1
|
Mthembu MH, Sibiya S, Mlambo ZP, Mkhwanazi NP, Naicker T. Asymmetric Dimethylaminohydrolase Gene Polymorphisms Associated with Preeclampsia Comorbid with HIV Infection in Pregnant Women of African Ancestry. Int J Mol Sci 2025; 26:3271. [PMID: 40244094 PMCID: PMC11989882 DOI: 10.3390/ijms26073271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor associated with vascular disease, which is prevalent in human plasma. Two isoforms of the enzyme dimethylarginine dimethylaminohydrolase (DDAH), DDAH 1 and 2, degrade ADMA. This study investigates the association of DDAH 1 (rs669173, rs7521189) and DDAH 2 gene polymorphisms (rs805305, rs3131383) with the risk of preeclampsia (PE) comorbidity with human immunodeficiency virus (HIV) infection in pregnant women of African ancestry. A total of 405 women were enrolled in this study: 204 were PE, 201 were normotensive pregnant, and 202 were HIV positive. DNA was extracted from whole blood, and SNPs (rs669173, rs7521189, rs805305, and rs3131383) were amplified to detect single-nucleotide polymorphisms (SNPs). After PCR amplification, allelic discrimination was examined. Comparisons were conducted utilizing the Chi-squared test. Our findings indicated that preeclamptic women displayed a greater prevalence of the three variants compared to those with both PE and HIV infection. There is an association between the rs669173 and rs7521189 SNPs of the DDAH 1 gene and rs3131383 of the DDAH 2 gene, which could play a role in reducing the bioavailability of nitric oxide (NO), which affects endothelial function, leading to the development of PE in pregnant women of African ancestry. In contrast, the rs805305 variant of the DDAH 2 gene was not significantly associated with PE development. Interestingly, none of the SNPs investigated correlated with HIV infection or could be attributed to the human allelic variant influence on HIV infection outcome.
Collapse
Affiliation(s)
- Mbuso Herald Mthembu
- Department of Obstetrics and Gynaecology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa;
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Samukelisiwe Sibiya
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (S.S.); (N.P.M.)
| | - Zinhle Pretty Mlambo
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (S.S.); (N.P.M.)
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| |
Collapse
|
2
|
Cline N, Merlo D, Frater S, Pollock NR, Mayor NP, Turner TR, Walsh L, Vivers S, Norman PJ. The Case of a Missing HLA-B Gene. HLA 2025; 105:e70114. [PMID: 40117098 PMCID: PMC11932453 DOI: 10.1111/tan.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
The Major Histocompatibility Complex (MHC) of human chromosome 6 contains multiple genes critical for immunity. The exceptional polymorphism of this genomic region that establishes and maintains immune diversity can be technically challenging to characterise and analyse. In this study, we present a family where the mother and one of her children have no HLA-B allele in common, implying the absence of HLA-B from the maternal haplotype. Homozygosity of the mother and child was confirmed using three independent PCR-based methods and high throughput DNA sequencing. Through probe-based MHC region enrichment, sequencing, and read mapping, we located the breakpoints of a large (36.5 kbp) deletion encompassing the entire HLA-B gene. Accordingly, the deletion was present on the maternal haplotype and transmitted to the child. This study demonstrates strategies for locating large deletions in complex genomic regions and highlights the dynamic nature of MHC structure and variation.
Collapse
Affiliation(s)
- Noah Cline
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dario Merlo
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | - Sandra Frater
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | - Nicholas R. Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Neema P. Mayor
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Thomas R. Turner
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Lisa Walsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | - Sharon Vivers
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
- UCL Cancer Institute, Royal Free Campus, London, UK
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Singh M, Leddy SM, Iñiguez LP, Bendall ML, Nixon DF, Feschotte C. Transposable elements may enhance antiviral resistance in HIV-1 elite controllers. Genome Biol 2025; 26:28. [PMID: 39988678 PMCID: PMC11849351 DOI: 10.1186/s13059-025-03484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Less than 0.5% of people living with HIV-1 are elite controllers (ECs)-individuals who maintain undetectable plasma viremia without antiretroviral therapy, despite having replication-competent viral reservoirs. While EC CD4+ T cells have been investigated for gene expression signatures associated with HIV-1 resistance, the expression and regulatory activity of transposable elements (TEs) remain unexplored. TEs can directly impact host immune responses to pathogens, including HIV-1, suggesting their activities could contribute to HIV-1 elite control. To begin testing this hypothesis, we conduct a TE-centric analysis of public multi-omics data from ECs and other populations. RESULTS We find the CD4+ T cell transcriptome and retrotranscriptome of ECs are distinct from healthy controls, from people living with HIV-1 on antiretroviral therapy, and from viremic progressors. However, there is substantial transcriptomic heterogeneity among ECs. We categorize ECs into four clusters with distinct expression and chromatin accessibility profiles of TEs and antiviral factors. Several TE families with known immuno-regulatory activity are differentially expressed among ECs. Their expression positively correlates with their chromatin accessibility in ECs and negatively correlates with the expression of their KRAB zinc-finger (KZNF) repressors. This coordinated, locus-level variation forms a network of putative cis-regulatory elements for genes involved in HIV-1 restriction. CONCLUSIONS We propose that the EC phenotype is driven in part by reduced KZNF-mediated repression of specific TE-derived cis-regulatory elements for antiviral genes, heightening their resistance against HIV-1. Our study reveals heterogeneity in the EC CD4+ T cell transcriptome, including variable expression of TEs and their KZNF controllers, that must be considered when deciphering HIV-1 control mechanisms.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Sabrina M Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Luis Pedro Iñiguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Leal VNC, Roa MEGV, Cantoni JS, Reis ECD, Lara AN, Pontillo A. Integrated Genetic and Cellular Analysis Reveals NLRP1 Activation in CD4+ T Lymphocytes During Chronic HIV Infection. Immunol Invest 2025; 54:147-166. [PMID: 39495019 DOI: 10.1080/08820139.2024.2419940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
BACKGROUND Most of the investigations related to inflammasome activation during HIV infection have focused on the receptor NLRP3 and innate immune cells such as monocytes/macrophages. However, during the past years, inflammasome activation has also been explored in lymphocytes, and novel sensors, other than the NLRP3, have been shown to play a role in the biology of these cells. Here, we hypothesized that NLRP1 may be involved in CD4+ T cell dysregulation in people living with HIV (PLWH), therefore contributing to chronic inflammation and to the pathogenesis of non-HIV-associated diseases. METHODS The activation of NLRP1 in CD4+ T cells was assessed ex-vivo and in-vitro by the meaning of anti-CD3/anti-CD28 and Talabostat/Val-boroPro (VbP) response. RESULTS Our results showed that the NLRP1 inflammasome was activated in PLWH CD4+ T cells, and that the stimulation of CD4+ T cells resulted in increased response to anti-CD3/anti-CD28 and VbP. Functional variants in NLRP1 significantly affected the level of inflammatory dysregulation of CD4+ T cells, therefore explaining at least in part the association with CD4+ T-mediated diseases. CONCLUSION PLWH CD4+ T cells are more prone to IL-1β release and pyroptosis, therefore contributing to chronic inflammation.
Collapse
Affiliation(s)
- Vinicius Nunes Cordeiro Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Mariela Estefany Gislane Vera Roa
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Julia Silva Cantoni
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Edione Cristina Dos Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Amanda Nazareth Lara
- Departamento de Moléstias Infecciosas e Parasitárias da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
5
|
Kelly K, Bekka S, Persaud D. Research Toward a Cure for Perinatal HIV. Clin Perinatol 2024; 51:895-910. [PMID: 39487027 PMCID: PMC11939119 DOI: 10.1016/j.clp.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In virtually all people living with HIV-1 (PLWH), including children, HIV-1 integrates and becomes latent in CD4+ T cells, forming a latent HIV-1 reservoir that current antiretroviral drugs and immune surveillance mechanisms cannot target. This latent infection in CD4+ T cells renders HIV-1 infection lifelong and incurable. Consequently, there is intense research focused on identifying therapeutic strategies to reduce and control the latent reservoir, aiming to avert a lifetime of antiretroviral therapy for PLWH. This review discusses the global efforts for children and adolescents living with HIV-1.
Collapse
Affiliation(s)
- Kristen Kelly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Ross 1133, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Soumia Bekka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Ross 1133, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Deborah Persaud
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1170, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Serrano-Rísquez C, Omar M, Rallón N, Benito JM, Gómez-Vidal A, Márquez FJ, Alján M, Rivero-Juárez A, Pérez-Valero I, Rivero A, Sinangil F, Saulle I, Biasin M, Clerici M, Forthal D, Saéz ME, Caruz A. Impact of Human Leukocyte Antigen Allele-Killer Cell Immunoglobulin-like Receptor Partners on Sexually Transmitted Human Immunodeficiency Virus Type 1 Infection. J Infect Dis 2024; 230:e1077-e1081. [PMID: 39208444 PMCID: PMC11566224 DOI: 10.1093/infdis/jiae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Human leukocyte antigen (HLA) class I/killer cell immunoglobulin-like receptor (KIR) genotypes influence human immunodeficiency virus type 1 (HIV-1) disease progression and viral load, but their role in primary infection is uncertain. Inconsistent results from previous studies suggest that the inoculum size and transmission route-parenteral versus sexual-may influence this association. We conducted a genome-wide association study in a population of people with HIV-1 and HIV-1-exposed seronegative individuals exposed to the virus through the sexual route. Our data do not support any role of the HLA/KIR system in susceptibility to sexually transmitted HIV-1 infection. The genetics basis of HIV-1 viral load and disease progression are distinct from the genetics of HIV resistance, a paradox worth exploring.
Collapse
Affiliation(s)
- Carmen Serrano-Rísquez
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| | - Mohamed Omar
- Servicio de Enfermedades Infecciosas y Microbiología Clínica, Complejo Hospitalario de Jaén
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid
| | - José Miguel Benito
- HIV and Viral Hepatitis Research Laboratory, Hospital Universitario Rey Juan Carlos, Móstoles, Madrid
| | - Amparo Gómez-Vidal
- Servicio de Enfermedades Infecciosas y Microbiología Clínica, Complejo Hospitalario de Jaén
| | - Francisco J Márquez
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| | - Martina Alján
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| | - Antonio Rivero-Juárez
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba
- Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Pérez-Valero
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba
- Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rivero
- Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba
- Centro de Investigacion Biomedica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Faruk Sinangil
- HIV Vaccine Program, Global Solutions for Infectious Diseases, Lafayette, California
| | - Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e Trapianti, Università degli Studi di Milano
- Laboratori di Neuroimaging, Dipartamento di Medicina Molecolare e Digitale nella Medicina Riabilitativa di Precisione, Istituto di Ricerca SM Nascente IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Donald Forthal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine
| | - Maria Eugenia Saéz
- Departamento de Investigacion Clinica, Centro Andaluz de Bioinformática, Sevilla, Spain
| | - Antonio Caruz
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén
| |
Collapse
|
7
|
Kyobe S, Mwesigwa S, Nkurunungi G, Retshabile G, Egesa M, Katagirya E, Amujal M, Mlotshwa BC, Williams L, Sendagire H, Kiragga D, Mardon G, Matshaba M, Hanchard NA, Kyosiimire-Lugemwa J, Robinson D. Identification of a Clade-Specific HLA-C*03:02 CTL Epitope GY9 Derived from the HIV-1 p17 Matrix Protein. Int J Mol Sci 2024; 25:9683. [PMID: 39273630 PMCID: PMC11395705 DOI: 10.3390/ijms25179683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 09/15/2024] Open
Abstract
Efforts towards an effective HIV-1 vaccine have remained mainly unsuccessful. There is increasing evidence for a potential role of HLA-C-restricted CD8+ T cell responses in HIV-1 control, including our recent report of HLA-C*03:02 among African children. However, there are no documented optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C*03:02; additionally, the structural influence of HLA-C*03:02 on epitope binding is undetermined. Immunoinformatics approaches provide a fast and inexpensive method to discover HLA-restricted epitopes. Here, we employed immunopeptidomics to identify HLA-C*03:02 CD8+ T cell epitopes. We identified a clade-specific Gag-derived GY9 (GTEELRSLY) HIV-1 p17 matrix epitope potentially restricted to HLA-C*03:02. Residues E62, T142, and E151 in the HLA-C*03:02 binding groove and positions p3, p6, and p9 on the GY9 epitope are crucial in shaping and stabilizing the epitope binding. Our findings support the growing evidence of the contribution of HLA-C molecules to HIV-1 control and provide a prospect for vaccine strategies.
