1
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol 2025; 25:125-140. [PMID: 39289483 DOI: 10.1038/s41577-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Sui Y, Li S, Fu XQ, Zhao ZJ, Xing S. Bioinformatics analyses of combined databases identify shared differentially expressed genes in cancer and autoimmune disease. J Transl Med 2023; 21:109. [PMID: 36765396 PMCID: PMC9921081 DOI: 10.1186/s12967-023-03943-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoimmune genesis in terms of immune responses remains to be summed up. METHODS Considering the high disease prevalence, we chose invasive ductal carcinoma (IDC) and systemic lupus erythematosus (SLE) to study the potential commonalities of immune responses. We obtained gene expression data of IDC/SLE patients and normal controls from five IDC databases (GSE29044, GSE21422, GSE22840, GSE15852, and GSE9309) and five SLE databases (GSE154851, GSE99967, GSE61635, GSE50635, and GSE17755). We intended to identify genes differentially expressed in both IDC and SLE by using three bioinformatics tools including GEO2R, the limma R package, and Weighted Gene Co-expression Network Analysis (WGCNA) to perform function enrichment, protein-protein network, and signaling pathway analyses. RESULTS The mRNA levels of signal transducer and activator of transcription 1 (STAT1), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase like (OASL), and PML nuclear body scaffold (PML) were found to be differentially expressed in both IDC and SLE by using three different bioinformatics tools of GEO2R, the limma R package and WGCNA. From the combined databases in this study, the mRNA levels of STAT1 and OAS1 were increased in IDC while reduced in SLE. And the mRNA levels of OASL and PML were elevated in both IDC and SLE. Based on Kyoto Encyclopedia of Genes and Genomes pathway analysis and QIAGEN Ingenuity Pathway Analysis, both IDC and SLE were correlated with the changes of multiple components involved in the Interferon (IFN)-Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. CONCLUSION The expression levels of STAT1 and OAS1 manifest the opposite expression tendency across cancer and autoimmune disease. They are components in the IFN-JAK-STAT signaling pathway related to both tumorigenesis and autoimmune genesis. STAT1 and OAS1-associated IFN-JAK-STAT signaling could explain the commonalities during tumorigenesis and autoimmune genesis and render significant information for more precise treatment from the point of immune homeostasis.
Collapse
Affiliation(s)
- Yuan Sui
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Shuping Li
- grid.266902.90000 0001 2179 3618Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Xue-Qi Fu
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Zou X, Wang L, Xiao L, Wang S, Zhang L. Gut microbes in cerebrovascular diseases: Gut flora imbalance, potential impact mechanisms and promising treatment strategies. Front Immunol 2022; 13:975921. [PMID: 36389714 PMCID: PMC9659965 DOI: 10.3389/fimmu.2022.975921] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/28/2023] Open
Abstract
The high morbidity, mortality, and disability rates associated with cerebrovascular disease (CeVD) pose a severe danger to human health. Gut bacteria significantly affect the onset, progression, and prognosis of CeVD. Gut microbes play a critical role in gut-brain interactions, and the gut-brain axis is essential for communication in CeVD. The reflection of changes in the gut and brain caused by gut bacteria makes it possible to investigate early warning biomarkers and potential treatment targets. We primarily discussed the following three levels of brain-gut interactions in a systematic review of the connections between gut microbiota and several cerebrovascular conditions, including ischemic stroke, intracerebral hemorrhage, intracranial aneurysm, cerebral small vessel disease, and cerebral cavernous hemangioma. First, we studied the gut microbes in conjunction with CeVD and examined alterations in the core microbiota. This enabled us to identify the focus of gut microbes and determine the focus for CeVD prevention and treatment. Second, we discussed the pathological mechanisms underlying the involvement of gut microbes in CeVD occurrence and development, including immune-mediated inflammatory responses, variations in intestinal barrier function, and reciprocal effects of microbial metabolites. Finally, based on the aforementioned proven mechanisms, we assessed the effectiveness and potential applications of the current therapies, such as dietary intervention, fecal bacterial transplantation, traditional Chinese medicine, and antibiotic therapy.
Collapse
Affiliation(s)
- Xuelun Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leiyun Wang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Linxiao Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sai Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, Changsha, Hunan, China
| |
Collapse
|
5
|
Lund NC, Kayode Y, McReynolds MR, Clemmer DC, Hudson H, Clerc I, Hong HK, Brenchley JM, Bass J, D'Aquila RT, Taylor HE. mTOR regulation of metabolism limits LPS-induced monocyte inflammatory and procoagulant responses. Commun Biol 2022; 5:878. [PMID: 36028574 PMCID: PMC9412771 DOI: 10.1038/s42003-022-03804-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Translocated lipopolysaccharide (LPS) activates monocytes via TLR4 and is hypothesized to increase cardiovascular disease risk in persons living with HIV. We tested whether mTOR activity supports LPS-stimulated monocyte production of pro-inflammatory cytokines and tissue factor (TF), as it propels the inflammatory response in several immune cell types besides monocytes. However, multi-omics analyses here demonstrate that mTOR activates a metabolic pathway that limits abundance of these gene products in monocytes. Treatment of primary human monocytes with catalytic mTOR inhibitors (mTORi) increased LPS-induced polyfunctional responses, including production of IL-1β, IL-6, and the pro-coagulant, TF. NF-κB-driven transcriptional activity is enhanced with LPS stimulation after mTORi treatment to increase expression of F3 (TF). Moreover, intracellular NAD+ availability is restricted due to decreased salvage pathway synthesis. These results document mTOR-mediated restraint of the LPS-induced transcriptional response in monocytes and a metabolic mechanism informing strategies to reverse enhanced risk of coagulopathy in pro-inflammatory states.
Collapse
Affiliation(s)
- Nina C Lund
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yetunde Kayode
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Deanna C Clemmer
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Hannah Hudson
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabelle Clerc
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hee-Kyung Hong
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Disease, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Joseph Bass
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Harry E Taylor
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Scheib N, Tiemann J, Becker C, Probst HC, Raker VK, Steinbrink K. The Dendritic Cell Dilemma in the Skin: Between Tolerance and Immunity. Front Immunol 2022; 13:929000. [PMID: 35837386 PMCID: PMC9275407 DOI: 10.3389/fimmu.2022.929000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DC) are uniquely capable of initiating and directing immune responses. The range of their activities grounds in the heterogeneity of DC subsets and their functional plasticity. Numerical and functional DC changes influence the development and progression of disease, and correction of such dysregulations has the potential to treat disease causally. In this review, we discuss the major advances in our understanding of the regulation of DC lineage formation, differentiation, and function in the skin. We describe the alteration of DC in disease as well as possibilities for therapeutic reprogramming with a focus on tolerogenic DC. Because regulatory T cells (Treg) are indispensable partners of DC in the induction and control of tolerance, we pay special attention to the interactions with these cells. Above all, we would like to arouse fascination for this cell type and its therapeutic potential in skin diseases.
Collapse
Affiliation(s)
- Nils Scheib
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Jessica Tiemann
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Christian Becker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Hans Christian Probst
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Katharina Raker
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
- *Correspondence: Verena Katharina Raker,
| | - Kerstin Steinbrink
- Department of Dermatology, University Hospital, Westfälische Wilhelms-University Münster, Münster, Germany
| |
Collapse
|
7
|
Burns VE, Kerppola TK. Keap1 moderates the transcription of virus induced genes through G9a-GLP and NFκB p50 recruitment. Immunology 2022; 167:105-121. [PMID: 35751391 DOI: 10.1111/imm.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cells must control genes that are induced by virus infection to mitigate deleterious consequences of inflammation. We investigated the mechanisms whereby Keap1 moderates the transcription of genes that are induced by Sendai virus infection in mouse embryo fibroblasts (MEFs). Keap1-/- deletions increased the transcription of virus induced genes independently of Nrf2. Keap1 moderated early virus induced gene transcription. Virus infection induced Keap1 to bind Ifnb1, Tnf and Il6, and reduced Keap1 binding at Cdkn1a and Ccng1. Virus infection induced G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition. Keap1-/- deletions eliminated G9a-GLP and NFκB p50 recruitment, and H3K9me2 deposition, but they did not affect NFκB p65, IRF3 or cJun recruitment. G9a-GLP inhibitors (BIX01294, MS012, BRD4770) enhanced virus induced gene transcription in MEFs with intact Keap1, but not in MEFs with Keap1-/- deletions. G9a-GLP inhibitors augmented Keap1 binding to virus induced genes in infected MEFs, and to cell cycle genes in uninfected MEFs. G9a-GLP inhibitors augmented NFκB subunit recruitment in MEFs with intact Keap1. G9a-GLP inhibitors stabilized Keap1 retention in permeabilized MEFs. G9a-GLP lysine methyltransferase activity was required for Keap1 to moderate transcription, and it moderated Keap1 binding to chromatin. The interdependent effects of Keap1 and G9a-GLP on the recruitment of each other and on the moderation of virus induced gene transcription constitute a feedback circuit. Keap1 and the electrophile tBHQ reduced virus induced gene transcription through different mechanisms, and they regulated the recruitment of different NFκB subunits. Characterization of the mechanisms whereby Keap1, G9a-GLP and NFκB p50 moderate virus induced gene transcription can facilitate the development of immunomodulatory agents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tom Klaus Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Hayashi T, Ichikawa M, Konishi I. Spontaneous Myocarditis in Mice Predisposed to Autoimmune Disease: Including Vaccination-Induced Onset. Biomedicines 2022; 10:1443. [PMID: 35740465 PMCID: PMC9220133 DOI: 10.3390/biomedicines10061443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Nonobese diabetic (NOD)/ShiLtJ mice, such as biobreeding rats, are used as an animal model for type 1 diabetes. Diabetes develops in NOD mice as a result of insulitis, a leukocytic infiltrate of the pancreatic islets. The onset of diabetes is associated with moderate glycosuria and nonfasting hyperglycemia. Previously, in NOD/ShiLtJ mice spontaneously developing type 1 diabetes, the possible involvement of decreased expression of nuclear factor-kappa B1 (NF-κB1) (also known as p50) in the development of type 1 diabetes was investigated. In response to these arguments, NOD mice with inconsistent NF-κB1 expression were established. Surprisingly, the majority of NOD Nfκb1 homozygote mice were found to die by the eighth week of life because of severe myocarditis. The incidence of spontaneous myocarditis in mice was slightly higher in males than in females. Furthermore, insulitis was observed in all NOD Nfκb1 heterozygote mice as early as 4 months of age. Additionally, in NOD Nfκb1 heterozygote mice, myocarditis with an increase in cTnT levels due to influenza or hepatitis B virus vaccination was observed with no significant gender difference. However, myocarditis was not observed with the two types of human papillomavirus vaccination. The results of immunological assays and histopathological examinations indicated that vaccination could induce myocarditis in genetically modified mice. In this study, we report that NOD Nfκb1 heterozygote mice can be used for investigating the risk of myocarditis development after vaccination.
