantifying miscounting of radiation-induced double-strand break immunofluorescent foci. Commun Biol 2022; 5:700. [PMID: 35835982 PMCID: PMC9283546 DOI: 10.1038/s42003-022-03585-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Immunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images. Simulations of the DSB distributions were generated using Monte Carlo track-structure simulation. For each DSB distribution, a corresponding DNA repair process was modelled and the un-repaired DSBs were recorded at several time points. Corresponding microscopy images for both a DSB and (γ-H2AX) fluorescent marker were generated and compared for different microscopes, radiation types and doses. Statistically significant differences in miscounting were found across most of the tested scenarios. These inconsistencies were propagated through to repair kinetics where there was a perceived change between radiation-types. These changes did not reflect the underlying repair rate and were caused by inconsistencies in foci counting. We conclude that these underlying uncertainties must be considered when analysing images of DNA damage markers to ensure differences observed are real and are not caused by non-systematic miscounting. PyFoci is a tool that simulates distributions of fluorescently labeled DNA double-strand break marker protein foci and allows the estimation of miscounting under different radiation types, doses and microscopy settings.
Collapse
Affiliation(s)
- Samuel P Ingram
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK. .,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK.
| | - John-William Warmenhoven
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Nicholas T Henthorn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Amy L Chadiwck
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Elham E Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queens University Belfast, 97 Lisburn Rd, Belfast, BT9 7AE, UK
| | - Jan Schuemann
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 30 Fruit Street, Boston, MA, 02114, USA
| | - Norman F Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Ranald I Mackay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Karen J Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Wilmslow Rd, Manchester, M20 4BX, UK
| |
Collapse
|
32
|
Gold nanomaterials and their potential use as cryo-electron tomography labels. J Struct Biol 2022; 214:107880. [PMID: 35809758 DOI: 10.1016/j.jsb.2022.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
Rapid advances in cryo-electron tomography (cryo-ET) are driving a revolution in cellular structural biology. However, unambiguous identification of specific biomolecules within cellular tomograms remains challenging. Overcoming this obstacle and reliably identifying targets in the crowded cellular environment is of major importance for the understanding of cellular function and is a pre-requisite for high-resolution structural analysis. The use of highly-specific, readily visualised and adjustable labels would help mitigate this issue, improving both data quality and sample throughput. While progress has been made in cryo-CLEM and in the development of cloneable high-density tags, technical issues persist and a robust 'cryo-GFP' remains elusive. Readily-synthesized gold nanomaterials conjugated to small 'affinity modules' may represent a solution. The synthesis of materials including gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) is increasingly well understood and is now within the capabilities of non-specialist laboratories. The remarkable chemical and photophysical properties of <3nm diameter nanomaterials and their emergence as tools with widespread biomedical application presents significant opportunities to the cryo-microscopy community. In this review, we will outline developments in the synthesis, functionalisation and labelling uses of both AuNPs and AuNCs in cryo-ET, while discussing their potential as multi-modal probes for cryo-CLEM.
Collapse
|
33
|
Tiemeijer BM, Tel J. Hydrogels for Single-Cell Microgel Production: Recent Advances and Applications. Front Bioeng Biotechnol 2022; 10:891461. [PMID: 35782502 PMCID: PMC9247248 DOI: 10.3389/fbioe.2022.891461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Single-cell techniques have become more and more incorporated in cell biological research over the past decades. Various approaches have been proposed to isolate, culture, sort, and analyze individual cells to understand cellular heterogeneity, which is at the foundation of every systematic cellular response in the human body. Microfluidics is undoubtedly the most suitable method of manipulating cells, due to its small scale, high degree of control, and gentle nature toward vulnerable cells. More specifically, the technique of microfluidic droplet production has proven to provide reproducible single-cell encapsulation with high throughput. Various in-droplet applications have been explored, ranging from immunoassays, cytotoxicity assays, and single-cell sequencing. All rely on the theoretically unlimited throughput that can be achieved and the monodispersity of each individual droplet. To make these platforms more suitable for adherent cells or to maintain spatial control after de-emulsification, hydrogels can be included during droplet production to obtain “microgels.” Over the past years, a multitude of research has focused on the possibilities these can provide. Also, as the technique matures, it is becoming clear that it will result in advantages over conventional droplet approaches. In this review, we provide a comprehensive overview on how various types of hydrogels can be incorporated into different droplet-based approaches and provide novel and more robust analytic and screening applications. We will further focus on a wide range of recently published applications for microgels and how these can be applied in cell biological research at the single- to multicell scale.
