1
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
3
|
Bunsick DA, Matsukubo J, Aldbai R, Baghaie L, Szewczuk MR. Functional Selectivity of Cannabinoid Type 1 G Protein-Coupled Receptor Agonists in Transactivating Glycosylated Receptors on Cancer Cells to Induce Epithelial-Mesenchymal Transition Metastatic Phenotype. Cells 2024; 13:480. [PMID: 38534324 PMCID: PMC10969603 DOI: 10.3390/cells13060480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.
Collapse
Affiliation(s)
- David A. Bunsick
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| | - Jenna Matsukubo
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
- Faculty of Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd #2044, Ottawa, ON K1H 8M5, Canada
| | - Rashelle Aldbai
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (J.M.); (R.A.); (L.B.)
| |
Collapse
|
4
|
Biringer RG. Migraine signaling pathways: purine metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2023; 478:2813-2848. [PMID: 36947357 DOI: 10.1007/s11010-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Migraine is a debilitating disorder that afflicts over 1 billion people worldwide, involving attacks that result in a throbbing and pulsating headache. Migraine is thought to be a neurovascular event associated with vasoconstriction, vasodilation, and neuronal activation. Understanding signaling in migraine pathology is central to the development of therapeutics for migraine prophylaxis and for mitigation of migraine in the prodrome phase before pain sets in. The fact that both vasoactivity and neural sensitization are involved in migraine indicates that agonists which promote these phenomena may very well be involved in migraine pathology. One such group of agonists is the purines, in particular, adenosine phosphates and their metabolites. This manuscript explores what is known about the relationship between these metabolites and migraine pathology and explores the potential for such relationships through their known signaling pathways. Reported receptor involvement in vasoaction and nociception.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
5
|
Lillo J, García-Pérez I, Lillo A, Serrano-Marín J, Martínez-Pinilla E, Navarro G, Franco R. The olfactory Olfr-78/51E2 receptor interacts with the adenosine A 2A receptor. Effect of menthol and 1,8-cineole on A 2A receptor-mediated signaling. Front Pharmacol 2023; 14:1108617. [PMID: 37266149 PMCID: PMC10229766 DOI: 10.3389/fphar.2023.1108617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Heteromer formation is unknown for the olfactory family of G protein-coupled receptors (GPCRs). We here identified, in a heterologous system, heteromers formed by the adenosine A2A receptor (A2AR), which is a target for neuroprotection, and an olfactory receptor. A2AR interacts with the receptor family 51, subfamily E, member 2 (OR51E2), the human ortholog of the mouse Olfr-78, whose mRNA is differentially expressed in activated microglia treated with adenosine receptor ligands. Bioluminescence resonance energy transfer (BRET) assays were performed in HEK-293T cells expressing the human version of the receptors, OR51E2 and A2AR, fused, respectively, to Renilla luciferase (RLuc) and the yellow fluorescent protein (YFP). BRET data was consistent with a receptor-receptor interaction whose consequences at the functional level were measured by cAMP level determination in CHO cells. Results showed an olfactory receptor-mediated partial blockade of Gs coupling to the A2AR, i.e., the effect of the A2AR selective agonist on intracellular levels of cAMP was significantly reduced. Two odorants, menthol and 1,8-cineole, which failed to show Golf-mediated OR51E2 activation because they did not increase cytosolic cAMP levels, reduced the BRET readings in cells expressing A2AR-YFP and OR51E2-Rluc, most likely suggesting a conformational change of at least one receptor. These odorants led to an almost complete block of A2AR coupling to Gs.
Collapse
Affiliation(s)
- Jaume Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Irene García-Pérez
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-receptor interactions and microvesicle exchange as mechanisms modulating signaling between neurons and astrocytes. Neuropharmacology 2023; 231:109509. [PMID: 36935005 DOI: 10.1016/j.neuropharm.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
It is well known that astrocytes play a significant metabolic role in the nervous tissue, maintaining the homeostasis of the extracellular space and of the blood-brain barrier, and providing trophic support to neurons. In addition, however, evidence exists indicating astrocytes as important elements for brain activity through signaling exchange with neurons. Astrocytes, indeed, can sense synaptic activity and their molecular machinery responds to neurotransmitters released by neurons with cytoplasmic Ca2+ elevations that, in turn, stimulate the release of neuroactive substances (gliotransmitters) influencing nearby neurons. In both cell types the recognition and transduction of this complex pattern of signals is mediated by specific receptors that are also involved in mechanisms tuning the intercellular cross-talk between astrocytes and neurons. Two of these mechanisms are the focus of the present discussion. The first concerns direct receptor-receptor interactions leading to the formation at the cell membrane of multimeric receptor complexes. The cooperativity that emerges in the actions of orthosteric and allosteric ligands of the monomers forming the assembly provides the cell decoding apparatus with sophisticated and flexible dynamics in terms of recognition and signal transduction pathways. A further mechanism of plasticity involving receptors is based on the transfer of elements of the cellular signaling apparatus via extracellular microvesicles acting as protective containers, which can lead to transient changes in the transmitting/decoding capabilities of the target cell.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy.
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| |
Collapse
|
7
|
Grochowska KM, Gomes GM, Raman R, Kaushik R, Sosulina L, Kaneko H, Oelschlegel AM, Yuanxiang P, Reyes‐Resina I, Bayraktar G, Samer S, Spilker C, Woo MS, Morawski M, Goldschmidt J, Friese MA, Rossner S, Navarro G, Remy S, Reissner C, Karpova A, Kreutz MR. Jacob-induced transcriptional inactivation of CREB promotes Aβ-induced synapse loss in Alzheimer's disease. EMBO J 2023; 42:e112453. [PMID: 36594364 PMCID: PMC9929644 DOI: 10.15252/embj.2022112453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Synaptic dysfunction caused by soluble β-amyloid peptide (Aβ) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aβ suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aβ elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aβ-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guilherme M Gomes
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Rajeev Raman
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Rahul Kaushik
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Liudmila Sosulina
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Hiroshi Kaneko
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | | | - PingAn Yuanxiang
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | | | - Gonca Bayraktar
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Sebastian Samer
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Christina Spilker
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Markus Morawski
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Jürgen Goldschmidt
- Department of Systems Physiology of Learning and MemoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Rossner
- Molecular Imaging in NeurosciencesPaul Flechsig Institute of Brain ResearchLeipzigGermany
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food ScienceUniversity of BarcelonaBarcelonaSpain
- Institut de Neurociències de la Universitat de BarcelonaBarcelonaSpain
| | - Stefan Remy
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- Department of Cellular NeuroscienceLeibniz Institute for NeurobiologyMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Carsten Reissner
- Institute of Anatomy and Molecular NeurobiologyWestfälische Wilhelms‐UniversityMünsterGermany
| | - Anna Karpova
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
| | - Michael R Kreutz
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Group ‘Dendritic Organelles and Synaptic Function’, Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke UniversityMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| |
Collapse
|
8
|
Moreno E, Casajuana-Martin N, Coyle M, Campos BC, Galaj E, Del Torrent CL, Seyedian A, Rea W, Cai NS, Bonifazi A, Florán B, Xi ZX, Guitart X, Casadó V, Newman AH, Bishop C, Pardo L, Ferré S. Pharmacological targeting of G protein-coupled receptor heteromers. Pharmacol Res 2022; 185:106476. [PMID: 36182040 PMCID: PMC9645299 DOI: 10.1016/j.phrs.2022.106476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
A main rationale for the role of G protein-coupled receptor (GPCR) heteromers as targets for drug development is the putative ability of selective ligands for specific GPCRs to change their pharmacological properties upon GPCR heteromerization. The present study provides a proof of concept for this rationale by demonstrating that heteromerization of dopamine D1 and D3 receptors (D1R and D3R) influences the pharmacological properties of three structurally similar selective dopamine D3R ligands, the phenylpiperazine derivatives PG01042, PG01037 and VK4-116. By using D1R-D3R heteromer-disrupting peptides, it could be demonstrated that the three D3R ligands display different D1R-D3R heteromer-dependent pharmacological properties: PG01042, acting as G protein-biased agonist, counteracted D1R-mediated signaling in the D1R-D3R heteromer; PG01037, acting as a D3R antagonist cross-antagonized D1R-mediated signaling in the D1R-D3R heteromer; and VK4-116 specifically acted as a ß-arrestin-biased agonist in the D1R-D3R heteromer. Molecular dynamics simulations predicted potential molecular mechanisms mediating these qualitatively different pharmacological properties of the selective D3R ligands that are dependent on D1R-D3R heteromerization. The results of in vitro experiments were paralleled by qualitatively different pharmacological properties of the D3R ligands in vivo. The results supported the involvement of D1R-D3R heteromers in the locomotor activation by D1R agonists in reserpinized mice and L-DOPA-induced dyskinesia in rats, highlighting the D1R-D3R heteromer as a main pharmacological target for L-DOPA-induced dyskinesia in Parkinson's disease. More generally, the present study implies that when suspecting its pathogenetic role, a GPCR heteromer, and not its individual GPCR units, should be considered as main target for drug development.