Collapse
Affiliation(s)
- Samuel Kyobe
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
| | - Savannah Mwesigwa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Gyaviira Nkurunungi
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street London, London WC1E 7HT, UK
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Moses Egesa
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street London, London WC1E 7HT, UK
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Marion Amujal
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Busisiwe C. Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Hakim Sendagire
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
| | | | - Dithan Kiragga
- Baylor College of Medicine Children’s Foundation, Kampala P.O. Box 72052, Uganda;
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mogomotsi Matshaba
- Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone Private Bag BR 129, Botswana
| | - Neil A. Hanchard
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA;
| | - Jacqueline Kyosiimire-Lugemwa
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
| | - David Robinson
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
8
|
Hu X, Lin JH, Pan S, Salei YV, Parsons SK. The real-world insights on the use, safety, and outcome of immune-checkpoint inhibitors in underrepresented populations with lung cancer. Cancer Treat Res Commun 2024; 40:100833. [PMID: 39018902 DOI: 10.1016/j.ctarc.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND The data on immune checkpoint inhibitors (ICI) use in lung cancer individuals generally underrepresented in clinical trials are limited. We aimed to examine the ICI access, safety, and outcome in these populations using real-world data. METHODS Patients with lung cancer newly started on ICIs from 2018 to 2021 were included. Patient factors (age, sex, race, insurance, Charlson comorbidity index (CCI), Eastern Cooperative Oncology Group (ECOG) performance status, histories of autoimmune disease (AD), infection within 3 months before treatment, and brain metastasis) were collected and grouped. Associations of each patient factor with the time-to-treatment initiation (TTI) of ICIs and immune-related adverse events (irAEs) were examined via cumulative incidence analyses and Chi-squared tests, respectively. Log-rank tests and Cox models were used to assess association of patient factors with overall survival (OS). RESULTS Of 125 patients (median age:70 years (50-88), 68 (54.4 %) males), 9 (7.2 %) had Medicaid/uninsured, 44 (35.2 %) had ECOG ≥ 2, 101 (80.8 %) had CCI ≥ 3, 16 (12.8 %) had ADs, 14 (11.2 %) had infections, and 26 (20.8 %) had brain metastases. In newly diagnosed stage IV patients (N = 62), no difference in TTI was found by patient factors. Fifty irAEs occurred within 12 months and no differences in irAEs occurrence by patient factors. In advanced-stage group (N = 123), OS did not differ by patient factors, except for race (p = 0.045). Whites showed an inferior OS than non-Whites in multivariable regression. (Hazards ratio = 2.82 [1.01-7.87], p = 0.047). CONCLUSIONS Previously poorly represented subgroups were shown to have no significant delays in ICI use, general tolerance, and comparable outcomes. This adds practical evidence to ICI use in clinically and/or socio-demographically marginalized populations.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, United States; Department of Medicine, Tufts Medical Center, Boston, MA, United States.
| | - Jeffrey H Lin
- Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Stacey Pan
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, United States; Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Yana V Salei
- Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Susan K Parsons
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, United States; Department of Medicine, Tufts Medical Center, Boston, MA, United States; Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
9
|
Tamil Barathi P, Mohanapriya A. Pre-eclampsia: Re-visiting pathophysiology, role of immune cells, biomarker identification and recent advances in its management. J Reprod Immunol 2024; 163:104236. [PMID: 38555746 DOI: 10.1016/j.jri.2024.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Pre-eclampsia (PE) is a hypertension condition that occurs exclusively during pregnancy and has the potential to impact nearly all organ systems. It is estimated to complicate approximately 2-8% of pregnancies worldwide. PE is a prominent medical disorder that poses a significant risk to pregnant mothers and their infants. This review commences by giving the most up-to- date concepts about the pathophysiology of PE. The condition involves atypical infiltration of trophoblast cells into the spiral arteries of the decidua and myometrium, resulting in an insufficient establishment of proper blood flow between the uterus and placenta. The aberrant activation of natural killer (NK) cells in both the peripheral blood and the decidua has been identified as one of the contributing factors to the development of PE. The strong evidence for the genetic etiology of PE is provided by the association between maternal killer cell immunoglobulin-like receptor (KIR) and Human Leukocyte Antigen (HLA-C) in trophoblast cells. Recent observations provide evidence that changes in the expression of anti-angiogenic factors in the placenta are the underlying cause of the clinical symptoms associated with the condition. This review also provides a comprehensive overview of the latest advancements in understanding the underlying causes of PE. It specifically highlights the emergence of new diagnostic biomarkers and their potential implications for therapeutic interventions in managing this medical condition.
Collapse
Affiliation(s)
- Palanisamy Tamil Barathi
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India.
| | - Arumugam Mohanapriya
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
10
|
Klink GV, Kalinina OV, Bazykin GA. Changing selection on amino acid substitutions in Gag protein between major HIV-1 subtypes. Virus Evol 2024; 10:veae036. [PMID: 38808036 PMCID: PMC11131029 DOI: 10.1093/ve/veae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/27/2023] [Accepted: 04/28/2024] [Indexed: 05/30/2024] Open
Abstract
Amino acid preferences at a protein site depend on the role of this site in protein function and structure as well as on external constraints. All these factors can change in the course of evolution, making amino acid propensities of a site time-dependent. When viral subtypes divergently evolve in different host subpopulations, such changes may depend on genetic, medical, and sociocultural differences between these subpopulations. Here, using our previously developed phylogenetic approach, we describe sixty-nine amino acid sites of the Gag protein of human immunodeficiency virus type 1 (HIV-1) where amino acids have different impact on viral fitness in six major subtypes of the type M. These changes in preferences trigger adaptive evolution; indeed, 32 (46 per cent) of these sites experienced strong positive selection at least in one of the subtypes. At some of the sites, changes in amino acid preferences may be associated with differences in immune escape between subtypes. The prevalence of an amino acid in a protein site within a subtype is only a poor predictor for whether this amino acid is preferred in this subtype according to the phylogenetic analysis. Therefore, attempts to identify the factors of viral evolution from comparative genomics data should integrate across multiple sources of information.
Collapse
Affiliation(s)
- Galya V Klink
- Laboratory of Molecular Evolution, Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, p.1, Skolkovo 121205, Russia
| | - Olga V Kalinina
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)/Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken 66123, Germany
- Medical Faculty, Saarland University, Kirrberger Str. 100, Homburg 66421, Germany
| | - Georgii A Bazykin
- Laboratory of Molecular Evolution, Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia
| |
Collapse
|
11
|
Mørup SB, Leung P, Reilly C, Sherman BT, Chang W, Milojevic M, Milinkovic A, Liappis A, Borgwardt L, Petoumenos K, Paredes R, Mistry SS, MacPherson CR, Lundgren J, Helleberg M, Reekie J, Murray DD. The association between single-nucleotide polymorphisms within type 1 interferon pathway genes and human immunodeficiency virus type 1 viral load in antiretroviral-naïve participants. AIDS Res Ther 2024; 21:27. [PMID: 38698440 PMCID: PMC11067292 DOI: 10.1186/s12981-024-00610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Human genetic contribution to HIV progression remains inadequately explained. The type 1 interferon (IFN) pathway is important for host control of HIV and variation in type 1 IFN genes may contribute to disease progression. This study assessed the impact of variations at the gene and pathway level of type 1 IFN on HIV-1 viral load (VL). METHODS Two cohorts of antiretroviral (ART) naïve participants living with HIV (PLWH) with either early (START) or advanced infection (FIRST) were analysed separately. Type 1 IFN genes (n = 17) and receptor subunits (IFNAR1, IFNAR2) were examined for both cumulated type 1 IFN pathway analysis and individual gene analysis. SKAT-O was applied to detect associations between the genotype and HIV-1 study entry viral load (log10 transformed) as a proxy for set point VL; P-values were corrected using Bonferroni (P < 0.0025). RESULTS The analyses among those with early infection included 2429 individuals from five continents. The median study entry HIV VL was 14,623 (IQR 3460-45100) copies/mL. Across 673 SNPs within 19 type 1 IFN genes, no significant association with study entry VL was detected. Conversely, examining individual genes in START showed a borderline significant association between IFNW1, and study entry VL (P = 0.0025). This significance remained after separate adjustments for age, CD4+ T-cell count, CD4+/CD8+ T-cell ratio and recent infection. When controlling for population structure using linear mixed effects models (LME), in addition to principal components used in the main model, this was no longer significant (p = 0.0244). In subgroup analyses stratified by geographical region, the association between IFNW1 and study entry VL was only observed among African participants, although, the association was not significant when controlling for population structure using LME. Of the 17 SNPs within the IFNW1 region, only rs79876898 (A > G) was associated with study entry VL (p = 0.0020, beta = 0.32; G associated with higher study entry VL than A) in single SNP association analyses. The findings were not reproduced in FIRST participants. CONCLUSION Across 19 type 1 IFN genes, only IFNW1 was associated with HIV-1 study entry VL in a cohort of ART-naïve individuals in early stages of their infection, however, this was no longer significant in sensitivity analyses that controlled for population structures using LME.
