1
|
Liao HJ, Hong JR. Enhancement of reactive oxygen species metabolism by antioxidant enzyme Cu/Zn-SOD can block betanodavirus-induced necroptosis and suppress viral replication in fish cells. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110344. [PMID: 40254084 DOI: 10.1016/j.fsi.2025.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Very little is known about oxidative stress as a modulator of signaling between the host and virus in viral nervous necrosis (VNN) within the aquaculture field. In the present study, we examined whether blocking ROS signaling using mitochondrial Cu/Zn-SOD could affect host cell death and the viral replication of RGNNV during infection in fish cells. Upon the overexpression of Cu/Zn-SOD in fish GF-1 cells, superoxide generation in RGNNV infection was reduced 0.6-fold, which correlated to host cell viability in the middle-late stages. Regarding the regulation of reactive oxygen species (ROS) signaling by superoxide, Cu/Zn-SOD overexpression can enhance superoxide's metabolism to hydrogen peroxide, which suppresses the RIPK3-mediated cell death signals at 48 hpf. On the other hand, ROS-mediated signal suppression can enhance Bcl-2 family Bcl-2/Bcl-xL expression in the early and middle replication stages. Furthermore, the enhancement of superoxide metabolism can reduce the virus' replication ability and expression of the non-structural genes B1 and B2, as well as the genome replication gene Protein A and the major capsid protein protein α, which were correlated with the viral load dropping by two log viral titers at 48 and 72 hpf. Taken together, these data suggest that ROS signals trigger host stress responses related to cell death/necroptosis in RGNNV infection. Then, ROS-mediated stress signals can modulate anti-cell death signals through the Bcl-2/Bcl-xL pathway. In conclusion, an ROS-mediated stress response is required for viral expression and replication cycles, providing new insights into controlling RNA viruses.
Collapse
Affiliation(s)
- Hong-Jun Liao
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, ROC.
| |
Collapse
|
2
|
Sheibani M, Hosseinzadeh A, Fatemi I, Mehrzadi S. Melatonin and necroptosis: therapeutic aspects based on cellular mechanisms. Mol Biol Rep 2025; 52:606. [PMID: 40526280 DOI: 10.1007/s11033-025-10713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Accepted: 06/10/2025] [Indexed: 06/19/2025]
Abstract
Necroptosis is a regulated form of programmed cell death. It is integral to the development of various diseases, such as neurological disorders, lung injuries, liver fibrosis, and testicular toxicity. This process is orchestrated by essential molecular pathways that involve receptor-interacting protein kinases (RIP1/RIP3) and mixed lineage kinase domain-like protein (MLKL), which lead to membrane disruption, the release of damage-associated molecular patterns (DAMPs), and subsequent inflammation. Melatonin, recognized for its potent antioxidant and anti-inflammatory properties, has emerged as a promising therapeutic agent that can inhibit necroptosis through various mechanisms. In neurological diseases such as intracerebral hemorrhage, traumatic brain injury, and cerebral ischemia-reperfusion, melatonin suppresses necroptosis by downregulating RIP1/RIP3/MLKL signaling, upregulating A20 (TNFAIP3), and inhibiting the HMGB1/TLR4/NF-κB pathway. In lung disorders, melatonin attenuates cadmium- and LPS-induced necroptosis by modulating the Ang-II axis, reducing TNF-α-mediated signaling, and acting through MT1/MT2 receptors. In liver fibrosis models, melatonin inhibits RIP1-RIP3 necrosome formation, reduces oxidative stress, and decreases DAMPs-mediated immune responses. Similarly, in testicular toxicity induced by tetrabromobisphenol A (TBBPA), melatonin suppresses necroptosis by inhibiting the several pathways and reducing ROS overproduction. These findings highlight melatonin's ability to modulate necroptosis across diverse tissues, offering protection against inflammation, oxidative stress, and cell death. By targeting necroptosis-related pathways, melatonin presents a versatile therapeutic strategy for treating diseases characterized by excessive cell death and inflammation, including stroke, myocardial infarction, pancreatitis, and autoimmune disorders. This review underscores the potential of melatonin as a novel intervention for necroptosis-related pathologies, emphasizing its role in restoring cellular homeostasis and mitigating tissue damage.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Qin X, Zhu J, Lu H, Yi M, Zhao Z, Zhang W, Cheng J. Research progress of deubiquitinating enzymes in cerebral ischemia-reperfusion injury. Front Aging Neurosci 2025; 17:1588920. [PMID: 40529211 PMCID: PMC12171222 DOI: 10.3389/fnagi.2025.1588920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 05/08/2025] [Indexed: 06/20/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a critical pathological process driving neurological deterioration following ischemic stroke, involving multifaceted mechanisms such as inflammatory cascades, oxidative stress, and programmed cell death (PCD). Deubiquitinases (DUBs), as key regulators of the ubiquitin-proteasome system, dynamically modulate protein stability, signal transduction, and subcellular localization through editing the ubiquitin code, exhibiting dual roles in CIRI-both as drivers of pathogenesis and potential therapeutic targets. This review systematically elucidates the core regulatory mechanisms of DUBs in CIRI: (i) suppression of neuroinflammation via modulation of NLRP6/NF-κB pathways; (ii) mitigation of oxidative stress through the KEAP1-NRF2 axis and mitochondrial quality control; and (iii) neuroprotection by intercepting necroptosis, ferroptosis, and other PCD pathways. We further reveal that CIRI disrupts DUBs functionality through a tripartite mechanism-transcriptional dysregulation, catalytic inactivation, and subcellular mislocalization-transforming DUBs from guardians of homeostasis into mediators of injury. Consequently, DUBs-targeted strategies, including small-molecule inhibitors (e.g., IU1, Vialinin A), genetic editing approaches (e.g., BRCC3 silencing, A20 overexpression), and exosome-based delivery systems (e.g., the KLF3-AS1/miR-206/USP22 axis), demonstrate significant neuroprotective potential. However, challenges persist, such as substrate specificity, ubiquitin chain-type dependency, and barriers to clinical translation. Future research must integrate multi-omics technologies, develop brain-targeted delivery platforms, and explore synergistic effects of DUBs modulation with existing therapies to advance precision medicine in stroke treatment.
Collapse
Affiliation(s)
- XiaoHong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - JiangRui Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - HaoRan Lu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - MaoRui Yi
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - ZiLong Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - WenFei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Siff TE, Allen PE, Armistead DL, Hunt JR, Rolland SJ, Agaisse H, Carlyon JA. Orientia tsutsugamushi Modulates RIPK3 Cellular Levels but Does Not Inhibit Necroptosis. Pathogens 2025; 14:478. [PMID: 40430799 PMCID: PMC12114526 DOI: 10.3390/pathogens14050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Scrub typhus is an emerging chigger-borne disease caused by the obligate intracellular bacterium Orientia tsutsugamushi. Necroptosis is a form of programmed cell death (PCD) mediated by RIPK3 (serine/threonine kinase receptor interacting protein 3) and its downstream effector MLKL (mixed-lineage kinase domain-like). While O. tsutsugamushi modulates apoptosis, another form of PCD, its interplay with necroptosis is unknown. Much of Orientia pathobiology is linked to its ankyrin repeat (AR)-containing effectors (Anks). Two of these, Ank1 and Ank6, share similarities with the cowpox AR protein, vIRD (viral inducer of RIPK3 degradation) that prevents necroptosis. Here, we show that Ank1 and Ank6 reduce RIPK3 cellular levels although not as robustly as and mechanistically distinct from vIRD. Orientia infection lowers RIPK3 amounts and does not elicit necroptosis in endothelial cells. In HeLa cells ectopically expressing RIPK3, Orientia fails to inhibit RIPK3 and MLKL phosphorylation as well as cell death. MLKL colocalization with Orientia or Listeria monocytogenes, another intracytoplasmic pathogen, was not observed. Thus, O. tsutsugamushi reduces cellular levels of RIPK3 and does not elicit necroptosis but cannot inhibit this PCD pathway once it is induced. This study is a first step toward understanding how the relationship between Orientia and necroptosis contributes to scrub typhus pathogenesis.
Collapse
Affiliation(s)
- Thomas E. Siff
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Paige E. Allen
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - David L. Armistead
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Jason R. Hunt
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| | - Steven J. Rolland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.J.R.); (H.A.)
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.J.R.); (H.A.)