Collapse
Affiliation(s)
- Estefanía Moreno
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Nil Casajuana-Martin
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA
| | - Baruc Campos Campos
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Center for Research and Advanced Studies, Department of Physiology, Biophysics, and Neurosciences, Mexico City, Mexico
| | - Ewa Galaj
- Addiction Biology Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Claudia Llinas Del Torrent
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Arta Seyedian
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Benjamín Florán
- Center for Research and Advanced Studies, Department of Physiology, Biophysics, and Neurosciences, Mexico City, Mexico
| | - Zheng-Xiong Xi
- Addiction Biology Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Amy H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY, USA.
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
10
|
Lillo J, Raïch I, Silva L, Zafra DA, Lillo A, Ferreiro-Vera C, Sánchez de Medina V, Martínez-Orgado J, Franco R, Navarro G. Regulation of Expression of Cannabinoid CB2 and Serotonin 5HT1A Receptor Complexes by Cannabinoids in Animal Models of Hypoxia and in Oxygen/Glucose-Deprived Neurons. Int J Mol Sci 2022; 23:ijms23179695. [PMID: 36077095 PMCID: PMC9456173 DOI: 10.3390/ijms23179695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Cannabidiol (CBD) is a phytocannabinoid with potential in one of the most prevalent syndromes occurring at birth, the hypoxia of the neonate. CBD targets a variety of proteins, cannabinoid CB2 and serotonin 5HT1A receptors included. These two receptors may interact to form heteromers (CB2–5HT1A-Hets) that are also a target of CBD. Aims: We aimed to assess whether the expression and function of CB2–5HT1A-Hets is affected by CBD in animal models of hypoxia of the neonate and in glucose- and oxygen-deprived neurons. Methods: We developed a quantitation of signal transduction events in a heterologous system and in glucose/oxygen-deprived neurons. The expression of receptors was assessed by immuno-cyto and -histochemistry and, also, by using the only existing technique to visualize CB2–5HT1A-Hets fixed cultured cells and tissue sections (in situ proximity ligation PLA assay). Results: CBD and cannabigerol, which were used for comparative purposes, affected the structure of the heteromer, but in a qualitatively different way; CBD but not CBG increased the affinity of the CB2 and 5HT1A receptor–receptor interaction. Both cannabinoids regulated the effects of CB2 and 5HT1A receptor agonists. CBD was able to revert the upregulation of heteromers occurring when neurons were deprived of oxygen and glucose. CBD significantly reduced the increased expression of the CB2–5HT1A-Het in glucose/oxygen-deprived neurons. Importantly, in brain sections of a hypoxia/ischemia animal model, administration of CBD led to a significant reduction in the expression of CB2–5HT1A-Hets. Conclusions: Benefits of CBD in the hypoxia of the neonate are mediated by acting on CB2–5HT1A-Hets and by reducing the aberrant expression of the receptor–receptor complex in hypoxic-ischemic conditions. These results reinforce the potential of CBD for the therapy of the hypoxia of the neonate.
Collapse
Affiliation(s)
- Jaume Lillo
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28040 Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Iu Raïch
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28040 Madrid, Spain
- Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Silva
- Biomedical Research Foundation, Hospital Clínico San Carlos-IdISSC, 28040 Madrid, Spain
- Department of Neonatology, Hospital Clínico San Carlos-IdISSC, 28040 Madrid, Spain
| | - David A. Zafra
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28040 Madrid, Spain
- Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carlos Ferreiro-Vera
- Phytoplant Research S.L.U, Astrónoma Cecilia Payne Street, Centauro Building, B-1, 14014 Córdoba, Spain
| | | | - José Martínez-Orgado
- Biomedical Research Foundation, Hospital Clínico San Carlos-IdISSC, 28040 Madrid, Spain
- Department of Neonatology, Hospital Clínico San Carlos-IdISSC, 28040 Madrid, Spain
| | - Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28040 Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (R.F.); (G.N.); Tel.: +34-934-021-208 (R.F.); +34-934-034-500 (G.N.)
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28040 Madrid, Spain
- Institute of Neuroscience, University of Barcelona (NeuroUB), Av Joan XXIII 27-31, 08028 Barcelona, Spain
- Molecular Neuropharmacology Laboratory, Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (R.F.); (G.N.); Tel.: +34-934-021-208 (R.F.); +34-934-034-500 (G.N.)
| |
Collapse
|
11
|
Abstract
The 5 known melanocortin receptors (MCs) have established physiological roles. With the exception of MC2, these receptors can behave unpredictably, and since they are more widely expressed than their established roles would suggest, it is likely that they have other poorly characterized functions. The aim of this review is to discuss some of the less well-explored aspects of the 4 enigmatic members of this receptor family (MC1,3-5) and describe how these are multifaceted G protein-coupled receptors (GPCRs). These receptors appear to be promiscuous in that they bind several endogenous agonists (products of the proopiomelanocortin [POMC] gene) and antagonists but with inconsistent relative affinities and effects. We propose that this is a result of posttranslational modifications that determine receptor localization within nanodomains. Within each nanodomain there will be a variety of proteins, including ion channels, modifying proteins, and other GPCRs, that can interact with the MCs to alter the availability of receptor at the cell surface as well as the intracellular signaling resulting from receptor activation. Different combinations of interacting proteins and MCs may therefore give rise to the complex and inconsistent functional profiles reported for the MCs. For further progress in understanding this family, improved characterization of tissue-specific functions is required. Current evidence for interactions of these receptors with a range of partners, resulting in modulation of cell signaling, suggests that each should be studied within the full context of their interacting partners. The role of physiological status in determining this context also remains to be characterized.