Collapse
Affiliation(s)
- Takuma Hayashi
- School of Medicine, Shinshu University, Nagano 390-8621, Japan;
- START-Program, Japan Science and Technology Agency (JST), Tokyo 102-8666, Japan
| | - Motoki Ichikawa
- School of Medicine, Shinshu University, Nagano 390-8621, Japan;
| | - Ikuo Konishi
- National Hospital Organization Kyoto Medical Centre, Kyoto 612-8555, Japan;
- Department of Obstetrics and Gynecology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Shen Y, Boulton APR, Yellon RL, Cook MC. Skin manifestations of inborn errors of NF-κB. Front Pediatr 2022; 10:1098426. [PMID: 36733767 PMCID: PMC9888762 DOI: 10.3389/fped.2022.1098426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
More than 400 single gene defects have been identified as inborn errors of immunity, including many arising from genes encoding proteins that affect NF-κB activity. We summarise the skin phenotypes in this subset of disorders and provide an overview of pathogenic mechanisms. NF-κB acts cell-intrinsically in basal epithelial cells during differentiation of skin appendages, influences keratinocyte proliferation and survival, and both responses to and amplification of inflammation, particularly TNF. Skin phenotypes include ectodermal dysplasia, reduction and hyperproliferation of keratinocytes, and aberrant recruitment of inflammatory cells, which often occur in combination. Phenotypes conferred by these rare monogenic syndromes often resemble those observed with more common defects. This includes oral and perineal ulceration and pustular skin disease as occurs with Behcet's disease, hyperkeratosis with microabscess formation similar to psoriasis, and atopic dermatitis. Thus, these genotype-phenotype relations provide diagnostic clues for this subset of IEIs, and also provide insights into mechanisms of more common forms of skin disease.
Collapse
Affiliation(s)
- Yitong Shen
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Anne P R Boulton
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Robert L Yellon
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Matthew C Cook
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom.,Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, and Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
10
|
St Paul M, Saibil SD, Han S, Israni-Winger K, Lien SC, Laister RC, Sayad A, Penny S, Amaria RN, Haydu LE, Garcia-Batres CR, Kates M, Mulder DT, Robert-Tissot C, Gold MJ, Tran CW, Elford AR, Nguyen LT, Pugh TJ, Pinto DM, Wargo JA, Ohashi PS. Coenzyme A fuels T cell anti-tumor immunity. Cell Metab 2021; 33:2415-2427.e6. [PMID: 34879240 DOI: 10.1016/j.cmet.2021.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 11/15/2021] [Indexed: 01/23/2023]
Abstract
Metabolic programming is intricately linked to the anti-tumor properties of T cells. To study the metabolic pathways associated with increased anti-tumor T cell function, we utilized a metabolomics approach to characterize three different CD8+ T cell subsets with varying degrees of anti-tumor activity in murine models, of which IL-22-producing Tc22 cells displayed the most robust anti-tumor activity. Tc22s demonstrated upregulation of the pantothenate/coenzyme A (CoA) pathway and a requirement for oxidative phosphorylation (OXPHOS) for differentiation. Exogenous administration of CoA reprogrammed T cells to increase OXPHOS and adopt the CD8+ Tc22 phenotype independent of polarizing conditions via the transcription factors HIF-1α and the aryl hydrocarbon receptor (AhR). In murine tumor models, treatment of mice with the CoA precursor pantothenate enhanced the efficacy of anti-PDL1 antibody therapy. In patients with melanoma, pre-treatment plasma pantothenic acid levels were positively correlated with the response to anti-PD1 therapy. Collectively, our data demonstrate that pantothenate and its metabolite CoA drive T cell polarization, bioenergetics, and anti-tumor immunity.
Collapse
Affiliation(s)
- Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Samuel D Saibil
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Kavita Israni-Winger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Scott C Lien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Rob C Laister
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Susanne Penny
- National Research Council, Human Health Therapeutics, Halifax, NS B3H 3Z1, Canada
| | - Rodabe N Amaria
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren E Haydu
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Meghan Kates
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - David T Mulder
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Céline Robert-Tissot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Matthew J Gold
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Charles W Tran
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Linh T Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Devanand M Pinto
- National Research Council, Human Health Therapeutics, Halifax, NS B3H 3Z1, Canada
| | - Jennifer A Wargo
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada.
| |
Collapse
|
11
|
Lee AH, Sun L, Mochizuki AY, Reynoso JG, Orpilla J, Chow F, Kienzler JC, Everson RG, Nathanson DA, Bensinger SJ, Liau LM, Cloughesy T, Hugo W, Prins RM. Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat Commun 2021; 12:6938. [PMID: 34836966 PMCID: PMC8626557 DOI: 10.1038/s41467-021-26940-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Primary brain tumors, such as glioblastoma (GBM), are remarkably resistant to immunotherapy, even though pre-clinical models suggest effectiveness. To understand this better in patients, here we take advantage of our recent neoadjuvant treatment paradigm to map the infiltrating immune cell landscape of GBM and how this is altered following PD-1 checkpoint blockade using high dimensional proteomics, single cell transcriptomics, and quantitative multiplex immunofluorescence. Neoadjuvant PD-1 blockade increases T cell infiltration and the proportion of a progenitor exhausted population of T cells found within the tumor. We identify an early activated and clonally expanded CD8+ T cell cluster whose TCR overlaps with a CD8+ PBMC population. Distinct changes are also observed in conventional type 1 dendritic cells that may facilitate T cell recruitment. Macrophages and monocytes still constitute the majority of infiltrating immune cells, even after anti-PD-1 therapy. Interferon-mediated changes in the myeloid population are consistently observed following PD-1 blockade; these also mediate an increase in chemotactic factors that recruit T cells. However, sustained high expression of T-cell-suppressive checkpoints in these myeloid cells continue to prevent the optimal activation of the tumor infiltrating T cells. Therefore, future immunotherapeutic strategies may need to incorporate the targeting of these cells for clinical benefit.
Collapse
Affiliation(s)
- Alexander H Lee
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lu Sun
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Aaron Y Mochizuki
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeremy G Reynoso
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joey Orpilla
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Frances Chow
- Department of Neurology/Neuro-Oncology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jenny C Kienzler
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Richard G Everson
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy Cloughesy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology/Neuro-Oncology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Willy Hugo
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA, 94129, USA.
- Department of Medicine/Dermatology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA, 94129, USA.
| |
Collapse
|
12
|
Burns VE, Kerppola TK. Virus Infection Induces Keap1 Binding to Cytokine Genes, Which Recruits NF-κB p50 and G9a-GLP and Represses Cytokine Transcription. THE JOURNAL OF IMMUNOLOGY 2021; 207:1437-1447. [PMID: 34400522 DOI: 10.4049/jimmunol.2100355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Proinflammatory cytokine gene transcription must be moderated to avoid the pathological consequences of excess cytokine production. The relationships between virus infection and the mechanisms that moderate cytokine transcription are incompletely understood. We investigated the influence of Keap1 on cytokine gene induction by Sendai virus infection in mouse embryo fibroblasts. Virus infection induced Keap1 binding to the Ifnb1, Tnf, and Il6 genes. Keap1 moderated viral induction of their transcription by mechanisms that did not require Nrf2. Keap1 was required for NF-κB p50 recruitment, but not for NF-κB p65 or IRF3 recruitment, to these genes. Keap1 formed complexes with NF-κB p50 and NF-κB p65, which were visualized using bimolecular fluorescence complementation analysis. These bimolecular fluorescence complementation complexes bound chromosomes in live cells, suggesting that Keap1 could bind chromatin in association with NF-κB proteins. Keap1 was required for viral induction of G9a-GLP lysine methyltransferase binding and H3K9me2 modification at cytokine genes. G9a-GLP inhibitors counteracted transcription repression by Keap1 and enhanced Keap1 and NF-κB recruitment to cytokine genes. The interrelationships among Keap1, NF-κB, and G9a-GLP recruitment, activities, and transcriptional effects suggest that they form a feedback circuit, which moderates viral induction of cytokine transcription. Nrf2 counteracted Keap1 binding to cytokine genes and the recruitment of NF-κB p50 and G9a-GLP by Keap1. Whereas Keap1 has been reported to influence cytokine expression indirectly through its functions in the cytoplasm, these findings provide evidence that Keap1 regulates cytokine transcription directly in the nucleus. Keap1 binds to cytokines genes upon virus infection and moderates their induction by recruiting NF-κB p50 and G9a-GLP.