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA; (T.E.S.); (P.E.A.); (D.L.A.); (J.R.H.)
| |
Collapse
|
5
|
Xiao H, Han Z, Xu M, Gao X, Qiu S, Ren N, Yi Y, Zhou C. The Role of Post-Translational Modifications in Necroptosis. Biomolecules 2025; 15:549. [PMID: 40305291 PMCID: PMC12024652 DOI: 10.3390/biom15040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)-chemical alterations occurring after protein synthesis that critically regulate protein functionality-constitute essential regulatory components within these complex signaling cascades. This intricate crosstalk between necroptotic pathways and PTM networks presents promising therapeutic opportunities. Our comprehensive review systematically analyzes the molecular mechanisms underlying necroptosis, with particular emphasis on the regulatory roles of PTMs in signal transduction. Through systematic evaluation of key modifications including ubiquitination, phosphorylation, glycosylation, methylation, acetylation, disulfide bond formation, caspase cleavage, nitrosylation, and SUMOylation, we examine potential therapeutic applications targeting necroptosis in disease pathogenesis. Furthermore, we synthesize current pharmacological strategies for manipulating PTM-regulated necroptosis, offering novel perspectives on clinical target development and therapeutic intervention.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Zeping Han
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
6
|
Huang W, Zhong L, Shi Y, Ma Q, Yang X, Zhang H, Zhang J, Wang L, Wang K, Li J, Zou J, Yang X, Yang L, Zeng Q, Jing L, Chen Z, Zhao Y. An Anti-CD147 Antibody-Drug Conjugate Mehozumab-DM1 is Efficacious Against Hepatocellular Carcinoma in Cynomolgus Monkey. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410438. [PMID: 39985225 PMCID: PMC12005782 DOI: 10.1002/advs.202410438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Indexed: 02/24/2025]
Abstract
Effective treatment strategies are urgently needed for hepatocellular carcinoma (HCC) patients due to frequent therapeutic resistance and recurrence. Antibody-drug conjugate (ADC) is a specific antibody-drug conjugated with small molecular compounds, which has potent killing activity against cancer cells. However, few ADC candidates for HCC are undergoing clinical evaluation. CD147 is a tumor-associated antigen that is highly expressed on the surface of tumor cells. Here CD147 is found significantly upregulated in tumor tissues of HCC. Mehozumab-DM1, a humanized anti-CD147 monoclonal antibody conjugated with Mertansine (DM1) is developed. Mehozumab-DM1 is effectively internalized by cancer cells and demonstrated potent antitumor efficacy in HCC cells. In vivo evaluation of Mehozumab-DM1 is conducted in a CRISPR-mediated PTEN and TP53 mutation cynomolgus monkey liver cancer model, which is poorly responsive to sorafenib treatment. Mehozumab-DM1 demonstrated potent tumor inhibitory efficacy at doses of 0.2 and 1.0 mg kg-1 treatment groups in cynomolgus monkey. No treatment-related adverse reactions or body weight loss are observed. Interestingly, Mehozumab-DM1 treatment induced RIPK-dependent tumor cell necroptosis through inhibiting IκB kinase/NF-κB pathway. In conclusion, Mehozumab-DM1 potently inhibits hepatoma through effective internalization to release payload and inducing cell necroptosis to enhance the bystander effect, which is a promising treatment for refractory HCC.
Collapse
Affiliation(s)
- Wan Huang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Liping Zhong
- State Key Laboratory of Targeting OncologyNational Center for International Research of Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor Diagnosis and TherapyGuangxi Medical UniversityNanningGuangxi530021China
| | - Ying Shi
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Qingzhi Ma
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Xiangmin Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Hongmei Zhang
- Department of Clinical OncologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Zhang
- Department of PathologyXijing HospitalThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ling Wang
- Department of Health StatisticsSchool of Preventive MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Kun Wang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Jingzhuo Li
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Jie Zou
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Xu Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Liu Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Qingmei Zeng
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Lin Jing
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Zhi‐Nan Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Yongxiang Zhao
- State Key Laboratory of Targeting OncologyNational Center for International Research of Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor Diagnosis and TherapyGuangxi Medical UniversityNanningGuangxi530021China
| |
Collapse
|
7
|
Mei F, Deng D, Cao Z, Lou L, Chen K, Hu M, Zhu Z, Shen J, Zhang J, Liang J, Huang J, Bao M, Waisman A, Wang X. Deubiquitination of RIPK3 by OTUB2 potentiates neuronal necroptosis after ischemic stroke. EMBO Mol Med 2025; 17:679-695. [PMID: 40021931 PMCID: PMC11982199 DOI: 10.1038/s44321-025-00206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
As a common and severe cerebrovascular disease, ischemic stroke casts a significant shadow over global health. Unfortunately, the mechanisms regulating neuronal death in the affected areas remain largely unclear. Here, we found that deletion of the deubiquitinating enzyme Otubain-2 (OTUB2) significantly alleviated ischemia-induced cerebral infarction and neurological deficits, accompanied by a reduction in neuronal loss, glial activation, and neuroinflammation. OTUB2 was predominantly expressed in neurons and its deletion decreased receptor-interacting protein kinase 3 (RIPK3)-mediated neuronal necroptosis. Moreover, OTUB2 increased RIPK3 protein abundance by inhibiting the proteasomal degradation of RIPK3. Mechanistically, OTUB2 removed K48-linked polyubiquitin chains from RIPK3 through its active site C51. Importantly, pharmacological inhibition of OTUB2 alleviated ischemic brain injury in mice and reduced oxygen-glucose deprivation-induced neuronal death in human brain organoids. These results demonstrate that OTUB2 critically regulates ischemic stroke injury by potentiating neuronal necroptosis, suggesting that OTUB2 inhibition may become a potential therapeutic approach for treating ischemic stroke.
Collapse
Affiliation(s)
- Fuqi Mei
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Deyu Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Zijun Cao
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Liyan Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Kangmin Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Minjie Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Zhenhu Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Jiangyun Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Jianzhao Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China
| | - Jie Liang
- Department of Rehabilitation, Central Hospital of Jinhua City, 321000, Jinhua, China
| | - Jingyong Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, 325015, Wenzhou, China
| | - Min Bao
- Oujiang Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, China
| | - Ari Waisman
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), 325000, Wenzhou, China.
| |
Collapse
|
8
|
Luo C, Zhang R, Guo R, Wu L, Xue T, He Y, Jin Y, Zhao Y, Zhang Z, Zhang P, Ye S, Li X, Li D, Zhang W, Wang C, Lai L, Pan-Hammarström Q, Wucherpfennig KW, Gao Z, Pan D, Zeng Z. Integrated computational analysis identifies therapeutic targets with dual action in cancer cells and T cells. Immunity 2025; 58:745-765.e9. [PMID: 40023158 DOI: 10.1016/j.immuni.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Many cancer drugs that target cancer cell pathways also impair the immune system. We developed a computational target discovery platform to enable examination of both cancer and immune cells so as to identify pathways that restrain tumor progression and potentiate anti-tumor immunity. Immune-related CRISPR screen analyzer of functional targets (ICRAFT) integrates immune-related CRISPR screen datasets, single-cell RNA sequencing (scRNA-seq) data, and pre-treatment RNA-seq data from clinical trials, enabling a systems-level approach to therapeutic target discovery. Using ICRAFT, we identified numerous targets that enhance both cancer cell susceptibility to immune attack and T cell activation, including tumor necrosis factor (TNF) alpha-induced protein 3 (TNFAIP3), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and suppressor of cytokine signaling 1 (SOCS1). In cancer cells, Tnfaip3 (A20) deletion activated the TNF-nuclear factor kappa-B (NF-κB) pathway, promoting chemokine expression and T cell recruitment to the tumor. T cell-mediated elimination of Tnaifp3-null cancer cells was primarily driven by TNF-induced apoptosis. Inactivation of Tnfaip3 in T cells enhanced anti-tumor efficacy. By integrating diverse functional genomics and clinical datasets, ICRAFT provides an interactive resource toward a deeper understanding of anti-tumor immunity and immuno-oncology drug development.
