1
|
Yoshimoto N, Muramastsu K, Ito T, Zheng M, Izumi K, Natsuga K, Iwata H, Hasegawa Y, Ujiie H. Type XVII Collagen-Specific CD4 + T Cells Induce Bullous Pemphigoid by Producing IL-5. J Invest Dermatol 2025; 145:1092-1104.e3. [PMID: 39326663 DOI: 10.1016/j.jid.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024]
Abstract
Bullous pemphigoid is an autoimmune subepidermal blistering disease caused by anti-type XVII collagen (COL17) antibodies. Bullous pemphigoid has some immunological features such as eosinophilic infiltration and the deposition of IgE autoantibodies in the skin; however, the mechanism behind such features remains largely unclear. We focused on the autoantigen-specific CD4+ T cells, which are considered to regulate immune response. We established COL17-specific CD4+ T cell lines in vitro. Wild-type mice were immunized with synthesized peptides that include a pathogenic epitope of COL17, and lymphocytes were subjected to a limiting dilution assay. We established 5 T cell lines and examined the pathogenicity by transferring them with COL17-primed B cells into Rag-2-/-/COL17-humanized mice that express human COL17 but not mouse COL17 in the skin. Notably, 3 lines induced bullous pemphigoid-like skin changes associated with subepidermal separation and eosinophilic infiltration histologically and the production of anti-COL17 antibodies. The other 2 lines did not induce such phenotypes. RNA-sequencing analysis revealed that T helper 2 cytokines, particularly IL-5, were highly expressed in the pathogenic T-cell lines. Anti-IL-5 antibody administration significantly reduced the skin changes and attenuated the production of autoantibodies. Thus, the production of IL-5 is critical for COL17-specific CD4+ T cells to induce bullous pemphigoid phenotypes in vivo.
Collapse
Affiliation(s)
- Norihiro Yoshimoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Muramastsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Takamasa Ito
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Miao Zheng
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics Kazusa DNA Research Institute, Kisarazu, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Ujiie H. Eosinophils promote the production of autoantibodies in bullous pemphigoid. J Allergy Clin Immunol 2025; 155:1208-1210. [PMID: 39900267 DOI: 10.1016/j.jaci.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025]
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Daponte AI, Kalloniati E, Meltzanidou P, Giannouli M, Tsitlakidou A, Oflidou V, Boziou M, Kyriakou A, Charalampidis S, Fotiadou C, Giannakou A, Lambropoulos A, Trigoni A, Trakatelli MG, Apalla Z, Lazaridou E, Patsatsi A. Bullous Pemphigoid and Epidemiological Patterns in Northern Greece: Insights from an 8-Year Observational Study. Dermatol Pract Concept 2025; 15:dpc.1502a4852. [PMID: 40401859 PMCID: PMC12090940 DOI: 10.5826/dpc.1502a4852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 05/23/2025] Open
Abstract
INTRODUCTION Bullous pemphigoid (BP) is an autoimmune disorder causing tense blisters on the skin and sometimes mucous membranes, primarily affecting older adults. It results from autoantibodies attacking the epidermal basement membrane. The incidence of BP is rising globally, particularly due to drug-induced cases. OBJECTIVES This study aimed to present epidemiological data on BP patients, response to systemic corticosteroid therapy, relapse rates, need for additional therapy, and overall prognosis. METHODS This retrospective study included patients diagnosed with BP and admitted to the Dermatology Department of a referral center in northern Greece from 2014 to 2022. The registry included parameters such as sex, age at onset, comorbidities, drug associations, hospitalization, additional immunosuppressive therapy or doxycycline use, time to tapering, and number of relapses. RESULTS Among the 188 patients (88 females, 100 males; mean age 76 years), 97% received systemic corticosteroid therapy, while 1.6% were treated with potent topical steroids alone. Doxycycline was administered to 8% of patients, and 11.7% received additional immunosuppressive agents. The most common comorbidity was diabetes mellitus (60.6%). BP was associated with gliptin intake in 36% of cases. Hospitalization was required for 79% of patients with corticosteroid tapering initiated on average by day twenty-three. Disease recurrence occurred in 34% of cases. CONCLUSION The high incidence rates in older adults and DPP-4 inhibitor users underscore the need for continued vigilance and research. Systemic corticosteroids remain the primary treatment at our center. Continuous monitoring and refinement of prevention and management strategies are crucial for effectively addressing BP.
Collapse
Affiliation(s)
- Athina-Ioanna Daponte
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Evangelia Kalloniati
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Parthena Meltzanidou
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Maria Giannouli
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Anastasia Tsitlakidou
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Valentina Oflidou
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Maria Boziou
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Aikaterini Kyriakou
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Stylianos Charalampidis
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Christina Fotiadou
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Anastasia Giannakou
- Laboratory of Immunology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Alexandros Lambropoulos
- Laboratory of Medical Biology-Genetics, Medical School, Aristotle University, Thessaloniki, Greece
| | - Anastasia Trigoni
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Myrto-Georgia Trakatelli
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Zoe Apalla
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Elizabeth Lazaridou
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Aikaterini Patsatsi
- Second Dermatology Department, Aristotle University of Thessaloniki School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| |
Collapse
|
4
|
Tigges M, Dräger S, Piccini I, Bieber K, Vorobyev A, Edelkamp J, Bertolini M, Ludwig RJ. Pemphigoid disease model systems for clinical translation. Front Immunol 2025; 16:1537428. [PMID: 40165962 PMCID: PMC11955494 DOI: 10.3389/fimmu.2025.1537428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Pemphigoid diseases constitute a group of organ-specific autoimmune diseases characterized and caused by autoantibodies targeting autoantigens expressed in the skin and mucous membranes. Current therapeutic options are still based on unspecific immunosuppression that is associated with severe adverse events. Biologics, targeting the IL4-pathway or IgE are expected to change the treatment landscape of pemphigoid diseases. However, clinical studies demonstrated that targeting these pathways alone is most likely not sufficient to meet patient and healthcare partitioners expectations. Hence, model systems are needed to identify and validate novel therapeutic targets in pemphigoid diseases. These include pre-clinical animal models, in vitro and ex vivo model systems, hypothesis-driven drug repurposing, as well as exploitation of real-world-data. In this review, we will highlight the medical need for pemphigoid diseases, and in-depth discuss the advantages and disadvantages of the available pemphigoid disease model systems. Ultimately, we discuss how rapid translation can be achieved for the benefit of the patients.
Collapse
Affiliation(s)
- Marvin Tigges
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | - Sören Dräger
- Department of Dermatology, University Medical Center of the State of Schleswig-Holstein (UKSH), Lübeck, Germany
| | - Ilaria Piccini
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Department of Dermatology, University Medical Center of the State of Schleswig-Holstein (UKSH), Lübeck, Germany
| | - Janin Edelkamp
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | | | - Ralf J. Ludwig
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
- Department of Dermatology, University Medical Center of the State of Schleswig-Holstein (UKSH), Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Zhao J, Quan Z, Wang H, Wang J, Xie Y, Li J, Zhang R. Novel strategy for hair regeneration: Exosomes and collagenous sequences of human a1(XVII) chain enhance hair follicle stem cell activity by regulating the hsa-novel-238a-CASP9 axis. Exp Cell Res 2025; 446:114483. [PMID: 40010561 DOI: 10.1016/j.yexcr.2025.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/09/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The regenerative capacity of hair follicles is fundamentally influenced by the intricate interactions between hair follicle stem cells (HFSCs) and their microenvironment. Our study presents a novel strategy for hair regeneration, highlighting the synergistic relationship between dermal papilla cell-derived exosomes (DPC-Exos) and collagenous sequences of Human a1(XVII) Chain (CS-COL17A1) in modulating HFSC activity via the hsa-novel-238a-CASP9 axis. We characterized DPC-Exos using nanoparticle tracking analysis and transmission electron microscopy and confirmed, their purity with the exosomal markers CD81, CD63, and CD9.A dose-dependent CCK-8 assay showed that both DPC-Exos and CS-COL17A1 significantly improved HFSC viability. Scratch and Transwell assays showed improved HFSC migration after treatment. MiRNA sequencing revealed a significant upregulation of hsa-novel-238a in HFSCs after treatment with DPC-Exos and CS-COL17A1, suggesting its involvement in the regulation of HFSCs activity. A dual-luciferase assay confirmed that hsa-novel-238a directly targets the CASP9 gene, elucidating the underlying molecular mechanisms. The combined application of DPC-Exos and CS-COL17A1 significantly improved HFSC migration and proliferation (p < 0.01), highlighting the importance of the hsa-novel-238a-CASP9 axis. This research provides insights into the regulatory network of exosomes and CS-COL17A1, paving the way for innovative therapeutic approaches to treat hair loss and enhance hair follicle regeneration through modulation of the hsa-novel-238a-CASP9 axis.