Collapse
Affiliation(s)
- B. M. Tiemeijer
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, Eindhoven, Netherlands
| | - J. Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, Eindhoven, Netherlands
- *Correspondence: J. Tel,
| |
Collapse
|
34
|
Basso CR, Yamakawa AC, Cruz TF, Pedrosa VA, Magro M, Vianello F, Araújo Júnior JP. Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis. Pathogens 2022; 11:570. [PMID: 35631091 PMCID: PMC9147935 DOI: 10.3390/pathogens11050570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of the current study is to present a low-cost and easy-to-interpret colorimetric kit used to diagnose porcine circovirus 2 (PCV-2) to the naked eye, without any specific equipment. The aforementioned kit used as base hybrid nanoparticles resulting from the merge of surface active maghemite nanoparticles and gold nanoparticles, based on the deposition of specific PCV-2 antibodies on their surface through covalent bonds. In total, 10 negative and 40 positive samples (≥102 DNA copies/µL of serum) confirmed by qPCR technique were tested. PCV-1 virus, adenovirus, and parvovirus samples were tested as interferents to rule out likely false-positive results. Positive samples showed purple color when they were added to the complex, whereas negative samples showed red color; they were visible to the naked eye. The entire color-change process took place approximately 1 min after the analyzed samples were added to the complex. They were tested at different dilutions, namely pure, 1:10, 1:100, 1:1000, and 1:10,000. Localized surface plasmon resonance (LSPR) and transmission electron microscopy (TEM) images were generated to validate the experiment. This new real-time PCV-2 diagnostic methodology emerged as simple and economic alternative to traditional tests since the final price of the kit is USD 4.00.
Collapse
Affiliation(s)
- Caroline Rodrigues Basso
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
| | - Ana Carolina Yamakawa
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
| | - Taís Fukuta Cruz
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Valber Albuquerque Pedrosa
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Massimiliano Magro
- Comparative Biomedicine and Food Science Department, University of Padua, 35020 Legnaro, Italy; (M.M.); (F.V.)
| | - Fabio Vianello
- Comparative Biomedicine and Food Science Department, University of Padua, 35020 Legnaro, Italy; (M.M.); (F.V.)
| | - João Pessoa Araújo Júnior
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| |
Collapse
|
35
|
Kruse T, Schneider S, Reger LN, Kampmann M, Reif O. A novel approach for enumeration of extracellular vesicles from crude and purified cell culture samples. Eng Life Sci 2022; 22:334-343. [PMID: 35382531 PMCID: PMC8961042 DOI: 10.1002/elsc.202100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
The interest in extracellular vesicles (EVs) has been increased in recent years due to their potential application in diagnosis and therapy of severe diseases. The versatile fields of application due to the numerous possible cargos and the targeted delivery system make them a promising biopharmaceutical product. However, their broad size range as well as varied surface protein content result in challenges for the purification, characterization, and quantification. In this study a novel method, based on high-resolution flow cytometry, was examined for the enumeration of EVs in purified as well as crude process samples. In addition to quantification, samples were characterized by dynamic light scattering, zeta potential measurement, and analytical size exclusion chromatography. It has been demonstrated that EVs were successfully enumerated with the novel method, offering great benefits for development and monitoring of EV processes.