Collapse
Affiliation(s)
- Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Lijian Wu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Xue
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Yufeng He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yanping Zhao
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Peng Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Sitong Ye
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaohong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Dian Li
- Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, Saint Louis, MO 63108, USA
| | - Wubing Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chenfei Wang
- Shanghai Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100084, China.
| | - Deng Pan
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
9
|
Gao X, Huang Y, Wei T, Xue J, Iurii F, Yang L, Wang L, Li H, Mo G, Huang Y, Xie H, Wang H, Lou S, Han P. TFAP2A-regulated CRNDE enhances colon cancer progression and chemoresistance via RIPK3 interaction. Funct Integr Genomics 2025; 25:36. [PMID: 39954131 PMCID: PMC11829933 DOI: 10.1007/s10142-025-01545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
Colon cancer (CC) is a common malignancy with rising incidence worldwide. Despite advances in treatment strategies, many patients still face a poor prognosis due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as important regulators of various biological processes and have been implicated in cancer progression. Among them, colorectal neoplasia differentially expressed (CRNDE) has drawn attention for its potential roles in different cancers. However, its specific functions in CC remain unclear. In this study, we identified CRNDE as highly expressed in CC, contributing to tumor progression and drug resistance. Mechanically, CRNDE is regulated by the transcription factor TFAP2A. Additionally, CRNDE inhibits pyroptosis, a form of programmed cell death, by promoting the ubiquitin-mediated degradation of RIPK3, thereby reducing the sensitivity of CC cells to 5-fluorouracil (5-FU). Our findings suggest that the TFAP2A/CRNDE/RIPK3 axis plays critical roles in colon cancer progression and chemoresistance, highlighting potential therapeutic targets for improving treatment outcomes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanming Huang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tonghui Wei
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingmin Xue
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Filippov Iurii
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Laishou Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liying Wang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hao Li
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Genshen Mo
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuze Huang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haonan Xie
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hang Wang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shenghan Lou
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
10
|
Layzell S, Barbarulo A, van Loo G, Beyaert R, Seddon B. NF-κB regulated expression of A20 controls IKK dependent repression of RIPK1 induced cell death in activated T cells. Cell Death Differ 2025; 32:256-270. [PMID: 39327505 PMCID: PMC11802744 DOI: 10.1038/s41418-024-01383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
IKK signalling is essential for survival of thymocytes by repressing RIPK1 induced cell death rather than its canonical function of activating NF-κB. The role of IKK signalling in activated T cells is unclear. To investigate this, we analysed activation of IKK2 deficient T cells. While TCR triggering was normal, proliferation and expansion was profoundly impaired. This was not due to defective cell cycle progression, rather dividing T cells became sensitised to TNF induced cell death, since inhibition of RIPK1 kinase activity rescued cell survival. Gene expression analysis of activated IKK2 deficient T cells revealed defective expression of Tnfaip3, that encodes A20, a negative regulator of NF-κB. To test whether A20 expression was required to protect IKK2 deficient T cells from cell death, we generated mice with T cells lacking both A20 and IKK2. Doing this resulted in near complete loss of peripheral T cells, in contrast to mice lacking one or other gene. Strikingly, this phenotype was completely reversed by inactivation of RIPK1 kinase activity in vivo. Together, our data show that IKK signalling in activated T cells protects against RIPK1 dependent death, both by direct phosphorylation of RIPK1 and through NF-κB mediated induction of A20, that we identify for the first time as a key modulator of RIPK1 activity in T cells.
Collapse
Affiliation(s)
- Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK
| | - Alessandro Barbarulo
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, UGent Department for Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Gent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, UGent Department for Biomedical Molecular Biology, Unit of Molecular Signal Transduction in Inflammation, Gent, Belgium
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, The Pears Building, Hampstead, London, UK.
| |
Collapse
|
11
|
Hoblos H, Cawthorne W, Samson AL, Murphy JM. Protein shapeshifting in necroptotic cell death signaling. Trends Biochem Sci 2025; 50:92-105. [PMID: 39730228 DOI: 10.1016/j.tibs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux. As molecular level knowledge of cell death signaling grows, we anticipate targeting the conformations of key necrosomal effector proteins will emerge as new avenues for drug development.
Collapse
Affiliation(s)
- Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
12
|
Schnizler S, Naumann M, Vieth M. Differential expression of the ubiquitin-editing enzyme A20 in gastric biopsies indicates the severity of disease. Histochem Cell Biol 2024; 163:22. [PMID: 39738689 PMCID: PMC11978676 DOI: 10.1007/s00418-024-02345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 01/02/2025]
Abstract
A20, an ubiquitin-editing enzyme, plays a pivotal role in regulating cell signaling and immune responses. Dysregulated A20 expression has been associated with various pathological conditions, including inflammatory diseases and malignancies, where its expression levels often correlate with differing prognoses in solid tumors. This study aimed to explore the expression and cellular localization of A20 in both nonpathological and diseased human gastric tissues to gain deeper insights into its involvement in gastric pathologies. We analyzed paraffin-embedded gastric tissue samples from 326 patients. A20 expression was assessed using immunohistochemistry (IHC) with results categorized according to the Remmele and Stegner immunoreactive score (IRS). The study compared A20 expression across a spectrum of gastric pathologies, including Helicobacter pylori (HP) gastritis, autoimmune gastritis (A-gastritis), reactive gastropathy (C-gastritis), Ex-HP-gastritis, adenomas, and adenocarcinomas, with nonpathological gastric mucosa serving as a baseline. Our findings demonstrate a significant increase in A20 expression in HP-gastritis (p = 0.019), A-gastritis (p = 0.001), adenomas (p < 0.001), and adenocarcinomas (p < 0.001). Conversely, no significant differences in A20 expression were observed in C-gastritis or Ex-HP-gastritis cases.
Collapse
Affiliation(s)
- Stephan Schnizler
- Institute of Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Michael Naumann
- Institute of Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany.
- Institute of Experimental Internal Medicine, Otto-Von-Guericke-Universität Magdeburg, 39120, Magdeburg, Germany.
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, 95445, Bayreuth, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| |
Collapse
|
13
|
Qiu M, Zhang W, Dai J, Sun W, Lai M, Tang S, Xu E, Ning Y, Zhan L. A20 negatively regulates necroptosis-induced microglia/macrophages polarization and mediates cerebral ischemic tolerance via inhibiting the ubiquitination of RIP3. Cell Death Dis 2024; 15:904. [PMID: 39695113 DOI: 10.1038/s41419-024-07293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
Neuronal necroptosis appears to be suppressed by the deubiquitinating enzyme A20 and is capable to regulate the polarization of microglia/macrophages after cerebral ischemia. We have demonstrated that hypoxic preconditioning (HPC) can alleviate receptor interacting protein 3 (RIP3)-induced necroptosis in CA1 after transient global cerebral ischemia (tGCI). However, it is still unclear whether HPC serves to regulate the phenotypic polarization of microglia/macrophages after cerebral ischemia by mitigating neuronal necroptosis. We hence aim to elucidate the underlying mechanism(s) by which the ubiquitination of RIP3-dependent necroptosis regulated by A20 affects microglia/macrophages phenotype after cerebral ischemic tolerance. We found that microglia/macrophages in CA1 of rats underwent M1 and M2 phenotypic polarization in response to tGCI. Notably, the treatment with HPC, as well as inhibitors of necroptosis, including Nec-1 and mixed lineage kinase domain-like (MLKL) siRNA, attenuated neuroinflammation associated with M1 polarization of microglia/macrophages induced by tGCI. Mechanistically, HPC was revealed to upregulate A20 and in turn enhance the interaction between A20 and RIP3, thereby reducing K63-linked polyubiquitination of RIP3 in CA1 after tGCI. Consequently, RIP3-dependent necroptosis and the M1 polarization of microglia/macrophages were blocked either by HPC or via overexpression of A20 in neurons, which ultimately mitigated cerebral injury in CA1 after tGCI. These data support that A20 serves as a crucial mediator of microglia/macrophages polarization by suppressing neuronal necroptosis in a RIP3 ubiquitination-dependent manner after tGCI. Also, a novel mechanism by which HPC functions in cerebral ischemic tolerance is elucidated.