Collapse
Affiliation(s)
- Linda Laiho
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanne Fiona Murray
- Correspondence: J. F. Murray, PhD, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh EH8 9DX, UK.
| |
Collapse
|
12
|
Dysfunctional Heteroreceptor Complexes as Novel Targets for the Treatment of Major Depressive and Anxiety Disorders. Cells 2022; 11:cells11111826. [PMID: 35681521 PMCID: PMC9180493 DOI: 10.3390/cells11111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Among mental diseases, major depressive disorder (MDD) and anxiety deserve a special place due to their high prevalence and their negative impact both on society and patients suffering from these disorders. Consequently, the development of novel strategies designed to treat them quickly and efficiently, without or at least having limited side effects, is considered a highly important goal. Growing evidence indicates that emerging properties are developed on recognition, trafficking, and signaling of G-protein coupled receptors (GPCRs) upon their heteromerization with other types of GPCRs, receptor tyrosine kinases, and ionotropic receptors such as N-methyl-D-aspartate (NMDA) receptors. Therefore, to develop new treatments for MDD and anxiety, it will be important to identify the most vulnerable heteroreceptor complexes involved in MDD and anxiety. This review focuses on how GPCRs, especially serotonin, dopamine, galanin, and opioid heteroreceptor complexes, modulate synaptic and volume transmission in the limbic networks of the brain. We attempt to provide information showing how these emerging concepts can contribute to finding new ways to treat both MDD and anxiety disorders.
Collapse
|
13
|
Wang Q, Zhang Q, He H, Feng Z, Mao J, Hu X, Wei X, Bi S, Qin G, Wang X, Ge B, Yu D, Ren H, Huang F. Carbon Dot Blinking Fingerprint Uncovers Native Membrane Receptor Organizations via Deep Learning. Anal Chem 2022; 94:3914-3921. [PMID: 35188385 DOI: 10.1021/acs.analchem.1c04947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligomeric organization of G protein-coupled receptors is proposed to regulate receptor signaling and function, yet rapid and precise identification of the oligomeric status especially for native receptors on a cell membrane remains an outstanding challenge. By using blinking carbon dots (CDs), we now develop a deep learning (DL)-based blinking fingerprint recognition method, named deep-blinking fingerprint recognition (BFR), which allows automatic classification of CD-labeled receptor organizations on a cell membrane. This DL model integrates convolutional layers, long-short-term memory, and fully connected layers to extract time-dependent blinking features of CDs and is trained to a high accuracy (∼95%) for identifying receptor organizations. Using deep blinking fingerprint recognition, we found that CXCR4 mainly exists as 87.3% monomers, 12.4% dimers, and <1% higher-order oligomers on a HeLa cell membrane. We further demonstrate that the heterogeneous organizations can be regulated by various stimuli at different degrees. The receptor-binding ligands, agonist SDF-1α and antagonist AMD3100, can induce the dimerization of CXCR4 to 33.1 and 20.3%, respectively. In addition, cytochalasin D, which inhibits actin polymerization, similarly prompts significant dimerization of CXCR4 to 30.9%. The multi-pathway organization regulation will provide an insight for understanding the oligomerization mechanism of CXCR4 as well as for elucidating their physiological functions.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Zhang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiang Hu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyun Wei
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guangyong Qin
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
14
|
Farhadi SA, Restuccia A, Sorrentino A, Cruz-Sánchez A, Hudalla GA. Heterogeneous protein co-assemblies with tunable functional domain stoichiometry. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:44-57. [PMID: 35495737 PMCID: PMC9053397 DOI: 10.1039/d1me00083g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In nature, the precise heterogeneous co-assembly of different protein domains gives rise to supramolecular machines that perform complex functions through the co-integrated activity of the individual protein subunits. A synthetic approach capable of mimicking this process would afford access to supramolecular machines with new or improved functional capabilities. Here we show that the distinct peptide strands of a heterotrimeric α-helical coiled-coil (i.e., peptides "A", "B", and "C") can be used as fusion tags for heterogeneous co-assembly of proteins into supramolecular structures with tunable subunit stoichiometry. In particular, we demonstrate that recombinant fusion of A with NanoLuc luciferase (NL-A), B with superfolder green fluorescent protein (sfGFP-B), and C with mRuby (mRuby-C) enables formation of ternary complexes capable of simultaneously emitting blue, green, and red light via sequential bioluminescence and fluorescence resonance energy transfer (BRET/FRET). Fusion of galectin-3 onto the C-terminus of NL-A, sfGFP-B, and mRuby-C endows the ternary complexes with lactose-binding affinity that can be tuned by varying the number of galectin-3 domains integrated into the complex from one to three, while maintaining BRET/FRET function. The modular nature of the fusion protein design, the precise control of domain stoichiometry, and the multiplicity afforded by the three-stranded coiled-coil scaffold provides access to a greater range of subunit combinations than what is possible with heterodimeric coiled-coils used previously. We envision that access to this expanded range of co-integrated protein domain diversity will be advantageous for future development of designer supramolecular machines for therapeutic, diagnostic, and biotechnology applications.
Collapse
Affiliation(s)
- Shaheen A. Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Antonietta Restuccia
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony Sorrentino
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Andrés Cruz-Sánchez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
15
|
Lillo A, Lillo J, Raïch I, Miralpeix C, Dosrius F, Franco R, Navarro G. Ghrelin and Cannabinoid Functional Interactions Mediated by Ghrelin/CB 1 Receptor Heteromers That Are Upregulated in the Striatum From Offspring of Mice Under a High-Fat Diet. Front Cell Neurosci 2021; 15:786597. [PMID: 34955755 PMCID: PMC8696263 DOI: 10.3389/fncel.2021.786597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
There is evidence of ghrelinergic-cannabinoidergic interactions in the central nervous system (CNS) that may impact on the plasticity of reward circuits. The aim of this article was to look for molecular and/or functional interactions between cannabinoid CB1 and ghrelin GHS-R1a receptors. In a heterologous system and using the bioluminescence resonance energy transfer technique we show that human versions of cannabinoid CB1 and ghrelin GHS-R1a receptors may form macromolecular complexes. Such receptor heteromers have particular properties in terms of CB1/Gi-mediated signaling and in terms of GHS-R1a-Gq-mediated signaling. On the one hand, just co-expression of CB1R and GHS-R1a led to impairment of cannabinoid signaling. On the other hand, cannabinoids led to an increase in ghrelin-derived calcium mobilization that was stronger at low concentrations of the CB1 receptor agonist, arachidonyl-2’-chloroethylamide (ACEA). The expression of CB1-GHS-R1a receptor complexes in striatal neurons was confirmed by in situ proximity ligation imaging assays. Upregulation of CB1-GHS-R1a- receptor complexes was found in striatal neurons from siblings of pregnant female mice on a high-fat diet. Surprisingly, the expression was upregulated after treatment of neurons with ghrelin (200 nM) or with ACEA (100 nM). These results help to better understand the complexities underlying the functional interactions of neuromodulators in the reward areas of the brain.
Collapse
Affiliation(s)
- Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Francesc Dosrius
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,School of Chemistry, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona (UBNeuro), Barcelona, Spain
| |
Collapse
|
16
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
17
|
Casanovas M, Jiménez-Rosés M, Cordomí A, Lillo A, Vega-Quiroga I, Izquierdo J, Medrano M, Gysling K, Pardo L, Navarro G, Franco R. Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addict Biol 2021; 26:e13017. [PMID: 33559278 DOI: 10.1111/adb.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
Cocaine not only increases brain dopamine levels but also activates the sigma1 receptor (σ1 R) that in turn regulates orexigenic receptor function. Identification of interactions involving dopamine D1 (D1 R), ghrelin (GHS-R1a ), and σ1 receptors have been addressed by biophysical techniques and a complementation approach using interfering peptides. The effect of cocaine on receptor functionality was assayed by measuring second messenger, cAMP and Ca2+ , levels. The effect of acute or chronic cocaine administration on receptor complex expression was assayed by in situ proximity ligation assay. In silico procedures were used for molecular model building. σ1 R KO mice were used for confirming involvement of this receptor. Upon identification of protomer interaction and receptor functionality, a unique structural model for the macromolecular complex formed by σ1 R, D1 R, and GHS-R1a is proposed. The functionality of the complex, able to couple to both Gs and Gq proteins, is affected by cocaine binding to the σ1 R, as confirmed using samples from σ1 R-/- mice. The expression of the macromolecular complex was differentially affected upon acute and chronic cocaine administration to rats. The constructed 3D model is consistent with biochemical, biophysical, and available structural data. The σ1 R, D1 R, and GHS-R1a complex constitutes a functional unit that is altered upon cocaine binding to the σ1 R. Remarkably, the heteromer can simultaneously couple to two G proteins, thus allowing dopamine to signal via Ca2+ and ghrelin via cAMP. The anorexic action of cocaine is mediated by such complex whose expression is higher after acute than after chronic administration regimens.