Collapse
Affiliation(s)
- Jingyu Zhao
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Department of Dermatology, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Zhe Quan
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Department of Dermatology, Shanghai United Family XinCheng Hospital, Shanghai, 200003, China
| | - Huiying Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jun Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Yong Xie
- Jiangsu Trautec Medical Technology Co.,Ltd.,Changzhou, 213100, China
| | - Jiajia Li
- Jiangsu Trautec Medical Technology Co.,Ltd.,Changzhou, 213100, China
| | - Ruzhi Zhang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China; Department of Dermatology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241100, China.
| |
Collapse
|
6
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
7
|
Katoh Y, Sato A, Takahashi N, Nishioka Y, Shimizu-Endo N, Ito T, Ohnuma-Koyama A, Shiga A, Yoshida T, Aoyama H. Junctional Epidermolysis Bullosa in Sprague Dawley Rats Caused by a Frameshift Mutation of Col17a1 Gene. J Transl Med 2024; 104:102132. [PMID: 39265891 DOI: 10.1016/j.labinv.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Junctional epidermolysis bullosa is an intractable cutaneous disorder in humans causing skin fragility and blistering due to mutations in genes encoding essential molecules adhering epidermis and dermis including collagen XVII. However, the pathogenesis still remains to be not fully understood perhaps because of a lack of appropriate animal models. In this study, we report novel mutant rats experiencing junctional epidermolysis bullosa, which was confirmed to be caused by a frameshift mutation of Col17a1 gene, as a rat model for investigating the underlying mechanism of pathogenesis. The mutant rats completely lacked the expression of collagen XVII and had blisters leading to infantile deaths as a homozygous condition, although their skin was apparently normal at birth by light microscopic evaluation except that immunohistochemical examination could not detect collagen XVII in any organs. These observations suggest that collagen XVII is not essential for the development of skin during the prenatal period but is indispensable for keeping epidermal-dermal connections stable after birth. Subsequent electron microscopic examinations further revealed an absence of hemidesmosomal inner plaques being composed of BP230, a binding partner of collagen XVII, and plectin in Col17a1-null newborns, albeit mRNA expressions of these molecules seemed to be unaffected at least during the fetal period. These results suggest that the lack of collagen XVII induces attenuation of hemidesmosomal inner plaques, which in turn destabilizes the epidermis-dermis connection and results in deterioration of epidermal physiology with formation of blisters after birth.
Collapse
Affiliation(s)
- Yoshitaka Katoh
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Akira Sato
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naofumi Takahashi
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Yasushi Nishioka
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Naoko Shimizu-Endo
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Tsuyoshi Ito
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Aya Ohnuma-Koyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Atsushi Shiga
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Uchimoriya-machi, Joso-shi, Ibaraki, Japan.
| |
Collapse
|
8
|
Sneha Muppala R, Basavaraj V. Role of C4d immunohistochemical marker in the diagnosis of bullous pemphigoid: A cross-sectional study. Indian J Dermatol Venereol Leprol 2024; 90:569-574. [PMID: 38595011 DOI: 10.25259/ijdvl_124_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/15/2023] [Indexed: 04/11/2024]
Abstract
Objective To determine the diagnostic utility of C4d immunohistochemical marker in cases of bullous pemphigoid by calculating the sensitivity, specificity, positive predictive value and negative predictive value. Methods We conducted an exploratory study (retrospectively and prospectively) from January 2017 to June 2022. All direct immunofluorescence proven cases of bullous pemphigoid were included in the study while cases with inadequate tissue for immunohistochemistry studies were excluded. Results Among the 57 cases of bullous pemphigoid, 49 showed positivity for C4d marker. All the ten control cases of inflammatory dermatoses were negative for C4d staining. A sensitivity of 86%, a specificity of 100%, a positive predictive value of 100% and a negative predictive value of 55.56% were calculated with a confidence interval of 95%. Limitation It is a single centre study. Selection bias may come into play. Conclusion Direct immunofluorescence on fresh or frozen skin tissue remains the gold standard. But in circumstances where direct immunofluorescence facilities are not available, C4d immunohistochemistry marker staining on formalin-fixed paraffin-embedded material submitted for standard microscopic investigation can, in most cases, confirm the diagnosis of bullous pemphigoid, obviating the need for a second biopsy.
Collapse
Affiliation(s)
- Raaga Sneha Muppala
- Department of Pathology, Jagadguru Sri Shivarathreeshwara Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| | - Vijaya Basavaraj
- Department of Pathology, Jagadguru Sri Shivarathreeshwara Medical College, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
9
|
Lin J, Zou B, Li H, Wang J, Li S, Cao J, Xie D, Wang F. Collagen XVII promotes dormancy of colorectal cancer cells by activating mTORC2 signaling. Cell Signal 2024; 120:111234. [PMID: 38795810 DOI: 10.1016/j.cellsig.2024.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Tumor dormancy is the underpinning for cancer relapse and chemoresistance, leading to massive cancer-related death in colorectal cancer (CRC). However, our comprehension of the mechanisms dictating tumor dormancy and strategies for eliminating dormant tumor cells remains restricted. In this study, we identified that collagen XVII (COL17A1), a hemidesmosomal transmembrane protein, can promote the dormancy of CRC cells. The upregulation of COL17A1 was observed to prolong quiescence periods and diminish drug susceptibility of CRC cells. Mechanistically, COL17A1 acts as a scaffold, enhancing the crosstalk between mTORC2 and Akt, thereby instigating the mTORC2-mediated dormant signaling. Notably, the activation of mTORC2 is contingent upon the intracellular domain of COL17A1, regardless of its ectodomain shedding. Our findings underscore a pivotal role of the COL17A1-mTORC2 axis in CRC dormancy, suggesting that mTORC2-specific inhibitors may hold therapeutic prospects for the eradication of dormant tumor cells.
Collapse
Affiliation(s)
- Jinlong Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Bingxu Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuman Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jinghua Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Fengwei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| |
Collapse
|
10
|
Namba T, Ichii O, Natsuga K, Nakamura T, Otani Y, Kon Y. Collagen 17A1 in the Urothelium Regulates Epithelial Cell Integrity and Local Immunologic Responses in Obstructive Uropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1550-1570. [PMID: 38768778 DOI: 10.1016/j.ajpath.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Collagen 17A1 (COL17A1), an epidermal hemidesmosome component, is ectopically induced in the urothelium of mouse and human renal pelvis (RP) in parallel with urinary tract-associated lymphoid structure development. Here, COL17A1 was induced in obstructive uropathy-prone ureter of humans and cats. To ascertain its function, murine urinary organs with unilateral ureteral obstruction (UUO) were analyzed during 1 week after surgery. One day after UUO, COL17A1 expression increased in urothelial cells of RP and ureter, and was positively correlated with renal tubulointerstitial lesions. A portion of RP where the smooth muscle layer from the ureter was interrupted was sensitive to urothelium deciduation and COL17A1 induction, showing urine leaked from the RP lumen into the parenchyma. After urine stimulation, cultured immune cells expressed Cxcl2, also up-regulated in CD11b+ cells following COL17A1 stimulation. One day after UUO, CXCL2+ CD11b+ cells infiltrated the urothelium-disrupted area. However, these numbers were significantly lower in Col17a1-deficient mice. COL17A1+ urothelial cells partially co-expressed cytokeratin-14, a progenitor cell marker for urothelium, whereas Col17a1-deficient mice had lower numbers of cytokeratin-14+ cells. Gene Ontology analysis revealed that expression of epithelial- and immune-associated genes was up-regulated and down-regulated, respectively, in the ureter of Col17a1-deficient mice 4 days after UUO. Thus, COL17A1 maintains urothelium integrity by regulating urothelial cell adhesion, proliferation, and differentiation, and activates local immune responses during obstructive uropathy in mammals.
Collapse
Affiliation(s)
- Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Rezzani R, Favero G, Cominelli G, Pinto D, Rinaldi F. Skin Aging and the Upcoming Role of Ferroptosis in Geroscience. Int J Mol Sci 2024; 25:8238. [PMID: 39125810 PMCID: PMC11311626 DOI: 10.3390/ijms25158238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The skin is considered the most important organ system in mammals, and as the population ages, it is important to consider skin aging and anti-aging therapeutic strategies. Exposure of the skin to various insults induces significant changes throughout our lives, differentiating the skin of a young adult from that of an older adult. These changes are caused by a combination of intrinsic and extrinsic aging. We report the interactions between skin aging and its metabolism, showing that the network is due to several factors. For example, iron is an important nutrient for humans, but its level increases with aging, inducing deleterious effects on cellular functions. Recently, it was discovered that ferroptosis, or iron-dependent cell death, is linked to aging and skin diseases. The pursuit of new molecular targets for ferroptosis has recently attracted attention. Prevention of ferroptosis is an effective therapeutic strategy for the treatment of diseases, especially in old age. However, the pathological and biological mechanisms underlying ferroptosis are still not fully understood, especially in skin diseases such as melanoma and autoimmune diseases. Only a few basic studies on regulated cell death exist, and the challenge is to turn the studies into clinical applications.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (G.C.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (G.C.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
| | - Giorgia Cominelli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (G.C.)
| | - Daniela Pinto
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
| | - Fabio Rinaldi
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy; (D.P.); (F.R.)