Collapse
Affiliation(s)
- Sara Bohnstedt Mørup
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Preston Leung
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Cavan Reilly
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maja Milojevic
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ana Milinkovic
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Angelike Liappis
- Washington DC Veterans Affairs Medical Center and The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Line Borgwardt
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kathy Petoumenos
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Roger Paredes
- Department of Infectious Diseases and IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Shweta S Mistry
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Cameron R MacPherson
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Institut Roche, Boulogne-Billancourt, France
| | - Jens Lundgren
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joanne Reekie
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel D Murray
- Centre of Excellence for Health, Immunity, and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
12
|
Tao S, Norman PJ, You X, Kichula KM, Dong L, Chen N, He Y, Chen C, Zhang W, Zhu F. High-resolution KIR and HLA genotyping in three Chinese ethnic minorities reveals distinct origins. HLA 2024; 103:e15482. [PMID: 38625090 PMCID: PMC11027949 DOI: 10.1111/tan.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Polymorphism of killer-cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands impacts the effector activity of cytotoxic NK cell and T cell subsets. Therefore, understanding the extent and implications of KIR and HLA class I genetic polymorphism across various populations is important for immunological and medical research. In this study, we conducted a high-resolution investigation of KIR and HLA class I diversity in three distinct Chinese ethnic minority populations. We studied the She, Yugur, and Tajik, and compared them with the Zhejiang Han population (Zhe), which represents the majority Southern Han ethnicity. Our findings revealed that the Tajik population exhibited the most diverse KIR copy number, allele, and haplotype diversity among the four populations. This diversity aligns with their proposed ancestral origin, closely resembling that of Iranian populations, with a relatively higher presence of KIR-B genes, alleles, and haplotypes compared with the other Chinese populations. The Yugur population displayed KIR distributions similar to those of the Tibetans and Southeast Asians, whereas the She population resembled the Zhe and other East Asians, as confirmed by genetic distance analysis of KIR. Additionally, we identified 12.9% of individuals across the three minority populations as having KIR haplotypes characterized by specific gene block insertions or deletions. Genetic analysis based on HLA alleles yielded consistent results, even though there were extensive variations in HLA alleles. The observed variations in KIR interactions, such as higher numbers of 2DL1-C2 interactions in Tajik and Yugur populations and of 2DL3-C1 interactions in the She population, are likely shaped by demographic and evolutionary mechanisms specific to their local environments. Overall, our findings offer valuable insights into the distribution of KIR and HLA diversity among three distinct Chinese ethnic minority populations, which can inform future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Xuan You
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lina Dong
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Nanying Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yizhen He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Lenz TL. HLA Genes: A Hallmark of Functional Genetic Variation and Complex Evolution. Methods Mol Biol 2024; 2809:1-18. [PMID: 38907887 DOI: 10.1007/978-1-0716-3874-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The major histocompatibility complex (MHC) with its highly polymorphic HLA genes represents one of the most intensely studied genomic regions in the genome. MHC proteins play a key role in antigen-specific immunity and are associated with a wide range of complex diseases. Despite decades of research and many advances in the field, the characterization and interpretation of its genetic and genomic variability remain challenging. Here an overview is provided of the MHC, the nature of its exceptional variability, and the complex evolutionary processes assumed to drive this variability. Highlighted are also recent advances in the field that promise to improve our understanding of the variability in the MHC and in antigen-specific immunity more generally.
Collapse
Affiliation(s)
- Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
14
|
Singh M, Leddy SM, Iñiguez LP, Bendall ML, Nixon DF, Feschotte C. Transposable elements may enhance antiviral resistance in HIV-1 elite controllers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571123. [PMID: 38168352 PMCID: PMC10760019 DOI: 10.1101/2023.12.11.571123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Less than 0.5% of people living with HIV-1 are elite controllers (ECs) - individuals who have a replication-competent viral reservoir in their CD4+ T cells but maintain undetectable plasma viremia without the help of antiretroviral therapy. While the EC CD4+ T cell transcriptome has been investigated for gene expression signatures associated with disease progression (or, in this case, a lack thereof), the expression and regulatory activity of transposable elements (TEs) in ECs has not been explored. Yet previous studies have established that TEs can directly impact the immune response to pathogens, including HIV-1. Thus, we hypothesize that the regulatory activities of TEs could contribute to the natural resistance of ECs against HIV-1. We perform a TE-centric analysis of previously published multi-omics data derived from EC individuals and other populations. We find that the CD4+ T cell transcriptome and retrotranscriptome of ECs are distinct from healthy controls, treated patients, and viremic progressors. However, there is a substantial level of transcriptomic heterogeneity among ECs. We categorize individuals with distinct chromatin accessibility and expression profiles into four clusters within the EC group, each possessing unique repertoires of TEs and antiviral factors. Notably, several TE families with known immuno-regulatory activity are differentially expressed among ECs. Their transcript levels in ECs positively correlate with their chromatin accessibility and negatively correlate with the expression of their KRAB zinc-finger (KZNF) repressors. This coordinated variation is seen at the level of individual TE loci likely acting or, in some cases, known to act as cis-regulatory elements for nearby genes involved in the immune response and HIV-1 restriction. Based on these results, we propose that the EC phenotype is driven in part by the reduced availability of specific KZNF proteins to repress TE-derived cis-regulatory elements for antiviral genes, thereby heightening their basal level of resistance to HIV-1 infection. Our study reveals considerable heterogeneity in the CD4+ T cell transcriptome of ECs, including variable expression of TEs and their KZNF controllers, that must be taken into consideration to decipher the mechanisms enabling HIV-1 control.
Collapse
Affiliation(s)
- Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Sabrina M Leddy
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Luis Pedro Iñiguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Schulz VE, Tuff JF, Tough RH, Lewis L, Chimukangara B, Garrett N, Abdool Karim Q, Abdool Karim SS, McKinnon LR, Kharsany ABM, McLaren PJ. Host genetic variation at a locus near CHD1L impacts HIV sequence diversity in a South African population. J Virol 2023; 97:e0095423. [PMID: 37747237 PMCID: PMC10617395 DOI: 10.1128/jvi.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE It has been previously shown that genetic variants near CHD1L on chromosome 1 are associated with reduced HIV VL in African populations. However, the impact of these variants on viral diversity and how they restrict viral replication are unknown. We report on a regional association analysis in a South African population and show evidence of selective pressure by variants near CHD1L on HIV RT and gag. Our findings provide further insight into how genetic variability at this locus contributes to host control of HIV in a South African population.
Collapse
Affiliation(s)
- Vanessa E. Schulz
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jeffrey F. Tuff
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Riley H. Tough
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Benjamin Chimukangara
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Department of Virology, University of KwaZulu-Natal, Durban, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Ayesha B. M. Kharsany
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Paul J. McLaren
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Sexually Transmitted and Bloodborne Infections Division, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Zucco AG, Bennedbæk M, Ekenberg C, Gabrielaite M, Leung P, Polizzotto MN, Kan V, Murray DD, Lundgren JD, MacPherson CR. Associations of functional human leucocyte antigen class I groups with HIV viral load in a heterogeneous cohort. AIDS 2023; 37:1643-1650. [PMID: 37534724 PMCID: PMC10399941 DOI: 10.1097/qad.0000000000003557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE Human leucocyte antigen (HLA) class I alleles are the main host genetic factors involved in controlling HIV-1 viral load (VL). Nevertheless, HLA diversity has proven a significant challenge in association studies. We assessed how accounting for binding affinities of HLA class I alleles to HIV-1 peptides facilitate association testing of HLA with HIV-1 VL in a heterogeneous cohort. DESIGN Cohort from the Strategic Timing of AntiRetroviral Treatment (START) study. METHODS We imputed HLA class I alleles from host genetic data (2546 HIV+ participants) and sampled immunopeptidomes from 2079 host-paired viral genomes (targeted amplicon sequencing). We predicted HLA class I binding affinities to HIV-1 and unspecific peptides, grouping alleles into functional clusters through consensus clustering. These functional HLA class I clusters were used to test associations with HIV VL. RESULTS We identified four clades totaling 30 HLA alleles accounting for 11.4% variability in VL. We highlight HLA-B∗57:01 and B∗57:03 as functionally similar but yet overrepresented in distinct ethnic groups, showing when combined a protective association with HIV+ VL (log, β -0.25; adj. P-value < 0.05). We further demonstrate only a slight power reduction when using unspecific immunopeptidomes, facilitating the use of the inferred functional HLA groups in other studies. CONCLUSION The outlined computational approach provides a robust and efficient way to incorporate HLA function and peptide diversity, aiding clinical association studies in heterogeneous cohorts. To facilitate access to the proposed methods and results we provide an interactive application for exploring data.
Collapse
Affiliation(s)
| | - Marc Bennedbæk
- Virus Research and Development Laboratory, Virus and Microbiological Special Diagnostics, Statens Serum Institut
| | | | - Migle Gabrielaite
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Mark N. Polizzotto
- Clinical Hub for Interventional Research, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Virginia Kan
- George Washington University, Veterans Affairs Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
17
|
Xu H, Chen P, Guo S, Shen X, Lu Y. Progress in etiological diagnosis of viral meningitis. Front Neurol 2023; 14:1193834. [PMID: 37583954 PMCID: PMC10423822 DOI: 10.3389/fneur.2023.1193834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/05/2023] [Indexed: 08/17/2023] Open
Abstract
In recent years, with the rapid development of molecular biology techniques such as polymerase chain reaction and molecular biochip, the etiological diagnosis of viral encephalitis has a very big step forward. At present, the etiological examination of viral meningitis mainly includes virus isolation, serological detection and molecular biological nucleic acid detection. This article reviews the progress in etiological diagnosis of viral meningitis.
Collapse
Affiliation(s)
- Hongyan Xu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of General Practice, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Peng Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shihan Guo
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaokai Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Lu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Murray DD, Grund B, MacPherson CR, Ekenberg C, Zucco AG, Reekie J, Dominguez-Dominguez L, Leung P, Fusco D, Gras J, Gerstoft J, Helleberg M, Borges ÁH, Polizzotto MN, Lundgren JD. Association between ten-eleven methylcytosine dioxygenase 2 genetic variation and viral load in people with HIV. AIDS 2023; 37:379-387. [PMID: 36473831 PMCID: PMC9894145 DOI: 10.1097/qad.0000000000003427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/29/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Identifying genetic factors that influence HIV-pathogenesis is critical for understanding disease pathways. Previous studies have suggested a role for the human gene ten-eleven methylcytosine dioxygenase 2 (TET2) in modulating HIV-pathogenesis. METHODS We assessed whether genetic variation in TET2 was associated with markers of HIV-pathogenesis using both gene level and single nucleotide polymorphism (SNP) level association in 8512 HIV-positive persons across five clinical trial cohorts. RESULTS Variation at both the gene and SNP-level of TET2 was found to be associated with levels of HIV viral load (HIV-VL) consistently in the two cohorts that recruited antiretroviral-naïve participants. The SNPs occurred in two clusters of high linkage disequilibrium (LD), one associated with high HIV-VL and the other low HIV-VL, and were predominantly found in Black participants. CONCLUSION Genetic variation in TET2 was associated with HIV-VL in two large antiretroviral therapy (ART)-naive clinical trial cohorts. The role of TET2 in HIV-pathogenesis warrants further investigation.