Collapse
Affiliation(s)
- Mireia Casanovas
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Jiménez-Rosés
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joan Izquierdo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Mireia Medrano
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Lillo J, Lillo A, Zafra DA, Miralpeix C, Rivas-Santisteban R, Casals N, Navarro G, Franco R. Identification of the Ghrelin and Cannabinoid CB 2 Receptor Heteromer Functionality and Marked Upregulation in Striatal Neurons from Offspring of Mice under a High-Fat Diet. Int J Mol Sci 2021; 22:ijms22168928. [PMID: 34445634 PMCID: PMC8396234 DOI: 10.3390/ijms22168928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids have been reported as orexigenic, i.e., as promoting food intake that, among others, is controlled by the so-called “hunger” hormone, ghrelin. The aim of this paper was to look for functional and/or molecular interactions between ghrelin GHSR1a and cannabinoid CB2 receptors at the central nervous system (CNS) level. In a heterologous system we identified CB2-GHSR1a receptor complexes with a particular heteromer print consisting of impairment of CB2 receptor/Gi-mediated signaling. The blockade was due to allosteric interactions within the heteromeric complex as it was reverted by antagonists of the GHSR1a receptor. Cannabinoids acting on the CB2 receptor did not affect cytosolic increases of calcium ions induced by ghrelin acting on the GHSR1a receptor. In situ proximity ligation imaging assays confirmed the expression of CB2-GHSR1a receptor complexes in both heterologous cells and primary striatal neurons. We tested heteromer expression in neurons from offspring of high-fat-diet mouse mothers as they have more risk to be obese. Interestingly, there was a marked upregulation of those complexes in striatal neurons from siblings of pregnant female mice under a high-fat diet.
Collapse
Affiliation(s)
- Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - David A. Zafra
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
| | - Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos, 3, 28029 Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
- Institut de Neurociències, Universitat de Barcelona (UBNeuro), 08035 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| |
Collapse
|
19
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
20
|
Rivas-Santisteban R, Lillo J, Muñoz A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, Franco R. Novel Interactions Involving the Mas Receptor Show Potential of the Renin-Angiotensin system in the Regulation of Microglia Activation: Altered Expression in Parkinsonism and Dyskinesia. Neurotherapeutics 2021; 18:998-1016. [PMID: 33474655 PMCID: PMC7817140 DOI: 10.1007/s13311-020-00986-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
The renin-angiotensin system (RAS) not only plays an important role in controlling blood pressure but also participates in almost every process to maintain homeostasis in mammals. Interest has recently increased because SARS viruses use one RAS component (ACE2) as a target-cell receptor. The occurrence of RAS in the basal ganglia suggests that the system may be targeted to improve the therapy of neurodegenerative diseases. RAS-related data led to the hypothesis that RAS receptors may interact with each other. The aim of this paper was to find heteromers formed by Mas and angiotensin receptors and to address their functionality in neurons and microglia. Novel interactions were discovered by using resonance energy transfer techniques. The functionality of individual and interacting receptors was assayed by measuring levels of the second messengers cAMP and Ca2+ in transfected human embryonic kidney cells (HEK-293T) and primary cultures of striatal cells. Receptor complex expression was assayed by in situ proximity ligation assay. Functionality and expression were assayed in parallel in primary cultures of microglia treated or not with lipopolysaccharide and interferon-γ (IFN-γ). The proximity ligation assay was used to assess heteromer expression in parkinsonian and dyskinetic conditions. Complexes formed by Mas and the angiotensin AT1 or AT2 receptors were identified in both a heterologous expression system and in neural primary cultures. In the heterologous system, we showed that the three receptors-MasR, AT1R, and AT2R-can interact to form heterotrimers. The expression of receptor dimers (AT1R-MasR or AT2R-MasR) was higher in microglia than in neurons and was differentially affected upon microglial activation with lipopolysaccharide and IFN-γ. In all cases, agonist-induced signaling was reduced upon coactivation, and in some cases just by coexpression. Also, the blockade of signaling of two receptors in a complex by the action of a given (selective) receptor antagonist (cross-antagonism) was often observed. Differential expression of the complexes was observed in the striatum under parkinsonian conditions and especially in animals rendered dyskinetic by levodopa treatment. The negative modulation of calcium mobilization (mediated by AT1R activation), the multiplicity of possibilities on RAS affecting the MAPK pathway, and the disbalanced expression of heteromers in dyskinesia yield new insight into the operation of the RAS system, how it becomes unbalanced, and how a disbalanced RAS can be rebalanced. Furthermore, RAS components in activated microglia warrant attention in drug-development approaches to address neurodegeneration.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dyskinesia, Drug-Induced/metabolism
- HEK293 Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- Oxidopamine/toxicity
- Parkinsonian Disorders/chemically induced
- Parkinsonian Disorders/metabolism
- Proto-Oncogene Mas/agonists
- Proto-Oncogene Mas/metabolism
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
| | - Ana Muñoz
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Ana I Rodríguez-Pérez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - José Luís Labandeira-García
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Valderrebollo 5, Madrid, Madrid, 28031, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Catalonia, 08028, Spain
| | - Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Barcelona, Catalonia, 08028, Spain.
| |
Collapse
|
21
|
Franco R, Cordomí A, Llinas Del Torrent C, Lillo A, Serrano-Marín J, Navarro G, Pardo L. Structure and function of adenosine receptor heteromers. Cell Mol Life Sci 2021; 78:3957-3968. [PMID: 33580270 PMCID: PMC11072997 DOI: 10.1007/s00018-021-03761-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Catalonia, 08028, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain.
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| | - Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Catalonia, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Catalonia, 08028, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Catalonia, Barcelona, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| |
Collapse
|
22
|
Casanovas M, Reyes-Resina I, Lillo A, Lillo J, López-Arnau R, Camarasa J, Escubedo E, Navarro G, Franco R. Methamphetamine Blocks Adenosine A 2A Receptor Activation via Sigma 1 and Cannabinoid CB 1 Receptors. Int J Mol Sci 2021; 22:2743. [PMID: 33803075 PMCID: PMC7963146 DOI: 10.3390/ijms22052743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Methamphetamine is, worldwide, one of the most consumed drugs of abuse. One important side effect is neurodegeneration leading to a decrease in life expectancy. The aim of this paper was to check whether the drug affects one of the receptors involved in neurodegeneration/neuroprotection events, namely the adenosine A2A receptor (A2AR). First, we noticed that methamphetamine does not affect A2A functionality if the receptor is expressed in a heterologous system. However, A2AR becomes sensitive to the drug upon complexes formation with the cannabinoid CB1 receptor (CB1R) and the sigma 1 receptor (σ1R). Signaling via both adenosine A2AR and cannabinoid CB1R was affected by methamphetamine in cells co-expressing the two receptors. In striatal primary cultures, the A2AR-CB1R heteromer complex was detected and methamphetamine not only altered its expression but completely blocked the A2AR- and the CB1R-mediated activation of the mitogen activated protein kinase (MAPK) pathway. In conclusion, methamphetamine, with the participation of σ1R, alters the expression and function of two interacting receptors, A2AR, which is a therapeutic target for neuroprotection, and CB1R, which is the most abundant G protein-coupled receptor (GPCR) in the brain.