Collapse
Affiliation(s)
- Meiqian Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenhao Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahua Dai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meijing Lai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiyi Tang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Long H, Espinosa L, Sawalha AH. Unraveling the immunomodulatory impact of hydroxychloroquine on peripheral T cells using single-cell RNA sequencing. J Autoimmun 2024; 149:103324. [PMID: 39405653 DOI: 10.1016/j.jaut.2024.103324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 12/15/2024]
Abstract
Hydroxychloroquine (HCQ) is widely used in the treatment of a variety of autoimmune diseases. However, the mechanisms responsible for the immunomodulatory properties of HCQ in T cells remain unclear. Here we used single-cell RNA-sequencing to examine the effect of HCQ on T cells following in vitro stimulation. HCQ treatment led to a reduction in effector CD4+ T cells and upregulation of inhibitory genes including CTLA4 and TNFAIP3 in effector and naive CD4+ T cells, respectively. HCQ induced a significant expansion of effector CD8+ T cells, and significantly upregulated key cytotoxicity genes including GZMA, GZMB, GZMH, KLRD1, NKG7, and PRF1, as well as IFNG expression. Furthermore, HCQ treatment led to a reduction in the CD38+ CD8+ T cell subset, which is characterized by defective cytotoxicity and thought to both play a pathogenic role and increase susceptibility to infections in autoimmunity. We analyzed single-cell RNA-sequencing data in effector CD8+ T cells from lupus patients with or without HCQ treatment and confirmed upregulation of key cytotoxicity genes in patients receiving HCQ. In conclusion, this work provides additional insights into the immunomodulatory effects of HCQ and indicates that HCQ improves T cell cytotoxicity, which could explain a previously suggested protective effect of HCQ against infections in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Huizhong Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luis Espinosa
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Culver-Cochran AE, Hassan A, Hueneman K, Choi K, Ma A, VanCauwenbergh B, O'Brien E, Wunderlich M, Perentesis JP, Starczynowski DT. Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat Commun 2024; 15:9189. [PMID: 39448591 PMCID: PMC11502881 DOI: 10.1038/s41467-024-53629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematopoietic malignancy. Although many patients achieve complete remission with standard induction therapy, a combination of cytarabine and anthracycline, ~40% of patients have induction failure. These refractory patients pose a treatment challenge, as they do not respond to salvage therapy or allogeneic stem cell transplant. Herein, we show that AML patients who experience induction failure have elevated expression of the NF-κB target gene tumor necrosis factor alpha-induced protein-3 (TNFAIP3/A20) and impaired necroptotic cell death. A20High AML are resistant to anthracyclines, while A20Low AML are sensitive. Loss of A20 in AML restores sensitivity to anthracycline treatment by inducing necroptosis. Moreover, A20 prevents necroptosis in AML by targeting the necroptosis effector RIPK1, and anthracycline-induced necroptosis is abrogated in A20High AML. These findings suggest that NF-κB-driven A20 overexpression plays a role in failed chemotherapy induction and highlights the potential of targeting an alternative cell death pathway in AML.
Collapse
MESH Headings
- Humans
- Necroptosis/drug effects
- Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
- Tumor Necrosis Factor alpha-Induced Protein 3/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- NF-kappa B/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Cell Line, Tumor
- Anthracyclines/pharmacology
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Animals
- Female
- Male
- Mice
- Middle Aged
Collapse
Affiliation(s)
- Ashley E Culver-Cochran
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Eric O'Brien
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - John P Perentesis
- Division of Oncology, Cincinnati Children's Hospital, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, USA.
- University of Cincinnati Cancer Center, Cincinnati, USA.
| |
Collapse
|
17
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Du X, Xu J, Mei F, Shen J, Zhou B, Zhu Z, Li Z, Su X, Li J, Schlüter D, Ruan J, Wang X. Deubiquitination of RIPK2 by OTUB2 augments NOD2 signalling and protective effects in intestinal inflammation. Clin Transl Med 2024; 14:e70038. [PMID: 39358938 PMCID: PMC11446981 DOI: 10.1002/ctm2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, but the molecular mechanisms underlying IBD are incompletely understood. In this study, we explored the role and regulating mechanism of otubain 2 (OTUB2), a deubiquitinating enzyme, in IBD. METHODS To study the function of OTUB2 in IBD, we generated Otub2-/- mice and treated them with dextran sulfate sodium (DSS) to induce experimental colitis. Bone marrow transplantation was performed to identify the cell populations that were affected by OTUB2 in colitis. The molecular mechanism of OTUB2 in signal transduction was studied by various biochemical methods. RESULTS OTUB2 was highly expressed in colon-infiltrating macrophages in both humans with IBD and mice with DSS-induced experimental colitis. Colitis was significantly aggravated in Otub2-/- mice and bone marrow chimeric mice receiving Otub2-/- bone marrow. OTUB2-deficiency impaired the production of cytokines and chemokines in macrophages in response to the NOD2 agonist muramyl dipeptide (MDP). Upon MDP stimulation, OTUB2 promoted NOD2 signaling by stabilizing RIPK2. Mechanistically, OTUB2 inhibited the proteasomal degradation of RIPK2 by removing K48-linked polyubiquitination on RIPK2, which was mediated by the active C51 residue in OTUB2. In mice, OTUB2 ablation abolished the protective effects of MDP administration in colitis. CONCLUSION This study identified OTUB2 as a novel regulator of intestinal inflammation.
Collapse
Affiliation(s)
- Xue Du
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Jun Xu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Fuqi Mei
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Jiangyun Shen
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Bincheng Zhou
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Zhenhu Zhu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Zhongding Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Xian Su
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Jianmin Li
- Department of PathologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dirk Schlüter
- Hannover Medical SchoolInstitute of Medical Microbiology and Hospital EpidemiologyHannoverGermany
| | - Jing Ruan
- Department of PathologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xu Wang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
19
|
Peng L. Necroptosis and autoimmunity. Clin Immunol 2024; 266:110313. [PMID: 39002793 DOI: 10.1016/j.clim.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Autoimmunity is a normal physiological state that requires immunological homeostasis and surveillance, whereas necroptosis is a type of inflammatory cell death. When necroptosis occurs, various immune system cells must perform their appropriate duties to preserve immunological homeostasis, whether the consequence is expanding or limiting the inflammatory response and the pathological condition is cleared or progresses to the autoimmune disease stage. This article discusses necroptosis based on RIP homotypic interaction motif (RHIM) interaction under various physiological and pathological situations, with the RIPK1-RIPK3-MLKL necrosome serving as the regulatory core. In addition, the cell biology of necroptosis involved in autoimmunity and its application in autoimmune diseases were also reviewed.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road No.305, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
20
|
Zhu T, Wu BW. Recognition of necroptosis: From molecular mechanisms to detection methods. Biomed Pharmacother 2024; 178:117196. [PMID: 39053418 DOI: 10.1016/j.biopha.2024.117196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Necroptosis is a crucial modality of programmed cell death characterized by distinct morphological and biochemical hallmarks, including cell membrane rupture, organelle swelling, cytoplasmic and nuclear disintegration, cellular contents leakage, and release of damage-associated molecular patterns (DAMPs), accompanied by the inflammatory responses. Studies have shown that necroptosis is involved in the etiology and evolution of a variety of pathologies including organ damage, inflammation disorders, and cancer. Despite its significance, the field of necroptosis research grapples with the challenge of non-standardized detection methodologies. In this review, we introduce the fundamental concepts and molecular mechanisms of necroptosis and critically appraise the principles, merits, and inherent limitations of current detection technologies. This endeavor seeks to establish a methodological framework for necroptosis detection, thereby propelling deeper insights into the research of cell necroptosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Bo-Wen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
21
|
Dou Z, Bonacci TR, Shou P, Landoni E, Woodcock MG, Sun C, Savoldo B, Herring LE, Emanuele MJ, Song F, Baldwin AS, Wan Y, Dotti G, Zhou X. 4-1BB-encoding CAR causes cell death via sequestration of the ubiquitin-modifying enzyme A20. Cell Mol Immunol 2024; 21:905-917. [PMID: 38937625 PMCID: PMC11291893 DOI: 10.1038/s41423-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.