Collapse
Affiliation(s)
- Daniel D. Murray
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgit Grund
- School of Statistics, University of Minnesota, Minneapolis, MN, USA
| | - Cameron R. MacPherson
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christina Ekenberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adrian G. Zucco
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joanne Reekie
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lourdes Dominguez-Dominguez
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Preston Leung
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dahlene Fusco
- Tulane University Medical Center, Tulane University, New Orleans, LA, USA
| | - Julien Gras
- Service de Maladies infectieuses et tropicales, APHP-Hôpital Saint Louis, Paris, France
| | - Jan Gerstoft
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet
| | - Marie Helleberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet
| | - Álvaro H. Borges
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Mark N. Polizzotto
- Clinical Hub for Interventional Research, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Jens D. Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Siegel DA, Thanh C, Wan E, Hoh R, Hobbs K, Pan T, Gibson EA, Kroetz DL, Martin J, Hecht F, Pilcher C, Martin M, Carrington M, Pillai S, Busch MP, Stone M, Levy CN, Huang ML, Roychoudhury P, Hladik F, Jerome KR, Kiem HP, Henrich TJ, Deeks SG, Lee SA. Host variation in type I interferon signaling genes (MX1), C-C chemokine receptor type 5 gene, and major histocompatibility complex class I alleles in treated HIV+ noncontrollers predict viral reservoir size. AIDS 2023; 37:477-488. [PMID: 36695358 PMCID: PMC9894159 DOI: 10.1097/qad.0000000000003428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/28/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Prior genomewide association studies have identified variation in major histocompatibility complex (MHC) class I alleles and C-C chemokine receptor type 5 gene (CCR5Δ32) as genetic predictors of viral control, especially in 'elite' controllers, individuals who remain virally suppressed in the absence of therapy. DESIGN Cross-sectional genomewide association study. METHODS We analyzed custom whole exome sequencing and direct human leukocyte antigen (HLA) typing from 202 antiretroviral therapy (ART)-suppressed HIV+ noncontrollers in relation to four measures of the peripheral CD4+ T-cell reservoir: HIV intact DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed models were adjusted for potential covariates including age, sex, nadir CD4+ T-cell count, pre-ART HIV RNA, timing of ART initiation, and duration of ART suppression. RESULTS Previously reported 'protective' host genetic mutations related to viral setpoint (e.g. among elite controllers) were found to predict smaller HIV reservoir size. The HLA 'protective' B∗57:01 was associated with significantly lower HIV usRNA (q = 3.3 × 10-3), and among the largest subgroup, European ancestry individuals, the CCR5Δ32 deletion was associated with smaller HIV tDNA (P = 4.3 × 10-3) and usRNA (P = 8.7 × 10-3). In addition, genomewide analysis identified several single nucleotide polymorphisms in MX1 (an interferon stimulated gene) that were significantly associated with HIV tDNA (q = 0.02), and the direction of these associations paralleled MX1 gene eQTL expression. CONCLUSIONS We observed a significant association between previously reported 'protective' MHC class I alleles and CCR5Δ32 with the HIV reservoir size in noncontrollers. We also found a novel association between MX1 and HIV total DNA (in addition to other interferon signaling relevant genes, PPP1CB, DDX3X). These findings warrant further investigation in future validation studies.
Collapse
Affiliation(s)
- David A. Siegel
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | | | | | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Kristen Hobbs
- Department of Medicine, Division of Experimental Medicine
| | - Tony Pan
- Department of Medicine, Division of Experimental Medicine
| | | | | | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, California
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Mars Stone
- Vitalant Blood Bank, San Francisco, California
| | | | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Department of Laboratory Medicine and Pathology, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine
| |
Collapse
|
20
|
Association of Polymorphisms in NHEJ Pathway Genes with HIV-1 Infection and AIDS Progression in a Northern Chinese MSM Population. DISEASE MARKERS 2022; 2022:5126867. [PMID: 36312587 PMCID: PMC9605847 DOI: 10.1155/2022/5126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims Men who have sex with men (MSM) are at high risk of HIV infection. The nonhomologous end joining (NHEJ) pathway is the main way of double-stranded DNA break (DSB) repair in the higher eukaryotes and can repair the DSB timely at any time in cell cycle. It is also indicated that the NHEJ pathway is associated with HIV-1 infection since the DSB in host genome DNA occurs in the process of HIV-1 integration. The aim of the present investigation was to evaluate associations of single-nucleotide polymorphisms (SNPs) in NHEJ pathway genes with susceptibility to HIV-1 infection and AIDS progression among MSM residing in northern China. Methods A total of 481 HIV-1 seropositive men and 493 HIV-1 seronegative men were included in this case-control study. Genotyping of 22 SNPs in NHEJ pathway genes was performed using the SNPscan™ Kit. Results Positive associations were observed between XRCC6 rs132770 and XRCC4 rs1056503 genotypes and the susceptibility to HIV-1 infection. In gene-gene interaction analysis, significant SNP-SNP interactions of XRCC6 and XRCC4 genetic variations were found to play a potential role in the risk of HIV-1 infection. In stratified analysis, XRCC5 rs16855458 was significantly associated with CD4+ T cell counts in AIDS patients, whereas LIG4 rs1805388 was linked to the clinical phases of AIDS patients. Conclusions NHEJ gene polymorphisms can be considered to be risk factors of HIV-1 infection and AIDS progression in the northern Chinese MSM population.
Collapse
|
21
|
Sironi M, Cagliani R, Biasin M, Lo Caputo S, Saulle I, Forni D, Real LM, Pineda JA, Exposito A, Saez ME, Sinangil F, Forthal D, Caruz A, Clerici M. No association of a risk variant for severe COVID-19 with HIV protection in three cohorts of highly exposed individuals. PNAS NEXUS 2022; 1:pgac138. [PMID: 36741450 PMCID: PMC9896871 DOI: 10.1093/pnasnexus/pgac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
An extended haplotype on chromosome 3 is the major genetic risk factor for severe COVID-19. The risk haplotype, which was inherited from Neanderthals, decreases the expression of several cytokine receptors, including CCR5. Recently, a study based on three general population cohorts indicated that the minor allele of one of the variants in the haplotype (rs17713054) protects against HIV infection. We thus expected this allele to be over-represented in highly exposed individuals who remain uninfected (exposed seronegative individuals, ESN). To perform a meta-analysis, we genotyped rs17713054 in three ESN cohorts of European ancestry exposed to HIV through different routes. No evidence of association was detected in the single cohorts. The meta-analysis also failed to detect any effect of the variant on protection from HIV-1. The same results were obtained in a Cox-regression analysis for the time to seroconversion. An in-vitro infection assay did not detect differences in viral replication as a function of rs17713054 genotype status. We conclude that the rs17713054 minor allele is not associated with the ESN phenotype and does not modulate HIV infection in vitro.
Collapse
Affiliation(s)
| | | | - Mara Biasin
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy
| | - Sergio Lo Caputo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Irma Saulle
- Laboratory of Immunobiology, Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20157 Milan, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, 23842 Lecco, Italy
| | - Luis Miguel Real
- Unidad de Enfermedades Infecciosas y Microbiología Clínica. Hospital Universitario de Valme, 41014 Sevilla, Spain,Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. Facultad de Medicina. Universidad de Málaga, 29010 Málaga, Spain,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Juan Antonio Pineda
- Unidad de Enfermedades Infecciosas y Microbiología Clínica. Hospital Universitario de Valme, 41014 Sevilla, Spain,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain,Departamento de Medicina. Facultad de Medicina. Universidad de Sevilla. Instituto de Biomedicina de Sevilla (IBiS), 41013 Sevilla, Spain
| | - Almudena Exposito
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, Lafayette, 94549 CA, USA
| | - Donald Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, 92697 CA, USA
| | - Antonio Caruz
- Unidad de Inmunogenética, Genética, Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20122 Milan, Italy,Don C. Gnocchi Foundation ONLUS, IRCCS, 20133 Milan, Italy
| |
Collapse
|
22
|
Li SS, Hickey A, Shangguan S, Ehrenberg PK, Geretz A, Butler L, Kundu G, Apps R, Creegan M, Clifford RJ, Pinyakorn S, Eller LA, Luechai P, Gilbert PB, Holtz TH, Chitwarakorn A, Sacdalan C, Kroon E, Phanuphak N, de Souza M, Ananworanich J, O'Connell RJ, Robb ML, Michael NL, Vasan S, Thomas R. HLA-B∗46 associates with rapid HIV disease progression in Asian cohorts and prominent differences in NK cell phenotype. Cell Host Microbe 2022; 30:1173-1185.e8. [PMID: 35841889 DOI: 10.1016/j.chom.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
Human leukocyte antigen (HLA) alleles have been linked to HIV disease progression and attributed to differences in cytotoxic T lymphocyte (CTL) epitope representation. These findings are largely based on treatment-naive individuals of European and African ancestry. We assessed HLA associations with HIV-1 outcomes in 1,318 individuals from Thailand and found HLA-B∗46:01 (B∗46) associated with accelerated disease in three independent cohorts. B∗46 had no detectable effect on HIV-specific T cell responses, but this allele is unusual in containing an HLA-C epitope that binds inhibitory receptors on natural killer (NK) cells. Unbiased transcriptomic screens showed increased NK cell activation in people with HIV, without B∗46, and simultaneous single-cell profiling of surface proteins and transcriptomes revealed a NK cell subset primed for increased responses in the absence of B∗46. These findings support a role for NK cells in HIV pathogenesis, revealed by the unique properties of the B∗46 allele common only in Asia.
Collapse
Affiliation(s)
- Shuying S Li
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA 98104, USA
| | - Andrew Hickey
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand
| | - Shida Shangguan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Philip K Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Lauryn Butler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Gautam Kundu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Richard Apps
- Center for Human Immunology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Robert J Clifford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Pikunchai Luechai
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand
| | - Peter B Gilbert
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA 98104, USA
| | - Timothy H Holtz
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; Office of AIDS Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anupong Chitwarakorn
- Department of Disease Control, Thailand Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Carlo Sacdalan
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Eugène Kroon
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | | | - Mark de Souza
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- Department of Global Health, Amsterdam Medical Center, University of Amsterdam, 1105 BP Amsterdam, the Netherlands
| | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Nelson L Michael
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
23
|
Nii-Trebi NI, Matsuoka S, Kawana-Tachikawa A, Bonney EY, Abana CZ, Ofori SB, Mizutani T, Ishizaka A, Shiino T, Ohashi J, Naruse TK, Kimura A, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Ghana. PLoS One 2022; 17:e0269390. [PMID: 35653364 PMCID: PMC9162337 DOI: 10.1371/journal.pone.0269390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Polymorphisms in human leukocyte antigen (HLA) class I loci are known to have a great impact on disease progression in HIV-1 infection. Prevailing HIV-1 subtypes and HLA genotype distribution are different all over the world, and the HIV-1 and host HLA interaction could be specific to individual areas. Data on the HIV-1 and HLA interaction have been accumulated in HIV-1 subtype B- and C-predominant populations but not fully obtained in West Africa where HIV-1 subtype CRF02_AG is predominant. In the present study, to obtain accurate HLA typing data for analysis of HLA association with disease progression in HIV-1 infection in West African populations, HLA class I (HLA-A, -B, and -C) four-digit allele typing was performed in treatment-naïve HIV-1 infected individuals in Ghana (n = 324) by a super high-resolution single-molecule sequence-based typing (SS-SBT) using next-generation sequencing. Comparison of the SS-SBT-based data with those obtained by a conventional sequencing-based typing (SBT) revealed incorrect assignment of several alleles by SBT. Indeed, HLA-A*23:17, HLA-B*07:06, HLA-C*07:18, and HLA-C*18:02 whose allele frequencies were 2.5%, 0.9%, 4.3%, and 3.7%, respectively, were not determined by SBT. Several HLA alleles were associated with clinical markers, viral load and CD4+ T-cell count. Of note, the impact of HLA-B*57:03 and HLA-B*58:01, known as protective alleles against HIV-1 subtype B and C infection, on clinical markers was not observed in our cohort. This study for the first time presents SS-SBT-based four-digit typing data on HLA-A, -B, and -C alleles in Ghana, describing impact of HLA on viral load and CD4 count in HIV-1 infection. Accumulation of these data would facilitate high-resolution HLA genotyping, contributing to our understanding of the HIV-1 and host HLA interaction in Ghana, West Africa.