Collapse
Affiliation(s)
- Mireia Casanovas
- Biology School, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (I.R.-R.); (J.L.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Irene Reyes-Resina
- Biology School, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (I.R.-R.); (J.L.)
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Biology School, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (I.R.-R.); (J.L.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain; (R.L.-A.); (J.C.); (E.E.)
| | - Jorge Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain; (R.L.-A.); (J.C.); (E.E.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain; (R.L.-A.); (J.C.); (E.E.)
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Chemistry School, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Miralpeix C, Reguera AC, Fosch A, Casas M, Lillo J, Navarro G, Franco R, Casas J, Alexander SPH, Casals N, Rodríguez-Rodríguez R. Carnitine palmitoyltransferase 1C negatively regulates the endocannabinoid hydrolase ABHD6 in mice, depending on nutritional status. Br J Pharmacol 2021; 178:1507-1523. [PMID: 33444462 PMCID: PMC9328656 DOI: 10.1111/bph.15377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 01/05/2023] Open
Abstract
Background and Purpose The enzyme α/β‐hydrolase domain containing 6 (ABHD6), a new member of the endocannabinoid system, is a promising therapeutic target against neuronal‐related diseases. However, how ABHD6 activity is regulated is not known. ABHD6 coexists in protein complexes with the brain‐specific carnitine palmitoyltransferase 1C (CPT1C). CPT1C is involved in neuro‐metabolic functions, depending on brain malonyl–CoA levels. Our aim was to study CPT1C–ABHD6 interaction and determine whether CPT1C is a key regulator of ABHD6 activity depending on nutritional status. Experimental Approach Co‐immunoprecipitation and FRET assays were used to explore ABHD6 interaction with CPT1C or modified malonyl–CoA‐insensitive or C‐terminal truncated CPT1C forms. Cannabinoid CB1 receptor‐mediated signalling was investigated by determining cAMP levels. A novel highly sensitive fluorescent method was optimized to measure ABHD6 activity in non‐neuronal and neuronal cells and in brain tissues from wild‐type (WT) and CPT1C–KO mice. Key Results CPT1C interacted with ABHD6 and negatively regulated its hydrolase activity, thereby regulating 2‐AG downstream signalling. Accordingly, brain tissues of CPT1C–KO mice showed increased ABHD6 activity. CPT1C malonyl–CoA sensing was key to the regulatory role on ABHD6 activity and CB1 receptor signalling. Fasting, which attenuates brain malonyl–CoA, significantly increased ABHD6 activity in hypothalamus from WT, but not CPT1C–KO, mice. Conclusions and Implications Our finding that negative regulation of ABHD6 activity, particularly in the hypothalamus, is sensitive to nutritional status throws new light on the characterization and the importance of the proteins involved as potential targets against diseases affecting the CNS.
Collapse
Affiliation(s)
- Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,INSERM, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Maria Casas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, California, USA
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Physiology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- INSERM, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Rafael Franco
- INSERM, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | - Josefina Casas
- Department on Biomedical Chemistry, Research Unit of BioActive Molecules, Institut de Química Avançada de Catalunya (IQAC), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| |
Collapse
|
24
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Pinna A, Serra M, Marongiu J, Morelli M. Pharmacological interactions between adenosine A 2A receptor antagonists and different neurotransmitter systems. Parkinsonism Relat Disord 2020; 80 Suppl 1:S37-S44. [PMID: 33349579 DOI: 10.1016/j.parkreldis.2020.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
While Parkinson's disease (PD) is traditionally characterized by dopaminergic neuron degeneration, several neurotransmitters and neuromodulators besides dopamine are also involved in the onset and progression of the disease and its symptoms. The other principal neurotransmitters/neuromodulators known to control basal ganglia functions and, in particular, motor functions, are GABA, glutamate, serotonin (5-HT), noradrenaline, acetylcholine, adenosine and endocannabinoids. Among these, adenosine is the most relevant, acting through its adenosine A2A receptor. Work in experimental models of PD has established the effects of A2A receptor antagonists, including the alleviation of disrupted dopamine functions and improved efficacy of dopamine replacement therapy. Moreover, positive interactions between A2A receptor antagonists and both D2 and D1 receptor agonists have been described in vitro at the receptor-receptor level or in more complex in vivo models of PD, respectively. In addition, the interactions between A2A receptor antagonists and glutamate ionotropic GluN2B-containing N-Methyl-d-aspartic acid receptors, or metabotropic glutamate (mGlu) receptors, including both mGlu5 receptor inhibitors and mGlu4 receptor activators, have been reported in both in vitro and in vivo animal models of PD, as have positive interactions between A2A and endocannabinoid CB1 receptor antagonists. At the same time, a combination of A2A receptor antagonists and 5-HT1A-5-HT1B receptor agonists have been described to modulate the expression of dyskinesia induced by chronic dopamine replacement therapy.
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute - Cagliari, Cagliari, Italy.
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute - Cagliari, Cagliari, Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
26
|
Cieślik P, Wierońska JM. Regulation of Glutamatergic Activity via Bidirectional Activation of Two Select Receptors as a Novel Approach in Antipsychotic Drug Discovery. Int J Mol Sci 2020; 21:ijms21228811. [PMID: 33233865 PMCID: PMC7699963 DOI: 10.3390/ijms21228811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a mental disorder that affects approximately 1-2% of the population and develops in early adulthood. The disease is characterized by positive, negative, and cognitive symptoms. A large percentage of patients with schizophrenia have a treatment-resistant disease, and the risk of developing adverse effects is high. Many researchers have attempted to introduce new antipsychotic drugs to the clinic, but most of these treatments failed, and the diversity of schizophrenic symptoms is one of the causes of disappointing results. The present review summarizes the results of our latest papers, showing that the simultaneous activation of two receptors with sub-effective doses of their ligands induces similar effects as the highest dose of each compound alone. The treatments were focused on inhibiting the increased glutamate release responsible for schizophrenia arousal, without interacting with dopamine (D2) receptors. Ligands activating metabotropic receptors for glutamate, GABAB or muscarinic receptors were used, and the compounds were administered in several different combinations. Some combinations reversed all schizophrenia-related deficits in animal models, but others were active only in select models of schizophrenia symptoms (i.e., cognitive or negative symptoms).
Collapse
|
27
|
Zhang Y, Fernie AR. On the Detection and Functional Significance of the Protein-Protein Interactions of Mitochondrial Transport Proteins. Biomolecules 2020; 10:E1107. [PMID: 32722450 PMCID: PMC7464641 DOI: 10.3390/biom10081107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-protein assemblies are highly prevalent in all living cells. Considerable evidence has recently accumulated suggesting that particularly transient association/dissociation of proteins represent an important means of regulation of metabolism. This is true not only in the cytosol and organelle matrices, but also at membrane surfaces where, for example, receptor complexes, as well as those of key metabolic pathways, are common. Transporters also frequently come up in lists of interacting proteins, for example, binding proteins that catalyze the production of their substrates or that act as relays within signal transduction cascades. In this review, we provide an update of technologies that are used in the study of such interactions with mitochondrial transport proteins, highlighting the difficulties that arise in their use for membrane proteins and discussing our current understanding of the biological function of such interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
28
|
Adenosine A 2AReceptors in Substance Use Disorders: A Focus on Cocaine. Cells 2020; 9:cells9061372. [PMID: 32492952 PMCID: PMC7348840 DOI: 10.3390/cells9061372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
Several psychoactive drugs can evoke substance use disorders (SUD) in humans and animals, and these include psychostimulants, opioids, cannabinoids (CB), nicotine, and alcohol. The etiology, mechanistic processes, and the therapeutic options to deal with SUD are not well understood. The common feature of all abused drugs is that they increase dopamine (DA) neurotransmission within the mesocorticolimbic circuitry of the brain followed by the activation of DA receptors. D2 receptors were proposed as important molecular targets for SUD. The findings showed that D2 receptors formed heteromeric complexes with other GPCRs, which forced the addiction research area in new directions. In this review, we updated the view on the brain D2 receptor complexes with adenosine (A)2A receptors (A2AR) and discussed the role of A2AR in different aspects of addiction phenotypes in laboratory animal procedures that permit the highly complex syndrome of human drug addiction. We presented the current knowledge on the neurochemical in vivo and ex vivo mechanisms related to cocaine use disorder (CUD) and discussed future research directions for A2AR heteromeric complexes in SUD.