Collapse
Affiliation(s)
| | - Tom Klaus Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
13
|
Suresh R, Barakat DJ, Barberi T, Zheng L, Jaffee E, Pienta KJ, Friedman AD. NF-κB p50-deficient immature myeloid cell (p50-IMC) adoptive transfer slows the growth of murine prostate and pancreatic ductal carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000244. [PMID: 31940589 PMCID: PMC7057444 DOI: 10.1136/jitc-2019-000244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2019] [Indexed: 12/26/2022] Open
Abstract
Background Macrophages and dendritic cells lacking the transcription factor nuclear factor kappa B p50 are skewed toward a proinflammatory phenotype, with increased cytokine expression and enhanced T cell activation; additionally, murine melanoma, fibrosarcoma, colon carcinoma, and glioblastoma grow slower in p50−/− mice. We therefore evaluated the efficacy of p50-negative immature myeloid cells (p50-IMCs) adoptively transferred into tumor-bearing hosts. Immature cells were used to maximize tumor localization, and pretreatment with 5-fluorouracil (5FU) was examined due to its potential to impair marrow production of myeloid cells, to target tumor myeloid cells and to release tumor neoantigens. Methods Wild-type (WT)-IMC or p50-IMC were generated by culturing lineage-negative marrow cells from WT or p50−/− mice in media containing thrombopoietin, stem cell factor and Flt3 ligand for 6 days followed by monocyte colony-stimulating factor for 1 day on ultralow attachment plates. Mice inoculated with Hi-Myc prostate cancer (PCa) cells or K-RasG12D pancreatic ductal carcinoma (PDC)-luciferase cells received 5FU followed 5 days later by three doses of 107 immature myeloid cells (IMC) every 3–4 days. Results PCa cells grew slower in p50−/− mice, and absence of host p50 prolonged the survival of mice inoculated orthotopically with PDC cells. IMC from Cytomegalovirus (CMV)-luciferase mice localized to tumor, nodes, spleen, marrow, and lung. 5FU followed by p50-IMC slowed PCa and PDC tumor growth, ~3-fold on average, in contrast to 5FU followed by WT-IMC, 5FU alone or p50-IMC alone. Slowed tumor growth was evident for 93% of PCa but only 53% of PDC tumors; we therefore focused on PCa for additional IMC analyses. In PCa, p50-IMC matured into F4/80+ macrophages, as well as CD11b+F4/80−CD11c+ conventional dendritic cells (cDCs). In both tumor and draining lymph nodes, p50-IMC generated more macrophages and cDCs than WT-IMC. Activated tumor CD8+ T cells were increased fivefold by p50-IMC compared with WT-IMC, and antibody-mediated CD8+ T cell depletion obviated slower tumor growth induced by 5FU followed by p50-IMC. Conclusions 5FU followed by p50-IMC slows the growth of murine prostate and pancreatic carcinoma and depends on CD8+ T cell activation. Deletion of p50 in patient-derived marrow CD34+ cells and subsequent production of IMC for adoptive transfer may contribute to the therapy of these and additional cancers.
Collapse
Affiliation(s)
- Rahul Suresh
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Barakat
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Theresa Barberi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Zheng
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Jaffee
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan D Friedman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Berzaghi R, Tornaas S, Lode K, Hellevik T, Martinez-Zubiaurre I. Ionizing Radiation Curtails Immunosuppressive Effects From Cancer-Associated Fibroblasts on Dendritic Cells. Front Immunol 2021; 12:662594. [PMID: 34177901 PMCID: PMC8221608 DOI: 10.3389/fimmu.2021.662594] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) participate actively in tumor development and affect treatment responses, by among other mechanisms, promoting an immunosuppressive tumor microenvironment. In contrast to normal fibroblasts, reactive CAFs secrete a myriad of immunomodulatory soluble factors at high levels, i.e. growth factors, cytokines, and chemokines, which directly influence tumor immunity and inflammation. CAFs have been identified as important players in tumor radioresistance. However, knowledge on the immunomodulatory functions of CAFs during/after radiotherapy is still lacking. In this study, we investigated the effects of ionizing radiation on CAF-mediated regulation of dendritic cells (DCs). CAFs were obtained from freshly operated lung cancer tissues, while DCs were procured from peripheral blood of healthy donors. Experimental settings comprised both co-cultures and incubations with conditioned medium from control and irradiated CAFs. Functional assays to study DC differentiation/activation consisted on cytokine release, expression of cell-surface markers, antigen uptake, migration rates, T cell priming, and DC-signaling analysis. We demonstrate that CAFs induce a tolerogenic phenotype in DCs by promoting down-regulation of: i) signature DC markers (CD14, CD1a, CD209); ii) activation markers (CD80, CD86, CD40, and HLA-DR) and iii) functional properties (migration, antigen uptake, and CD4+ T cell priming). Notably, some of these effects were lost in conditioned medium from CAFs irradiated at fractionated medium-dose regimens (3x6 Gy). However, the expression of relevant CAF-derived regulatory agents like thymic stromal lymphopoietin (TSLP) or tryptophan 2,3-dioxygenase (TDO2) was unchanged upon irradiation. This study demonstrates that CAFs interfere with DC immune functions and unveil that certain radiation regimens may reverse CAF-mediated immunosuppressive effects.
Collapse
Affiliation(s)
- Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stian Tornaas
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kristin Lode
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Slow viral propagation during initial phase of infection leads to viral persistence in mice. Commun Biol 2021; 4:508. [PMID: 33927339 PMCID: PMC8084999 DOI: 10.1038/s42003-021-02028-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune evasion of pathogens can modify the course of infection and impact viral persistence and pathology. Here, using different strains of the lymphocytic choriomeningitis virus (LCMV) model system, we show that slower propagation results in limited type I interferon (IFN-I) production and viral persistence. Specifically, cells infected with LCMV-Docile exhibited reduced viral replication when compared to LCMV-WE and as a consequence, infection with LCMV-Docile resulted in reduced activation of bone marrow derived dendritic cells (BMDCs) and IFN-I production in vitro in comparison with LCMV-WE. In vivo, we observed a reduction of IFN-I, T cell exhaustion and viral persistence following infection of LCMV-Docile but not LCMV-WE. Mechanistically, block of intracellular protein transport uncovered reduced propagation of LCMV-Docile when compared to LCMV-WE. This reduced propagation was critical in blunting the activation of the innate and adaptive immune system. When mice were simultaneously infected with LCMV-Docile and LCMV-WE, immune function was restored and IFN-I production, T cell effector functions as well as viral loads were similar to that of mice infected with LCMV-WE alone. Taken together, this study suggests that reduced viral propagation can result in immune evasion and viral persistence. Using different strains of the lymphocytic choriomeningitis virus (LCMV), Xu, Wang et al. show that a slow viral propagation limits type I interferon (IFN-I) production and viral persistence in mice. This study suggests a reduced viral propagation as a mechanism for immune evasion and viral persistence.
Collapse
|
16
|
Boukhaled GM, Harding S, Brooks DG. Opposing Roles of Type I Interferons in Cancer Immunity. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:167-198. [PMID: 33264572 DOI: 10.1146/annurev-pathol-031920-093932] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The immune system is tasked with identifying malignant cells to eliminate or prevent cancer spread. This involves a complex orchestration of many immune cell types that together recognize different aspects of tumor transformation and growth. In response, tumors have developed mechanisms to circumvent immune attack. Type I interferons (IFN-Is) are a class of proinflammatory cytokines produced in response to viruses and other environmental stressors. IFN-Is are also emerging as essential drivers of antitumor immunity, potently stimulating the ability of immune cells to eliminate tumor cells. However, a more complicated role for IFN-Is has arisen, as prolonged stimulation can promote feedback inhibitory mechanisms that contribute to immune exhaustion and other deleterious effects that directly or indirectly permit cancer cells to escape immune clearance. We review the fundamental and opposing functions of IFN-Is that modulate tumor growth and impact immune function and ultimately how these functions can be harnessed for the design of new cancer therapies.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shane Harding
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
17
|
Tran CW, Gold MJ, Garcia-Batres C, Tai K, Elford AR, Himmel ME, Elia AJ, Ohashi PS. Hypoxia-inducible factor 1 alpha limits dendritic cell stimulation of CD8 T cell immunity. PLoS One 2020; 15:e0244366. [PMID: 33382742 PMCID: PMC7775062 DOI: 10.1371/journal.pone.0244366] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells are sentinels of the immune system and represent a key cell in the activation of the adaptive immune response. Hypoxia-inducible factor 1 alpha (HIF-1α)–a crucial oxygen sensor stabilized during hypoxic conditions–has been shown to have both activating and inhibitory effects in immune cells in a context- and cell-dependent manner. Previous studies have demonstrated that in some immune cell types, HIF-1α serves a pro-inflammatory role. Genetic deletion of HIF-1α in macrophages has been reported to reduce their pro-inflammatory function. In contrast, loss of HIF-1α enhanced the pro-inflammatory activity of dendritic cells in a bacterial infection model. In this study, we aimed to further clarify the effects of HIF-1α in dendritic cells. Constitutive expression of HIF-1α resulted in diminished immunostimulatory capacity of dendritic cells in vivo, while conditional deletion of HIF-1α in dendritic cells enhanced their ability to induce a cytotoxic T cell response. HIF-1α-expressing dendritic cells demonstrated increased production of inhibitory mediators including IL-10, iNOS and VEGF, which correlated with their reduced capacity to drive effector CD8+ T cell function. Altogether, these data reveal that HIF-1α can promote the anti-inflammatory functions of dendritic cells and provides insight into dysfunctional immune responses in the context of HIF-1α activation.