Collapse
Affiliation(s)
- Nicholas I. Nii-Trebi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christopher Z. Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson B. Ofori
- Department of Medicine, Koforidua Government Hospital, Eastern Region, Ghana
| | | | - Aya Ishizaka
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Tokyo, Japan
| | - Taeko K. Naruse
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Kiyono
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William K. Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail: (WKA); (TM)
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (WKA); (TM)
| |
Collapse
|
24
|
Khanaliha K, Bokharaei-Salim F, Donyavi T, Nahand JS, Marjani A, Jamshidi S, Khatami A, Moghaddas M, Esghaei M, Fakhim A. Evaluation of CCR5-Δ32 mutation and HIV-1 surveillance drug-resistance mutations in peripheral blood mononuclear cells of long-term non progressors of HIV-1-infected individuals. Future Virol 2022. [DOI: 10.2217/fvl-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study aimed to evaluate chemokine receptor 5 delta 32 (CCR5-Δ32) mutation and HIV-1 surveillance drug-resistance mutations (SDRMs) in peripheral blood mononuclear cells of long-term non progressors (LTNPs) of HIV-1-infected individuals. Materials and methods: This research was performed on 197 treatment-naive HIV-1-infected patients. After follow-up, it was determined that 15 (7.6%) of these people were LTNPs. The PCR assay was performed to identify the CCR5 genotype and HIV-1 SDRMs. Results: One (6.7%) of the LTNPs was heterozygous (wt/Δ32) for the CCR5 delta 32 (CCR5Δ32). However, none of the individuals was homozygous for this mutation (Δ32/Δ32). Moreover, none of the LTNPs showed HIV-1 SDRMs. The CRF35-AD subtype was the most dominant subtype, with a percentage of 93.3%. Conclusion: Iranian elite controllers are negative for CCR5-delta 32 homozygous genotype and drug resistance against antiretroviral drugs.
Collapse
Affiliation(s)
- Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Donyavi
- Medical Biotechnology Department, School of Allied Medical Sciences, Iran University of Medical Sciences
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Marjani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Moghaddas
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Fakhim
- Department of Architectural Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| |
Collapse
|
25
|
Factors Influencing Immune Restoration in People Living with HIV/AIDS. J Clin Med 2022; 11:jcm11071887. [PMID: 35407496 PMCID: PMC9000185 DOI: 10.3390/jcm11071887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Immune restoration is a key clinical aspect that is pursued in the care of human immunodeficiency virus (HIV)-infected patients. Despite effective antiretroviral treatment and undetectable viremia, immune recovery is often incomplete. Materials and methods: Data from 311 Caucasian patients were collected. SNP in CCR2(rs1799864), CX3CR1(rs3732378), HLAC-35(rs9264942), and CCR5(promoter, rs1799988); a 32bp deletion(Δ32) in CCR5; and HLA-B*5701 genotypes were correlated with clinical data and selected endpoints. Kaplan−Meier and Cox proportional hazards models were used to analyze the effects of genetic factors over time. Results: For HLA-B*5701, the effect on the CD4+/CD8+ >0.8 cell ratio was lost within 48 months (HR = 2.04, 95% CI: 1.04−4.03), and the effect on the CD4+ cell count >500 cells/µL was lost within 12 months (HR = 2.12, CI: 1.11−4.04). The effect of CCR2 GG on the CD4+/CD8+ >0.8 cell ratio was lost within 36 months (HR = 1.7, CI: 1.05−2.75). For CCR5 wt/Δ32, the effect on the CD4+/CD8+ >1.0 cell ratio was lost within 24 months (HR = 2.0, CI: 1.08−3.69), and the effect on the CD4+ >800 cells/µL cell count was lost within 18 months (HR = 1.98, CI: 1.14−4.73). Conclusions: Selected genetic polymorphisms, namely CCR2 GG and CCR5 Δ32, and the presence of the HLA-B*5701 allele positively influenced immune restoration in cART-treated patients with HIV/AIDS.
Collapse
|
26
|
Assessment of NKG2C copy number variation in HIV-1 infection susceptibility, and considerations about the potential role of lacking receptors and virus infection. J Hum Genet 2022; 67:475-479. [PMID: 35314764 PMCID: PMC8938163 DOI: 10.1038/s10038-022-01029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022]
Abstract
Human Immunodeficiency Virus (HIV) infection dynamics is strongly influenced by the host genetic background. NKG2C is an activating receptor expressed mainly on Natural Killer (NK) cells, and a polymorphism of copy number variation in the gene coding for this molecule has been pointed as a potential factor involved in HIV infection susceptibility. We evaluated the impact of the NKG2C deletion on HIV-1 susceptibility, with or without HBV/HCV co-infection, in a total of 780 individuals, including 385 HIV-infected patients and 395 healthy blood donors. NKG2C deletion genotyping was performed by standard PCR. To our knowledge, this is the first study to access the impact of complete NKG2C deletion among HIV-infected Brazilian individuals. The frequency of NKG2C deletion (range: 19–22%) was similar in cases and controls. No association of NKG2C deletion with HIV-1 susceptibility or influence on clinical features, HBV or HCV co-infection was observed in the evaluated population. Our findings suggest that NKG2C deletion, and the consequent absence of this receptor expression, does not directly impact HIV susceptibility, HBV/HCV-co-infection in the studied population, suggesting that other signaling pathways might be triggered and perform similar functions in cell activity in the absence of this specific receptor, preventing the development of disadvantageous phenotypes. Larger cohorts and studies involving protein expression are necessary to confirm our findings.
Collapse
|
27
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
28
|
Boswell MT, Yindom LM, Hameiri-Bowen D, McHugh G, Dauya E, Bandason T, Mujuru H, Esbjörnsson J, Ferrand RA, Rowland-Jones S. TRIM22 genotype is not associated with markers of disease progression in children with HIV-1 infection. AIDS 2021; 35:2445-2450. [PMID: 34870928 PMCID: PMC7614957 DOI: 10.1097/qad.0000000000003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Untreated perinatal HIV-1 infection is often associated with rapid disease progression in children with HIV (CWH), characterized by high viral loads and early mortality. TRIM22 is a host restriction factor, which directly inhibits HIV-1 transcription, and its genotype variation is associated with disease progression in adults. We tested the hypothesis that TRIM22 genotype is associated with disease progression in CWH. DESIGN ART-naive CWH, aged 6-16 years, were recruited from primary care clinics in Harare, Zimbabwe. We performed a candidate gene association study of TRIM22 genotype and haplotypes with markers of disease progression and indicators of advanced disease. METHODS TRIM22 exons three and four were sequenced by Sanger sequencing and single nucleotide polymorphisms were associated with markers of disease progression (CD4+ T-cell count and HIV viral load) and clinical indicators of advanced HIV disease (presence of stunting and chronic diarrhoea). Associations were tested using multivariate linear and logistic regression models. RESULTS A total of 241 children, median age 11.4 years, 50% female, were included. Stunting was present in 16% of participants. Five SNPs were analyzed including rs7935564, rs2291842, rs78484876, rs1063303 and rs61735273. The median CD4+ count was 342 (IQR: 195-533) cells/μl and median HIV-1 viral load 34 199 (IQR: 8211-90 662) IU/ml. TRIM22 genotype and haplotypes were not associated with CD4+ T-cell count, HIV-1 viral load, stunting or chronic diarrhoea. CONCLUSION TRIM22 genotype was not associated with markers of HIV disease progression markers or advanced disease in CWH.
Collapse
Affiliation(s)
| | | | | | - Grace McHugh
- Biomedical Research and Training Institute, Zimbabwe
| | - Ethel Dauya
- Biomedical Research and Training Institute, Zimbabwe
| | | | - Hilda Mujuru
- Department of Paediatrics, University of Zimbabwe, Zimbabwe
| | - Joakim Esbjörnsson
- Nuffield Department of Medicine, Oxford University, UK
- Department of Translational Medicine, Lund University, Sweden
| | - Rashida A Ferrand
- Biomedical Research and Training Institute, Zimbabwe
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
| | | |
Collapse
|
29
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
30
|
Genome-wide association study reveals genetic variants associated with HIV-1C infection in a Botswana study population. Proc Natl Acad Sci U S A 2021; 118:2107830118. [PMID: 34782459 DOI: 10.1073/pnas.2107830118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
Although there have been many studies of gene variant association with different stages of HIV/AIDS progression in United States and European cohorts, few gene-association studies have assessed genic determinants in sub-Saharan African populations, which have the highest density of HIV infections worldwide. We carried out genome-wide association studies on 766 study participants at risk for HIV-1 subtype C (HIV-1C) infection in Botswana. Three gene associations (AP3B1, PTPRA, and NEO1) were shown to have significant association with HIV-1C acquisition. Each gene association was replicated within Botswana or in the United States-African American or United States-European American AIDS cohorts or in both. Each associated gene has a prior reported influence on HIV/AIDS pathogenesis. Thirteen previously discovered AIDS restriction genes were further replicated in the Botswana cohorts, extending our confidence in these prior AIDS restriction gene reports. This work presents an early step toward the identification of genetic variants associated with and affecting HIV acquisition or AIDS progression in the understudied HIV-1C afflicted Botswana population.
Collapse
|
31
|
Viral and Cellular factors leading to the Loss of CD4 Homeostasis in HIV-1 Viremic Nonprogressors. J Virol 2021; 96:e0149921. [PMID: 34668779 PMCID: PMC8754213 DOI: 10.1128/jvi.01499-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viremic nonprogressors (VNPs) represent a very rare HIV-1 extreme phenotype. VNPs are characterized by persistent high plasma viremia and maintenance of CD4+ T-cell counts in the absence of treatment. However, the causes of nonpathogenic HIV-1 infection in VNPs remain elusive. Here, we identified for the first time two VNPs who experienced the loss of CD4+ homeostasis (LoH) after more than 13 years. We characterized in deep detail viral and host factors associated with the LoH and compared with standard VNPs and healthy controls. The viral factors determined included HIV-1 coreceptor usage and replicative capacity. Changes in CD4+ and CD8+ T-cell activation, maturational phenotype, and expression of CCR5 and CXCR6 in CD4+ T-cells were also evaluated as host-related factors. Consistently, we determined a switch in HIV-1 coreceptor use to CXCR4 concomitant with an increase in replicative capacity at the LoH for the two VNPs. Moreover, we delineated an increase in the frequency of HLA-DR+CD38+ CD4+ and CD8+ T cells and traced the augment of naive T-cells upon polyclonal activation with LoH. Remarkably, very low and stable levels of CCR5 and CXCR6 expression in CD4+ T-cells were measured over time. Overall, our results demonstrated HIV-1 evolution toward highly pathogenic CXCR4 strains in the context of very limited and stable expression of CCR5 and CXCR6 in CD4+ T cells as potential drivers of LoH in VNPs. These data bring novel insights into the correlates of nonpathogenic HIV-1 infection. IMPORTANCE The mechanism behind nonpathogenic human immunodeficiency virus type 1 (HIV-1) infection remains poorly understood, mainly because of the very low frequency of viremic nonprogressors (VNPs). Here, we report two cases of VNPs who experienced the loss of CD4+ T-cell homeostasis (LoH) after more than 13 years of HIV-1 infection. The deep characterization of viral and host factors supports the contribution of viral and host factors to the LoH in VNPs. Thus, HIV-1 evolution toward highly replicative CXCR4 strains together with changes in T-cell activation and maturational phenotypes were found. Moreover, we measured very low and stable levels of CCR5 and CXCR6 in CD4+ T-cells over time. These findings support viral evolution toward X4 strains limited by coreceptor expression to control HIV-1 pathogenesis and demonstrate the potential of host-dependent factors, yet to be fully elucidated in VNPs, to control HIV-1 pathogenesis.