Collapse
Affiliation(s)
- Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Yisong Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Bagyinszky E, An SSA. Genetic Mutations Associated With TNFAIP3 (A20) Haploinsufficiency and Their Impact on Inflammatory Diseases. Int J Mol Sci 2024; 25:8275. [PMID: 39125844 PMCID: PMC11311569 DOI: 10.3390/ijms25158275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
TNF-α-induced protein 3 (TNFAIP3), commonly referred to as A20, is an integral part of the ubiquitin-editing complex that significantly influences immune regulation, apoptosis, and the initiation of diverse immune responses. The A20 protein is characterized by an N-terminal ovarian tumor (OTU) domain and a series of seven zinc finger (ZNF) domains. Mutations in the TNFAIP3 gene are implicated in various immune-related diseases, such as Behçet's disease, polyarticular juvenile idiopathic arthritis, autoimmune thyroiditis, autoimmune hepatitis, and rheumatoid arthritis. These mutations can lead to a spectrum of symptoms, including, but not limited to, recurrent fever, ulcers, rashes, musculoskeletal and gastrointestinal dysfunctions, cardiovascular issues, and respiratory infections. The majority of these mutations are either nonsense (STOP codon) or frameshift mutations, which are typically associated with immune dysfunctions. Nonetheless, missense mutations have also been identified as contributors to these conditions. These genetic alterations may interfere with several biological pathways, notably abnormal NF-κB signaling and dysregulated ubiquitination. Currently, there is no definitive treatment for A20 haploinsufficiency; however, therapeutic strategies can alleviate the symptoms in patients. This review delves into the mutations reported in the TNFAIP3 gene, the clinical progression in affected individuals, potential disease mechanisms, and a brief overview of the available pharmacological interventions for A20 haploinsufficiency. Mandatory genetic testing of the TNFAIP3 gene should be performed in patients diagnosed with autoinflammatory disorders to better understand the genetic underpinnings and guide treatment decisions.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
23
|
Watakabe K, Miyoshi M, Kakinuma S, Sato A, Tsuchiya J, Shimizu T, Mochida T, Inada K, Kaneko S, Kawai-Kitahata F, Murakawa M, Nitta S, Nakagawa M, Oshima S, Watanabe M, Ma A, Asahina Y, Okamoto R. A20 in hepatic stellate cells suppresses chronic hepatitis by inhibiting DCLK1-JNK pathway-dependent chemokines. FASEB J 2024; 38:e23757. [PMID: 38965999 DOI: 10.1096/fj.202400109r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Hepatic stellate cells (HSCs) are responsible for liver fibrosis accompanied by its activation into myofibroblasts and the abundant production of extracellular matrix. However, the HSC contribution to progression of liver inflammation has been less known. We aimed to elucidate the mechanism in HSCs underlying the inflammatory response and the function of tumor necrosis factor α-related protein A20 (TNFAIP3). We established A20 conditional knockout (KO) mice crossing Twist2-Cre and A20 floxed mice. Using these mice, the effect of A20 was analyzed in mouse liver and HSCs. The human HSC line LX-2 was also used to examine the role and underlying molecular mechanism of A20. In this KO model, A20 was deficient in >80% of HSCs. Spontaneous inflammation with mild fibrosis was found in the liver of the mouse model without any exogenous agents, suggesting that A20 in HSCs suppresses chronic hepatitis. Comprehensive RNA sequence analysis revealed that A20-deficient HSCs exhibited an inflammatory phenotype and abnormally expressed chemokines. A20 suppressed JNK pathway activation in HSCs. Loss of A20 function in LX-2 cells also induced excessive chemokine expression, mimicking A20-deficient HSCs. A20 overexpression suppressed chemokine expression in LX-2. In addition, we identified DCLK1 in the genes regulated by A20. DCLK1 activated the JNK pathway and upregulates chemokine expression. DCLK1 inhibition significantly decreased chemokine induction by A20-silencing, suggesting that A20 controlled chemokine expression in HSCs via the DCLK1-JNK pathway. In conclusion, A20 suppresses chemokine induction dependent on the DCLK1-JNK signaling pathway. These findings demonstrate the therapeutic potential of A20 and the DCLK1-JNK pathway for the regulation of inflammation in chronic hepatitis.
Collapse
Affiliation(s)
- Keiya Watakabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Clinical and Diagnostic Laboratory Science, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Taro Shimizu
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Mochida
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kento Inada
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeru Oshima
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Averil Ma
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Liver Disease Control, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
24
|
Wang Q, Yang F, Duo K, Liu Y, Yu J, Wu Q, Cai Z. The Role of Necroptosis in Cerebral Ischemic Stroke. Mol Neurobiol 2024; 61:3882-3898. [PMID: 38038880 DOI: 10.1007/s12035-023-03728-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
Cerebral ischemia, also known as ischemic stroke, accounts for nearly 85% of all strokes and is the leading cause of disability worldwide. Due to disrupted blood supply to the brain, cerebral ischemic injury is trigged by a series of complex pathophysiological events including excitotoxicity, oxidative stress, inflammation, and cell death. Currently, there are few treatments for cerebral ischemia owing to an incomplete understanding of the molecular and cellular mechanisms. Accumulated evidence indicates that various types of programmed cell death contribute to cerebral ischemic injury, including apoptosis, ferroptosis, pyroptosis and necroptosis. Among these, necroptosis is morphologically similar to necrosis and is mediated by receptor-interacting serine/threonine protein kinase-1 and -3 and mixed lineage kinase domain-like protein. Necroptosis inhibitors have been shown to exert inhibitory effects on cerebral ischemic injury and neuroinflammation. In this review, we will discuss the current research progress regarding necroptosis in cerebral ischemia as well as the application of necroptosis inhibitors for potential therapeutic intervention in ischemic stroke.
Collapse
Affiliation(s)
- Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Fan Yang
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Kun Duo
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenyu Cai
- College of Pharmacy, Ningxia Medical University, Hui Autonomous Region, Yinchuan, 750004, Ningxia, China.
- Shanghai Tenth People's Hospital, School of MedicineTongji University Cancer Center, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
25
|
Ciftci YC, Vatansever İE, Akgül B. Unraveling the intriguing interplay: Exploring the role of lncRNAs in caspase-independent cell death. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1862. [PMID: 38837618 DOI: 10.1002/wrna.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell death plays a crucial role in various physiological and pathological processes. Until recently, programmed cell death was mainly attributed to caspase-dependent apoptosis. However, emerging evidence suggests that caspase-independent cell death (CICD) mechanisms also contribute significantly to cellular demise. We and others have reported and functionally characterized numerous long noncoding RNAs (lncRNAs) that modulate caspase-dependent apoptotic pathways potentially in a pathway-dependent manner. However, the interplay between lncRNAs and CICD pathways has not been comprehensively documented. One major reason for this is that most CICD pathways have been recently discovered with some being partially characterized at the molecular level. In this review, we discuss the emerging evidence that implicates specific lncRNAs in the regulation and execution of CICD. We summarize the diverse mechanisms through which lncRNAs modulate different forms of CICD, including ferroptosis, necroptosis, cuproptosis, and others. Furthermore, we highlight the intricate regulatory networks involving lncRNAs, protein-coding genes, and signaling pathways that orchestrate CICD in health and disease. Understanding the molecular mechanisms and functional implications of lncRNAs in CICD may unravel novel therapeutic targets and diagnostic tools for various diseases, paving the way for innovative strategies in disease management and personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yusuf Cem Ciftci
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - İpek Erdoğan Vatansever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| |
Collapse
|
26
|
Tran HT, Kratina T, Coutansais A, Michalek D, Hogan BM, Lawlor KE, Vince JE, Silke J, Lalaoui N. RIPK3 cleavage is dispensable for necroptosis inhibition but restricts NLRP3 inflammasome activation. Cell Death Differ 2024; 31:662-671. [PMID: 38514849 PMCID: PMC11094093 DOI: 10.1038/s41418-024-01281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Caspase-8 activity is required to inhibit necroptosis during embryogenesis in mice. In vitro studies have suggested that caspase-8 directly cleaves RIPK1, CYLD and the key necroptotic effector kinase RIPK3 to repress necroptosis. However, recent studies have shown that mice expressing uncleavable RIPK1 die during embryogenesis due to excessive apoptosis, while uncleavable CYLD mice are viable. Therefore, these results raise important questions about the role of RIPK3 cleavage. To evaluate the physiological significance of RIPK3 cleavage, we generated Ripk3D333A/D333A mice harbouring a point mutation in the conserved caspase-8 cleavage site. These mice are viable, demonstrating that RIPK3 cleavage is not essential for blocking necroptosis during development. Furthermore, unlike RIPK1 cleavage-resistant cells, Ripk3D333A/D333A cells were not significantly more sensitive to necroptotic stimuli. Instead, we found that the cleavage of RIPK3 by caspase-8 restricts NLRP3 inflammasome activation-dependent pyroptosis and IL-1β secretion when Inhibitors of APoptosis (IAP) are limited. These results demonstrate that caspase-8 does not inhibit necroptosis by directly cleaving RIPK3 and further underscore a role for RIPK3 in regulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hong Tri Tran
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Tobias Kratina
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Dominika Michalek
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin M Hogan
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Najoua Lalaoui
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
| |
Collapse
|
27
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
28
|
Preedy MK, White MRH, Tergaonkar V. Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell Death Dis 2024; 15:202. [PMID: 38467621 PMCID: PMC10928192 DOI: 10.1038/s41419-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.