Collapse
|
36
|
Dogra P, Ramírez JR, Butner JD, Peláez MJ, Chung C, Hooda-Nehra A, Pasqualini R, Arap W, Cristini V, Calin GA, Ozpolat B, Wang Z. Translational Modeling Identifies Synergy between Nanoparticle-Delivered miRNA-22 and Standard-of-Care Drugs in Triple-Negative Breast Cancer. Pharm Res 2022; 39:511-528. [PMID: 35294699 PMCID: PMC8986735 DOI: 10.1007/s11095-022-03176-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/21/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Downregulation of miRNA-22 in triple-negative breast cancer (TNBC) is associated with upregulation of eukaryotic elongation 2 factor kinase (eEF2K) protein, which regulates tumor growth, chemoresistance, and tumor immunosurveillance. Moreover, exogenous administration of miRNA-22, loaded in nanoparticles to prevent degradation and improve tumor delivery (termed miRNA-22 nanotherapy), to suppress eEF2K production has shown potential as an investigational therapeutic agent in vivo. METHODS To evaluate the translational potential of miRNA-22 nanotherapy, we developed a multiscale mechanistic model, calibrated to published in vivo data and extrapolated to the human scale, to describe and quantify the pharmacokinetics and pharmacodynamics of miRNA-22 in virtual patient populations. RESULTS Our analysis revealed the dose-response relationship, suggested optimal treatment frequency for miRNA-22 nanotherapy, and highlighted key determinants of therapy response, from which combination with immune checkpoint inhibitors was identified as a candidate strategy for improving treatment outcomes. More importantly, drug synergy was identified between miRNA-22 and standard-of-care drugs against TNBC, providing a basis for rational therapeutic combinations for improved response CONCLUSIONS: The present study highlights the translational potential of miRNA-22 nanotherapy for TNBC in combination with standard-of-care drugs.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA
| | - Javier Ruiz Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
| | - Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
| | - Maria J Peláez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Anupama Hooda-Nehra
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, 07101, USA
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, 07101, USA
- Department of Radiation Oncology, Division of Cancer Biology, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, 07101, USA
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, 07103, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77230, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, New York, 10065, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, 77030, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10065, USA.
| |
Collapse
|
37
|
Oh HK, Kim K, Park J, Im H, Maher S, Kim MG. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens Bioelectron 2022; 205:114094. [PMID: 35202985 PMCID: PMC8851749 DOI: 10.1016/j.bios.2022.114094] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Lateral flow immunoassays (LFI) have shown great promise for point-of-care (POC) sensing applications, however, its clinical translation is often hindered by insufficient sensitivity for early detection of diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is mainly due to weak absorption signals of single gold nanoparticles (AuNPs). Here, we developed AuNP clusters that maintain the red color of isolated individual AuNPs, but increase the colorimetric readout to improve the detection sensitivity. The plasmon color-preserved (PLASCOP) AuNP clusters is simply made by mixing streptavidin-coated AuNP core with satellite AuNPs coated with biotinylated antibodies. The biotinylated antibody-streptavidin linker forms a gap size over 15 nm to avoid plasmon coupling between AuNPs, thus maintaining the plasmonic color while increasing the overall light absorption. LFI sensing using PLASCOP AuNP clusters composed of 40 nm AuNPs showed a high detection sensitivity for SARS-CoV-2 nucleocapsid proteins with a limit of detection (LOD) of 0.038 ng mL−1, which was 23.8- and 5.9-times lower value than that of single 15 nm and 40 nm AuNP conjugates, respectively. The PLASCOP AuNP clusters-based LFI sensing also shows good specificity for SARS-CoV-2 nucleocapsid proteins from other influenza and coronaviruses. In a clinical feasibility test, we demonstrated that SARS-CoV-2 particles spiked in human saliva could be detected with an LOD of 54 TCID50 mL−1. The developed PLASCOP AuNP clusters are promising colorimetric sensing reporters that present improved sensitivity in LFI sensing for broad POC sensing applications beyond SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Hyun-Kyung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Kihyeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jinhee Park
- GMD BIOTECH, INC, Gwangju, 61005, Republic of Korea
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; GMD BIOTECH, INC, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
38
|
Li F, Shen J, Guan C, Xie Y, Wang Z, Lin S, Chen J, Zhu J. Exploring near-field sensing efficiency of complementary plasmonic metasurfaces for immunodetection of tumor markers. Biosens Bioelectron 2022; 203:114038. [PMID: 35121450 DOI: 10.1016/j.bios.2022.114038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Plasmonic metasurface biosensors have great potential on label-free high-throughput clinical detection of human tumor markers. In the past decades, nanopillar and nanohole metasurfaces have become the common choices for plasmonic biosensing, because they typically enable universal simple large-area nanopatterns via a low-cost reproducible fabrication manner. The two kinds of metasurfaces have the complementary shapes and are used to be assumed as the same type of two-dimensional plasmonic nanograting for biosensing. Up to date, there is still a lack of comparison study on their biosensing performance, which is critical to guide their better applications on tumor marker detection. In this study, we compare the bulk/surface refractive index and sensitivity of plasmonic nanopillar (PNP) and plasmonic nanohole (PNH) metasurfaces in order to evaluate their biosensing capabilities. The sensing physics about their space near-field utilization is systematically revealed. The PNH metasurface demonstrates a higher biomolecule sensitivity versus the complementary PNP metasurface, and its limit of detection for bovine serum albumin reaches ∼0.078 ng/mL, which implies a greater potential of detecting cancer biomarkers. We further adopt the PNH metasurfaces for immunoassay of three typical tumor markers by testing clinical human serum samples. The results imply that the immunodetection of alpha-fetoprotein has the most optimal sensing efficiency with the lowest detection concentration (<5 IU/mL), which is much lower than its clinical diagnosis threshold of ∼16.5 IU/mL for medical examination. Our work has not only illuminated the distinct biosensing properties of complementary metasurfaces, but also provided a promising way to boost plasmonic biosensing for point-of-care testing.