Collapse
Affiliation(s)
- Charles W. Tran
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Kelly Tai
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Andrew J. Elia
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Aplastic anemia in a patient with CVID due to NFKB1 haploinsufficiency. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005769. [PMID: 32972988 PMCID: PMC7784489 DOI: 10.1101/mcs.a005769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Acquired aplastic anemia (AA) is a life-threatening bone marrow failure caused by an autoimmune cytotoxic T lymphocyte attack on hematopoietic stem and progenitor cells. Factors contributing to aberrant autoimmune activation in AA include a deficit of T regulatory cells and high levels of inflammatory cytokines. Several acquired conditions of immune dysregulation and genetic polymorphisms in inflammatory cytokines and human leukocyte antigen genes have been linked to an increased risk of AA. However, AA has not been reported in patients with Mendelian disorders of immune regulation. Here we report a patient with familial common variable immunodeficiency (CVID) caused by a pathogenic variant in NFKB1, who developed AA as an adult. The patient had a difficult clinical course and was unable to tolerate standard AA therapy with cyclosporine A and eltrombopag, with complications attributed in part to the effect of cyclosporine A on NF-κB signaling. Our case suggests a novel link between genetic disorders of immune regulation and AA and highlights the importance of recognizing inherited autoimmunity syndromes in AA patients for the selection of optimal therapy and prognostic counseling.
Collapse
|
19
|
Mousavi MJ, Mahmoudi M, Ghotloo S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol Med 2020; 26:127. [PMID: 33297945 PMCID: PMC7727198 DOI: 10.1186/s10020-020-00256-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, autoimmune diseases are more prevalent in females than males. Various predisposing factors, including female sex hormones, X chromosome genes, and the microbiome have been implicated in the female bias of autoimmune diseases. During embryogenesis, one of the X chromosomes in the females is transcriptionally inactivated, in a process called X chromosome inactivation (XCI). This equalizes the impact of two X chromosomes in the females. However, some genes escape from XCI, providing a basis for the dual expression dosage of the given gene in the females. In the present review, the contribution of the escape genes to the female bias of autoimmune diseases will be discussed.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Abstract
Frailty is a syndrome characterized by the decline in the physiologic reserve and function of several systems, leading to increased vulnerability and adverse health outcomes. While common in the elderly, recent studies have underlined the higher prevalence of frailty in chronic diseases, independent of age. The pathophysiological mechanisms that contribute to frailty have not been completely understood, although significant progresses have recently been made. In this context, chronic inflammation is likely to play a pivotal role, both directly and indirectly through other systems, such as the musculoskeletal, endocrine, and neurological systems. Rheumatic diseases are characterized by chronic inflammation and accumulation of deficits during time. Therefore, studies have recently started to explore the link between frailty and rheumatic diseases, and in this review, we report what has been described so far. Frailty is dynamic and potentially reversible with 8.3%-17.9% of older adults spontaneously improving their frailty status over time. Muscle strength is likely the most significant influencing factor which could be improved with training thus pointing at the need to maintain physical activity. Not surprisingly, frailty is more prevalent in patients affected by rheumatic diseases than in healthy controls, regardless of age and is associated with high disease activity to affect the clinical outcomes, largely due to chronic inflammation. More importantly, the treatment of the underlying condition may prevent frailty. Scales to assess frailty in patients affected by rheumatic diseases have been proposed, but larger casuistries are needed to validate disease-specific indexes, which could allow more accurate prognostic estimates than demographic and disease-related variables alone. Frail patients can be more vulnerable and more difficult to treat, due to the risk of side effects, therefore frailty should be taken into account in clinical decisions. Clinical trials addressing frailty could identify patients who are less likely to tolerate potentially toxic medications and might benefit from more conservative regimens. In conclusion, the implementation of the concept of frailty in rheumatology will allow a better understanding of the patient global health, a finest risk stratification and a more individualized management strategy.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center– IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Antonio Sica
- Humanitas Clinical and Research Center - IRCCS - Laboratory of Molecular Immunology, Milan, Italy
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center– IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
21
|
Pan J, Jiang Z, Wu D, Yang C, Wang Z, Huang J. Huaier Extractum Promotes Dendritic Cells Maturation and Favors them to Induce Th1 Immune Response: One of the Mechanisms Underlying Its Anti-Tumor Activity. Integr Cancer Ther 2020; 19:1534735420946830. [PMID: 33054422 PMCID: PMC7570295 DOI: 10.1177/1534735420946830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Huaier, a sandy beige mushroom with anti-tumor effects, has been applied into Traditional Chinese Medicine for more than 1600 years. Previous studies showed that Huaier exerted its anti-tumor effects not only by direct action on tumor cells, but also indirectly by modulation of immune function. In the present study, we found that Huaier treatment significantly repressed tumor growth in mice with 4T1 breast cancer and resulted in significant accumulation of CD4+ T cells and mature dendritic cells (DCs) in the tumor microenvironment. In vitro experiments demonstrated that Huaier treatment promoted both DC2.4 and bone marrow derived DCs (BMDCs) to express costimulatory molecules, enhance production of IL-1β and IL-12p70, while it inhibited their phagocytic activities, suggesting that Huaier treatment promotes maturation of DCs. Furthermore, we found Huaier-treated DCs profoundly stimulated proliferation of alloreactive CD4+ T cells and drove them to differentiate into Th1 subset. Expression of PI3K, Akt, p-Akt, JNK, and p-JNK was up-regulated, while p-p38 MAPK was down-regulated in Huaier-treated BMDCs, suggesting that Huaier promotes maturation of DCs with potent ability to activate Th1 immune response via modulation of MAPK and PI3K/Akt signaling pathways. Our findings provide further evidence for the mechanisms underlying the anti-tumor activity of Huaier.
Collapse
Affiliation(s)
- Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zhou Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| |
Collapse
|
22
|
Nüssing S, Trapani JA, Parish IA. Revisiting T Cell Tolerance as a Checkpoint Target for Cancer Immunotherapy. Front Immunol 2020; 11:589641. [PMID: 33072137 PMCID: PMC7538772 DOI: 10.3389/fimmu.2020.589641] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. Nevertheless, the majority of patients do not respond to therapy, meaning a deeper understanding of tumor immune evasion strategies is required to boost treatment efficacy. The vast majority of immunotherapy studies have focused on how treatment reinvigorates exhausted CD8+ T cells within the tumor. In contrast, how therapies influence regulatory processes within the draining lymph node is less well studied. In particular, relatively little has been done to examine how tumors may exploit peripheral CD8+ T cell tolerance, an under-studied immune checkpoint that under normal circumstances prevents detrimental autoimmune disease by blocking the initiation of T cell responses. Here we review the therapeutic potential of blocking peripheral CD8+ T cell tolerance for the treatment of cancer. We first comprehensively review what has been learnt about the regulation of CD8+ T cell peripheral tolerance from the non-tumor models in which peripheral tolerance was first defined. We next consider how the tolerant state differs from other states of negative regulation, such as T cell exhaustion and senescence. Finally, we describe how tumors hijack the peripheral tolerance immune checkpoint to prevent anti-tumor immune responses, and argue that disruption of peripheral tolerance may contribute to both the anti-cancer efficacy and autoimmune side-effects of immunotherapy. Overall, we propose that a deeper understanding of peripheral tolerance will ultimately enable the development of more targeted and refined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
23
|
Teng F, Li M, Yu J. Radiation recall pneumonitis induced by PD-1/PD-L1 blockades: mechanisms and therapeutic implications. BMC Med 2020; 18:275. [PMID: 32943072 PMCID: PMC7499987 DOI: 10.1186/s12916-020-01718-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The synergistic effect of radiotherapy (RT) in combination with immunotherapy has been shown in several clinical trials and case reports. The overlapping pulmonary toxicity induced by thoracic RT and programmed death 1/programmed death ligand-1 (PD-1/PD-L1) blockades is an important issue of clinical investigation in combination treatment. Thus far, the underlying mechanism of this toxicity remains largely unknown. MAIN TEXT In this review, we discuss the unique pattern of radiation recall pneumonitis (RRP) induced by PD-1 blockade. The clinical presentation is different from common radiation pneumonitis (RP) or RRP induced by cytotoxic drugs. The immune checkpoint inhibitors may evoke an inflammatory reaction in patients' previously irradiated fields, with infiltrating lymphocytes and potential involvement of related cytokines. All RRP patients have showed durable response to anti-PD-1/PD-L1. RRP is manageable; however, interruption of checkpoint blockades is necessary and immunosuppressive treatment should be started immediately. Further analyses of the predictive factors, including RT dosimetric parameters, tumor-infiltrating lymphocytes (TILs), and PD-L1 expression, are needed given the wide use of immune checkpoint inhibitors and high mortality from lung toxicity with the combination treatment. CONCLUSION Immune checkpoint inhibitors may evoke an RRP in the patients' previously irradiated fields. Interactions between immune checkpoint inhibitors and radiotherapy should be studied further.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, China
| | - Min Li
- Department of Surgery, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, China.