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
| |
Collapse
|
12
|
Emtenani S, Linnemann BE, Recke A, von Georg A, Goletz S, Schmidt E, van Beek N. Anti-BP230 IgE autoantibodies in bullous pemphigoid intraindividually correlate with disease activity. J Dermatol Sci 2024; 114:64-70. [PMID: 38582700 DOI: 10.1016/j.jdermsci.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Bullous pemphigoid (BP), the most common subepidermal autoimmune blistering disease, is classically defined by the presence of IgG autoantibodies directed against the hemidesmosomal proteins BP180 (type XVII collagen) and BP230 and the predominance of skin lesions. Several studies have addressed the role of anti-BP180 IgE in patients and experimental models, while data on anti-BP230 IgE are scarce. OBJECTIVE To assess anti-BP230 IgE level by ELISA in BP sera and to correlate it with disease severity and clinical characteristics. METHODS BP sera underwent anti-BP230 IgE ELISA and Western blotting against human BP230 fragments. RESULTS We demonstrate that 36/154 (23%) of BP sera were positive for anti-BP230 IgE. Anti-BP230 IgE levels had no correlation with clinical phenotype or disease activity per se. Interestingly, anti-BP230 IgE was significantly associated with disease activity within individuals during the course of the disease. Additionally, anti-BP230 IgE and total IgE levels showed a significant correlation. Notably, anti-BP230 IgG correlated interindividually with disease activity. By Western blotting, the C-terminal domain of BP230 fragments (C2; amino acids 2024-2349 and C3; amino acids 2326-2649), provided the best serological assay for anti-BP230 IgE detection. CONCLUSION As a complementary tool, IgE immunoblotting is recommended to obtain an optimal serological diagnosis, particularly in patients with severe disease without IgG reactivity by BP180- or BP230-specific ELISA. Although the detection of serum anti-BP230 IgE is not of major diagnostic significance, it may be relevant for therapeutic decisions, e.g., for anti-IgE-directed treatment, which has been successfully used in case series of BP.
Collapse
Affiliation(s)
- Shirin Emtenani
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Beke E Linnemann
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Nina van Beek
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
13
|
Pigors M, Patzelt S, Reichhelm N, Dworschak J, Khil'chenko S, Emtenani S, Bieber K, Hofrichter M, Kamaguchi M, Goletz S, Köhl G, Köhl J, Komorowski L, Probst C, Vanderheyden K, Balbino B, Ludwig RJ, Verheesen P, Schmidt E. Bullous pemphigoid induced by IgG targeting type XVII collagen non-NC16A/NC15A extracellular domains is driven by Fc gamma receptor- and complement-mediated effector mechanisms and is ameliorated by neonatal Fc receptor blockade. J Pathol 2024; 262:161-174. [PMID: 37929639 DOI: 10.1002/path.6220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Manuela Pigors
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Niklas Reichhelm
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jenny Dworschak
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Maxi Hofrichter
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mayumi Kamaguchi
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute of Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | | | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Zhou R, Wang Q, Zeng S, Liang Y, Wang D. METTL14-mediated N6-methyladenosine modification of Col17a1/Itgα6/Itgβ4 governs epidermal homeostasis. J Dermatol Sci 2023; 112:138-147. [PMID: 37951776 DOI: 10.1016/j.jdermsci.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant and reversible modification occurring in eukaryotic mRNAs, however, its functions in mammalian epidermal development are still not fully elucidated. OBJECTIVE To explore the role of METTL14 (Methyltransferase like 14), one of the m6A methyltransferases, in maintaining epidermal homeostasis. METHODS We constructed mice with Mettl14-inactivation in the epidermal basal cells. The phenotype was explored by H&E staining and immunofluorescence staining. To explore the underlying mechanisms, we performed RNA-seq, Ribosome profiling and MeRIP-seq on wild-type and Mettl14-inactivation epidermal keratinocytes. Moreover, HaCaT cells were used for in vitro validation. RESULTS Inactivation of Mettl14 in murine epidermis led to transient thicker epidermis and exhaustion of the epidermal stem cell pool. Interestingly, we found that the mRNA of type XVII collagen (Col17a1), integrin β4 (Itgβ4) and α6 (Itgα6) had m6A modifications, and the proteins expression were decreased in Mettl14-inactivated epidermis. Furthermore, in epidermis-specific Mettl4-inactivated mice, the epidermis was detached from the dermis and presented a phenotype similar to junctional epidermolysis bullosa (JEB), which may result from hemidesmosomes damage (decrease of COL17A1, ITGB4 and ITGA6). Knockdown of Mettl14 in HaCaT cells impaired the self-renewal and decreased the protein level of COL17A1, ITGB4 and ITGA6 and Itgβ4 knockdown inhibited colony formation. CONCLUSION Our study highlighted the role of METTL14 in the maintenance of epidermal homeostasis and identified its critical role through m6A-mediated translational inhibition of Col17a1, Itgβ4 and Itgα6. Our study suggested that METTL14 may be a potential therapeutic target for the treatment of hemidesmosomes-deficient diseases, such as JEB.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qirui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyi Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Sproule TJ, Wilpan RY, Low BE, Silva KA, Reyon D, Joung JK, Wiles MV, Roopenian DC, Sundberg JP. Functional analysis of Collagen 17a1: A genetic modifier of junctional epidermolysis bullosa in mice. PLoS One 2023; 18:e0292456. [PMID: 37796769 PMCID: PMC10553217 DOI: 10.1371/journal.pone.0292456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Previous work strongly implicated Collagen 17a1 (Col17a1) as a potent genetic modifier of junctional epidermolysis bullosa (JEB) caused by a hypomorphic mutation (Lamc2jeb) in mice. The importance of the noncollagenous domain (NC4) of COLXVII was suggested by use of a congenic reduction approach that restricted the modifier effect to 2-3 neighboring amino acid changes in that domain. The current study utilizes TALEN and CRISPR/Cas9 induced amino acid replacements and in-frame indels nested to NC4 to further investigate the role of this and adjoining COLXVII domains both as modifiers and primary risk effectors. We confirm the importance of COLXVI AA 1275 S/G and 1277 N/S substitutions and utilize small nested indels to show that subtle changes in this microdomain attenuate JEB. We further show that large in-frame indels removing up to 1482 bp and 169 AA of NC6 through NC1 domains are surprisingly disease free on their own but can be very potent modifiers of Lamc2jeb/jeb JEB. Together these studies exploiting gene editing to functionally dissect the Col17a1 modifier demonstrate the importance of epistatic interactions between a primary disease-causing mutation in one gene and innocuous 'healthy' alleles in other genes.
Collapse
Affiliation(s)
| | - Robert Y. Wilpan
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Benjamin E. Low
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Deepak Reyon
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael V. Wiles
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
16
|
Toh WH, Lee HE, Chen CB. Targeting type 2 inflammation in bullous pemphigoid: current and emerging therapeutic approaches. Front Med (Lausanne) 2023; 10:1196946. [PMID: 37614956 PMCID: PMC10442825 DOI: 10.3389/fmed.2023.1196946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Bullous pemphigoid (BP) is one of the most common autoimmune bullous diseases and mainly affects an elderly population with multi-morbidity. Due to the frailty of many BP patients, existing treatment options are limited. The blisters associated with BP result from IgG and IgE autoantibodies binding to the central components of hemidesmosome, BP180, and BP230, stimulating a destructive inflammatory process. The known characteristic features of BP, such as intense pruritus, urticarial prodrome, peripheral eosinophilia, elevated IgE, as well as recent expanding evidence from in vitro and in vivo studies implicate type 2 inflammation as an important driver of BP pathogenesis. Type 2 inflammation is an inflammatory pathway involving a subset of CD4+ T cells that secrete IL-4, IL-5, and IL-13, IgE-secreting B cells, and granulocytes, such as eosinophils, mast cells, and basophils. It is believed that effectors in type 2 inflammation may serve as novel and effective treatment targets for BP. This review focuses on recent understandings of BP pathogenesis with a particular emphasis on the role of type 2 inflammation. We summarize current clinical evidence of using rituximab (B-cell depletion), omalizumab (anti-IgE antibody), and dupilumab (anti-IL-4/13 antibody) in the treatment of BP. The latest advances in emerging targeted therapeutic approaches for BP treatment are also discussed.
Collapse
Affiliation(s)
- Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Taoyuan, Taiwan
| | - Hua-En Lee
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Taoyuan, Taiwan
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Taoyuan, Taiwan
- Department of Dermatology and Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
17
|
Ling X, Shou X, Lou Y, Ling J, Zhang M, Yu T, Gu W. Research progress of omalizumab in the treatment of bullous pemphigoid. J Dermatol 2023; 50:575-587. [PMID: 36971190 DOI: 10.1111/1346-8138.16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease associated with anti-BP180 and anti-BP230 antibodies. The pathogenic action mechanism of immunoglobulin E (IgE) antibodies in BP has been studied since the 1970s, and IgE antibodies have gradually been confirmed as being important in BP; therefore, anti-IgE therapy may be a new option for the treatment of BP. Omalizumab, as an IgE monoclonal antibody, has been increasingly used clinically to treat BP in recent years. Here, we collected 35 papers investigating omalizumab for BP treatment in a total of 83 patients, and the vast majority of patients showed varying degrees of improvement after treatment, except for a small number of patients with poor clinical outcomes. The patients were then divided into three groups according to dosing frequency and number of doses. Statistical analysis indicated that dosing frequency had little effect on clinical efficacy. While the groups with different numbers of doses were evaluated, the results concluded that clinical efficacy was affected by the number of doses, but there was no positive correlation between the number of doses and clinical efficacy.