Collapse
|
32
|
Thorball CW, Oudot-Mellakh T, Ehsan N, Hammer C, Santoni FA, Niay J, Costagliola D, Goujard C, Meyer L, Wang SS, Hussain SK, Theodorou I, Cavassini M, Rauch A, Battegay M, Hoffmann M, Schmid P, Bernasconi E, Günthard HF, Mohammadi P, McLaren PJ, Rabkin CS, Besson C, Fellay J. Genetic variation near CXCL12 is associated with susceptibility to HIV-related non-Hodgkin lymphoma. Haematologica 2021; 106:2233-2241. [PMID: 32675224 PMCID: PMC8327743 DOI: 10.3324/haematol.2020.247023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is associated with an increased risk of non-Hodgkin lymphoma (NHL). Even in the era of suppressive antiretroviral treatment, HIV-infected individuals remain at higher risk of developing NHL compared to the general population. In order to identify potential genetic risk loci, we performed case-control genome-wide association studies and a meta-analysis across three cohorts of HIV-infected patients of European ancestry, including a total of 278 cases and 1,924 matched controls. We observed a significant association with NHL susceptibility in the C-X-C motif chemokine ligand 12 (CXCL12) region on chromosome 10. A fine mapping analysis identified rs7919208 as the most likely causal variant (P=4.77e-11), with the G>A polymorphism creating a new transcription factor binding site for BATF and JUND. These results suggest a modulatory role of CXCL12 regulation in the increased susceptibility to NHL observed in the HIV-infected population.
Collapse
Affiliation(s)
- Christian W Thorball
- Ecole Polytechnique Federale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tiphaine Oudot-Mellakh
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Nava Ehsan
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Christian Hammer
- Dept. of Cancer Immunology and Human Genetics, Genentech, South San Francisco, CA, USA
| | - Federico A Santoni
- Dept. of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Switzerland
| | - Jonathan Niay
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | | | - Cécile Goujard
- Paris-Sud University and Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Shehnaz K Hussain
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ioannis Theodorou
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Andri Rauch
- Dept. of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Manuel Battegay
- Dept. of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | | | | | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Caroline Besson
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne and University of Lausanne, Switzerland
| |
Collapse
|
33
|
Zhang J, Huang XJ, Tang WM, Chu Z, Hu Q, Liu J, Ding H, Han X, Zhang Z, Jiang YJ, Geng W, Xia W, Xu J, Shang H. Rapid Clinical Progression and Its Correlates Among Acute HIV Infected Men Who Have Sex With Men in China: Findings From a 5-Year Multicenter Prospective Cohort Study. Front Immunol 2021; 12:712802. [PMID: 34367176 PMCID: PMC8339583 DOI: 10.3389/fimmu.2021.712802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background In the “treat all” era, there are few data on the nature of HIV clinical progression in middle-income countries. The aim of the current study was to prospectively analyze the clinical progression of HIV and its indicators among men in China with acute HIV who have sex with men. Methods From 2009–2014 a total of 400 men with acute HIV infection (AHI) were identified among 7,893 men who have sex with men via periodic pooled nucleic acid amplification testing, and they were assigned to an AHI prospective cohort in Beijing and Shenyang, China. Rapid progression was defined as two consecutive CD4+ T cell counts < 350/µL within 3–24 months post-infection. Kaplan−Meier and Cox-regression analyses were conducted to identify predictors of rapid progression. Results Among 400 men with AHI 46.5% were rapid progressors, 35.1% reached rapid progressor status by 12 months post-infection, and 63.9% reached rapid progressor status by 24 months. Rapid progression was associated with herpes simplex-2 virus coinfection (adjusted hazard ratio [aHR] 1.7, 95% confidence interval [CI] 1.2–2.3], depression (aHR 1.9, 95% CI 1.5–2.6), baseline CD4+ T cell count < 500/μL (aHR 3.5, 95% CI 2.4–5.1), higher baseline HIV viral load (aHR 1.6, 95% CI 1.2–2.3), acute symptoms lasting ≥ 2 weeks (aHR 1.6, 95% CI 1.1–2.2), higher body mass index (aHR 0.9, 95% CI 0.9–1.0), higher HIV viral load (aHR 1.7, 95% CI 1.4–2.1), set point viral load at 3 months (aHR 2.0, 95% CI 1.6–2.5), each 100-cell/μL decrease in CD4+ T cell count at 3 months (aHR 2.2, 95% CI 1.9–2.5), and baseline routine blood tests including white blood cell count < 5.32, hemoglobin ≥ 151, mean corpuscular hemoglobin ≥ 30.5, hemoglobin concentration ≥ 342, mean platelet count ≥ 342, lymphocytes ≥ 1.98, and mixed cell count ≥ 0.4 (all p < 0.05). Conclusion Almost half of the patients underwent rapid clinical progression within 2 years after HIV infection. A treat-all policy is necessary and should be strengthened globally. Rapid progression was correlated with herpes simplex-2 virus coinfection, depression, low CD4+ T cell counts, and high set point viral load in acute infection stage. Rapid progression can be identified via simple indicators such as body mass index and routine blood test parameters in low and middle-income countries.
Collapse
Affiliation(s)
- Jing Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao-Jie Huang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei-Ming Tang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.,University of North Carolina Project-China, Guangzhou, China.,School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhenxing Chu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qinghai Hu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jing Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenqing Geng
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wei Xia
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
34
|
Brandt L, Cristinelli S, Ciuffi A. Single-Cell Analysis Reveals Heterogeneity of Virus Infection, Pathogenicity, and Host Responses: HIV as a Pioneering Example. Annu Rev Virol 2021; 7:333-350. [PMID: 32991268 DOI: 10.1146/annurev-virology-021820-102458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While analyses of cell populations provide averaged information about viral infections, single-cell analyses offer individual consideration, thereby revealing a broad spectrum of diversity as well as identifying extreme phenotypes that can be exploited to further understand the complex virus-host interplay. Single-cell technologies applied in the context of human immunodeficiency virus (HIV) infection proved to be valuable tools to help uncover specific biomarkers as well as novel candidate players in virus-host interactions. This review aims at providing an updated overview of single-cell analyses in the field of HIV and acquired knowledge on HIV infection, latency, and host response. Although HIV is a pioneering example, similar single-cell approaches have proven to be valuable for elucidating the behavior and virus-host interplay in a range of other viruses.
Collapse
Affiliation(s)
- Ludivine Brandt
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
35
|
Illing PT, van Hateren A, Darley R, Croft NP, Mifsud NA, King S, Kostenko L, Bharadwaj M, McCluskey J, Elliott T, Purcell AW. Kinetics of Abacavir-Induced Remodelling of the Major Histocompatibility Complex Class I Peptide Repertoire. Front Immunol 2021; 12:672737. [PMID: 34093574 PMCID: PMC8170132 DOI: 10.3389/fimmu.2021.672737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Abacavir hypersensitivity syndrome can occur in individuals expressing the HLA-B*57:01 major histocompatibility complex class I allotype when utilising the drug abacavir as a part of their anti-retroviral regimen. The drug is known to bind within the HLA-B*57:01 antigen binding cleft, leading to the selection of novel self-peptide ligands, thus provoking life-threatening immune responses. However, the sub-cellular location of abacavir binding and the mechanics of altered peptide selection are not well understood. Here, we probed the impact of abacavir on the assembly of HLA-B*57:01 peptide complexes. We show that whilst abacavir had minimal impact on the maturation or average stability of HLA-B*57:01 molecules, abacavir was able to differentially enhance the formation, selectively decrease the dissociation, and alter tapasin loading dependency of certain HLA-B*57:01-peptide complexes. Our data reveals a spectrum of abacavir mediated effects on the immunopeptidome which reconciles the heterogeneous functional T cell data reported in the literature.
Collapse
Affiliation(s)
- Patricia T. Illing
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rachel Darley
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan P. Croft
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Samuel King
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Mandvi Bharadwaj
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
Gabrielaite M, Bennedbæk M, Zucco AG, Ekenberg C, Murray DD, Kan VL, Touloumi G, Vandekerckhove L, Turner D, Neaton J, Lane HC, Safo S, Arenas-Pinto A, Polizzotto MN, Günthard HF, Lundgren JD, Marvig RL. Human immunotypes impose selection on viral genotypes through viral epitope specificity. J Infect Dis 2021; 224:2053-2063. [PMID: 33974707 DOI: 10.1093/infdis/jiab253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/06/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Understanding the genetic interplay between human hosts and infectious pathogens is crucial for how we interpret virulence factors. Here, we tested for associations between HIV and host genetics, and interactive genetic effects on viral load (VL) in HIV+ ART-naive clinical trial participants. METHODS HIV genomes were sequenced and the encoded amino acid (AA) variants were associated with VL, human single nucleotide polymorphisms (SNPs) and imputed HLA alleles, using generalized linear models with Bonferroni correction. RESULTS Human (388,501 SNPs) and HIV (3,010 variants) genetic data was available for 2,122 persons. Four HIV variants were associated with VL (p-values<1.66×10 -5). Twelve HIV variants were associated with a range of 1-512 human SNPs (p-value<4.28×10 -11). We found 46 associations between HLA alleles and HIV variants (p-values<1.29×10 -7). We found HIV variants and immunotypes when analyzed separately, were associated with lower VL, whereas the opposite was true when analyzed in concert. Epitope binding prediction showed HLA alleles to be weaker binders of associated HIV AA variants relative to alternative variants on the same position. CONCLUSIONS Our results show the importance of immunotype specificity on viral antigenic determinants, and the identified genetic interplay puts emphasis that viral and human genetics should be studied in the context of each other.
Collapse
Affiliation(s)
- Migle Gabrielaite
- Centre for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marc Bennedbæk
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Adrian G Zucco
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Christina Ekenberg
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Daniel D Murray
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Virginia L Kan
- Veterans Affairs Medical Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Giota Touloumi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University; Ghent University Hospital, Ghent, Belgium
| | - Dan Turner
- Crusaid Kobler AIDS Center, Tel-Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Neaton
- School of Public Health, University of Minnesota, Minneapolis, USA
| | - H Clifford Lane
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sandra Safo
- Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | | | - Mark N Polizzotto
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, Zürich, Switzerland.,Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Jens D Lundgren
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Rasmus L Marvig
- Centre for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
37
|
Lamptey H, Bonney EY, Adu B, Kyei GB. Are Fc Gamma Receptor Polymorphisms Important in HIV-1 Infection Outcomes and Latent Reservoir Size? Front Immunol 2021; 12:656894. [PMID: 34017334 PMCID: PMC8129575 DOI: 10.3389/fimmu.2021.656894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fc gamma receptors (FcγR) are cell surface glycoproteins which trigger specific effector-cell responses when cross-linked with the Fc portions of immunoglobulin (IgG) antibodies. During HIV-1 infection, the course of disease progression, ART response, and viral reservoir size vary in different individuals. Several factors may account for these differences; however, Fc gamma receptor gene polymorphisms, which influence receptor binding to IgG antibodies, are likely to play a key role. FcγRIIa (CD32) was recently reported as a potential marker for latent HIV reservoir, however, this assertion is still inconclusive. Whether FcγR polymorphisms influence the size of the viral reservoir, remains an important question in HIV cure studies. In addition, potential cure or viral suppression methods such as broadly neutralizing antibody (bNAbs) may depend on FcγRs to control the virus. Here, we discuss the current evidence on the potential role played by FcγR polymorphisms in HIV-1 infection, treatment and vaccine trial outcomes. Importantly, we highlight contrasting findings that may be due to multiple factors and the relatively limited data from African populations. We recommend further studies especially in sub-Saharan Africa to confirm the role of FcγRIIa in the establishment of latent reservoir and to determine their influence in therapies involving bNAbs.