Collapse
Affiliation(s)
- Fajun Li
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Jiaqing Shen
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Chaoheng Guan
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Yinong Xie
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Zhenbiao Wang
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China
| | - Shaowei Lin
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Science, Xiamen University, Xiamen, 361003, China
| | - Jinfeng Zhu
- Institute of Electromagnetics and Acoustics and Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| |
Collapse
|
39
|
Maeno H, Wong PF, AbuBakar S, Yang M, Sam SS, Jamil-Abd J, Shunmugarajoo A, Mustafa M, Said RM, Mageswaren E, Azmel A, Mat Jelani A. A 3D Microfluidic ELISA for the Detection of Severe Dengue: Sensitivity Improvement and Vroman Effect Amelioration by EDC-NHS Surface Modification. MICROMACHINES 2021; 12:mi12121503. [PMID: 34945351 PMCID: PMC8715748 DOI: 10.3390/mi12121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Serum is commonly used as a specimen in immunoassays but the presence of heterophilic antibodies can potentially interfere with the test results. Previously, we have developed a microfluidic device called: 3D Stack for enzyme-linked immunosorbent assay (ELISA). However, its evaluation was limited to detection from a single protein solution. Here, we investigated the sensitivity of the 3D Stack in detecting a severe dengue biomarker—soluble CD163 (sCD163)—within the serum matrix. To determine potential interactions with serum matrix, a spike-and-recovery assay was performed, using 3D Stacks with and without surface modification by an EDC–NHS (N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) coupling. Without surface modification, a reduced analyte recovery in proportion to serum concentration was observed because of the Vroman effect, which resulted in competitive displacement of coated capture antibodies by serum proteins with stronger binding affinities. However, EDC–NHS coupling prevented antibody desorption and improved the sensitivity. Subsequent comparison of sCD163 detection using a 3D Stack with EDC–NHS coupling and conventional ELISA in dengue patients’ sera revealed a high correlation (R = 0.9298, p < 0.0001) between the two detection platforms. Bland–Altman analysis further revealed insignificant systematic error between the mean differences of the two methods. These data suggest the potentials of the 3D Stack for further development as a detection platform.
Collapse
Affiliation(s)
- Hinata Maeno
- Department of System Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan;
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Educational Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Malaysia; (S.A.); (S.-S.S.); (J.J.-A.)
- WHO Collaborating Centre for Arbovirus Reference and Research (Dengue and Severe Dengue) MAA-12, University of Malaya, Kuala Lumpur 50603, Malaysia
- Medical Department, Tengku Ampuan Rahimah Hospital, Klang 41200, Malaysia; (A.S.); (E.M.); (A.A.)
| | - Ming Yang
- Department of System Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan;
- Correspondence:
| | - Sing-Sin Sam
- Tropical Infectious Diseases Research and Educational Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Malaysia; (S.A.); (S.-S.S.); (J.J.-A.)
- WHO Collaborating Centre for Arbovirus Reference and Research (Dengue and Severe Dengue) MAA-12, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Juraina Jamil-Abd
- Tropical Infectious Diseases Research and Educational Centre (TIDREC), University of Malaya, Kuala Lumpur 50603, Malaysia; (S.A.); (S.-S.S.); (J.J.-A.)