Collapse
Affiliation(s)
- Xiaoya Ling
- The First Clinical Medical College of Zhejiang Chinese Medicine University, 310053, Hangzhou, China
| | - Xinyang Shou
- The First Clinical Medical College of Zhejiang Chinese Medicine University, 310053, Hangzhou, China
| | - Yufei Lou
- The First Clinical Medical College of Zhejiang Chinese Medicine University, 310053, Hangzhou, China
| | - Jie Ling
- The First Clinical Medical College of Zhejiang Chinese Medicine University, 310053, Hangzhou, China
| | - Mengyuan Zhang
- The First Clinical Medical College of Zhejiang Chinese Medicine University, 310053, Hangzhou, China
| | - Tugen Yu
- The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine (Zhejiang Province Hospital of Chinese Medicine), Hangzhou, 310006, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
18
|
Ujiie H. What's new in the pathogeneses and triggering factors of bullous pemphigoid. J Dermatol 2023; 50:140-149. [PMID: 36412277 PMCID: PMC10098684 DOI: 10.1111/1346-8138.16654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Bullous pemphigoid (BP) is a subepidermal blistering disease induced by autoantibodies to type XVII collagen (COL17, also called BP180) and BP230. Previous studies using patients' samples and animal disease models elucidated the complement-dependent and complement-independent pathways of blister formation, the pathogenic roles of immune cells (T and B cells, macrophages, mast cells, neutrophils, eosinophils), and the pathogenicity of IgE autoantibodies in BP. This review introduces the recent progress on the mechanism behind the epitope-spreading phenomenon in BP, which is considered to be important to understand the chronic and intractable disease course of BP, and the pathogenicity of anti-BP230 autoantibodies, mainly focusing on studies that used active disease models. To clarify the pathogenesis of BP, the mechanism behind the breakdown of immune tolerance to BP antigens should be investigated. Recent studies using various experimental models have revealed important roles for regulatory T cells in the maintenance of self-tolerance to COL17 and BP230 as well as in the suppression of inflammation triggered by the binding of antibodies to COL17. Notably, physical stresses such as trauma, thermal burns, bone fractures, irradiation and ultraviolet exposure, some pathologic conditions such as neurological diseases and hematological malignancies, and the use of dipeptidyl peptidase-IV inhibitors and immune checkpoint inhibitors have been reported as triggering factors for BP. These factors and certain underlying conditions such as genetic background, regulatory T-cell dysfunction or aging might synergistically affect some individuals and eventually induce BP. Further studies on the breakdown of self-tolerance and on the identification of key molecules that are relevant to blister formation and inflammation may expand our understanding of BP's etiology and may lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Lee AY, Kim T, Kim JH. Understanding CD4 + T cells in autoimmune bullous diseases. Front Immunol 2023; 14:1161927. [PMID: 37138879 PMCID: PMC10149917 DOI: 10.3389/fimmu.2023.1161927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Autoimmune bullous diseases (AIBDs) are a group of life-threatening blistering diseases caused by autoantibodies that target proteins in the skin and mucosa. Autoantibodies are the most important mediator in the pathogenesis of AIBDs, and various immune mechanisms contribute to the production of these pathogenic autoantibodies. Recently, significant progress has been made in understanding how CD4+ T cells drive autoantibody production in these diseases. Here, we review the critical role of CD4+ T cells in the production of pathogenic autoantibodies for the initiation and perpetuation of humoral response in AIBDs. To gain an in-depth understanding of CD4+ T-cell pathogenicity, antigen specificity, and mechanisms of immune tolerance, this review covers comprehensive mouse and human studies of pemphigus and bullous pemphigoid. Further exploration of pathogenic CD4+ T cells will potentially provide immune targets for improved treatment of AIBDs.
Collapse
|
20
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
21
|
Ivanenko AV, Evtushenko NA, Gurskaya NG. Genome Editing in Therapy of Genodermatoses. Mol Biol 2022. [DOI: 10.1134/s0026893322060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Mizuno Y, Shibata S, Ito Y, Taira H, Sugimoto E, Awaji K, Sato S. Interleukin-26–DNA complexes promote inflammation and dermal-epidermal separation in a modified human cryosection model of bullous pemphigoid. Front Immunol 2022; 13:1013382. [PMID: 36311716 PMCID: PMC9599390 DOI: 10.3389/fimmu.2022.1013382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease characterized by autoantibody-mediated activation of immune cells and subepidermal blister formation. Excess amounts of extracellular DNA are produced in BP, however, it remains unclear how extracellular DNA contributes to BP pathogenesis. Here we show a possible mechanism by which interleukin (IL)-26 binds to extracellular DNA released from neutrophils and eosinophils to support DNA sensing. Patients with BP exhibited high circulating levels of IL-26, forming IL-26–DNA complexes in the upper dermis and inside the blisters. IL-26–DNA complexes played a dual role in regulating local immunity and blister formation. First, they enhanced the production of inflammatory cytokines in monocytes and neutrophils. Second, and importantly, the complexes augmented the production and activity of proteases from co-cultured monocytes and neutrophils, which induced BP180 cleavage in keratinocytes and dermal-epidermal separation in a modified human cryosection model. Collectively, we propose a model in which IL-26 and extracellular DNA synergistically act on immune cells to enhance autoantibody-driven local immune responses and protease-mediated fragility of dermal-epidermal junction in BP.
Collapse
|
23
|
Papara C, Karsten CM, Ujiie H, Schmidt E, Schmidt-Jiménez LF, Baican A, Freire PC, Izumi K, Bieber K, Peipp M, Verschoor A, Ludwig RJ, Köhl J, Zillikens D, Hammers CM. The relevance of complement in pemphigoid diseases: A critical appraisal. Front Immunol 2022; 13:973702. [PMID: 36059476 PMCID: PMC9434693 DOI: 10.3389/fimmu.2022.973702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigoid diseases are autoimmune chronic inflammatory skin diseases, which are characterized by blistering of the skin and/or mucous membranes, and circulating and tissue-bound autoantibodies. The well-established pathomechanisms comprise autoantibodies targeting various structural proteins located at the dermal-epidermal junction, leading to complement factor binding and activation. Several effector cells are thus attracted and activated, which in turn inflict characteristic tissue damage and subepidermal blistering. Moreover, the detection of linear complement deposits in the skin is a diagnostic hallmark of all pemphigoid diseases. However, recent studies showed that blistering might also occur independently of complement. This review reassesses the importance of complement in pemphigoid diseases based on current research by contrasting and contextualizing data from in vitro, murine and human studies.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Christian M. Karsten
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | | | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patricia C. Freire
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Admar Verschoor
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph M. Hammers
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- *Correspondence: Christoph M. Hammers,
| |
Collapse
|
24
|
Mai Y, Izumi K, Mai S, Ujiie H. The significance of preclinical anti-BP180 autoantibodies. Front Immunol 2022; 13:963401. [PMID: 36003369 PMCID: PMC9393388 DOI: 10.3389/fimmu.2022.963401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bullous pemphigoid (BP) is the most common autoimmune subepidermal blistering disease. Although the pathomechanism of BP onset has yet to be elucidated in detail, BP autoantibodies targeting two hemidesmosomal components, BP180 and BP230, are known to play a pivotal role in BP pathogenesis. Thus, the detection and measurement of BP autoantibodies are necessary for diagnosing BP and monitoring the disease activity. Immune assays such as immunofluorescence microscopy, immunoblotting, and ELISAs using BP180 and BP230 detect BP autoantibodies in most BP cases with high specificity; however, BP autoantibodies are sometimes detected in BP patients before the onset of this disease. BP autoantibodies that are detected in patients without typical tense blisters are defined as “preclinical BP autoantibodies”. These preclinical BP autoantibodies are detected even in a low percentage of normal healthy individuals. Although the importance of preclinical BP autoantibodies remains elusive, these autoantibodies might be a potential risk factor for subsequent BP development. Therefore, previous comparative epidemiological studies have focused on the prevalence of preclinical BP autoantibodies in populations susceptible to BP (e.g., the elderly) or in diseases with a higher risk of comorbid BP. This mini-review summarizes the literature on the prevalence of preclinical BP autoantibodies in patients with various conditions and diseases, and we discuss the significance of preclinical BP autoantibody detection.
Collapse
|
25
|
Dikmen HO, Yilmaz K, Benoit S, Bernard P, Drenovska K, Gerdes S, Gläser R, Günther C, Homey B, Horváth ON, Huilaja L, Joly P, Kiritsi D, Meller S, Patsatsi A, Sárdy M, Schauer F, Shahid M, Sticherling M, Tasanen K, Vassileva S, Worm M, Zillikens D, Sadik CD, van Beek N, König IR, Schmidt E. Serum autoantibody reactivity in bullous pemphigoid is associated with neuropsychiatric disorders and the use of antidiabetics and antipsychotics: a large prospective cohort study. J Eur Acad Dermatol Venereol 2022; 36:2181-2189. [PMID: 35796163 DOI: 10.1111/jdv.18414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bullous pemphigoid (BP), the by far most frequent autoimmune blistering skin disease (AIBD), is immunopathologically characterized by autoantibodies against the two hemidesmosomal proteins BP180 (collagen type XVII) and BP230 (BPAG1 or dystonin). Several comorbidities and potentially disease-inducing medication have been described in BP, yet, a systematic analysis of these clinically relevant findings and autoantibody reactivities has not been performed. OBJECTIVE To determine associations of autoantibody reactivities with comorbidities and concomitant medication. METHODS In this prospective multicenter study, 499 patients diagnosed with BP in sixteen European referral centers were included. The relation between anti-BP180 NC16A and anti-BP230 IgG ELISA values at the time of diagnosis as well as comorbidities and concomitant medication collected by a standardized form were analyzed. RESULTS An association between higher serum anti-BP180 reactivity and neuropsychiatric but not atopic and metabolic disorders was observed as well as with the use of insulin or antipsychotics but not with dipeptidyl peptidase-4 (DPP4) inhibitors, inhibitors of platelet aggregation and L-thyroxine. The use of DPP4 inhibitors was associated with less anti-BP180 and anti-BP230 reactivity compared to BP patients without these drugs. This finding was even more pronounced when compared with diabetic BP patients without DPP4 inhibitors. Associations between anti-BP180 and anti-BP230 reactivities were also found in patients using insulin and antipsychotics, respectively, compared with patients without this medication, but not for the use of inhibitors of platelet aggregation, and L-thyroxine. CONCLUSION Taken together, these data imply a relation between autoantibody reactivities at the time of diagnosis and both neuropsychiatric comorbidities as well as distinct concomitant medication suggesting a link between the pathological immune mechanisms and clinical conditions that precede the clinically overt AIBD.