Collapse
Affiliation(s)
- Marcus K Preedy
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK
| | - Michael R H White
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore, 117596, Singapore.
| |
Collapse
|
29
|
Karri U, Harasimowicz M, Carpio Tumba M, Schwartz DM. The Complexity of Being A20: From Biological Functions to Genetic Associations. J Clin Immunol 2024; 44:76. [PMID: 38451381 DOI: 10.1007/s10875-024-01681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.
Collapse
Affiliation(s)
- Urekha Karri
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Magdalena Harasimowicz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Manuel Carpio Tumba
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Daniella M Schwartz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Wu W, Fan H, Cen J, Huang P, Li G, Tan Y, Liu G, Hong B. Novel diagnostic biomarkers related to necroptosis and immune infiltration landscape in acute myocardial infarction. PeerJ 2024; 12:e17044. [PMID: 38426147 PMCID: PMC10903340 DOI: 10.7717/peerj.17044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Background Acute myocardial infarction (AMI) can occur suddenly, which may induce deadly outcomes, and the population suffering from AMI presents a younger trend. Necroptosis, the new cell necrosis type, is associated with the pathogenic mechanisms of diverse cardiovascular diseases (CVDs). Its diagnostic value and molecular mechanisms in AMI are still unclear. Objective: This study focused on determining key necroptosis-related genes as well as immune infiltration in AMI. Methods We first examined the GSE66360 dataset for identifying necroptosis-related differentially expressed genes (NRDEGs). Thereafter, GO and functional annotation were performed, then a PPI network was built. In addition, "CIBERSORT" in R was applied in comparing different immune infiltration degrees in AMI compared with control groups. The receiver operating characteristic (ROC) curve was plotted to evaluate whether hub NRDEGs could be used in AMI diagnosis. Associations of immune cells with candidate NRDEGs biomarkers were examined by Spearman analysis. Finally, hub NRDEGs were validated by cell qPCR assays and another two datasets. Results A total of 15 NRDEGs were identified and multiple enrichment terms associated with necroptosis were discovered through GO and KEGG analysis. Upon module analysis, 10 hub NRDEGs were filtered out, and the top six hub NRDEGs were identified after ROC analysis. These top six NRDEGs might have a certain effect on modulating immune infiltrating cells, especially for mast cells activated, NK cells activated and neutrophils. Finally, two AMI datasets and qPCR assay came to identical findings. Conclusion Our results offer the reliable molecular biomarkers and new perspectives for necroptosis in AMI, which lay a certain foundation for developing novel anti-AMI therapeutic targets.
Collapse
Affiliation(s)
- Wenfa Wu
- General Practice, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Hongxing Fan
- Neurology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Junlin Cen
- General Practice, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Pei Huang
- General Practice, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Guidong Li
- General Practice, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yanping Tan
- Neurology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Gen Liu
- General Practice, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Baoshan Hong
- General Practice, Guangzhou Red Cross Hospital, Guangzhou, China
| |
Collapse
|
31
|
Oftedal BE, Sjøgren T, Wolff ASB. Interferon autoantibodies as signals of a sick thymus. Front Immunol 2024; 15:1327784. [PMID: 38455040 PMCID: PMC10917889 DOI: 10.3389/fimmu.2024.1327784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
32
|
Heusel AT, Rapp S, Stamminger T, Scherer M. IE1 of Human Cytomegalovirus Inhibits Necroptotic Cell Death via Direct and Indirect Modulation of the Necrosome Complex. Viruses 2024; 16:290. [PMID: 38400065 PMCID: PMC10893529 DOI: 10.3390/v16020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Programmed necrosis is an integral part of intrinsic immunity, serving to combat invading pathogens and restricting viral dissemination. The orchestration of necroptosis relies on a precise interplay within the necrosome complex, which consists of RIPK1, RIPK3 and MLKL. Human cytomegalovirus (HCMV) has been found to counteract the execution of necroptosis during infection. In this study, we identify the immediate-early 1 (IE1) protein as a key antagonist of necroptosis during HCMV infection. Infection data obtained in a necroptosis-sensitive cell culture system revealed a robust regulation of post-translational modifications (PTMs) of the necrosome complex as well as the importance of IE1 expression for an effective counteraction of necroptosis. Interaction analyses unveiled an association of IE1 and RIPK3, which occurs in an RHIM-domain independent manner. We propose that this interaction manipulates the PTMs of RIPK3 by promoting its ubiquitination. Furthermore, IE1 was found to exert an indirect activity by modulating the levels of MLKL via antagonizing its interferon-mediated upregulation. Overall, we claim that IE1 performs a broad modulation of innate immune signaling to impede the execution of necroptotic cell death, thereby generating a favorable environment for efficient viral replication.
Collapse
Affiliation(s)
| | | | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.T.H.); (S.R.)
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (A.T.H.); (S.R.)
| |
Collapse
|
33
|
Cao Z, Min X, Xie X, Huang M, Liu Y, Sun W, Xu G, He M, He K, Li Y, Yuan J. RIPK1 activation in Mecp2-deficient microglia promotes inflammation and glutamate release in RTT. Proc Natl Acad Sci U S A 2024; 121:e2320383121. [PMID: 38289948 PMCID: PMC10861890 DOI: 10.1073/pnas.2320383121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (Mecp2) gene. Here, we found that inhibition of Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) kinase ameliorated progression of motor dysfunction after onset and prolonged the survival of Mecp2-null mice. Microglia were activated early in myeloid Mecp2-deficient mice, which was inhibited upon inactivation of RIPK1 kinase. RIPK1 inhibition in Mecp2-deficient microglia reduced oxidative stress, cytokines production and induction of SLC7A11, SLC38A1, and GLS, which mediate the release of glutamate. Mecp2-deficient microglia release high levels of glutamate to impair glutamate-mediated excitatory neurotransmission and promote increased levels of GluA1 and GluA2/3 proteins in vivo, which was reduced upon RIPK1 inhibition. Thus, activation of RIPK1 kinase in Mecp2-deficient microglia may be involved both in the onset and progression of RTT.
Collapse
Affiliation(s)
- Ze Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
| | - Xia Min
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xingxing Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Maoqing Huang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yingying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Weimin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guifang Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
| | - Miao He
- Institutes of Brain Science, Department of Neurology, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai200032, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201203, China
- Shanghai Key Laboratory of Aging Studies, Shanghai201210, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
34
|
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol Med 2024; 16:219-237. [PMID: 38195700 PMCID: PMC10897313 DOI: 10.1038/s44321-023-00011-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Necroptosis, a programmed cell death mechanism distinct from apoptosis, has garnered attention for its role in various pathological conditions. While initially recognized for its involvement in cell death, recent research has revealed that key necroptotic mediators, including receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), possess additional functions that go beyond inducing cell demise. These functions encompass influencing critical aspects of metabolic regulation, such as energy metabolism, glucose homeostasis, and lipid metabolism. Dysregulated necroptosis has been implicated in metabolic diseases, including obesity, diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD), contributing to chronic inflammation and tissue damage. This review provides insight into the multifaceted role of necroptosis, encompassing both cell death and these extra-necroptotic functions, in the context of metabolic diseases. Understanding this intricate interplay is crucial for developing targeted therapeutic strategies in diseases that currently lack effective treatments.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jérémie Gautheron
- Sorbonne Université, Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| |
Collapse
|
35
|
Bai JQ, Li PB, Li CM, Li HH. N-arachidonoylphenolamine alleviates ischaemia/reperfusion-induced cardiomyocyte necroptosis by restoring proteasomal activity. Eur J Pharmacol 2024; 963:176235. [PMID: 38096967 DOI: 10.1016/j.ejphar.2023.176235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Necroptosis and apoptosis contribute to the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury and subsequent heart failure. N-arachidonoylphenolamine (AM404) is a paracetamol lipid metabolite that has pleiotropic activity to modulate the endocannabinoid system. However, the protective role of AM404 in modulating I/R-mediated myocardial damage and the underlying mechanism remain largely unknown. A murine I/R model was generated by occlusion of the left anterior descending artery. AM404 (20 mg/kg) was injected intraperitoneally into mice at 2 and 24 h before the I/R operation. Our data revealed that AM404 administration to mice greatly ameliorated I/R-triggered impairment of myocardial performance and reduced infarct area, myocyte apoptosis, oxidative stress and inflammatory response accompanied by the reduction of receptor interacting protein kinase (RIPK)1/3- mixed lineage kinase domain-like (MLKL)-mediated necroptosis and upregulation of the immunosubunits (β2i and β5i). In contrast, administration of epoxomicin (a proteasome inhibitor) dramatically abolished AM404-dependent protection against myocardial I/R damage. Mechanistically, AM404 treatment increases β5i expression, which interacts with Pellino-1 (Peli1), an E3 ligase, to form a complex with RIPK1/3, thereby promoting their degradation, which leads to inhibition of cardiomyocyte necroptosis in the I/R heart. In conclusion, these findings demonstrate that AM404 could prevent cardiac I/R damage and may be a promising drug for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Jun-Qin Bai
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Min Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
36
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
37
|
Duchniewicz M, Lee JYW, Menon DK, Needham EJ. Candidate Genetic and Molecular Drivers of Dysregulated Adaptive Immune Responses After Traumatic Brain Injury. J Neurotrauma 2024; 41:3-12. [PMID: 37376743 DOI: 10.1089/neu.2023.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Abstract Neuroinflammation is a significant and modifiable cause of secondary injury after traumatic brain injury (TBI), driven by both central and peripheral immune responses. A substantial proportion of outcome after TBI is genetically mediated, with an estimated heritability effect of around 26%, but because of the comparatively small datasets currently available, the individual drivers of this genetic effect have not been well delineated. A hypothesis-driven approach to analyzing genome-wide association study (GWAS) datasets reduces the burden of multiplicity testing and allows variants with a high prior biological probability of effect to be identified where sample size is insufficient to withstand data-driven approaches. Adaptive immune responses show substantial genetically mediated heterogeneity and are well established as a genetic source of risk for numerous disease states; importantly, HLA class II has been specifically identified as a locus of interest in the largest TBI GWAS study to date, highlighting the importance of genetic variance in adaptive immune responses after TBI. In this review article we identify and discuss adaptive immune system genes that are known to confer strong risk effects for human disease, with the dual intentions of drawing attention to this area of immunobiology, which, despite its importance to the field, remains under-investigated in TBI and presenting high-yield testable hypotheses for application to TBI GWAS datasets.