Collapse
Affiliation(s)
- Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B. Kyei
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, MO, United States
- Medical and Scientific Research Centre, University of Ghana Medical Centre, University of Ghana, Accra, Ghana
| |
Collapse
|
38
|
Thorball CW, Fellay J, Borghesi A. Immunological lessons from genome-wide association studies of infections. Curr Opin Immunol 2021; 72:87-93. [PMID: 33878603 DOI: 10.1016/j.coi.2021.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Over the past few years, genome-wide association studies (GWAS) have been increasingly applied to identify host genetic factors influencing clinical and laboratory traits related to immunity and infection, and to understand the interplay between the host and the microbial genomes. By screening large cohorts of individuals suffering from various infectious diseases, GWAS explored resistance against infection, natural history of the disease, development of life-threatening clinical signs, and innate and adaptive immune responses. These efforts provided fundamental insight on the role of major genes in the interindividual variability in the response to infection and on the mechanisms of the immune response against human pathogens both at the individual and population levels.
Collapse
Affiliation(s)
- Christian W Thorball
- Precision Medicine Unit, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland; School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alessandro Borghesi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
39
|
Ekenberg C, Reekie J, Zucco AG, Murray DD, Sharma S, Macpherson CR, Babiker A, Kan V, Lane HC, Neaton JD, Lundgren JD. The association of human leukocyte antigen alleles with clinical disease progression in HIV-positive cohorts with varied treatment strategies. AIDS 2021; 35:783-789. [PMID: 33587436 PMCID: PMC7969421 DOI: 10.1097/qad.0000000000002800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The Strategic Timing of AntiRetroviral Treatment (START) and Strategies for Management of Antiretroviral Therapy (SMART) trials demonstrated that ART can partly reverse clinically defined immune dysfunction induced by HIV replication. As control of HIV replication is influenced by the HLA region, we explored whether HLA alleles independently influence the risk of clinical events in HIV+ individuals. DESIGN Cohort study. METHODS In START and SMART participants, associations between imputed HLA alleles and AIDS, infection-related cancer, herpes virus-related AIDS events, chronic inflammation-related conditions, and bacterial pneumonia were assessed. Cox regression was used to estimate hazard ratios for the risk of events among allele carriers versus noncarriers. Models were adjusted for sex, age, geography, race, time-updated CD4+ T-cell counts and HIV viral load and stratified by treatment group within trials. HLA class I and II alleles were analyzed separately. The Benjamini--Hochberg procedure was used to limit the false discovery rate to less than 5% (i.e. q value <0.05). RESULTS Among 4829 participants, there were 132 AIDS events, 136 chronic inflammation-related conditions, 167 bacterial pneumonias, 45 infection-related cancers, and 49 herpes virus-related AIDS events. Several associations with q value less than 0.05 were found: HLA-DQB1∗06:04 and HLA-DRB1∗13:02 with AIDS (adjusted HR [95% CI] 2.63 [1.5-4.6] and 2.25 [1.4-3.7], respectively), HLA-B∗15:17 and HLA-DPB1∗15:01 with bacterial pneumonia (4.93 [2.3-10.7] and 4.33 [2.0-9.3], respectively), and HLA-A∗69:01 with infection-related cancer (15.26 [3.5-66.7]). The carriage frequencies of these alleles were 10% or less. CONCLUSION This hypothesis-generating study suggests that certain HLA alleles may influence the risk of immune dysfunction-related events irrespective of viral load and CD4+ T-cell count.
Collapse
Affiliation(s)
- Christina Ekenberg
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Joanne Reekie
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adrian G Zucco
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Daniel D Murray
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Shweta Sharma
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cameron R Macpherson
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Abdel Babiker
- Medical Research Council, Clinical Trials Unit in University College London, London, United Kingdom
| | - Virginia Kan
- Veterans Affairs Medical Center and George Washington University, Washington DC
| | - H Clifford Lane
- National Institute of Allergy and Infectious Diseases, Division of Clinical Research, Bethesda, Maryland, USA
| | - James D Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jens D Lundgren
- Centre of Excellence for Health, Immunity and Infections (CHIP), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Tao S, Kichula KM, Harrison GF, Farias TDJ, Palmer WH, Leaton LA, Hajar CGN, Zefarina Z, Edinur HA, Zhu F, Norman PJ. The combinatorial diversity of KIR and HLA class I allotypes in Peninsular Malaysia. Immunology 2021; 162:389-404. [PMID: 33283280 PMCID: PMC7968402 DOI: 10.1111/imm.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Genelle F. Harrison
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ticiana Della Justina Farias
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - William H. Palmer
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | | | - Zulkafli Zefarina
- School of Medical SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Hisham Atan Edinur
- School of Health SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Faming Zhu
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
41
|
Parczewski M, Scheibe K, Witak-Jędra M, Pynka M, Aksak-Wąs B, Urbańska A. Infection with HIV-1 subtype D adversely affects the live expectancy independently of antiretroviral drug use. INFECTION GENETICS AND EVOLUTION 2021; 90:104754. [PMID: 33540086 DOI: 10.1016/j.meegid.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION HIV-1 subtypes have been associated with less favourable clinical profiles, differences in disease progression and higher risk of neurocognitive deficit. In this study we aimed to analyse the long term survival disparities between patients infected with the most common HIV-1 variants observed in Poland. METHODS For the study data from 518 Caucasian non-immigrant patients of Polish origin infected with divergent HIV subtypes and variants [subtype A (n = 35, 6.8%), subtype B (n = 386, 74.5%), subtype C (n = 13, 2.5%), subtype D (n = 58, 11.19%) or other non-A,B,C,D (n = 26, 5.01%)variants] were analysed. Subtyping was performed using the partial pol (reverse transcriptase and protease) sequencing. HIV variant was coupled with clinical, virologic and survival data censored at 20 years of observation. Overall survival and on antiretroviral treatment survival was analysed using Kaplan-Meyer as well as unadjusted and multivariate Cox proportional hazards models. RESULTS Significantly higher mortality was observed among subtype D (28.8%) infected subjects compared to subtype B (11.7%, p = 0.0004). Increased risk of death among subtype D cases remained significant when cART treated individuals were analysed, with on-treatment mortality of 26.9% for subtype D (p = 0.006) compared to 10.73% in subtype B infected cases. Kaplan-Meyer survival estimates differed significantly across all investigated HIV-1 variant groups when overall 20 year mortality was analysed (log rank p = 0.029), being non-significant for the cART treated group. In multivariate model of overall 20 year survival, adjusted for age at diagnosis, gender, HCV and AIDS status, lymphocyte CD4 count, transmission route and HIV viral load, only age and subtype D were independently associated with higher likelihood of death [HR: 1.08 (95%CI: 1.03-1.14, p = 0.002) and HR: 7.91 (95%CI:2.33-26.86), p < 0.001, respectively]. In the on-treatment (cART) multivariate model of 20 year survival adjusted for the same parameters only subtype D remained as the independent factor associated with higher mortality risk [HR: 4.24 (95%CI:1.31-13.7), p = 0.02]. CONCLUSIONS Subtype D has an independent deleterious effect of survival, even in the setting of antiretroviral treatment. Observed effect indicated higher clinical vigilance for patients infected with this subtype even after long time of stable antiretroviral treatment.
Collapse
Affiliation(s)
- Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Kaja Scheibe
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Witak-Jędra
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Pynka
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusz Aksak-Wąs
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
42
|
Immel A, Pierini F, Rinne C, Meadows J, Barquera R, Szolek A, Susat J, Böhme L, Dose J, Bonczarowska J, Drummer C, Fuchs K, Ellinghaus D, Kässens JC, Furholt M, Kohlbacher O, Schade-Lindig S, Franke A, Schreiber S, Krause J, Müller J, Lenz TL, Nebel A, Krause-Kyora B. Genome-wide study of a Neolithic Wartberg grave community reveals distinct HLA variation and hunter-gatherer ancestry. Commun Biol 2021; 4:113. [PMID: 33495542 PMCID: PMC7835224 DOI: 10.1038/s42003-020-01627-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/20/2020] [Indexed: 02/08/2023] Open
Abstract
The Wartberg culture (WBC, 3500-2800 BCE) dates to the Late Neolithic period, a time of important demographic and cultural transformations in western Europe. We performed genome-wide analyses of 42 individuals who were interred in a WBC collective burial in Niedertiefenbach, Germany (3300-3200 cal. BCE). The results showed that the farming population of Niedertiefenbach carried a surprisingly large hunter-gatherer ancestry component (34–58%). This component was most likely introduced during the cultural transformation that led to the WBC. In addition, the Niedertiefenbach individuals exhibited a distinct human leukocyte antigen gene pool, possibly reflecting an immune response that was geared towards detecting viral infections. Alexander Immel et al. performed genome-wide analyses of 42 individuals from a collective burial in Niedertiefenbach, Germany from the Wartberg Culture. The authors find that this population had a large hunter-gatherer ancestry component and a distinct HLA pool, which indicates immune defenses against viral pathogens.
Collapse
Affiliation(s)
- Alexander Immel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Federica Pierini
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306, Plön, Germany
| | - Christoph Rinne
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Johanna-Mestorf-Strasse 2-6, 24118, Kiel, Germany
| | - John Meadows
- Leibniz Laboratory for AMS Dating and Isotope Research, Kiel University, Max-Eyth-Strasse 11-13, 24118, Kiel, Germany.,Centre for Baltic and Scandinavian Archaeology (ZBSA), Schloss Gottorf, 24837, Schleswig, Germany
| | - Rodrigo Barquera
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, 07745, Jena, Germany
| | - András Szolek
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Lisa Böhme
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Joanna Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Clara Drummer
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Johanna-Mestorf-Strasse 2-6, 24118, Kiel, Germany
| | - Katharina Fuchs
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Jan Christian Kässens
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Martin Furholt
- Department of Archaeology, Conservation and History, University of Oslo, Blindernveien 11, 0371, Oslo, Norway
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Sand 14, 72076, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Strasse 9, 72076, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Sabine Schade-Lindig
- Landesamt für Denkmalpflege Hessen, hessenARCHÄOLOGIE, Schloss Biebrich, 65203, Wiesbaden, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.,Department of General Internal Medicine, University Hospital Schleswig-Holstein, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Khalaische Strasse 10, 07745, Jena, Germany
| | - Johannes Müller
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Johanna-Mestorf-Strasse 2-6, 24118, Kiel, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306, Plön, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany.
| |
Collapse
|
43
|
Blanche S. Mini review: Prevention of mother-child transmission of HIV: 25 years of continuous progress toward the eradication of pediatric AIDS? Virulence 2021; 11:14-22. [PMID: 31885324 PMCID: PMC6961731 DOI: 10.1080/21505594.2019.1697136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prevention of mother-to-child transmission with antiretrovirals is extraordinarily effective. When medically well followed, a mother living with human immunodeficiency virus can now expect to avoid transmitting the virus to her child. Despite the immense difficulties inherent in the global implementation of this treatment, the virtual disappearance of pediatric AIDS can be considered in the long term.