Collapse
Affiliation(s)
| | - Kaan Yilmaz
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandrine Benoit
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | - Kossara Drenovska
- Department of Dermatology, Medical University Sofia, Sofia, Bulgaria
| | - Sascha Gerdes
- Department of Dermatology, Venerology and Allergology, University of Kiel, Kiel, Germany
| | - Regine Gläser
- Department of Dermatology, Venerology and Allergology, University of Kiel, Kiel, Germany
| | - Claudia Günther
- Department of Dermatology, University of Dresden, Dresden, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Orsolya N Horváth
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Laura Huilaja
- PEDEGO Research Unit, Department of Dermatology, Medical Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Pascal Joly
- Department of Dermatology, University of Rouen, Rouen, France
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Meller
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Aikaterini Patsatsi
- 2nd Dermatology Department, Aristotle University School of Medicine, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Miklós Sárdy
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany.,Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Franziska Schauer
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Shahid
- Department of Dermatology, Medical University Sofia, Sofia, Bulgaria
| | | | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Snejina Vassileva
- Department of Dermatology, Medical University Sofia, Sofia, Bulgaria
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venerology and Allergy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Nina van Beek
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Wang Y, Kitahata H, Kosumi H, Watanabe M, Fujimura Y, Takashima S, Osada SI, Hirose T, Nishie W, Nagayama M, Shimizu H, Natsuga K. Collagen XVII deficiency alters epidermal patterning. J Transl Med 2022; 102:581-588. [PMID: 35145203 DOI: 10.1038/s41374-022-00738-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/09/2022] Open
Abstract
Vertebrates exhibit patterned epidermis, exemplified by scales/interscales in mice tails and grooves/ridges on the human skin surface (microtopography). Although the role of spatiotemporal regulation of stem cells (SCs) has been implicated in this process, the mechanism underlying the development of such epidermal patterns is poorly understood. Here, we show that collagen XVII (COL17), a niche for epidermal SCs, helps stabilize epidermal patterns. Gene knockout and rescue experiments revealed that COL17 maintains the width of the murine tail scale epidermis independently of epidermal cell polarity. Skin regeneration after wounding was associated with slender scale epidermis, which was alleviated by overexpression of human COL17. COL17-negative skin in human junctional epidermolysis bullosa showed a distinct epidermal pattern from COL17-positive skin that resulted from revertant mosaicism. These results demonstrate that COL17 contributes to defining mouse tail scale shapes and human skin microtopography. Our study sheds light on the role of the SC niche in tissue pattern formation.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
27
|
Reduced expression of Collagen 17A1 in naturally aged, photoaged, and UV-irradiated human skin in vivo: Potential links to epidermal aging. J Cell Commun Signal 2022; 16:421-432. [DOI: 10.1007/s12079-021-00654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
|
28
|
Song A, Lee SE, Kim JH. Immunopathology and Immunotherapy of Inflammatory Skin Diseases. Immune Netw 2022; 22:e7. [PMID: 35291649 PMCID: PMC8901701 DOI: 10.4110/in.2022.22.e7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/01/2022] Open
Abstract
Recently, there have been impressive advancements in understanding of the immune mechanisms underlying cutaneous inflammatory diseases. To understand these diseases on a deeper level and clarify the therapeutic targets more precisely, numerous studies including in vitro experiments, animal models, and clinical trials have been conducted. This has resulted in a paradigm shift from non-specific suppression of the immune system to selective, targeted immunotherapies. These approaches target the molecular pathways and cytokines responsible for generating inflammatory conditions and reinforcing feedback mechanisms to aggravate inflammation. Among the numerous types of skin inflammation, psoriasis and atopic dermatitis (AD) are common chronic cutaneous inflammatory diseases. Psoriasis is a IL-17–mediated disease driven by IL-23, while AD is predominantly mediated by Th2 immunity. Autoimmune bullous diseases are autoantibody-mediated blistering disorders, including pemphigus and bullous pemphigoid. Alopecia areata is an organ-specific autoimmune disease mediated by CD8+ T-cells that targets hair follicles. This review will give an updated, comprehensive summary of the pathophysiology and immune mechanisms of inflammatory skin diseases. Moreover, the therapeutic potential of current and upcoming immunotherapies will be discussed.
Collapse
Affiliation(s)
- Ahreum Song
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hoon Kim
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Ujiie H, Yamagami J, Takahashi H, Izumi K, Iwata H, Wang G, Sawamura D, Amagai M, Zillikens D. The pathogeneses of pemphigus and pemphigoid diseases. J Dermatol Sci 2021; 104:154-163. [PMID: 34916040 DOI: 10.1016/j.jdermsci.2021.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Autoimmune bullous diseases (AIBDs) are skin disorders which are mainly induced by autoantibodies against desmosomal or hemidesmosomal structural proteins. Previous studies using patients' samples and animal disease models identified target antigens and elucidated the mechanisms of blister formation. Pemphigus has been the subject of more active clinical and basic research than any other AIBD. These efforts have revealed the pathogenesis of pemphigus, which in turn has led to optimal diagnostic methods and novel therapies, such as rituximab. In bullous pemphigoid (BP), studies with passive-transfer mouse models using rabbit anti-mouse BP180 antibodies and studies with passive-transfer or active mouse models using autoantigen-humanized mice elucidated the immune reactions to BP180 in vivo. Recently, dipeptidyl peptidase-4 inhibitors have attracted attention as a trigger for BP. For epidermolysis bullosa acquisita (EBA), investigations using mouse models are actively under way and several molecules have been identified as targets for novel therapies. In this review, we give an overview and discussion of the recent progress in our understanding of the pathogenesis of pemphigus, BP, and EBA. Further studies on the breakdown of self-tolerance and on the identification of key molecules that are relevant to blister formation may expand our understanding of the etiology of AIBDs and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Detlef Zillikens
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany, University of Lübeck, Lübeck, Germany
| |
Collapse
|
30
|
Natsuga K, Shinkuma S, Hsu CK, Fujita Y, Ishiko A, Tamai K, McGrath JA. Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. J Dermatol Sci 2021; 104:164-176. [PMID: 34916041 DOI: 10.1016/j.jdermsci.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Epidermolysis bullosa (EB) is a group of inherited skin and mucosal fragility disorders resulting from mutations in genes encoding basement membrane zone (BMZ) components or proteins that maintain the integrity of BMZ and adjacent keratinocytes. More than 30 years have passed since the first causative gene for EB was identified, and over 40 genes are now known to be responsible for the protean collection of mechanobullous diseases included under the umbrella term of EB. Through the elucidation of disease mechanisms using human skin samples, animal models, and cultured cells, we have now reached the stage of developing more effective therapeutics for EB. This review will initially focus on what is known about blister wound healing in EB, since recent and emerging basic science data are very relevant to clinical translation and therapeutic strategies for patients. We then place these studies in the context of the latest information on gene therapy, read-through therapy, and cell therapy that provide optimism for improved clinical management of people living with EB.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan.
| | - Satoru Shinkuma
- Department of Dermatology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan; Department of Dermatology, Sapporo City General Hospital, Sapporo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - John A McGrath
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Ramcke T, Vicari E, Bolduan V, Enk A, Hadaschik E. Bullous pemphigoid (BP) patients with selective IgG autoreactivity against BP230: Review of a rare but valuable cohort with impact on the comprehension of the pathogenesis of BP. J Dermatol Sci 2021; 105:72-79. [DOI: 10.1016/j.jdermsci.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
32
|
Tuusa J, Kokkonen N, Tasanen K. BP180/Collagen XVII: A Molecular View. Int J Mol Sci 2021; 22:12233. [PMID: 34830116 PMCID: PMC8623354 DOI: 10.3390/ijms222212233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BP180 is a type II collagenous transmembrane protein and is best known as the major autoantigen in the blistering skin disease bullous pemphigoid (BP). The BP180 trimer is a central component in type I hemidesmosomes (HD), which cause the adhesion between epidermal keratinocytes and the basal lamina, but BP180 is also expressed in several non-HD locations, where its functions are poorly characterized. The immunological roles of intact and proteolytically processed BP180, relevant in BP, have been subject to intensive research, but novel functions in cell proliferation, differentiation, and aging have also recently been described. To better understand the multiple physiological functions of BP180, the focus should return to the protein itself. Here, we comprehensively review the properties of the BP180 molecule, present new data on the biochemical features of its intracellular domain, and discuss their significance with regard to BP180 folding and protein-protein interactions.