Collapse
Affiliation(s)
- Michał Duchniewicz
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - John Y W Lee
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward J Needham
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Wu X, Arya RK, Huang E, McMullen MR, Nagy LE. Receptor-interacting protein 1 and 3 kinase activity are required for high-fat diet induced liver injury in mice. Front Endocrinol (Lausanne) 2023; 14:1267996. [PMID: 38161978 PMCID: PMC10757356 DOI: 10.3389/fendo.2023.1267996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background The RIP1-RIP3-MLKL-mediated cell death pathway is associated with progression of non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Previous work identified a critical role for MLKL, the key effector regulating necroptosis, but not RIP3, in mediating high fat diet-induced liver injury in mice. RIP1 and RIP3 have active N-terminus kinase domains essential for activation of MLKL and subsequent necroptosis. However, little is known regarding domain-specific roles of RIP1/RIP3 kinase in liver diseases. Here, we hypothesized that RIP1/RIP3 kinase activity are required for the development of high fat diet-induced liver injury. Methods Rip1K45A/K45A and Rip3K51A/K51A kinase-dead mice on a C57BL/6J background and their littermate controls (WT) were allowed free access to a diet high in fat, fructose and cholesterol (FFC diet) or chow diet. Results Both Rip1K45A/K45A and Rip3K51A/K51A mice were protected against FFC diet-induced steatosis, hepatocyte injury and expression of hepatic inflammatory cytokines and chemokines. FFC diet increased phosphorylation and oligomerization of MLKL and hepatocyte death in livers of WT, but not in Rip3K51A/K51A, mice. Consistent with in vivo data, RIP3 kinase deficiency in primary hepatocytes prevented palmitic acid-induced translocation of MLKL to the cell surface and cytotoxicity. Additionally, loss of Rip1 or Rip3 kinase suppressed FFC diet-mediated formation of crown-like structures (indicators of dead adipocytes) and expression of mRNA for inflammatory response genes in epididymal adipose tissue. Moreover, FFC diet increased expression of multiple adipokines, including leptin and plasminogen activator inhibitor 1, in WT mice, which was abrogated by Rip3 kinase deficiency. Discussion The current data indicate that both RIP1 and RIP3 kinase activity contribute to FFC diet-induced liver injury. This effect of RIP1 and RIP3 kinase deficiency on injury is consistent with the protection of Mlkl-/- mice from high fat diet-induced liver injury, but not the reported lack of protection in Rip3-/- mice. Taken together with previous reports, our data suggest that other domains of RIP3 likely counteract the effect of RIP3 kinase in response to high fat diets.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Rakesh K. Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Megan R. McMullen
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Laura E. Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
39
|
Gao L, Zhang W, Shi XH, Chang X, Han Y, Liu C, Jiang Z, Yang X. The mechanism of linear ubiquitination in regulating cell death and correlative diseases. Cell Death Dis 2023; 14:659. [PMID: 37813853 PMCID: PMC10562472 DOI: 10.1038/s41419-023-06183-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Linear ubiquitination is a specific post-translational modification in which ubiquitin is linked through M1 residue to form multiple types of polyubiquitin chains on substrates in order to regulate cellular processes. LUBAC comprised by HOIP, HOIL-1L, and SHARPIN as a sole E3 ligase catalyzes the generation of linear ubiquitin chains, and it is simultaneously adjusted by deubiquitinases such as OTULIN and CYLD. Several studies have shown that gene mutation of linear ubiquitination in mice accompanied by different modalities of cell death would develop relative diseases. Cell death is a fundamental physiological process and responsible for embryonic development, organ maintenance, and immunity response. Therefore, it is worth speculating that linear ubiquitin mediated signaling pathway would participate in different diseases. The relative literature search was done from core collection of electronic databases such as Web of Science, PubMed, and Google Scholar using keywords about main regulators of linear ubiquitination pathway. Here, we summarize the regulatory mechanism of linear ubiquitination on cellular signaling pathway in cells with apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis. Intervening generation of linear ubiquitin chains in relative signaling pathway to regulate cell death might provide novel therapeutic insights for various human diseases.
Collapse
Affiliation(s)
- Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Wei Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiao Hui Shi
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xiaoyan Chang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Chundi Liu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
40
|
Mello-Vieira J, Bopp T, Dikic I. Ubiquitination and cell-autonomous immunity. Curr Opin Immunol 2023; 84:102368. [PMID: 37451128 DOI: 10.1016/j.coi.2023.102368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Cell-autonomous immunity is the first line of defense by which cells recognize and contribute to eliminating invasive pathogens. It is composed of immune signaling networks that sense microbial pathogens, promote pathogen restriction, and stimulate their elimination, including host cell death. Ubiquitination is a pivotal orchestrator of these pathways, by changing the activity of signal transducers and effector proteins in an efficient way. In this review, we will focus on how ubiquitin connects the pathways that sense pathogens to the cellular responses to invaders and shed light on how ubiquitination impacts the microenvironment around the infected cell, stimulating the appropriate immune response. Finally, we discuss therapeutic options directed at favoring cell-autonomous immune responses to infection.
Collapse
Affiliation(s)
- João Mello-Vieira
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany; Max Planck Institute for Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
42
|
Patankar JV, Bubeck M, Acera MG, Becker C. Breaking bad: necroptosis in the pathogenesis of gastrointestinal diseases. Front Immunol 2023; 14:1203903. [PMID: 37409125 PMCID: PMC10318896 DOI: 10.3389/fimmu.2023.1203903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases.
Collapse
Affiliation(s)
- Jay V. Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
43
|
Hoff J, Xiong L, Kammann T, Neugebauer S, Micheel JM, Gaßler N, Bauer M, Press AT. RIPK3 promoter hypermethylation in hepatocytes protects from bile acid-induced inflammation and necroptosis. Cell Death Dis 2023; 14:275. [PMID: 37072399 PMCID: PMC10113265 DOI: 10.1038/s41419-023-05794-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Necroptosis facilitates cell death in a controlled manner and is employed by many cell types following injury. It plays a significant role in various liver diseases, albeit the cell-type-specific regulation of necroptosis in the liver and especially hepatocytes, has not yet been conceptualized. We demonstrate that DNA methylation suppresses RIPK3 expression in human hepatocytes and HepG2 cells. In diseases leading to cholestasis, the RIPK3 expression is induced in mice and humans in a cell-type-specific manner. Overexpression of RIPK3 in HepG2 cells leads to RIPK3 activation by phosphorylation and cell death, further modulated by different bile acids. Additionally, bile acids and RIPK3 activation further facilitate JNK phosphorylation, IL-8 expression, and its release. This suggests that hepatocytes suppress RIPK3 expression to protect themselves from necroptosis and cytokine release induced by bile acid and RIPK3. In chronic liver diseases associated with cholestasis, induction of RIPK3 expression may be an early event signaling danger and repair through releasing IL-8.