Collapse
|
29
|
Ikeda Y, Tanaka M, Nishihara R, Hiruta Y, Citterio D, Suzuki K, Niwa K. Quantitative evaluation of luminescence intensity from enzymatic luminescence reaction of coelenterazine and analogues. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020; 8:3772-3788. [DOI: 10.1039/d0tb00262c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this Review, recent advances in fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy are described, and the current challenges and perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Feng Qiu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital
- National Clinical Research Centre for Oral Diseases
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London
- UK
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
31
|
Reyes-Resina I, Jiménez J, Navarro G, Franco R. Identification of Heteroreceptors Complexes and Signal Transduction Events Using Bioluminescence Resonance Energy Transfer (BRET). Bio Protoc 2019; 9:e3385. [PMID: 33654881 DOI: 10.21769/bioprotoc.3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/28/2019] [Accepted: 09/10/2019] [Indexed: 11/02/2022] Open
Abstract
Detecting protein-protein interactions by co-immunoprecipitation provided a major advancement in the immunology research field. In the G-protein-coupled receptors (GPCRs) research field, colocalization and co-immunoprecipitation were used to detect interactions, but doubts arose due to specificity of the antibodies (monoclonal in the case of receptors related to immunology and polyclonal in the case of GPCRs) and due to the possibility of false positive due to the potential occurrence of bridging proteins. Accordingly, new methodological approaches were needed, and energy transfer techniques have been instrumental to detect direct protein-protein, protein-receptor or receptor-receptor interactions. Of the two most relevant methods (Förster, or fluorescence resonance energy transfer: FRET and Bioluminescence energy transfer: BRET), the protocol for BRET is here presented. BRET has been instrumental to detect direct interactions between GPCRs and has contributed to demonstrate that GPCR dimers/oligomer functionality is different from that exerted by individual receptors. Advantages outweigh those of FRET as no fluorescence source is needed. Interestingly, BRET is not only useful to validate interactions detected by other means or hypothesized in the basis of indirect evidence, but to measure signal transduction events. In fact, BRET may, for instance, be used to assess β-arrestin recruitment to activated GPCRs.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Molecular Neurobiology Laboratory, Universitat de Barcelona, Barcelona, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain.,Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Tóth A, Antal Z, Bereczki D, Sperlágh B. Purinergic Signalling in Parkinson's Disease: A Multi-target System to Combat Neurodegeneration. Neurochem Res 2019; 44:2413-2422. [PMID: 31054067 PMCID: PMC6776560 DOI: 10.1007/s11064-019-02798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by progressive loss of dopaminergic neurons that results in characteristic motor and non-motor symptoms. L-3,4 dihydroxyphenylalanine (L-DOPA) is the gold standard therapy for the treatment of PD. However, long-term use of L-DOPA leads to side effects such as dyskinesias and motor fluctuation. Since purines have neurotransmitter and co-transmitter properties, the function of the purinergic system has been thoroughly studied in the nervous system. Adenosine and adenosine 5'-triphosphate (ATP) are modulators of dopaminergic neurotransmission, neuroinflammatory processes, oxidative stress, excitotoxicity and cell death via purinergic receptor subtypes. Aberrant purinergic receptor signalling can be either the cause or the result of numerous pathological conditions, including neurodegenerative disorders. Many data confirm the involvement of purinergic signalling pathways in PD. Modulation of purinergic receptor subtypes, the activity of ectonucleotidases and ATP transporters could be beneficial in the treatment of PD. We give a brief summary of the background of purinergic signalling focusing on its roles in PD. Possible targets for pharmacological treatment are highlighted.
Collapse
Affiliation(s)
- Adrián Tóth
- Department of Neurology, Faculty of Medicine, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Üllői út 26., Budapest, 1085, Hungary
| | - Zsófia Antal
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., Budapest, 1083, Hungary
| | - Dániel Bereczki
- Department of Neurology, Faculty of Medicine, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Beáta Sperlágh
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43., Budapest, 1083, Hungary.
| |
Collapse
|
33
|
Red-shifted bioluminescence Resonance Energy Transfer: Improved tools and materials for analytical in vivo approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Yeh HW, Ai HW. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:129-150. [PMID: 30786216 PMCID: PMC6565457 DOI: 10.1146/annurev-anchem-061318-115027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although fluorescent reporters and biosensors have become indispensable tools in biological and biomedical fields, fluorescence measurements require external excitation light, thereby limiting their use in thick tissues and live animals. Bioluminescent reporters and biosensors may potentially overcome this hurdle because they use enzyme-catalyzed exothermic biochemical reactions to generate excited-state emitters. This review first introduces the development of bioluminescent reporters, and next, their applications in sensing biological changes in vitro and in vivo as biosensors. Lastly, we discuss chemiluminescent sensors that produce photons in the absence of luciferases. This review aims to explore fundamentals and experimental insights and to emphasize the yet-to-be-reached potential of next-generation luminescent reporters and biosensors.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
35
|
Lin CH, Wen HC, Chiang CC, Huang JS, Chen Y, Wang SK. Polyproline Tri-Helix Macrocycles as Nanosized Scaffolds to Control Ligand Patterns for Selective Protein Oligomer Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900561. [PMID: 30977296 DOI: 10.1002/smll.201900561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Multivalent ligand-receptor interactions play essential roles in biological recognition and signaling. As the receptor arrangement on the cell surface can alter the outcome of cell signaling and also provide spatial specificity for ligand binding, controlling the presentation of ligands has become a promising strategy to manipulate or selectively target protein receptors. The lack of adjustable universal tools to control ligand positions at the size of a few nanometers has prompted the development of polyproline tri-helix macrocycles as scaffolds to present ligands in designated patterns. Model lectin Helix pomatia agglutinin has shown selectivity toward the matching GalNAc ligand pattern matching its binding sites arrangement. The GalNAc pattern selectivity is also observed on intact asialoglycoprotein receptor oligomer on human hepatoma cells showing the pattern-selective interaction can be achieved not only on isolated protein oligomers but also the receptors arranged on the cell surface. As the scaffold design allows convenient creation of versatile ligand patterns, it can be expected as a promising tool to probe the arrangement of receptors on the cell surface and as nanomedicine to manipulate signaling or cell recognition.