Collapse
Affiliation(s)
- Stéphane Blanche
- Pediatric Immunology-Hematology Unit, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP) and Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
44
|
Dabitao D, Dembele M, Urbanowski M, Kone B, Wague M, Coulibaly N, Sarro YDS, Baya B, Goita D, Dao S, Belson M, Klein SL, Achenbach C, Holl JL, Diakite M, Doumbia S, Bream JH, Bishai WR, Diallo S, Murphy RL. Short Communication: Genetic Variation in Human IL10 Proximal Promoter and Susceptibility to HIV-1 Infection in Mali, West Africa. AIDS Res Hum Retroviruses 2021; 37:57-61. [PMID: 33045845 DOI: 10.1089/aid.2020.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is now recognized that to fully understand the role of host genetic variation on susceptibility to HIV-1 infection, investigations must be extended to African populations. We sought to determine if genetic variation in IL10 are associated with HIV-1 infection in a West African cohort in Mali. HIV-infected and -uninfected individuals were genotyped for three common single nucleotide polymorphisms (SNPs) located at positions -592 (C/A), -819 (C/T), and -1082 (G/A) of the IL10 promoter. We found that the ATA haplotype, which has been previously associated with low IL-10 expression, was the most represented in the cohort. Although we observed a trend toward an increased frequency of ATA/ATA carriage in HIV-infected compared with -uninfected individuals, the difference was not statistically significant. Similarly, individual IL10 SNPs were not significantly enriched in the HIV-infected group, suggesting that IL10 genetic variants are not associated with HIV-1 in this West African cohort from Mali.
Collapse
Affiliation(s)
- Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
- School for Professional Studies, Northwestern University (NU), Chicago, Illinois, USA
| | - Mamadou Dembele
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Michael Urbanowski
- Department of Infectious Diseases, Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Bourahima Kone
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Mamadou Wague
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Nadie Coulibaly
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Yeya dit Sadio Sarro
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Bocar Baya
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Drissa Goita
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Sounkalo Dao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Michael Belson
- Collaborative Clinical Research Branch (CCRB), Division of Clinical Research (DCR), National Institutes of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Sabra L. Klein
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
| | - Chad Achenbach
- Division of Infectious Diseases and Institute for Global Health, Feinberg School of Medicine, Northwestern University (NU), Chicago, Illinois, USA
- Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Jane L. Holl
- Division of Infectious Diseases and Institute for Global Health, Feinberg School of Medicine, Northwestern University (NU), Chicago, Illinois, USA
- Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Mahamadou Diakite
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Seydou Doumbia
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Jay H. Bream
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - William R. Bishai
- Department of Infectious Diseases, Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Souleymane Diallo
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Mali, West Africa
| | - Robert L. Murphy
- Division of Infectious Diseases and Institute for Global Health, Feinberg School of Medicine, Northwestern University (NU), Chicago, Illinois, USA
- Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Cao J, Wang C, Zhang Y, Lei G, Xu K, Zhao N, Lu J, Meng F, Yu L, Yan J, Bai C, Zhang S, Zhang N, Gong Y, Bi Y, Shi Y, Chen Z, Dai L, Wang J, Yang P. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes 2021; 13:1-21. [PMID: 33678150 PMCID: PMC7946006 DOI: 10.1080/19490976.2021.1887722] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is the cause of the current global pandemic of COVID-19; this virus infects multiple organs, such as the lungs and gastrointestinal tract. The microbiome in these organs, including the bacteriome and virome, responds to infection and might also influence disease progression and treatment outcome. In a cohort of 13 COVID-19 patients in Beijing, China, we observed that the gut virome and bacteriome in the COVID-19 patients were notably different from those of five healthy controls. We identified a bacterial dysbiosis signature by observing reduced diversity and viral shifts in patients, and among the patients, the bacterial/viral compositions were different between patients of different severities, although these differences are not entirely distinguishable from the effect of antibiotics. Severe cases of COVID-19 exhibited a greater abundance of opportunistic pathogens but were depleted for butyrate-producing groups of bacteria compared with mild to moderate cases. We replicated our findings in a mouse COVID-19 model, confirmed virome differences and bacteriome dysbiosis due to SARS-CoV-2 infection, and observed that immune/infection-related genes were differentially expressed in gut epithelial cells during infection, possibly explaining the virome and bacteriome dynamics. Our results suggest that the components of the microbiome, including the bacteriome and virome, are affected by SARS-CoV-2 infections, while their compositional signatures could reflect or even contribute to disease severity and recovery processes.
Collapse
Affiliation(s)
- Jiabao Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Wang
- First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuqing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanglin Lei
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kun Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, the First Affiliated Hospital, Hainan Medical University, Hainan, China
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanping Meng
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Linxiang Yu
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin Yan
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Changqing Bai
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Shaogeng Zhang
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ning Zhang
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Yuhuan Gong
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Zhu Chen
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Penghui Yang
- Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
46
|
Host genetics and infectious disease: new tools, insights and translational opportunities. Nat Rev Genet 2020; 22:137-153. [PMID: 33277640 PMCID: PMC7716795 DOI: 10.1038/s41576-020-00297-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Understanding how human genetics influence infectious disease susceptibility offers the opportunity for new insights into pathogenesis, potential drug targets, risk stratification, response to therapy and vaccination. As new infectious diseases continue to emerge, together with growing levels of antimicrobial resistance and an increasing awareness of substantial differences between populations in genetic associations, the need for such work is expanding. In this Review, we illustrate how our understanding of the host–pathogen relationship is advancing through holistic approaches, describing current strategies to investigate the role of host genetic variation in established and emerging infections, including COVID-19, the need for wider application to diverse global populations mirroring the burden of disease, the impact of pathogen and vector genetic diversity and a broad array of immune and inflammation phenotypes that can be mapped as traits in health and disease. Insights from study of inborn errors of immunity and multi-omics profiling together with developments in analytical methods are further advancing our knowledge of this important area. Infectious diseases are an ever-present global threat. In this Review, Kwok, Mentzer and Knight discuss our latest understanding of how human genetics influence susceptibility to disease. Furthermore, they discuss emerging progress in the interplay between host and pathogen genetics, molecular responses to infection and vaccination, and opportunities to bring these aspects together for rapid responses to emerging diseases such as COVID-19.
Collapse
|
47
|
Aznaourova M, Schmerer N, Schmeck B, Schulte LN. Disease-Causing Mutations and Rearrangements in Long Non-coding RNA Gene Loci. Front Genet 2020; 11:527484. [PMID: 33329688 PMCID: PMC7735109 DOI: 10.3389/fgene.2020.527484] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
The classic understanding of molecular disease-mechanisms is largely based on protein-centric models. During the past decade however, genetic studies have identified numerous disease-loci in the human genome that do not encode proteins. Such non-coding DNA variants increasingly gain attention in diagnostics and personalized medicine. Of particular interest are long non-coding RNA (lncRNA) genes, which generate transcripts longer than 200 nucleotides that are not translated into proteins. While most of the estimated ~20,000 lncRNAs currently remain of unknown function, a growing number of genetic studies link lncRNA gene aberrations with the development of human diseases, including diabetes, AIDS, inflammatory bowel disease, or cancer. This suggests that the protein-centric view of human diseases does not capture the full complexity of molecular patho-mechanisms, with important consequences for molecular diagnostics and therapy. This review illustrates well-documented lncRNA gene aberrations causatively linked to human diseases and discusses potential lessons for molecular disease models, diagnostics, and therapy.
Collapse
Affiliation(s)
- Marina Aznaourova
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Nils Schmerer
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
48
|
Mehlotra RK. Chemokine receptor gene polymorphisms and COVID-19: Could knowledge gained from HIV/AIDS be important? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104512. [PMID: 32858232 PMCID: PMC7448762 DOI: 10.1016/j.meegid.2020.104512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Emerging results indicate that an uncontrolled host immune response, leading to a life-threatening condition called cytokine release syndrome (also termed "cytokine storm"), is the major driver of pathology in severe COVID-19. In this pandemic, considerable effort is being focused on identifying host genomic factors that increase susceptibility or resistance to the complications of COVID-19 and translating these findings to improved patient care. In this regard, the chemokine receptor-ligand nexus has been reported as potentially important in severe COVID-19 disease pathogenesis and its treatment. Valuable genomic insights into the chemokine receptor-ligand nexus have been gained from HIV infection and disease progression studies. Applying that knowledge, together with newly discovered potential host genomic factors associated with COVID-19, may lead to a more comprehensive understanding of the pathogenesis and treatment outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH 44106, USA,Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA,Corresponding author at: Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Mehlotra RK. New Knowledge About CCR5, HIV Infection, and Disease Progression: Is "Old" Still Valuable? AIDS Res Hum Retroviruses 2020; 36:795-799. [PMID: 32615790 DOI: 10.1089/aid.2020.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
C-C chemokine receptor (CCR) 5 (CCR5) is the main HIV-1 coreceptor involved in virus entry and cell-to-cell spread during acute and chronic infections: such CCR5 and T cell tropic viruses are adapted to and replicate in CD4+ memory T cells. Polymorphisms in CCR5 regulate CCR5 expression, which, in turn, influences HIV infection acquisition and subsequent disease progression. Among these polymorphisms, a 32-bp deletion in the CCR5 open reading frame (CCR5 Δ32) and a single nucleotide polymorphism (SNP) in the promoter (-2459G/A) are the most well-characterized polymorphisms. CCR5 Δ32 provides partial to full protection against HIV infection and, therefore, serves as a basis for gene deletion studies attempting to achieve a permanent HIV cure. Recent studies have discovered that certain SNPs in the CCR region, not within CCR5, also affect CCR5 expression, HIV infection, and disease progression. Although these studies provide further valuable information regarding the role of human genetic variation in HIV/AIDS, they did not incorporate -2459G/A. In this article, the author summarizes the knowledge gained through the discovery of these new SNPs and introduces the idea that by not incorporating -2459G/A, less comprehensive conclusions may have been reached. Until a strategy that delivers a cure to the millions is found, every piece of information that may help curtail the HIV/AIDS threat to public health should be considered useful.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
50
|
Jiang C, Lian X, Gao C, Sun X, Einkauf KB, Chevalier JM, Chen SMY, Hua S, Rhee B, Chang K, Blackmer JE, Osborn M, Peluso MJ, Hoh R, Somsouk M, Milush J, Bertagnolli LN, Sweet SE, Varriale JA, Burbelo PD, Chun TW, Laird GM, Serrao E, Engelman AN, Carrington M, Siliciano RF, Siliciano JM, Deeks SG, Walker BD, Lichterfeld M, Yu XG. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature 2020; 585:261-267. [PMID: 32848246 PMCID: PMC7837306 DOI: 10.1038/s41586-020-2651-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 07/15/2020] [Indexed: 02/01/2023]
Abstract
Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.
Collapse
Affiliation(s)
- Chenyang Jiang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Xiaoming Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Kevin B Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua M Chevalier
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Stephane Hua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ben Rhee
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Kaylee Chang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Matthew Osborn
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael J Peluso
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Ma Somsouk
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Jeffrey Milush
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Lynn N Bertagnolli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah E Sweet
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph A Varriale
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tae-Wook Chun
- National Institute of Allergies and Infectious Diseases, Bethesda, MD, USA
| | | | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Steven G Deeks
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|