Collapse
Affiliation(s)
| | | | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (J.T.); (N.K.)
| |
Collapse
|
33
|
Kosumi H, Watanabe M, Shinkuma S, Nohara T, Fujimura Y, Tsukiyama T, Donati G, Iwata H, Nakamura H, Ujiie H, Natsuga K. Wnt/β-Catenin Signaling Stabilizes Hemidesmosomes in Keratinocytes. J Invest Dermatol 2021; 142:1576-1586.e2. [PMID: 34742703 DOI: 10.1016/j.jid.2021.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 12/24/2022]
Abstract
Hemidesmosomes (HDs) are adhesion complexes that promote epithelial-stromal attachment in stratified and complex epithelia, including the epidermis. In various biological processes, such as differentiation and migration of epidermal keratinocytes during wound healing or carcinoma invasion, quick assembly and disassembly of HDs are prerequisites. In this study, we show that inhibition of Wnt/β-catenin signaling disturbs HD organization in keratinocytes. Screening with inhibitors identified the depletion of HD components and HD-like structures through Wnt inhibition, but keratinocyte differentiation was not affected. Wnt inhibition significantly diminished plectin and type XVII collagen expression in the basal side of Wnt-inhibited cells and the dermo-epidermal junction of the Wnt-inactive murine basal epidermis. Similar to Wnt inhibition, PLEC-knockout cells or cells with plectin-type XVII collagen binding defects showed type XVII collagen reduction in the basal side of the cells, implying the possible involvement of Wnt/β-catenin signaling in HD assembly. Atypical protein kinase C inhibition ameliorated the phenotypes of Wnt-inhibited cells. These findings show that Wnt/β-catenin signaling regulates the localization of HD components in keratinocytes and that the atypical protein kinase C pathway is involved in Wnt inhibition‒induced HD disarrangement. Our study suggests that the Wnt signaling pathway could be a potential therapeutic target for treating HD-defective diseases, such as epidermolysis bullosa.
Collapse
Affiliation(s)
- Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Satoru Shinkuma
- Department of Dermatology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Takuma Nohara
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
34
|
Schmidt E, Rashid H, Marzano A, Lamberts A, Di Zenzo G, Diercks G, Alberti‐Violetti S, Barry R, Borradori L, Caproni M, Carey B, Carrozzo M, Cianchini G, Corrà A, Dikkers F, Feliciani C, Geerling G, Genovese G, Hertl M, Joly P, Meijer J, Mercadante V, Murrell D, Ormond M, Pas H, Patsatsi A, Rauz S, van Rhijn B, Roth M, Setterfield J, Zillikens D, C.Prost, Zambruno G, Horváth B, Caux F. European Guidelines (S3) on diagnosis and management of mucous membrane pemphigoid, initiated by the European Academy of Dermatology and Venereology - Part II. J Eur Acad Dermatol Venereol 2021; 35:1926-1948. [PMID: 34309078 PMCID: PMC8518905 DOI: 10.1111/jdv.17395] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023]
Abstract
This guideline has been initiated by the task force Autoimmune Blistering Diseases of the European Academy of Dermatology and Venereology, including physicians from all relevant disciplines and patient organizations. It is a S3 consensus-based guideline that systematically reviewed the literature on mucous membrane pemphigoid (MMP) in the MEDLINE and EMBASE databases until June 2019, with no limitations on language. While the first part of this guideline addressed methodology, as well as epidemiology, terminology, aetiology, clinical presentation and outcome measures in MMP, the second part presents the diagnostics and management of MMP. MMP should be suspected in cases with predominant mucosal lesions. Direct immunofluorescence microscopy to detect tissue-bound IgG, IgA and/or complement C3, combined with serological testing for circulating autoantibodies are recommended. In most patients, serum autoantibodies are present only in low levels and in variable proportions, depending on the clinical sites involved. Circulating autoantibodies are determined by indirect IF assays using tissue substrates, or ELISA using different recombinant forms of the target antigens or immunoblotting using different substrates. The major target antigen in MMP is type XVII collagen (BP180), although in 10-25% of patients laminin 332 is recognized. In 25-30% of MMP patients with anti-laminin 332 reactivity, malignancies have been associated. As first-line treatment of mild/moderate MMP, dapsone, methotrexate or tetracyclines and/or topical corticosteroids are recommended. For severe MMP, dapsone and oral or intravenous cyclophosphamide and/or oral corticosteroids are recommended as first-line regimens. Additional recommendations are given, tailored to treatment of single-site MMP such as oral, ocular, laryngeal, oesophageal and genital MMP, as well as the diagnosis of ocular MMP. Treatment recommendations are limited by the complete lack of high-quality randomized controlled trials.
Collapse
|
35
|
Morinaga H, Mohri Y, Grachtchouk M, Asakawa K, Matsumura H, Oshima M, Takayama N, Kato T, Nishimori Y, Sorimachi Y, Takubo K, Suganami T, Iwama A, Iwakura Y, Dlugosz AA, Nishimura EK. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature 2021; 595:266-271. [PMID: 34163066 PMCID: PMC9600322 DOI: 10.1038/s41586-021-03624-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a worldwide epidemic that predisposes individuals to many age-associated diseases, but its exact effects on organ dysfunction are largely unknown1. Hair follicles-mini-epithelial organs that grow hair-are miniaturized by ageing to cause hair loss through the depletion of hair follicle stem cells (HFSCs)2. Here we report that obesity-induced stress, such as that induced by a high-fat diet (HFD), targets HFSCs to accelerate hair thinning. Chronological gene expression analysis revealed that HFD feeding for four consecutive days in young mice directed activated HFSCs towards epidermal keratinization by generating excess reactive oxygen species, but did not reduce the pool of HFSCs. Integrative analysis using stem cell fate tracing, epigenetics and reverse genetics showed that further feeding with an HFD subsequently induced lipid droplets and NF-κB activation within HFSCs via autocrine and/or paracrine IL-1R signalling. These integrated factors converge on the marked inhibition of Sonic hedgehog (SHH) signal transduction in HFSCs, thereby further depleting lipid-laden HFSCs through their aberrant differentiation and inducing hair follicle miniaturization and eventual hair loss. Conversely, transgenic or pharmacological activation of SHH rescued HFD-induced hair loss. These data collectively demonstrate that stem cell inflammatory signals induced by obesity robustly represses organ regeneration signals to accelerate the miniaturization of mini-organs, and suggests the importance of daily prevention of organ dysfunction.
Collapse
Affiliation(s)
- Hironobu Morinaga
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marina Grachtchouk
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kyosuke Asakawa
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Matsumura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoki Kato
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Nishimori
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichiro Iwakura
- Centre for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Division of Aging and Regeneration, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Division of Stem Cell Aging Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
36
|
van Beek N, Zillikens D, Schmidt E. Bullous Autoimmune Dermatoses–Clinical Features, Diagnostic Evaluation, and Treatment Options. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:413-420. [PMID: 34369370 PMCID: PMC8380840 DOI: 10.3238/arztebl.m2021.0136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/03/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bullous autoimmune dermatoses are a clinically and immunopatho - logically heterogeneous group of diseases, characterized clinically by blisters or erosions of the skin and/or mucous membranes. In Germany, their prevalence is approximately 40 000 cases nationwide, and their incidence approximately 20 new cases per million people per year. METHODS This review is based on publications that were retrieved by a selective search of the literature focusing on the current German and European guidelines. RESULTS Recent years have seen the publication of guidelines, controlled prospective clinical trials, and multicenter diagnostic studies improving both diagnosis and therapy. Specific monovalent and multivariate serological test systems and pattern analysis of tissue-bound autoantibodies allow identification of the target antigens in 80-90% of patients. This enables the precise classification of disease entities, with implications for treatment selection and disease outcome. In 2019, the anti-CD20 antibody rituximab was approved by the European Medicines Agency for the treatment of moderate and severe pemphigus vulgaris, with an ensuing marked improvement in the care of the affected patients. To treat mild and moderate bullous pemphigoid, topical clobetasol proprionate is recommended, in severe disease, combined with systemic treatment, i.e. usually (a) prednisolone p.o. at an initial dose of 0.5mg/kg/d , (b) an immunomodulant, e.g. dapsone or doxycycline, or (c) prednisolone plus an immunomodulant. CONCLUSION The early recognition and precise diagnostic evaluation of bullous autoimmune dermatoses now enables improved, often interdisciplinary treatment, in accordance with the available guidelines. Current research projects are focused on new treatment approaches, an improved understanding of the underlying pathophysiology, and further refinements of diagnostic techniques.
Collapse
Affiliation(s)
- Nina van Beek
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
- Lu¨beck Institute of Experimental Dermatology (LIED), University of Lu¨beck, Lu¨beck, Germany
| |
Collapse
|
37
|
Fujimura Y, Watanabe M, Ohno K, Kobayashi Y, Takashima S, Nakamura H, Kosumi H, Wang Y, Mai Y, Lauria A, Proserpio V, Ujiie H, Iwata H, Nishie W, Nagayama M, Oliviero S, Donati G, Shimizu H, Natsuga K. Hair follicle stem cell progeny heal blisters while pausing skin development. EMBO Rep 2021; 22:e50882. [PMID: 34085753 DOI: 10.15252/embr.202050882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.