- WHO Collaborating Centre for Arbovirus Reference and Research (Dengue and Severe Dengue) MAA-12, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Anusha Shunmugarajoo
- Medical Department, Tengku Ampuan Rahimah Hospital, Klang 41200, Malaysia; (A.S.); (E.M.); (A.A.)
| | - Mahiran Mustafa
- Medical Department, Raja Perempuan Zainab II Hospital, Kota Bharu 15200, Malaysia; (M.M.); (A.M.J.)
| | - Rosaida Md Said
- Medical Department, Ampang Hospital, Ampang 68000, Malaysia;
| | - Eashwary Mageswaren
- Medical Department, Tengku Ampuan Rahimah Hospital, Klang 41200, Malaysia; (A.S.); (E.M.); (A.A.)
| | - Azureen Azmel
- Medical Department, Tengku Ampuan Rahimah Hospital, Klang 41200, Malaysia; (A.S.); (E.M.); (A.A.)
| | - Anilawati Mat Jelani
- Medical Department, Raja Perempuan Zainab II Hospital, Kota Bharu 15200, Malaysia; (M.M.); (A.M.J.)
| |
Collapse
|
40
|
Pitzen V, Sander S, Baumann O, Gräf R, Meyer I. Cep192, a Novel Missing Link between the Centrosomal Core and Corona in Dictyostelium Amoebae. Cells 2021; 10:cells10092384. [PMID: 34572033 PMCID: PMC8467581 DOI: 10.3390/cells10092384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure.
Collapse
Affiliation(s)
- Valentin Pitzen
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Sophia Sander
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Otto Baumann
- Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
- Correspondence:
| |
Collapse
|
41
|
Morales-Kastresana A, Welsh JA, Jones JC. Detection and Sorting of Extracellular Vesicles and Viruses Using nanoFACS. ACTA ACUST UNITED AC 2021; 95:e81. [PMID: 33332760 DOI: 10.1002/cpcy.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extracellular vesicles (EVs) are sub-micron-sized membranous spheres secreted by cells. EVs play a functional role as intercellular communicators and are associated with a number of diseases. Research into EVs is an area of growing interest due their many potential uses as therapeutic agents, as diagnostic and theranostic biomarkers, and as regulators of cellular biology. Flow cytometry is a popular method for enumerating and phenotyping EVs, even though the majority of EVs are below the detection sensitivity of most commercially available flow cytometers. Here, we present optimized protocols for EV labeling that increase the signal-to-noise ratio of EVs by removing residual antibody. Protocols for alignment of high-resolution jet-in-air flow cytometers are also provided. Published 2020. U.S. Government. Basic Protocol 1: Bulk EV staining with CFSE protein binding dye Basic Protocol 2: Antigen-specific staining of EV markers with fluorochrome-conjugated antibodies Basic Protocol 3: Astrios EQ instrument setup and sample acquisition Basic Protocol 4: Counting particles and EVs on Astrios EQ with spike-in reference beads.
Collapse
Affiliation(s)
- Aizea Morales-Kastresana
- Laboratory of Pathology, Translational Nanobiology Section, Centre for Cancer Research, National Institute of Health, National Institutes of Health, Bethesda, Maryland
| | - Joshua A Welsh
- Laboratory of Pathology, Translational Nanobiology Section, Centre for Cancer Research, National Institute of Health, National Institutes of Health, Bethesda, Maryland
| | - Jennifer C Jones
- Laboratory of Pathology, Translational Nanobiology Section, Centre for Cancer Research, National Institute of Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Liu H, Kumar R, Zhong C, Gorji S, Paniushkina L, Masood R, Wittel UA, Fuchs H, Nazarenko I, Hirtz M. Rapid Capture of Cancer Extracellular Vesicles by Lipid Patch Microarrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008493. [PMID: 34309083 PMCID: PMC11468818 DOI: 10.1002/adma.202008493] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs) contain various bioactive molecules such as DNA, RNA, and proteins, and play a key role in the regulation of cancer progression. Furthermore, cancer-associated EVs carry specific biomarkers and can be used in liquid biopsy for cancer detection. However, it is still technically challenging and time consuming to detect or isolate cancer-associated EVs from complex biofluids (e.g., blood). Here, a novel EV-capture strategy based on dip-pen nanolithography generated microarrays of supported lipid membranes is presented. These arrays carry specific antibodies recognizing EV- and cancer-specific surface biomarkers, enabling highly selective and efficient capture. Importantly, it is shown that the nucleic acid cargo of captured EVs is retained on the lipid array, providing the potential for downstream analysis. Finally, the feasibility of EV capture from patient sera is demonstrated. The demonstrated platform offers rapid capture, high specificity, and sensitivity, with only a small need in analyte volume and without additional purification steps. The platform is applied in context of cancer-associated EVs, but it can easily be adapted to other diagnostic EV targets by use of corresponding antibodies.