| |
Collapse
|
24
|
Cordeiro B, Jeon P, Boukhaled GM, Corrado M, Lapohos O, Roy DG, Williams K, Jones RG, Gruenheid S, Sagan SM, Krawczyk CM. MicroRNA-9 Fine-Tunes Dendritic Cell Function by Suppressing Negative Regulators in a Cell-Type-Specific Manner. Cell Rep 2020; 31:107585. [PMID: 32375032 DOI: 10.1016/j.celrep.2020.107585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Peter Jeon
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Giselle M Boukhaled
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Mario Corrado
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Orsolya Lapohos
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dominic G Roy
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kelsey Williams
- Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Russell G Jones
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Connie M Krawczyk
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
25
|
St Paul M, Saibil SD, Lien SC, Han S, Sayad A, Mulder DT, Garcia-Batres CR, Elford AR, Israni-Winger K, Robert-Tissot C, Zon M, Katz SR, Shaw PA, Clarke BA, Bernardini MQ, Nguyen LT, Haibe-Kains B, Pugh TJ, Ohashi PS. IL6 Induces an IL22 + CD8 + T-cell Subset with Potent Antitumor Function. Cancer Immunol Res 2020; 8:321-333. [PMID: 31964625 DOI: 10.1158/2326-6066.cir-19-0521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022]
Abstract
CD8+ T cells can be polarized into several different subsets as defined by the cytokines they produce and the transcription factors that govern their differentiation. Here, we identified the polarizing conditions to induce an IL22-producing CD8+ Tc22 subset, which is dependent on IL6 and the aryl hydrocarbon receptor transcription factor. Further characterization showed that this subset was highly cytolytic and expressed a distinct cytokine profile and transcriptome relative to other subsets. In addition, polarized Tc22 were able to control tumor growth as well as, if not better than, the traditional IFNγ-producing Tc1 subset. Tc22s were also found to infiltrate the tumors of human patients with ovarian cancer, comprising up to approximately 30% of expanded CD8+ tumor-infiltrating lymphocytes (TIL). Importantly, IL22 production in these CD8+ TILs correlated with improved recurrence-free survival. Given the antitumor properties of Tc22 cells, it may be prudent to polarize T cells to the Tc22 lineage when using chimeric antigen receptor (CAR)-T or T-cell receptor (TCR) transduction-based immunotherapies.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Cell Polarity/immunology
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Interleukin-6/immunology
- Interleukin-6/pharmacology
- Interleukins/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Aryl Hydrocarbon/immunology
- T-Box Domain Proteins/immunology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- Transcriptome
- Tumor Cells, Cultured
- Interleukin-22
Collapse
Affiliation(s)
- Michael St Paul
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Samuel D Saibil
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Scott C Lien
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - SeongJun Han
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Azin Sayad
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - David T Mulder
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | | | - Alisha R Elford
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kavita Israni-Winger
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Céline Robert-Tissot
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Michael Zon
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Sarah Rachel Katz
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Patricia A Shaw
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Blaise A Clarke
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, University Health Network, Toronto, Ontario, Canada
| | - Linh T Nguyen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Lang PA, Crome SQ, Xu HC, Lang KS, Chapatte L, Deenick EK, Grusdat M, Pandyra AA, Pozdeev VI, Wang R, Holderried TAW, Cantor H, Diefenbach A, Elford AR, McIlwain DR, Recher M, Häussinger D, Mak TW, Ohashi PS. NK Cells Regulate CD8 + T Cell Mediated Autoimmunity. Front Cell Infect Microbiol 2020; 10:36. [PMID: 32117809 PMCID: PMC7031256 DOI: 10.3389/fcimb.2020.00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
Elucidating key factors that regulate immune-mediated pathology in vivo is critical for developing improved strategies to treat autoimmune disease and cancer. NK cells can exhibit regulatory functions against CD8+ T cells following viral infection. Here we show that while low doses of lymphocytic choriomeningitis virus (LCMV-WE) can readily induce strong CD8+ T cell responses and diabetes in mice expressing the LCMV glycoprotein on β-islet cells (RIP-GP mice), hyperglycemia does not occur after infection with higher doses of LCMV. High-dose LCMV infection induced an impaired CD8+ T cell response, which coincided with increased NK cell activity during early time points following infection. Notably, we observed increased NKp46 expression on NK cells during infection with higher doses, which resulted in an NK cell dependent suppression of T cells. Accordingly, depletion with antibodies specific for NK1.1 as well as NKp46 deficiency (Ncr1gfp/gfp mice) could restore CD8+ T cell immunity and permitted the induction of diabetes even following infection of RIP-GP mice with high-dose LCMV. Therefore, we identify conditions where innate lymphoid cells can play a regulatory role and interfere with CD8+ T cell mediated tissue specific pathology using an NKp46 dependent mechanism.
Collapse
Affiliation(s)
- Philipp A Lang
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Q Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute and UHN Transplant, University Health Network, Toronto, ON, Canada
| | - Haifeng C Xu
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laurence Chapatte
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Melanie Grusdat
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Vitaly I Pozdeev
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Ruifeng Wang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias A W Holderried
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany.,Department of Hematology, Oncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Alisha R Elford
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada
| | - David R McIlwain
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Mike Recher
- Medical Outpatient Clinic and Immunodeficiency Lab, University Hospital Basel, Basel, Switzerland
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Tak W Mak
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, Campell Family Institute for Breast Cancer Research, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Boukhaled GM, Corrado M, Guak H, Krawczyk CM. Chromatin Architecture as an Essential Determinant of Dendritic Cell Function. Front Immunol 2019; 10:1119. [PMID: 31214161 PMCID: PMC6557980 DOI: 10.3389/fimmu.2019.01119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Epigenetics has widespread implications in a variety of cellular processes ranging from cell identity and specification, to cellular adaptation to environmental stimuli. While typically associated with heritable changes in gene expression, epigenetic mechanisms are now appreciated to regulate dynamic changes in gene expression—even in post-mitotic cells. Cells of the innate immune system, including dendritic cells (DC), rapidly integrate signals from their microenvironment and respond accordingly, undergoing massive changes in transcriptional programming. This dynamic transcriptional reprogramming relies on epigenetic changes mediated by numerous enzymes and their substrates. This review highlights our current understanding of epigenetic regulation of DC function. Epigenetic mechanisms contribute to the maintenance of the steady state and are important for precise responses to proinflammatory stimuli. Interdependence between epigenetic modifications and the delicate balance of metabolites present another layer of complexity. In addition, dynamic regulation of the expression of proteins that modify chromatin architecture in DCs significantly impacts DC function. Environmental factors, including inflammation, aging, chemicals, nutrients, and lipid mediators, are increasingly appreciated to affect the epigenome in DCs, and, in doing so, regulate host immunity. Our understanding of how epigenetic mechanisms regulate DC function is in its infancy, and it must be expanded in order to discern the mechanisms underlying the balance between health and disease states.
Collapse
Affiliation(s)
- Giselle M Boukhaled
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Mario Corrado
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Hannah Guak
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Connie M Krawczyk
- Department of Physiology, Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Center for Cancer and Cell Biology, Program in Metabolic and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
28
|
Abstract
Diabetes develops due to deficient functional β cell mass, insulin resistance, or both. Yet, various challenges in understanding the mechanisms underlying diabetes development in vivo remain to be overcome owing to the lack of appropriate intravital imaging technologies. To meet these challenges, we have exploited the anterior chamber of the eye (ACE) as a novel imaging site to understand diabetes basics and clinics in vivo. We have developed a technology platform transplanting pancreatic islets into the ACE where they later on can be imaged non-invasively for long time. It turns out that the ACE serves as an optimal imaging site and provides implanted islets with an oxygen-rich milieu and an immune-privileged niche where they undergo optimal engraftment, rich vascularization and dense innervation, preserve organotypic features and live with satisfactory viability and functionality. The ACE technology has led to a series of significant observations. It enables in vivo microscopy of islet cytoarchitecture, function and viability in the physiological context and intravital imaging of a variety of pathological events such as autoimmune insulitis, defects in β cell function and mass and insulin resistance during diabetes development in a real-time manner. Furthermore, application of the ACE technology in humanized mice and non-human primates verifies translational and clinical values of the technology. In this article, we describe the ACE technology in detail, review accumulated knowledge gained by means of the ACE technology and delineate prospective avenues for the ACE technology.
Collapse
|
29
|
Prolonged IKKβ Inhibition Improves Ongoing CTL Antitumor Responses by Incapacitating Regulatory T Cells. Cell Rep 2018; 21:578-586. [PMID: 29045828 DOI: 10.1016/j.celrep.2017.09.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023] Open
Abstract
Regulatory T cells (Tregs) prevent autoimmunity but limit antitumor immunity. The canonical NF-κB signaling pathway both activates immunity and promotes thymic Treg development. Here, we report that mature Tregs continue to require NF-κB signaling through IκB-kinase β (IKKβ) after thymic egress. Mice lacking IKKβ in mature Tregs developed scurfy-like immunopathology due to death of peripheral FoxP3+ Tregs. Also, pharmacological IKKβ inhibition reduced Treg numbers in the circulation by ∼50% and downregulated FoxP3 and CD25 expression and STAT5 phosphorylation. In contrast, activated cytotoxic T lymphocytes (CTLs) were resistant to IKKβ inhibition because other pathways, in particular nuclear factor of activated T cells (NFATc1) signaling, sustained their survival and expansion. In a melanoma mouse model, IKKβ inhibition after CTL cross-priming improved the antitumor response and delayed tumor growth. In conclusion, prolonged IKKβ inhibition decimates circulating Tregs and improves CTL responses when commenced after tumor vaccination, indicating that IKKβ represents a druggable checkpoint.