Collapse
Affiliation(s)
- Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Ling Xiong
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Tobias Kammann
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Sophie Neugebauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, 07747, Germany
| | - Julia M Micheel
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | | | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Nanophysiology Group, Jena University Hospital, Jena, 07747, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Jena, 07743, Germany.
- Faculty of Medicine, Friedrich Schiller University Jena, Jena, 07747, Germany.
| |
Collapse
|
44
|
Zhang L, He Y, Jiang Y, Wu Q, Liu Y, Xie Q, Zou Y, Wu J, Zhang C, Zhou Z, Bian XW, Jin G. PRMT1 reverts the immune escape of necroptotic colon cancer through RIP3 methylation. Cell Death Dis 2023; 14:233. [PMID: 37005412 PMCID: PMC10067857 DOI: 10.1038/s41419-023-05752-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Necroptosis plays a double-edged sword role in necroptotic cancer cell death and tumor immune escape. How cancer orchestrates necroptosis with immune escape and tumor progression remains largely unclear. We found that RIP3, the central activator of necroptosis, was methylated by PRMT1 methyltransferase at the amino acid of RIP3 R486 in human and the conserved amino acid R479 in mouse. The methylation of RIP3 by PRMT1 inhibited the interaction of RIP3 with RIP1 to suppress RIP1-RIP3 necrosome complex, thereby blocking RIP3 phosphorylation and necroptosis activation. Moreover, the methylation-deficiency RIP3 mutant promoted necroptosis, immune escape and colon cancer progression due to increasing tumor infiltrated myeloid-derived immune suppressor cells (MDSC), while PRMT1 reverted the immune escape of RIP3 necroptotic colon cancer. Importantly, we generated a RIP3 R486 di-methylation specific antibody (RIP3ADMA). Clinical patient samples analysis revealed that the protein levels of PRMT1 and RIP3ADMA were positively correlated in cancer tissues and both of them predicted the longer patient survival. Our study provides insights into the molecular mechanism of PRMT1-mediated RIP3 methylation in the regulation of necroptosis and colon cancer immunity, as well as reveals PRMT1 and RIP3ADMA as the valuable prognosis markers of colon cancer.
Collapse
Affiliation(s)
- Lian Zhang
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujiao He
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yi Jiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Qi Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Yanchen Liu
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qingqiang Xie
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuxiu Zou
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiaqian Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Guoxiang Jin
- Medical Research Institute, Guangdong Cardiovascular Institute, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
45
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
46
|
Wang X, Xiao Y, Dong Y, Wang Z, Yi J, Wang J, Wang X, Zhou H, Zhang L, Shi Y. A20 interacts with mTORC2 to inhibit the mTORC2/Akt/Rac1 signaling axis in hepatocellular carcinoma cells. Cancer Gene Ther 2023; 30:424-436. [PMID: 36411371 DOI: 10.1038/s41417-022-00562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
A20 acts as a tumor suppressor in hepatocellular carcinoma, especially inhibiting metastasis of the malignant cells. However, the mechanisms whereby A20 plays the inhibitory roles are not understood completely. Rac1 signaling is essential for cell migration in hepatocellular carcinoma metastasis. Nevertheless, it is not known whether and how A20 inhibits Rac1 signaling to suppress the migration of hepatocellular carcinoma cell. Thereby, we analyzed the relationship between A20 and Rac1 activation, as well as the activity of Akt and mTORC2, two signaling components upstream of Rac1, using gain and loss of function experiments. We found that the overexpression of A20 repressed, while the knockdown or knockout of A20 promoted, the activation of Rac1, Akt and mTORC2 in hepatocellular carcinoma cells. Moreover, the inhibitory effect of A20 on the mTORC2/Akt/Rac1 signaling axis was due to the interaction between A20 and mTORC2 complex. The binding of A20 to mTORC2 was mediated by the ZnF7 domain of A20 and M1 ubiquitin chain in the mTORC2 complex. Furthermore, A20 inhibited metastasis of hepatocellular carcinoma cells via restraining mTORC2 in a hepatocellular carcinoma xenograft mouse model. These findings revealed the relationship between A20 and mTORC2, and explained the molecular mechanisms of A20 in inhibition of hepatocellular carcinoma metastasis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ying Xiao
- Laboratory of Cellular and Molecular Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhida Wang
- Department of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, China
| | - Jing Yi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
47
|
Shi FL, Yuan LS, Wong TS, Li Q, Li YP, Xu R, You YP, Yuan T, Zhang HR, Shi ZJ, Zha QB, Hu B, He XH, Ouyang DY. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1-RIPK3-MLKL axis. Pharmacol Res 2023; 189:106697. [PMID: 36796462 DOI: 10.1016/j.phrs.2023.106697] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Necroptosis has been implicated in various inflammatory diseases including tumor-necrosis factor-α (TNF-α)-induced systemic inflammatory response syndrome (SIRS). Dimethyl fumarate (DMF), a first-line drug for treating relapsing-remitting multiple sclerosis (RRMS), has been shown to be effective against various inflammatory diseases. However, it is still unclear whether DMF can inhibit necroptosis and confer protection against SIRS. In this study, we found that DMF significantly inhibited necroptotic cell death in macrophages induced by different necroptotic stimulations. Both the autophosphorylation of receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3 and the downstream phosphorylation and oligomerization of MLKL were robustly suppressed by DMF. Accompanying the suppression of necroptotic signaling, DMF blocked the mitochondrial reverse electron transport (RET) induced by necroptotic stimulation, which was associated with its electrophilic property. Several well-known anti-RET reagents also markedly inhibited the activation of the RIPK1-RIPK3-MLKL axis accompanied by decreased necrotic cell death, indicating a critical role of RET in necroptotic signaling. DMF and other anti-RET reagents suppressed the ubiquitination of RIPK1 and RIPK3, and they attenuated the formation of necrosome. Moreover, oral administration of DMF significantly alleviated the severity of TNF-α-induced SIRS in mice. Consistent with this, DMF mitigated TNF-α-induced cecal, uterine, and lung damage accompanied by diminished RIPK3-MLKL signaling. Collectively, DMF represents a new necroptosis inhibitor that suppresses the RIPK1-RIPK3-MLKL axis through blocking mitochondrial RET. Our study highlights DMF's potential therapeutic applications for treating SIRS-associated diseases.
Collapse
Affiliation(s)
- Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Sha Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tak-Sui Wong
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ping You
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tao Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
48
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
49
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
50
|
Liccardi G, Annibaldi A. MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ 2023; 30:269-278. [PMID: 36175538 PMCID: PMC9520111 DOI: 10.1038/s41418-022-01061-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/14/2022] Open
Abstract
Necroptosis is a caspase-independent modality of cell death that requires the activation of the executioner MLKL. In the last ten years the field gained a substantial amount of evidence regarding its involvement in host response to pathogens, TNF-induced inflammatory diseases as well as pathogen recognition receptors (PRR)-induced inflammation. However, there are still a lot of questions that remain unanswered. While it is clear that there are specific events needed to drive MLKL activation, substantial differences between human and mouse MLKL not only highlight different evolutionary pressure, but also provide potential insights on alternative modalities of activation. While in TNF-induced necroptosis it is clear the involvement of the RIPK3 mediated phosphorylation, it still remains to be understood how certain inflammatory in vivo phenotypes are not equally rescued by either RIPK3 or MLKL loss. Moreover, the plethora of different reported phosphorylation events on MLKL, even in cells that do not express RIPK3, suggest indeed that there is more to MLKL than RIPK3-mediated activation, not only in the execution of necroptosis but perhaps in other inflammatory conditions that include IFN response. The recent discovery of MLKL ubiquitination has highlighted a new checkpoint in the regulation of MLKL activation and the somewhat conflicting evidence reported certainly require some untangling. In this review we will highlight the recent findings on MLKL activation and involvement to pathogen response with a specific focus on MLKL post-translational modifications, in particular ubiquitination. This review will highlight the outstanding main questions that have risen from the last ten years of research, trying at the same time to propose potential avenues of research.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, 50931, Cologne, Germany.
| |
Collapse
|