Collapse
Affiliation(s)
- Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Kota Ohno
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Valentina Proserpio
- Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
38
|
Hiroyasu S, Zeglinski MR, Zhao H, Pawluk MA, Turner CT, Kasprick A, Tateishi C, Nishie W, Burleigh A, Lennox PA, Van Laeken N, Carr NJ, Petersen F, Crawford RI, Shimizu H, Tsuruta D, Ludwig RJ, Granville DJ. Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat Commun 2021; 12:302. [PMID: 33436591 PMCID: PMC7804321 DOI: 10.1038/s41467-020-20604-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Pemphigoid diseases refer to a group of severe autoimmune skin blistering diseases characterized by subepidermal blistering and loss of dermal-epidermal adhesion induced by autoantibody and immune cell infiltrate at the dermal-epidermal junction and upper dermis. Here, we explore the role of the immune cell-secreted serine protease, granzyme B, in pemphigoid disease pathogenesis using three independent murine models. In all models, granzyme B knockout or topical pharmacological inhibition significantly reduces total blistering area compared to controls. In vivo and in vitro studies show that granzyme B contributes to blistering by degrading key anchoring proteins in the dermal-epidermal junction that are necessary for dermal-epidermal adhesion. Further, granzyme B mediates IL-8/macrophage inflammatory protein-2 secretion, lesional neutrophil infiltration, and lesional neutrophil elastase activity. Clinically, granzyme B is elevated and abundant in human pemphigoid disease blister fluids and lesional skin. Collectively, granzyme B is a potential therapeutic target in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Matthew R Zeglinski
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Hongyan Zhao
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Megan A Pawluk
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Chiharu Tateishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Angela Burleigh
- Department of Dermatology and Skin Science, UBC, Vancouver, BC, Canada
| | | | | | - Nick J Carr
- Department of Surgery, UBC, Vancouver, BC, Canada
| | - Frank Petersen
- Priority Area Asthma and Allergy, Members of the German Center for Lung Research, Research Center Borstel, Borstel, Germany
| | - Richard I Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Dermatology and Skin Science, UBC, Vancouver, BC, Canada
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada.
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada.
| |
Collapse
|
39
|
Watanabe M, Kosumi H, Osada SI, Takashima S, Wang Y, Nishie W, Oikawa T, Hirose T, Shimizu H, Natsuga K. Type XVII collagen interacts with the aPKC-PAR complex and maintains epidermal cell polarity. Exp Dermatol 2021; 30:62-67. [PMID: 32970880 DOI: 10.1111/exd.14196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Type XVII collagen (COL17) is a transmembrane protein expressed in the basal epidermis. COL17 serves as a niche for epidermal stem cells, and although its reduction has been implicated in altering cell polarity and ageing of the epidermis, it is unknown how COL17 affects epidermal cell polarity. Here, we uncovered COL17 as a binding partner of the aPKC-PAR complex, which is a key regulating factor of cell polarity. Immunoprecipitation-immunoblot assay and protein-protein binding assay revealed that COL17 interacts with aPKC and PAR3. COL17 deficiency or epidermis-specific aPKCλ deletion destabilized PAR3 distribution in the epidermis, while aPKCζ knockout did not. Asymmetrical cell division was pronounced in COL17-null neonatal paw epidermis. These results show that COL17 is pivotal for maintaining epidermal cell polarity. Our study highlights the previously unrecognized role of COL17 in the basal keratinocytes.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Shota Takashima
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Presence of Cutaneous Complement Deposition Distinguishes between Immunological and Histological Features of Bullous Pemphigoid-Insights from a Retrospective Cohort Study. J Clin Med 2020; 9:jcm9123928. [PMID: 33287364 PMCID: PMC7761814 DOI: 10.3390/jcm9123928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
The practical implications of complement deposition in direct immunofluorescence (DIF) microscopy and its influence on the disease phenotype are poorly understood. We aimed to investigate whether the presence of complement deposition in DIF microscopy gives rise to differences in the morphological, immunological, and histological characteristics of patients with BP (bullous pemphigoid). We performed a retrospective study encompassing patients with BP in a specialized tertiary referral center. Logistic regression model was utilized to identify variables independently associated with complement deposition. The study included 233 patients with BP, of whom 196 (84.1%) demonstrated linear C3 deposition along the dermal-epidermal junction (DEJ) in DIF analysis. BP patients with C3 deposition had higher mean (SD) levels (645.2 (1418.5) vs. 172.5 (243.9) U/mL; p < 0.001) and seropositivity rate (86.3% vs.64.9%; p = 0.002) of anti-BP180 NC16A and less prevalent neutrophilic infiltrate in lesional skin specimens (29.8% vs. 52.4%; p = 0.041). C3 deposition was found positively associated with the detection of anti-BP180 NC16A autoantibodies (OR, 4.25; 95% CI, 1.38–13.05) and inversely associated with the presence of neutrophils in lesional skin (OR, 3.03; 95% CI, 1.09–8.33). To conclude, complement deposition influences the immunological and histological features of BP. These findings are in line with experimental data describing the pathogenic role of complement in BP.
Collapse
|
41
|
Intravenous Injection of Muse Cells as a Potential Therapeutic Approach for Epidermolysis Bullosa. J Invest Dermatol 2020; 141:198-202.e6. [PMID: 32540249 DOI: 10.1016/j.jid.2020.05.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 11/21/2022]
|
42
|
Autoimmune bullous skin diseases, pemphigus and pemphigoid. J Allergy Clin Immunol 2020; 145:1031-1047. [DOI: 10.1016/j.jaci.2020.02.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
43
|
Visualization of autoantibodies and neutrophils in vivo identifies novel checkpoints in autoantibody-induced tissue injury. Sci Rep 2020; 10:4509. [PMID: 32161277 PMCID: PMC7066238 DOI: 10.1038/s41598-020-60233-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2019] [Indexed: 12/29/2022] Open
Abstract
In several autoimmune diseases, e.g., pemphigoid disease (PD), autoantibodies are the direct cause of pathology. Albeit key requirements for antibody-mediated diseases were identified, their interactions and exact temporal and spatial interactions remained elusive. The skin is easily accessible for imaging. Thus, we selected epidermolysis bullosa acquisita (EBA), a PD with autoantibodies to type VII collagen (COL7), to visualize interactions of autoantibodies, target tissue and effector cells (neutrophils). Following injection into mice, anti-COL7 IgG bound to the dermal-epidermal junction (DEJ) within minutes. We unexpectedly observed an inhomogeneous distribution of autoantibodies along the DEJ. Thus, we hypothesized that specific external triggers may affect autoantibody distribution. Indeed, mechanical irritation led to an increased autoantibody binding along the DEJ. Subsequently, anti-COL7 IgG was injected into mice expressing green fluorescent protein under the LysM promoter (LysM-eGFP) mice. This allows to visualize myeloid cells in vivo in these animals. Using multiphoton imaging, we observed a limited extravasation of LysM-eGFP+ cells into skin was observed within 24 hours. Intriguingly, LysM-eGFP+ cells did not immediately co-localize with autoantibodies, which was only noted at later time points. Of note, interactions of LysM-eGFP+ with the autoantibodies at the DEJ were short-lived. Collectively, our results define the following checkpoints for autoantibody-induced tissue injury: (i) autoantibody egress to target tissue influenced by mechanical trigger factors, (ii) neutrophil recruitment into the vicinity of autoantibody deposits and (iii) short-term neutrophil localization to these deposits, as well as (iv) delayed recruitment of neutrophils with subsequent autoantibody-induced inflammation.
Collapse
|
44
|
Hwang BJ, Zhang Y, Brozowski JM, Liu Z, Burette S, Lough K, Smith CC, Shan Y, Chen J, Li N, Williams S, Su M, Googe P, Thomas NE, Liu Z. The dysfunction of BP180/collagen XVII in keratinocytes promotes melanoma progression. Oncogene 2019; 38:7491-7503. [PMID: 31435021 PMCID: PMC6908749 DOI: 10.1038/s41388-019-0961-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/12/2019] [Indexed: 12/18/2022]
Abstract
BP180, also termed collagen XVII, is a hemidesmosomal transmembrane glycoprotein expressed in basal keratinocytes, and functions as a cell-matrix adhesion molecule in the dermal-epidermal junction of the skin. Its function, other than cell-matrix adhesion, remains unclear. We generated a mouse strain with BP180 dysfunction (termed ∆NC16A), which develops spontaneous skin inflammation accompanied by an influx of myeloid derived suppressor cells (MDSCs). We used the B16 mouse melanoma model to demonstrate that BP180 dysfunction in either skin or basal keratinocytes promotes MDSC influx into skin and tumor progression. MDSC depletion reduced tumor progression in ∆NC16A mice, demonstrating a critical role for BP180 dysfunction-driven MDSCs in melanoma progression. This study provides the first direct evidence that BP180, a cell-cell matrix adhesion molecule, possesses antitumor function through modulating infiltration of MDSCs. Basal keratinocytes actively participate in skin microenvironment changes caused by BP180 dysfunction. ∆NC16A mice could be a new animal model to study the melanoma microenvironment.