Collapse
|
30
|
Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep 2017; 37:BSR20160436. [PMID: 28096318 PMCID: PMC5398252 DOI: 10.1042/bsr20160436] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Research on regulation and its mechanism of bone marrow mesenchymal stem cells (BMSCs) on dendritic cells (DCs), which is the initiating factor in immune response has applicable clinical value. Although BMSCs have a significant regulatory effect on the maturation of DCs, its molecular mechanism is still unclear. BMSCs and DCs, were co-cultured by different concentration ratios. Flow cytometry was used to detect the expression of DC markers (CD83, CD11c). Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of related genes in RNA level. Expression of the target proteins was detected with using Western blot assay. miRNA inhibitor and miRNA mimic were used to suppress and up-regulate the expression of the target gene. In this research, our results demonstrated that BMSCs notably inhibited maturation of DCs in the co-culture system of BMSCs and DCs and confirmed that this inhibition is due to overexpression of miR-23b. Furthermore, this research found that miR-23b overexpression inhibited the expression of p50/p65, thus blocked the activation of the NF-κB pathway. In conclusion, BMSCs affected the activation of NF-κB pathway through miR-23b overexpression resulting in inhibition of the maturation and differentiation of DCs.
Collapse
|
31
|
Abstract
Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053; Center of Epilepsy, Beijing Institute for Brain Disorders, Laboratory of Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
32
|
Kaustio M, Haapaniemi E, Göös H, Hautala T, Park G, Syrjänen J, Einarsdottir E, Sahu B, Kilpinen S, Rounioja S, Fogarty CL, Glumoff V, Kulmala P, Katayama S, Tamene F, Trotta L, Morgunova E, Krjutškov K, Nurmi K, Eklund K, Lagerstedt A, Helminen M, Martelius T, Mustjoki S, Taipale J, Saarela J, Kere J, Varjosalo M, Seppänen M. Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes. J Allergy Clin Immunol 2017; 140:782-796. [PMID: 28115215 DOI: 10.1016/j.jaci.2016.10.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/02/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.
Collapse
Affiliation(s)
- Meri Kaustio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Emma Haapaniemi
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Helka Göös
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Timo Hautala
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Giljun Park
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Research Programs Unit, Genome-scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Sanna Kilpinen
- Department of Internal Medicine, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland; Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Christopher L Fogarty
- Folkhälsan Institute of Genetics, Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Petri Kulmala
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO) and MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Fitsum Tamene
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Luca Trotta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Competence Centre on Health Technologies, Tartu, Estonia
| | - Katariina Nurmi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kari Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anssi Lagerstedt
- Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Merja Helminen
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Timi Martelius
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Jussi Taipale
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janna Saarela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
33
|
Mykicki N, Klenner L, Baumann C, Auriemma M, Sternemann C, Soeberdt M, Elliott GR, Abels C, Luger TA, Loser K. The tripeptide KdPT ameliorates ongoing psoriasis-like skin inflammation in murine and human skin. Exp Dermatol 2016; 26:328-334. [PMID: 27376341 DOI: 10.1111/exd.13145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
Abstract
Psoriasis is a chronic inflammatory disease appearing as scaly erythematous cutaneous lesions, which are characterized by parakeratosis and acanthosis as well as the infiltration of immune cells, such as T helper-1 and T helper-17 cells. Here, we demonstrated that KdPT, a tripeptide structurally related to the C-terminal amino acids of alpha-melanocyte-stimulating hormone, which was previously shown to exhibit anti-inflammatory effects in intestinal inflammation, ameliorated ongoing disease in the mouse model of imiquimod-induced psoriasis-like skin inflammation and in the small xenotransplant mouse model of psoriasis. We could show that systemic KdPT treatment significantly reduced hyperkeratosis and acanthosis in murine as well as human skin. Moreover, KdPT upregulated Foxp3 in CD4+ T cells from mice and from peripheral blood of individuals with psoriasis and decreased the expression of type 1 inflammatory cytokines, indicating that the beneficial effect of KdPT was, at least in part, mediated by the induction of functional regulatory T cells that suppressed the activation of pathogenic CD4+ IFN-γ+ and CD4+ IL-17+ T cells. Thus, these data might suggest KdPT as a potential novel therapeutic alternative for the treatment of psoriasis.
Collapse
Affiliation(s)
- Nadine Mykicki
- Department of Dermatology, University of Münster, Münster, Germany.,Cells in Motion - Cluster of Excellence, University of Münster, Münster, Germany
| | - Lars Klenner
- Department of Dermatology, University of Münster, Münster, Germany.,CRC1009 Breaking Barriers, University of Münster, Münster, Germany
| | - Christoph Baumann
- Department of Dermatology, University of Münster, Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Matteo Auriemma
- Department of Dermatology, University of Münster, Münster, Germany
| | - Carlo Sternemann
- Department of Dermatology, University of Münster, Münster, Germany
| | | | | | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Thomas A Luger
- Department of Dermatology, University of Münster, Münster, Germany.,Cells in Motion - Cluster of Excellence, University of Münster, Münster, Germany
| | - Karin Loser
- Department of Dermatology, University of Münster, Münster, Germany.,Cells in Motion - Cluster of Excellence, University of Münster, Münster, Germany.,CRC1009 Breaking Barriers, University of Münster, Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| |
Collapse
|
34
|
Williams AR, Klaver EJ, Laan LC, Ramsay A, Fryganas C, Difborg R, Kringel H, Reed JD, Mueller-Harvey I, Skov S, van Die I, Thamsborg SM. Co-operative suppression of inflammatory responses in human dendritic cells by plant proanthocyanidins and products from the parasitic nematode Trichuris suis. Immunology 2016; 150:312-328. [PMID: 27905107 DOI: 10.1111/imm.12687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Interactions between dendritic cells (DCs) and environmental, dietary and pathogen antigens play a key role in immune homeostasis and regulation of inflammation. Dietary polyphenols such as proanthocyanidins (PAC) may reduce inflammation, and we therefore hypothesized that PAC may suppress lipopolysaccharide (LPS) -induced responses in human DCs and subsequent T helper type 1 (Th1) -type responses in naive T cells. Moreover, we proposed that, because DCs are likely to be exposed to multiple stimuli, the activity of PAC may synergise with other bioactive molecules that have anti-inflammatory activity, e.g. soluble products from the helminth parasite Trichuris suis (TsSP). We show that PAC are endocytosed by monocyte-derived DCs and selectively induce CD86 expression. Subsequently, PAC suppress the LPS-induced secretion of interleukin-6 (IL-6) and IL-12p70, while enhancing secretion of IL-10. Incubation of DCs with PAC did not affect lymphocyte proliferation; however, subsequent interferon-γ production was markedly suppressed, while IL-4 production was unaffected. The activity of PAC was confined to oligomers (degree of polymerization ≥ 4). Co-pulsing DCs with TsSP and PAC synergistically reduced secretion of tumour necrosis factor-α, IL-6 and IL-12p70 while increasing IL-10 secretion. Moreover, both TsSP and PAC alone induced Th2-associated OX40L expression in DCs, and together synergized to up-regulate OX40L. These data suggest that PAC induce an anti-inflammatory phenotype in human DCs that selectively down-regulates Th1 response in naive T cells, and that they also act cooperatively with TsSP. Our results indicate a novel interaction between dietary compounds and parasite products to influence immune function, and may suggest that combinations of PAC and TsSP can have therapeutic potential for inflammatory disorders.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Elsenoor J Klaver
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Aina Ramsay
- Chemistry and Biochemistry Laboratory, University of Reading, Reading, UK
| | - Christos Fryganas
- Chemistry and Biochemistry Laboratory, University of Reading, Reading, UK
| | - Rolf Difborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Helene Kringel
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jess D Reed
- Department of Animal Science, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Søren Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Stig M Thamsborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
35
|
Gotot J, Piotrowski E, Otte MS, Tittel AP, Linlin G, Yao C, Ziegelbauer K, Panzer U, Garbi N, Kurts C, Thaiss F. Inhibitor of NFκB Kinase Subunit 2 Blockade Hinders the Initiation but Aggravates the Progression of Crescentic GN. J Am Soc Nephrol 2016; 27:1917-24. [PMID: 26574045 PMCID: PMC4926984 DOI: 10.1681/asn.2015060699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/08/2015] [Indexed: 12/16/2022] Open
Abstract
The NFκB transcription factor family facilitates the activation of dendritic cells (DCs) and CD4(+) T helper (Th) cells, which are important for protective adaptive immunity. Inappropriate activation of these immune cells may cause inflammatory disease, and NFκB inhibitors are promising anti-inflammatory drug candidates. Here, we investigated whether inhibiting the NFκB-inducing kinase IKK2 can attenuate crescentic GN, a severe DC- and Th cell-dependent kidney inflammatory disease. Prophylactic pharmacologic IKK2 inhibition reduced DC and Th cell activation and ameliorated nephrotoxic serum-induced GN in mice. However, therapeutic IKK2 inhibition during ongoing disease aggravated the nephritogenic immune response and disease symptoms. This effect resulted from the renal loss of regulatory T cells, which have been shown to protect against crescentic GN and which require IKK2. In conclusion, although IKK2 inhibition can suppress the induction of nephritogenic immune responses in vivo, it may aggravate such responses in clinically relevant situations, because it also impairs regulatory T cells and thereby, unleashes preexisting nephritogenic responses. Our findings argue against using IKK2 inhibitors in chronic GN and perhaps, other immune-mediated diseases.