Collapse
Affiliation(s)
- Hui‐Yu Liu
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Chunting Zhong
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Saleh Gorji
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD)Jovanka‐Bontschits‐Str. 264287DarmstadtGermany
| | - Liliia Paniushkina
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Ramsha Masood
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
| | - Uwe A. Wittel
- Department of General and Visceral SurgeryCentre of SurgeryMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Str. 8679110FreiburgGermany
| | - Harald Fuchs
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
- Physikalisches Institut & Center for Nanotechnology (CeNTech)Westfälische Wilhelms‐UniversitätWilhelm‐Klemm‐Straße 1048149MünsterGermany
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital EpidemiologyMedical CentreFaculty of MedicineUniversity of FreiburgBreisacher Straße 115 B79106FreiburgGermany
- German Cancer Consortium (DKTK)Partner Site Freiburg and German Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
43
|
Payandehpeyman J, Parvini N, Moradi K, Hashemian N. Detection of SARS-CoV-2 Using Antibody-Antigen Interactions with Graphene-Based Nanomechanical Resonator Sensors. ACS APPLIED NANO MATERIALS 2021; 4:6189-6200. [PMID: 37556252 PMCID: PMC8189043 DOI: 10.1021/acsanm.1c00983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 05/09/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early diagnosis is essential to reducing the transmission rate and mortality of COVID-19. PCR-based tests are the gold standard for the confirmation of COVID-19, but immunological tests for SARS-CoV-2 detection are widely available and play an increasingly important role in the diagnosis of COVID-19. Nanomechanical sensors are biosensors that work based on a change in the mechanical response of the system when a foreign object is added. In this paper, a graphene-based nanoresonator sensor for SARS-CoV-2 detection was introduced and analyzed by using the finite element method (FEM). The sensor was simulated by coating a single-layer graphene sheet (SLGS) with a specific antibody against SARS-CoV-2 Spike S1 antigen. In the following, the SARS-CoV-2 viruses were randomly distributed on the SLGSs, and essential design parameters of the nanoresonator, including frequency shift and relative frequency shift, were evaluated. The effect of the SLGS size, aspect ratio and boundary conditions, antibody concentration, and the number of viruses variation on the frequency shift and relative frequency shift were investigated. The results revealed that, by proper selection of the nanoresonator design variables, a good sensitivity index is achievable for identifying the SARS-CoV-2 virus even when the number of the viruses are less than 10 per test. Eventually, according to the simulation results, by using SLGS geometry determination, an analytical relationship is presented to predict the limit of detection (LOD) of the sensor with the required sensitivity index. The results can be applied in designing and fabricating specific graphene-based nanoresonator sensors for SARS-CoV-2.
Collapse
Affiliation(s)
- Javad Payandehpeyman
- Department of Mechanical Engineering,
Hamedan University of Technology, P.O. Box 65169-13733,
Hamedan, Iran
| | - Neda Parvini
- Cellular and Molecular Research Center, Research
Institute for Health Development, Kurdistan University of Medical
Sciences, P.O. Box 66177-13446, Sanandaj, Iran
- Department of Stem Cells and Developmental Biology, Cell
Science Research Center, Royan Institute for Stem Cell Biology and
Technology, ACECR, P.O. Box 16656-59911, Tehran,
Iran
| | - Kambiz Moradi
- Department of Mechanical Engineering,
Hamedan University of Technology, P.O. Box 65169-13733,
Hamedan, Iran
| | - Nima Hashemian
- Faculty of Biology and Center of Excellence in Phylogeny
of Living Organisms, College of Science, University of Tehran,
P.O. Box 14179-35840, Tehran, Iran
| |
Collapse
|
44
|
Su Q, Jiang C, Gou D, Long Y. Surface Plasmon-Assisted Fluorescence Enhancing and Quenching: From Theory to Application. ACS APPLIED BIO MATERIALS 2021; 4:4684-4705. [PMID: 35007020 DOI: 10.1021/acsabm.1c00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The integration of surface plasmon resonance and fluorescence yields a multiaspect improvement in surface fluorescence sensing and imaging, leading to a paradigm shift of surface plasmon-assisted fluorescence techniques, for example, surface plasmon enhanced field fluorescence spectroscopy, surface plasmon coupled emission (SPCE), and SPCE imaging. This Review aims to characterize the unique optical property with a common physical interpretation and diverse surface architecture-based measurements. The fundamental electromagnetic theory is employed to comprehensively unveil the fluorophore-surface plasmon interaction, and the associated surface-modification design is liberally highlighted to balance the surface plasmon-induced fluorescence-enhancement efforts and the surface plasmon-caused fluorescence-quenching effects. In particular, all types of surface structures, for example, silicon, carbon, protein, DNA, polymer, and multilayer, are systematically interrogated in terms of component, thickness, stiffness, and functionality. As a highly interdisciplinary and expanding field in physics, optics, chemistry, and surface chemistry, this Review could be of great interest to a broad readership, in particular, among physical chemists, analytical chemists, and in surface-based sensing and imaging studies.