Collapse
Affiliation(s)
- Cin-Hao Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Chuan Wen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Chin Chiang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jen-Sheng Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
36
|
Moreno E, Cavic M, Krivokuca A, Casadó V, Canela E. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front Pharmacol 2019; 10:339. [PMID: 31024307 PMCID: PMC6459931 DOI: 10.3389/fphar.2019.00339] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes. Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare. CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2). These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Enric Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
37
|
Biased G Protein-Independent Signaling of Dopamine D 1-D 3 Receptor Heteromers in the Nucleus Accumbens. Mol Neurobiol 2019; 56:6756-6769. [PMID: 30919214 DOI: 10.1007/s12035-019-1564-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Several studies found in vitro evidence for heteromerization of dopamine D1 receptors (D1R) and D3 receptors (D3R), and it has been postulated that functional D1R-D3R heteromers that are normally present in the ventral striatum mediate synergistic locomotor-activating effects of D1R and D3R agonists in rodents. Based also on results obtained in vitro, with mammalian transfected cells, it has been hypothesized that those behavioral effects depend on a D1R-D3R heteromer-mediated G protein-independent signaling. Here, we demonstrate the presence on D1R-D3R heteromers in the mouse ventral striatum by using a synthetic peptide that selectively destabilizes D1R-D3R heteromers. Parallel locomotor activity and ex vivo experiments in reserpinized mice and in vitro experiments in D1R-D3R mammalian transfected cells were performed to dissect the signaling mechanisms of D1R-D3R heteromers. Co-administration of D1R and D3R agonists in reserpinized mice produced synergistic locomotor activation and a selective synergistic AKT phosphorylation in the most ventromedial region of the striatum in the shell of the nucleus accumbens. Application of the destabilizing peptide in transfected cells and in the shell of the nucleus accumbens allowed demonstrating that both in vitro and in vivo co-activation of D3R induces a switch from G protein-dependent to G protein-independent D1R-mediated signaling determined by D1R-D3R heteromerization. The results therefore demonstrate that a biased G protein-independent signaling of D1R-D3R heteromers localized in the shell of the nucleus accumbens mediate the locomotor synergistic effects of D1R and D3R agonists in reserpinized mice.
Collapse
|
38
|
Cui Y, Zhang X, Yu M, Zhu Y, Xing J, Lin J. Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. SCIENCE CHINA-LIFE SCIENCES 2019; 62:619-632. [DOI: 10.1007/s11427-018-9500-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
|
39
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
40
|
Sleno R, Hébert TE. Shaky ground - The nature of metastable GPCR signalling complexes. Neuropharmacology 2019; 152:4-14. [PMID: 30659839 DOI: 10.1016/j.neuropharm.2019.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/19/2023]
Abstract
How G protein-coupled receptors (GPCR) interact with one another remains an area of active investigation. Obligate dimers of class C GPCRs such as metabotropic GABA and glutamate receptors are well accepted, although whether this is a general feature of other GPCRs is still strongly debated. In this review, we focus on the idea that GPCR dimers and oligomers are better imagined as parts of larger metastable signalling complexes. We discuss the nature of functional oligomeric entities, their stabilities and kinetic features and how structural and functional asymmetries of such metastable entities might have implications for drug discovery. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rory Sleno
- Marketed Pharmaceuticals and Medical Devices Bureau, Marketed Health Products Directorate, Health Products and Food Branch, Health Canada, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
41
|
Bagher AM, Kelly MEM, Denovan-Wright EM. Combining SRET 2 and BiFC to Study GPCR Heteromerization and Protein-Protein Interactions. Methods Mol Biol 2019; 1947:199-215. [PMID: 30969418 DOI: 10.1007/978-1-4939-9121-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
G protein-coupled receptors (GPCRs) are the target for many drugs. Evidence continues to accumulate demonstrating that multiple receptors form homo- and heteromeric complexes, which in turn dynamically couple with G proteins, and other interacting proteins. Here, we describe a method to simultaneously determine the identity of up to four distinct constituents of GPCR complexes using a combination of sequential bioluminescence resonance energy transfer 2-fluorescence resonance energy transfer (SRET2) with bimolecular fluorescence complementation (BiFC). The method is amenable to moderate throughput screening of changes in response to ligands and time-course analysis of protein-protein oligomerization.
Collapse
Affiliation(s)
- Amina M Bagher
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology and Toxicology, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
42
|
Mores KL, Cassell RJ, van Rijn RM. Arrestin recruitment and signaling by G protein-coupled receptor heteromers. Neuropharmacology 2018; 152:15-21. [PMID: 30419245 DOI: 10.1016/j.neuropharm.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/28/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCR) have a long history of being considered a prime target for drug development to treat a plethora of diseases and disorders. In fact in 1827, the first approved therapeutic in the United States was morphine, a drug that targets a GPCR, namely the mu opioid receptor. However, with the rise in biologics over the last two decades, the market share of small molecules targeting GPCRs has declined. Still, two phenomena concerning GPCR pharmacology, specifically heteromerization and biased signaling, have bolstered new interests in this particular class of drug targets. Heteromerization, the process by which two distinct GPCRs come together to form a unique signaling complex, has been demonstrated between many different GPCRs and has spurred efforts to discover heteromer selective drugs. Additionally, the discovery of biased signaling, a concept by which a GPCR can transduce intracellular signaling by favoring a specific pathway (e.g. G-protein) over another pathway (e.g. arrestin), has led to the development of signal-biased drugs with potentially fewer side effects. Our goal for this review is to highlight studies that have investigated the interplay of these two phenomena by providing an overview of the current literature describing instances where GPCR heteromers have distinct arrestin recruitment profiles when compared to the individual GPCRs, with a focus on those GPCRs expressed in the central nervous system. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, United States; Purdue Institute for Drug Discovery, United States; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, 47907, United States.
| |
Collapse
|
43
|
Pulido D, Casadó-Anguera V, Pérez-Benito L, Moreno E, Cordomí A, López L, Cortés A, Ferré S, Pardo L, Casadó V, Royo M. Design of a True Bivalent Ligand with Picomolar Binding Affinity for a G Protein-Coupled Receptor Homodimer. J Med Chem 2018; 61:9335-9346. [PMID: 30257092 DOI: 10.1021/acs.jmedchem.8b01249] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bivalent ligands have emerged as chemical tools to study G protein-coupled receptor dimers. Using a combination of computational, chemical, and biochemical tools, here we describe the design of bivalent ligand 13 with high affinity ( KDB1 = 21 pM) for the dopamine D2 receptor (D2R) homodimer. Bivalent ligand 13 enhances the binding affinity relative to monovalent compound 15 by 37-fold, indicating simultaneous binding at both protomers. Using synthetic peptides with amino acid sequences of transmembrane (TM) domains of D2R, we provide evidence that TM6 forms the interface of the homodimer. Notably, the disturber peptide TAT-TM6 decreased the binding of bivalent ligand 13 by 52-fold and had no effect on monovalent compound 15, confirming the D2R homodimer through TM6 ex vivo. In conclusion, by using a versatile multivalent chemical platform, we have developed a precise strategy to generate a true bivalent ligand that simultaneously targets both orthosteric sites of the D2R homodimer.