Collapse
Affiliation(s)
- Janine Gotot
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Eveline Piotrowski
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Martin S Otte
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne Germany; and
| | - André P Tittel
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Guo Linlin
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Chen Yao
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Karl Ziegelbauer
- Global Drug Discovery, TRG Oncology/GT, Bayer Pharma AG, Berlin, Germany
| | - Ulf Panzer
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Rheinische Friedrich Wilhelms University, Bonn, Germany;
| | - Friedrich Thaiss
- Third Medical Department of Clinical Medicine, University Hospital Hamburg Eppendorf, Hamburg, Germany;
| |
Collapse
|
36
|
Bobbala D, Orkhis S, Kandhi R, Ramanathan S, Ilangumaran S. Interleukin-21-dependent modulation of T cell antigen receptor reactivity towards low affinity peptide ligands in autoreactive CD8(+) T lymphocytes. Cytokine 2016; 85:83-91. [PMID: 27300756 DOI: 10.1016/j.cyto.2016.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023]
Abstract
IL-21 promotes autoimmune type-1 diabetes (T1D) in NOD mice by facilitating CD4(+) T cell help to CD8(+) T cells. IL-21 also enables autoreactive CD8(+) T cells to respond to weak TCR ligands and induce T1D. Here, we assessed whether IL-21 is essential for T1D induction in a mouse model where the disease can occur independently of CD4 help. In this model, which expresses lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) antigen under the rat insulin promoter (RIP-GP), LCMV infection activates CD8(+) T cells reactive to the GP-derived GP33 peptide that attack pancreatic islets and cause T1D. We show that IL-21 deficiency in RIP-GP mice did not impair T1D induction by LCMV expressing the wildtype GP33 peptide. Surprisingly, LCMV-L6F, expressing a weak peptide mimic of GP33, induced T1D more efficiently in Il21(-/-)RIP-GP mice than in controls. However, LCMV-C4Y expressing a very weak peptide mimic of GP33 did not induce T1D in Il21(-/-) mice, but T cells from the infected mice caused disease in lymphopenic RIP-GP mice upon adoptive transfer. Using Nur77(GFP) reporter mice, we show that CD8(+) T cells from Il21(-/-) mice expressing the GP33-specific transgenic P14 TCR showed increased reactivity towards low affinity TCR ligands. Collectively, our findings show that IL-21 is not always required for T1D induction by autoreactive CD8(+) T cells, and suggest that IL-21 may play an important role in regulating CD8(+) T cell reactivity towards low affinity TCR ligands.
Collapse
Affiliation(s)
- Diwakar Bobbala
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sakina Orkhis
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| | - Subburaj Ilangumaran
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
37
|
Sniping the scout: Targeting the key molecules in dendritic cell functions for treatment of autoimmune diseases. Pharmacol Res 2016; 107:27-41. [DOI: 10.1016/j.phrs.2016.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
|
38
|
Liebman HA. Immune modulation for autoimmune disorders: evolution of therapeutics. Semin Hematol 2016; 53 Suppl 1:S23-6. [DOI: 10.1053/j.seminhematol.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Ng D, Maître B, Cummings D, Lin A, Ward LA, Rahbar R, Mossman KL, Ohashi PS, Gommerman JL. A Lymphotoxin/Type I IFN Axis Programs CD8+T Cells To Infiltrate a Self-Tissue and Propagate Immunopathology. THE JOURNAL OF IMMUNOLOGY 2015; 195:4650-9. [DOI: 10.4049/jimmunol.1501053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/18/2015] [Indexed: 01/05/2023]
|
40
|
Lind EF, Millar DG, Dissanayake D, Savage JC, Grimshaw NK, Kerr WG, Ohashi PS. miR-155 Upregulation in Dendritic Cells Is Sufficient To Break Tolerance In Vivo by Negatively Regulating SHIP1. THE JOURNAL OF IMMUNOLOGY 2015; 195:4632-40. [PMID: 26447227 DOI: 10.4049/jimmunol.1302941] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 08/22/2015] [Indexed: 11/19/2022]
Abstract
TLR-induced maturation of dendritic cells (DCs) leads to the production of proinflammatory cytokines as well as the upregulation of various molecules involved in T cell activation. These are believed to be the critical events that account for the induction of the adaptive immune response. In this study, we have examined the role of miR-155 in DC function and the induction of immunity. Using a model in which the transfer of self-Ag-pulsed, TLR-matured DCs can induce a functional CD8 T cell response and autoimmunity, we find that DCs lacking miR-155 have an impaired ability to break immune tolerance. Importantly, transfer of self- Ag-pulsed DCs overexpressing miR-155 was sufficient to break tolerance in the absence of TLR stimuli. Although these unstimulated DCs induced T cell function in vivo, there was no evidence for the upregulation of costimulatory ligands or cytokine secretion. Further analysis showed that miR-155 influenced the level of the phosphatase SHIP1 in DCs and that the lack of SHIP1 in DCs was sufficient to break T cell tolerance in vivo, again in the absence of TLR-induced DC maturation. Our study demonstrates that the overexpression of miR-155 in DCs is a critical event that is alone sufficient to break self-tolerance and promote a CD8-mediated autoimmune response in vivo. This process is independent of the induction of conventional DC maturation markers, indicating that miR-155 regulation of SHIP represents a unique axis that regulates DC function in vivo.
Collapse
Affiliation(s)
- Evan F Lind
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada; Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239
| | - Douglas G Millar
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada
| | - Dilan Dissanayake
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada; Department of Immunology, University of Toronto, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Jonathan C Savage
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR 97239
| | - Natasha K Grimshaw
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada
| | - William G Kerr
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Pamela S Ohashi
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2C1, Canada; Department of Immunology, University of Toronto, University Health Network, Toronto, Ontario M5G 2C1, Canada;
| |
Collapse
|
41
|
Kim SJ, Diamond B. Modulation of tolerogenic dendritic cells and autoimmunity. Semin Cell Dev Biol 2015; 41:49-58. [PMID: 24747368 PMCID: PMC9973561 DOI: 10.1016/j.semcdb.2014.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.
Collapse
Affiliation(s)
| | - Betty Diamond
- The Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, United States.
| |
Collapse
|
42
|
Chen P, Denniston A, Hannes S, Tucker W, Wei L, Liu B, Xiao T, Hirani S, Li Z, Jawad S, Si H, Lee RWJ, Sen HN, Nussenblatt RB. Increased CD1c+ mDC1 with mature phenotype regulated by TNFα-p38 MAPK in autoimmune ocular inflammatory disease. Clin Immunol 2015; 158:35-46. [PMID: 25784146 DOI: 10.1016/j.clim.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
In this study we investigated the role of blood CD1c(+) myeloid dendritic cells 1 (mDC1), a key mDC subtype, in patients with autoimmune uveitis. We observed a significant increase of blood CD1c(+) mDC1 in uveitis patients. The increased CD1c(+) mDC1 exhibited high HLADR expression and less antigen uptake. CD1c(+) mDC1 were divided into two subpopulations. CD1c(hi) mDC1 subpopulation showed less antigen uptake and higher HLADR expression compared to CD1c(lo) mDC1 subpopulation. Importantly, the CD1c(hi) mDC1 subpopulation was increased in uveitis patients. In vitro, mature monocyte-derived dendritic cells (MoDCs), characterized by lower levels of antigen uptake, induced more CD4(+)CD62L(-) T helper cell proliferation. The mature phenotype and function of CD1c(+) mDC1 were regulated by TNFα via a p38 MAPK-dependent pathway. These data show that alterations in the systemic immune response are involved in the pathogenesis of autoimmune uveitis and invite the therapeutic possibility of attenuating uveitis by manipulating blood CD1c(+) mDC1.
Collapse
Affiliation(s)
- Ping Chen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alastair Denniston
- Ophthalmology Department, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHSFT, Edgbaston, Birmingham B15 2WB, UK; Centre for Translational Inflammation Research, University of Birmingham, UK
| | - Susan Hannes
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Tucker
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lai Wei
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoying Liu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sima Hirani
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiyu Li
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayma Jawad
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Han Si
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard W J Lee
- Department of Clinical Sciences, University of Bristol, Bristol, UK
| | - H Nida Sen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Bates JM, Flanagan K, Mo L, Ota N, Ding J, Ho S, Liu S, Roose-Girma M, Warming S, Diehl L. Dendritic cell CD83 homotypic interactions regulate inflammation and promote mucosal homeostasis. Mucosal Immunol 2015; 8:414-28. [PMID: 25204675 PMCID: PMC4326976 DOI: 10.1038/mi.2014.79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/26/2014] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DCs) form an extensive network in the intestinal lamina propria, which orchestrates the mucosal immune response. Alterations in DC function can predispose to inflammatory bowel disease, although by unknown mechanisms. We show that CD83, a highly regulated DC cell surface protein, modulates the immune response to prevent colitis. Mice with a conditional knockout of CD83 in DCs develop exacerbated colitis following dextran sodium sulfate challenge, whereas mucosal overexpression of CD83 inhibits DC inflammatory response and protects against colitis. These CD83 perturbations can be modeled in vitro where we show that CD83 homotypic interaction occurs via cell-cell contact and inhibits pro-inflammatory responses. CD83 knockdown or cytoplasmic truncation abrogates the effects of homotypic binding. We demonstrate that CD83 homotypic interaction regulates DC activation via the mitogen-activated protein kinase pathway by inhibiting p38α phosphorylation. Our findings indicate that CD83 homotypic interactions regulate DC activation and promote mucosal homeostasis.