Collapse
Affiliation(s)
- Qiang Su
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China.,School of Chemistry, University of Birmingham, Edgbaston B15 2TT, Birmingham, United Kingdom
| | - Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Carson International Cancer Center, Shenzhen University, 1066 Xueyuan Street, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yi Long
- Clinical Research Center, Southern University of Science and Technology Hospital, 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
45
|
Ha L, Ryu U, Kang DC, Kim JK, Sun D, Kwon YE, Choi KM, Kim DP. Rapid Single-Step Growth of MOF Exoskeleton on Mammalian Cells for Enhanced Cytoprotection. ACS Biomater Sci Eng 2021; 7:3075-3081. [PMID: 34133131 DOI: 10.1021/acsbiomaterials.1c00539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian cells are promising agents for cell therapy, diagnostics, and drug delivery. For full utilization of the cells, development of an exoskeleton may be beneficial to protecting the cells against the environmental stresses and cytotoxins to which they are susceptible. We report here a rapid single-step method for growing metal-organic framework (MOF) exoskeletons on a mammalian cell surface under cytocompatible conditions. The MOF exoskeleton coating on the mammalian cells was developed via a one-pot biomimetic mineralization process. With the exoskeleton on, the individual cells were successfully protected against cell protease (i.e., Proteinase K), whereas smaller-sized nutrient transport across the exoskeleton was maintained. Moreover, vital cellular activities mediated by transmembrane GLUT transporter proteins were also unaffected by the MOF exoskeleton formation on the cell surfaces. Altogether, this ability to control the access of specific molecules to a single cell through the porous exoskeleton, along with the cytoprotection provided, should be valuable for biomedical applications of mammalian cells.
Collapse
Affiliation(s)
- Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - UnJin Ryu
- Department of Chemical and Biological Engineering and Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Dong-Chang Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jung-Kyun Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dengrong Sun
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering and Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
46
|
Affinity Selection in Germinal Centers: Cautionary Tales and New Opportunities. Cells 2021; 10:cells10051040. [PMID: 33924933 PMCID: PMC8145379 DOI: 10.3390/cells10051040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/29/2022] Open
Abstract
Our current quantitative knowledge of the kinetics of antibody-mediated immunity is partly based on idealized experiments throughout the last decades. However, new experimental techniques often render contradictory quantitative outcomes that shake previously uncontroversial assumptions. This has been the case in the field of T-cell receptors, where recent techniques for measuring the 2-dimensional rate constants of T-cell receptor–ligand interactions exposed results contradictory to those obtained with techniques measuring 3-dimensional interactions. Recently, we have developed a mathematical framework to rationalize those discrepancies, focusing on the proper fine-grained description of the underlying kinetic steps involved in the immune synapse. In this perspective article, we apply this approach to unveil potential blind spots in the case of B-cell receptors (BCR) and to rethink the interactions between B cells and follicular dendritic cells (FDC) during the germinal center (GC) reaction. Also, we elaborate on the concept of “catch bonds” and on the recent observations that B-cell synapses retract and pull antigen generating a “retracting force”, and propose some testable predictions that can lead to future research.