Collapse
Affiliation(s)
- Daniel Pulido
- Biomaterials and Nanomedicine , Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona Science Park , 08028 Barcelona , Spain.,Combinatorial Chemistry Unit , Barcelona Science Park , 08028 Barcelona , Spain
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Laura Pérez-Benito
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Laura López
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Antoni Cortés
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program , National Institutes of Health , Baltimore , Maryland 21224 , United States
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology , University of Barcelona , 08028 Barcelona , Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED) , 08028 Barcelona , Spain.,Institute of Biomedicine , University of Barcelona (IBUB) , 08028 Barcelona , Spain
| | - Miriam Royo
- Biomaterials and Nanomedicine , Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Barcelona Science Park , 08028 Barcelona , Spain.,Combinatorial Chemistry Unit , Barcelona Science Park , 08028 Barcelona , Spain
| |
Collapse
|
44
|
Borroto-Escuela DO, Perez De La Mora M, Manger P, Narváez M, Beggiato S, Crespo-Ramírez M, Navarro G, Wydra K, Díaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Filip M, Franco R, Fuxe K. Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Front Synaptic Neurosci 2018; 10:20. [PMID: 30042672 PMCID: PMC6048293 DOI: 10.3389/fnsyn.2018.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
This perspective article provides observations supporting the view that nigro-striatal dopamine neurons and meso-limbic dopamine neurons mainly communicate through short distance volume transmission in the um range with dopamine diffusing into extrasynaptic and synaptic regions of glutamate and GABA synapses. Based on this communication it is discussed how volume transmission modulates synaptic glutamate transmission onto the D1R modulated direct and D2R modulated indirect GABA pathways of the dorsal striatum. Each nigro-striatal dopamine neuron was first calculated to form large numbers of neostriatal DA nerve terminals and then found to give rise to dense axonal arborizations spread over the neostriatum, from which dopamine is released. These neurons can through DA volume transmission directly influence not only the striatal GABA projection neurons but all the striatal cell types in parallel. It includes the GABA nerve cells forming the island-/striosome GABA pathway to the nigral dopamine cells, the striatal cholinergic interneurons and the striatal GABA interneurons. The dopamine modulation of the different striatal nerve cell types involves the five dopamine receptor subtypes, D1R to D5R receptors, and their formation of multiple extrasynaptic and synaptic dopamine homo and heteroreceptor complexes. These features of the nigro-striatal dopamine neuron to modulate in parallel the activity of practically all the striatal nerve cell types in the dorsal striatum, through the dopamine receptor complexes allows us to understand its unique and crucial fine-tuning of movements, which is lost in Parkinson's disease. Integration of striatal dopamine signals with other transmitter systems in the striatum mainly takes place via the receptor-receptor interactions in dopamine heteroreceptor complexes. Such molecular events also participate in the integration of volume transmission and synaptic transmission. Dopamine modulation of the glutamate synapses on the dorsal striato-pallidal GABA pathway involves D2R heteroreceptor complexes such as D2R-NMDAR, A2AR-D2R, and NTSR1-D2R heteroreceptor complexes. The dopamine modulation of glutamate synapses on the striato-entopeduncular/nigral pathway takes place mainly via D1R heteroreceptor complexes such as D1R-NMDAR, A2R-D1R, and D1R-D3R heteroreceptor complexes. Dopamine modulation of the island/striosome compartment of the dorsal striatum projecting to the nigral dopamine cells involve D4R-MOR heteroreceptor complexes. All these receptor-receptor interactions have relevance for Parkinson's disease and its treatment.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Physiology, Department of Biomolecular Science, University of Urbino, Urbino, Italy
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Yaguajay, Cuba
| | - Miguel Perez De La Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paul Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Zaida Díaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Alicia Rivera
- Department of Cell Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Luca Ferraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
- CiberNed: Centro de Investigación en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
46
|
Weeraddana D, Premaratne M, Gunapala SD, Andrews DL. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror. J Chem Phys 2018; 147:074117. [PMID: 28830167 DOI: 10.1063/1.4998459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to "switch off" abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.
Collapse
Affiliation(s)
- Dilusha Weeraddana
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Malin Premaratne
- Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Sarath D Gunapala
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - David L Andrews
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
47
|
Klep O, Bandera Y, Foulger SH. Temperature responsive nanoparticles: poloxamers as a modulator of Förster resonance energy transfer (FRET). NANOSCALE 2018; 10:9401-9409. [PMID: 29741544 DOI: 10.1039/c8nr01278d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An effective strategy to control the Förster resonance energy transfer (FRET) of a donor/acceptor emitter pair that were attached to a 60 nm poly(propargyl acrylate)(PA) nanoparticle using temperature variations was developed. The size dependent properties of a poly-(ethylene oxide)-poly-(propylene oxide)-poly-(ethylene oxide) (PEO-PPO-PEO) block copolymer (poloxamer) was exploited to vary the spatial separation of the emitters and vary the FRET efficiency. Specifically, a 2% change in FRET efficiency between the donor/acceptor pair was achieved per 1 °C change in temperature from 49 °C to 60 °C when using a poloxamer of 2950 g mol-1 molecular weight, with sections of PPO consisting of 32 repeat units, PEO sections consisting of 12 repeat units and a lower critical solution temperature (LCST) of 58 °C. The methodology presented in this effort is easily extended to other temperature regimes through a judicious choice in poloxamer and corresponding LCST.
Collapse
Affiliation(s)
- Oleksandr Klep
- Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, USA
| | | | | |
Collapse
|
48
|
Sleno R, Hébert TE. The Dynamics of GPCR Oligomerization and Their Functional Consequences. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:141-171. [PMID: 29699691 DOI: 10.1016/bs.ircmb.2018.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional importance of G protein-coupled receptor (GPCR) oligomerization remains controversial. Although obligate dimers of class C GPCRs are well accepted, the generalizability of this phenomenon is still strongly debated with respect to other classes of GPCRs. In this review, we focus on understanding the organization and dynamics between receptor equivalents and their signaling partners in oligomeric receptor complexes, with a view toward integrating disparate viewpoints into a unified understanding. We discuss the nature of functional oligomeric entities, and how asymmetries in receptor structure and function created by oligomers might have implications for receptor function as allosteric machines and for future drug discovery.
Collapse
|
49
|
Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nat Commun 2018; 9:1242. [PMID: 29593213 PMCID: PMC5871782 DOI: 10.1038/s41467-018-03522-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A2A receptor and dopamine D2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR. It is unclear whether GPCRs, G proteins and adenylyl cyclase (AC) associate through random collisions or defined pre-coupling mechanisms. Using a peptide-based approach, the authors show that heteromers of adenosine A2A and dopamine D2 receptors form pre-coupled complexes with their cognate G proteins and AC5.
Collapse
|
50
|
Navarro G, Cordomí A, Brugarolas M, Moreno E, Aguinaga D, Pérez-Benito L, Ferre S, Cortés A, Casadó V, Mallol J, Canela EI, Lluís C, Pardo L, McCormick PJ, Franco R. Cross-communication between G i and G s in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain. BMC Biol 2018; 16:24. [PMID: 29486745 PMCID: PMC6389107 DOI: 10.1186/s12915-018-0491-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/22/2018] [Indexed: 12/02/2022] Open
Abstract
Background G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A1R or A2AR) can form A1R-A2AR heteromers (A1-A2AHet), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (β-arrestin mediated) signaling. Adenosine has different affinities for A1R and A2AR, allowing the heteromeric receptor to detect its concentration by integrating the downstream Gi- and Gs-dependent signals. cAMP accumulation and β-arrestin recruitment assays have shown that, within the complex, activation of A2AR impedes signaling via A1R. Results We examined the mechanism by which A1-A2AHet integrates Gi- and Gs-dependent signals. A1R blockade by A2AR in the A1-A2AHet is not observed in the absence of A2AR activation by agonists, in the absence of the C-terminal domain of A2AR, or in the presence of synthetic peptides that disrupt the heteromer interface of A1-A2AHet, indicating that signaling mediated by A1R and A2AR is controlled by both Gi and Gs proteins. Conclusions We identified a new mechanism of signal transduction that implies a cross-communication between Gi and Gs proteins guided by the C-terminal tail of the A2AR. This mechanism provides the molecular basis for the operation of the A1-A2AHet as an adenosine concentration-sensing device that modulates the signals originating at both A1R and A2AR. Electronic supplementary material The online version of this article (10.1186/s12915-018-0491-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gemma Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marc Brugarolas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - David Aguinaga
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Laura Pérez-Benito
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sergi Ferre
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Enric I Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Peter J McCormick
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain. .,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK.
| | - Rafael Franco
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028, Barcelona, Spain. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|