Collapse
Affiliation(s)
- Bin-Jin Hwang
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yang Zhang
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Dermatology, School of Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jaime M Brozowski
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine-Rheumatology and Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Zhen Liu
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangdong Center for Adverse Drug Reactions of Monitoring, Guangzhou, China
| | - Susan Burette
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendall Lough
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christof C Smith
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Shan
- Department of Biostatistics, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinbo Chen
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Williams
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maureen Su
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul Googe
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy E Thomas
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhi Liu
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Abstract
Pemphigoid diseases are a group of autoimmune blistering skin diseases defined by an immune response against certain components of the dermal-epidermal adhesion complex. They are prototypical, autoantibody-driven, organ-specific diseases with the emergence of inflammatory skin lesions dependent on the recruitment of immune cells, particularly granulocytes, into the skin. During an acute flare of disease, inflammatory skin lesions typically progressing from erythema through urticarial plaques to subepidermal blisters erosions erupt and, finally, completely resolve, thus illustrating that resolution of inflammation is continuously executed in pemphigoid disease patients and can be directly monitored on the skin. Despite these superb conditions for examining resolution in pemphigoid diseases as paradigm diseases for antibody-induced tissue inflammation, the mechanisms of resolution in pemphigoid are underinvestigated and still largely elusive. In the last decade, mouse models for pemphigoid diseases were developed, which have been instrumental to identify several key pathways for the initiation of inflammation in these diseases. More recently, also protective pathways, specifically IL-10 and C5aR2 signalling on the molecular level and Tregs on the cellular level, counteracting skin inflammation have been highlighted and may contribute to the continuous execution of resolution in pemphigoid diseases. The upstream orchestrators of this process are currently under investigation. Pemphigoid disease patients, particularly bullous pemphigoid patients, who are predominantly above 75 years of age, often succumb to the side effects of the immunosuppressive therapeutics nowadays still required to suppress the disease. Pemphigoid disease patients may therefore represent a group of patients benefiting most substantially from the introduction of non-immunosuppressive, proresolving therapeutics into the treatment regimens for their disease.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Lübeck, Germany.
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
46
|
Hübner F, Kasperkiewicz M, Knuth-Rehr D, Shimanovich I, Hübner J, Süfke S, Muck P, Zillikens D, Schmidt E. Adjuvant treatment of severe/refractory bullous pemphigoid with protein A immunoadsorption. J Dtsch Dermatol Ges 2019; 16:1109-1118. [PMID: 30179319 DOI: 10.1111/ddg.13642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/27/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND While depletion of circulating autoantibodies using immunoadsorption (IA) is an established therapeutic approach in patients with pemphigus vulgaris, IA has only sporadically been used in other autoimmune bullous disorders. Although bullous pemphigoid (BP) usually responds well to topical and systemic corticosteroids, rapid depletion of serum autoantibodies may be an effective adjuvant treatment option in patients with severe and/or refractory disease. PATIENTS AND METHODS Case series of 20 patients (13 women, 7 men; mean age 78.6 years; range 56-94 years) with severe or refractory BP. In addition to oral prednisolone (0.25-0.5 mg/kg/day), dapsone (1.0-1.5 mg/kg/day), and clobetasol propionate 0.05 % ointment (lesional application, twice daily), treatment consisted of protein A IA (three sessions on consecutive days). The mean follow-up period was 33.6 months (1-84 months). RESULTS The majority of patients showed a rapid and sustained response. One month after treatment, eight patients (42 %; 19 patients were included in the follow-up) were in complete remission; at the last follow-up visit (after 1 to 84 months), that number was 13 (68 %). Not only was there an initial drop in anti-BP180 autoantibodies (by 92 %), the effect also continued after one and three months, with mean autoantibody levels at 26 % and 13 % of baseline, respectively (p < 0.001). Both previously treated and treatment-naive patients showed a significant reduction in anti-BP180NC16A antibody levels throughout the observation period. Adverse events occurred in 13 of the 20 patients (65 %). Three were severe of which two were likely or probably related to IA. CONCLUSION Immunoadsorption is an effective adjuvant treatment option for (the usually elderly) patients with severe and/or refractory BP.
Collapse
Affiliation(s)
- Franziska Hübner
- Department of Dermatology, Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Diana Knuth-Rehr
- Department of Dermatology, Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Iakov Shimanovich
- Department of Dermatology, Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Joachim Hübner
- Institute of Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - Sven Süfke
- Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - Philip Muck
- Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Allergology and Venereology, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| |
Collapse
|
47
|
Natsuga K, Watanabe M, Nishie W, Shimizu H. Life before and beyond blistering: The role of collagen XVII in epidermal physiology. Exp Dermatol 2019; 28:1135-1141. [PMID: 29604146 DOI: 10.1111/exd.13550] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
Type XVII collagen (COL17) is a transmembranous protein that is mainly expressed in the epidermal basal keratinocytes. Epidermal-dermal attachment requires COL17 expression at the hemidesmosomes of the epidermal basement membrane zone because congenital COL17 deficiency leads to junctional epidermolysis bullosa and acquired autoimmunity to COL17 induces bullous pemphigoid. Recently, in addition to facilitating epidermal-dermal attachment, COL17 has been reported to serve as a niche for hair follicle stem cells, to regulate proliferation in the interfollicular epidermis and to be present along the non-hemidesmosomal plasma membrane of epidermal basal keratinocytes. This review focuses on the physiological properties of COL17 in the epidermis, its role in maintaining stem cells and its association with signalling pathways. We propose possible solutions to unanswered questions in this field.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
48
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|
49
|
Nesmond S, Muller C, Le Naour R, Viguier M, Bernard P, Antonicelli F, Le Jan S. Characteristic Pattern of IL-17RA, IL-17RB, and IL-17RC in Monocytes/Macrophages and Mast Cells From Patients With Bullous Pemphigoid. Front Immunol 2019; 10:2107. [PMID: 31572359 PMCID: PMC6749098 DOI: 10.3389/fimmu.2019.02107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation is largely implicated in bullous pemphigoid (BP), the most frequent skin auto-immune blistering disease. IL-17, essentially IL-17A/F, has been involved in blister formation through regulation of protease production, and its specific serum profile within BP was related to disease outcome. However, relationships between IL-17 family ligands and receptors are quite complex with six different IL-17 isoforms, and five different receptors. We here aimed at clarifying the contribution of the IL-17 axis in BP by characterizing not only the expression of IL-17 receptor (IL-17R) members within immune cells isolated from BP patients (PMNs, n = 9; T-lymphocytes, n = 10; and monocytes, n = 10) but also the expression of IL-17 isoforms in sera (n = 83), and blister fluid (n = 31) of BP patients. We showed that at diagnosis, IL-17RA and IL-17RC expression were significantly increased in monocytes isolated from BP patients as compared to those from control subjects (p = 0.006 and p = 0.016, respectively). Notably, both IL-17RA and IL-17RC mRNA expression remained elevated in BP monocytes at time of relapse. We further demonstrated a significant increase of all IL-17 isoforms tested in BP blister fluid compared with BP serum (IL-17A, p < 0.0001; IL-17A/F, p < 0.0001; IL-17B, p = 0.0023; IL-17C, p = 0.0022; IL-17E, p < 0.0001). Among all, IL-17B was the only cytokine for which a significant decreased concentration within blister fluid was observed in BP patients with severe disease compared to patients with moderate disease (p = 0.012). We further evidenced a significant negative correlation between IL-17B levels and blister/erosion BPDAI subscore (r = −0.52, p = 0.003). We finally identified mast cells as a potential target of IL-17B in lesional skin of BP patients. In conclusion, we showed here that IL-17RA and IL-17RC expression in monocyte was associated with disease activity and evidenced in situ a negative correlation between BP disease activity and IL-17B, whose effects could be mediated by IL-17RB expressed by mast cell in BP lesional skin.
Collapse
Affiliation(s)
- Stéphane Nesmond
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Céline Muller
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Richard Le Naour
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Biological Sciences, UFR Pharmacy, University of Reims Champagne-Ardenne, Reims, France
| | - Manuelle Viguier
- Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims-Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| |
Collapse
|
50
|
Genovese G, Di Zenzo G, Cozzani E, Berti E, Cugno M, Marzano AV. New Insights Into the Pathogenesis of Bullous Pemphigoid: 2019 Update. Front Immunol 2019; 10:1506. [PMID: 31312206 PMCID: PMC6614376 DOI: 10.3389/fimmu.2019.01506] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
There are several lines of evidence indicating that the physiopathological bases of bullous pemphigoid (BP), the most common subepidermal autoimmune bullous disease, are hallmarked by the production of autoantibodies directed against the hemidesmosomal anchoring proteins BP180 and BP230. In contrast to the robustness of the latter assumption, the multifaceted complexity of upstream and downstream mechanisms implied in the pathogenesis of BP remains an area of intense speculation. So far, an imbalance between T regulatory cells and autoreactive T helper (Th) cells has been regarded as the main pathogenic factor triggering the autoimmune response in BP patients. However, the contributory role of signaling pathways fostering the B cell stimulation, such as Toll-like receptor activation, as well as that of ancillary inflammatory mechanisms responsible for blister formation, such as Th17 axis stimulation and the activation of the coagulation cascade, are still a matter of debate. In the same way, the pathomechanisms implied in the loss of dermal-epidermal adhesion secondary to autoantibodies binding are not fully understood. Herein, we review in detail the current concepts and controversies on the complex pathogenesis of BP, shedding light on the most recent theories emerging from the literature.
Collapse
Affiliation(s)
- Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Emanuele Cozzani
- DISSAL Section of Dermatology, Università degli Studi di Genova, Genoa, Italy
| | - Emilio Berti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo Cugno
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Internal Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|