Collapse
|
47
|
Label-Free Protein Detection by Micro-Acoustic Biosensor Coupled with Electrical Field Sorting. Theoretical Study in Urine Models. SENSORS 2021; 21:s21072555. [PMID: 33917374 PMCID: PMC8038679 DOI: 10.3390/s21072555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
Diagnostic devices for point-of-care (POC) urine analysis (urinalysis) based on microfluidic technology have been actively developing for several decades as an alternative to laboratory based biochemical assays. Urine proteins (albumin, immunoglobulins, uromodulin, haemoglobin etc.) are important biomarkers of various pathological conditions and should be selectively detected by urinalysis sensors. The challenge is a determination of different oligomeric forms of the same protein, e.g., uromodulin, which have similar bio-chemical affinity but different physical properties. For the selective detection of different types of proteins, we propose to use a shear bulk acoustic resonator sensor with an additional electrode on the upper part of the bioliquid-filled channel for protein electric field manipulation. It causes modulation of the protein concentration over time in the near-surface region of the acoustic sensor, that allows to distinguish proteins based on their differences in diffusion coefficients (or sizes) and zeta-potentials. Moreover, in order to improve the sensitivity to density, we propose to use structured sensor interface. A numerical study of this approach for the detection of proteins was carried out using the example of albumin, immunoglobulin, and oligomeric forms of uromodulin in model urine solutions. In this contribution we prove the proposed concept with numerical studies for the detection of albumin, immunoglobulin, and oligomeric forms of uromodulin in urine models.
Collapse
|
48
|
Cavallaro S, Pevere F, Stridfeldt F, Görgens A, Paba C, Sahu SS, Mamand DR, Gupta D, El Andaloussi S, Linnros J, Dev A. Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008155. [PMID: 33682363 DOI: 10.1002/smll.202008155] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 05/22/2023]
Abstract
Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - Federico Pevere
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| | - Fredrik Stridfeldt
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45141, Essen, Germany
| | | | - Siddharth S Sahu
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| | - Doste R Mamand
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Dhanu Gupta
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
| | - Samir El Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| |
Collapse
|
49
|
Chang HW, Frey G, Liu H, Xing C, Steinman L, Boyle WJ, Short JM. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proc Natl Acad Sci U S A 2021; 118:e2020606118. [PMID: 33627407 PMCID: PMC7936328 DOI: 10.1073/pnas.2020606118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anticytotoxic T lymphocyte-associated protein 4 (CTLA4) antibodies have shown potent antitumor activity, but systemic immune activation leads to severe immune-related adverse events, limiting clinical usage. We developed novel, conditionally active biologic (CAB) anti-CTLA4 antibodies that are active only in the acidic tumor microenvironment. In healthy tissue, this binding is reversibly inhibited by a novel mechanism using physiological chemicals as protein-associated chemical switches (PaCS). No enzymes or potentially immunogenic covalent modifications to the antibody are required for activation in the tumor. The novel anti-CTLA4 antibodies show similar efficacy in animal models compared to an analog of a marketed anti-CTLA4 biologic, but have markedly reduced toxicity in nonhuman primates (in combination with an anti-PD1 checkpoint inhibitor), indicating a widened therapeutic index (TI). The PaCS encompass mechanisms that are applicable to a wide array of antibody formats (e.g., ADC, bispecifics) and antigens. Examples shown here include antibodies to EpCAM, Her2, Nectin4, CD73, and CD3. Existing antibodies can be engineered readily to be made sensitive to PaCS, and the inhibitory activity can be optimized for each antigen's varying expression level and tissue distribution. PaCS can modulate diverse physiological molecular interactions and are applicable to various pathologic conditions, enabling differential CAB antibody activities in normal versus disease microenvironments.
Collapse
MESH Headings
- 5'-Nucleotidase/antagonists & inhibitors
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/pharmacology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Bicarbonates/chemistry
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/genetics
- CD3 Complex/immunology
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Epithelial Cell Adhesion Molecule/antagonists & inhibitors
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/immunology
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression
- Humans
- Hydrogen Sulfide/chemistry
- Hydrogen-Ion Concentration
- Immunotherapy/methods
- Macaca fascicularis
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Protein Engineering/methods
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Burden/drug effects
- Tumor Microenvironment/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | - Lawrence Steinman
- Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | | | | |
Collapse
|
50
|
Jiang CT, Chen KG, Liu A, Huang H, Fan YN, Zhao DK, Ye QN, Zhang HB, Xu CF, Shen S, Xiong MH, Du JZ, Yang XZ, Wang J. Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nat Commun 2021; 12:1359. [PMID: 33649336 PMCID: PMC7921676 DOI: 10.1038/s41467-021-21497-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Modulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an 'adaptor' while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.
Collapse
Affiliation(s)
- Cheng-Tao Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Kai-Ge Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - An Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hua Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Dong-Kun Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Qian-Ni Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Hou-Bing Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
- Shenzhen Bay Laboratory, Shenzhen, 518132, PR China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Jin-Zhi Du
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
| | - Xian-Zhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, PR China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|