Collapse
Affiliation(s)
- J M Bates
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - K Flanagan
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - L Mo
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - N Ota
- Department of Immunology, Genetech, South San Francisco, California, USA
| | - J Ding
- Department of Immunology, Genetech, South San Francisco, California, USA
| | - S Ho
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - S Liu
- Department of Pathology, Genetech, South San Francisco, California, USA
| | - M Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, California, USA
| | - S Warming
- Department of Molecular Biology, Genentech, South San Francisco, California, USA
| | - L Diehl
- Department of Pathology, Genetech, South San Francisco, California, USA
| |
Collapse
|
44
|
Schinnerling K, Soto L, García-González P, Catalán D, Aguillón JC. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun Rev 2015; 14:517-27. [PMID: 25633325 DOI: 10.1016/j.autrev.2015.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
To date, the available options to treat autoimmune diseases such as rheumatoid arthritis (RA) include traditional corticoids and biological drugs, which are not exempt of adverse effects. The development of cellular therapies based on dendritic cells with tolerogenic functions (TolDCs) has opened a new possibility to efficiently eradicate symptoms and control the immune response in the field of autoimmunity. TolDCs are an attractive tool for antigen-specific immunotherapy to restore self-tolerance in RA and other autoimmune disorders. A promising strategy is to inject autologous self-antigen-loaded TolDCs, which are able to delete or reprogram autoreactive T cells. Different protocols for the generation of stable human TolDCs have been established and the therapeutic effect of TolDCs has been investigated in multiple rodent models of arthritis. Pilot studies in humans confirmed that TolDC application is safe, encouraging clinical trials using self-antigen-loaded TolDCs in RA patients. Although an abundance of molecular regulators of DC functions has been discovered in the last decade, no master regulator of tolerogenicity has been identified yet. Further research is required to define biomarkers or key regulators of tolerogenicity that might facilitate the induction and monitoring of TolDCs.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paulina García-González
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
45
|
Tassi I, Claudio E, Wang H, Tang W, Ha HL, Saret S, Ramaswamy M, Siegel R, Siebenlist U. The NF-κB regulator Bcl-3 governs dendritic cell antigen presentation functions in adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:4303-11. [PMID: 25246497 DOI: 10.4049/jimmunol.1401505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bcl-3 is an atypical member of the IκB family and modulates gene expression via interaction with p50/NF-κB1 or p52/NF-κB2 homodimers. We report in the present study that Bcl-3 is required in dendritic cells (DCs) to assure effective priming of CD4 and CD8 T cells. Lack of Bcl-3 in bone marrow-derived DCs blunted their ability to expand and promote effector functions of T cells upon Ag/adjuvant challenge in vitro and after adoptive transfers in vivo. Importantly, the critical role of Bcl-3 for priming of T cells was exposed upon Ag/adjuvant challenge of mice specifically ablated of Bcl-3 in DCs. Furthermore, Bcl-3 in endogenous DCs was necessary for contact hypersensitivity responses. Bcl-3 modestly aided maturation of DCs, but most consequentially, Bcl-3 promoted their survival, partially inhibiting expression of several antiapoptotic genes. Loss of Bcl-3 accelerated apoptosis of bone marrow-derived DCs during Ag presentation to T cells, and DC survival was markedly impaired in the context of inflammatory conditions in mice specifically lacking Bcl-3 in these cells. Conversely, selective overexpression of Bcl-3 in DCs extended their lifespan in vitro and in vivo, correlating with increased capacity to prime T cells. These results expose a previously unidentified function for Bcl-3 in DC survival and the generation of adaptive immunity.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Hye-lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Madhu Ramaswamy
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
46
|
Role and therapeutic value of dendritic cells in central nervous system autoimmunity. Cell Death Differ 2014; 22:215-24. [PMID: 25168240 DOI: 10.1038/cdd.2014.125] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that control the generation of adaptive immunity. Consequently, DCs have a central role in the induction of protective immunity to pathogens and also in the pathogenic immune response responsible for the development and progression of autoimmune disorders. Thus the study of the molecular pathways that control DC development and function is likely to result in new strategies for the therapeutic manipulation of the immune response. In this review, we discuss the role and therapeutic value of DCs in autoimmune diseases, with a special focus on multiple sclerosis.
Collapse
|
47
|
Chapman TJ, Georas SN. Regulatory tone and mucosal immunity in asthma. Int Immunopharmacol 2014; 23:330-6. [PMID: 24975833 DOI: 10.1016/j.intimp.2014.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
Abstract
The lung is constantly exposed to a variety of inhaled foreign antigens, many of which are harmless to the body. Therefore, the mucosal immune system must not only have the capacity to distinguish self from non-self, but also harmless versus dangerous non-self. To address this, mucosal immune cells establish an anti-inflammatory steady state in the lung that must be overcome by inflammatory signals in order to mount an effector immune response. In the case of inhaled allergens, the false detection of dangerous non-self results in inappropriate immune activation and eventual allergic asthma. Both basic and clinical studies suggest that the balance between tolerogenic and inflammatory immune responses is a key feature in the outcome of health or disease. This review is focused on what we term 'regulatory tone': the immunosuppressive environment in the lung that must be overcome to induce inflammatory responses. We will summarize the current literature on this topic, with a particular focus on the role of regulatory T cells in preventing allergic disease of the lung. We propose that inter-individual differences in regulatory tone have the potential to not only establish the threshold for immune activation in the lung, but also shape the quality of resulting effector responses following tolerance breakdown.
Collapse
Affiliation(s)
- Timothy J Chapman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14610, United States
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14610, United States.
| |
Collapse
|
48
|
Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J 2014; 33:1104-16. [PMID: 24737868 DOI: 10.1002/embj.201488027] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DC) are key regulators of both protective immune responses and tolerance to self-antigens. Soon after their discovery in lymphoid tissues by Steinman and Cohn, as cells with the unique ability to prime naïve antigen-specific T cells, it was realized that DC can exist in at least two distinctive states characterized by morphological, phenotypic and functional changes-this led to the description of DC maturation. It is now well appreciated that there are several subsets of DC in both lymphoid and non-lymphoid tissues of mammals, and these cells show remarkable functional specialization and specificity in their roles in tolerance and immunity. This review will focus on the specific characteristics of DC subsets and how their functional specialization may be regulated by distinctive gene expression programs and signaling responses in both steady-state and in the context of inflammation. In particular, we will highlight the common and distinctive genes and signaling pathways that are associated with the functional maturation of DC subsets.
Collapse
Affiliation(s)
- Marc Dalod
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1104, Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Rabie Chelbi
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1104, Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1104, Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University UM2, Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1104, Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| |
Collapse
|
49
|
Dissanayake D, Murakami K, Tran MD, Elford AR, Millar DG, Ohashi PS. Peptide-pulsed dendritic cells have superior ability to induce immune-mediated tissue destruction compared to peptide with adjuvant. PLoS One 2014; 9:e92380. [PMID: 24647761 PMCID: PMC3960236 DOI: 10.1371/journal.pone.0092380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/21/2014] [Indexed: 02/03/2023] Open
Abstract
Vaccines for cancer immunotherapy are of interest but in general have not yet achieved the desired therapeutic efficacy in clinical trials. We present here a novel model to evaluate vaccine strategies by following tissue destruction in a transgenic model, where a defined antigen is expressed on pancreatic islets. We found that the transfer of syngeneic antigen-pulsed dendritic cells (DCs) resulted in autoimmune cytotoxic T-lymphocyte activation that was not observed following vaccinations that were based on peptides and adjuvants. Importantly, the induction of diabetes by DC transfer is dependent upon the maturation of DCs prior to transfer. Furthermore, diabetes induction only occurred if DCs were pulsed with the immunodominant epitope in addition to at least one other peptide, suggesting greater cytolytic activity upon engagement of multiple T-cell specificities. While the tumor environment undoubtedly will be more complex than healthy tissue, the insights gained through this model provide useful information on variables that can affect CD8-mediated tissue cytolysis in vivo.
Collapse
Affiliation(s)
- Dilan Dissanayake
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kiichi Murakami
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Michael D. Tran
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Douglas G. Millar
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
50
|
Chai L, Wu S, Liu G, Wang Z, Tian W, Ma Y. OCILRP2 signaling synergizes with LPS to induce the maturation and differentiation of murine dendritic cells. Biochem Biophys Res Commun 2014; 446:836-42. [PMID: 24631687 DOI: 10.1016/j.bbrc.2014.02.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/25/2014] [Indexed: 11/29/2022]
Abstract
Osteoclast Inhibitory Lectin-related Protein 2 (OCILRP2) is a typical type II transmembrane protein and belongs to C-type lectin-related protein family. It is preferentially expressed in dendritic cells (DC), B lymphocytes, and activated T lymphocytes. Upon binding to its ligand, OCILRP2 can promote CD28-mediated co-stimulation and enhance T cell activation. However, the role of OCILRP2 in DC development and activation is unclear. In this report, we present evidence that recombinant protein OCILRP2-Fc inhibits the generation and LPS-induced maturation of murine bone marrow-derived dendritic cells (BMDCs) by downregulating the expression of CD11c, MHC-II, and co-stimulators CD80 and CD86. OCILRP2-Fc also reduces the capacity of BMDCs to take up antigens, activates T cells, and secret inflammatory cytokines such as IL-6, IL-12, and TNF-α. Additionally, we show that OCILRP2-Fc may cause the aforementioned effects through inhibiting NF-κB activation. Therefore, OCILRP2 is a new regulator of DC maturation and differentiation following TLR4 activation.
Collapse
Affiliation(s)
- Lihui Chai
- Department of Microbiology and Immunology, Zhengzhou University School of Medicine, 100 Kexue Road, Zhengzhou 450001, People's Republic of China; Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, The New Campus, Jinming Road, Kaifeng 475004, People's Republic of China
| | - Suxia Wu
- Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, The New Campus, Jinming Road, Kaifeng 475004, People's Republic of China
| | - Guangchao Liu
- Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, The New Campus, Jinming Road, Kaifeng 475004, People's Republic of China
| | - Zhanzheng Wang
- Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, The New Campus, Jinming Road, Kaifeng 475004, People's Republic of China
| | - Wenzhi Tian
- Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, The New Campus, Jinming Road, Kaifeng 475004, People's Republic of China.
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, The New Campus, Jinming Road, Kaifeng 475004, People's Republic of China.
| |
Collapse
|