1
|
Ba F, Zhang Y, Wang L, Ji X, Liu WQ, Ling S, Li J. Integrase enables synthetic intercellular logic via bacterial conjugation. Cell Syst 2025:101268. [PMID: 40300599 DOI: 10.1016/j.cels.2025.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/25/2024] [Accepted: 04/01/2025] [Indexed: 05/01/2025]
Abstract
Integrases have been widely used in synthetic biology for genome engineering and genetic circuit design. They mediate DNA recombination to alter the genotypes of single cell lines in vivo, with these changes being permanently recorded and inherited via vertical gene transfer. However, integrase-based intercellular DNA messaging and its regulation via horizontal gene transfer remain underexplored. Here, we introduce a versatile strategy to design, build, and test integrase-based intercellular DNA messaging through bacterial conjugation. First, we screened conjugative plasmids and recipient cells for efficient conjugation. Then, we established a layered framework to describe the interactions among hierarchical E. coli strains and implemented dual-layer Boolean logic gates to demonstrate intercellular DNA messaging and management. Finally, we expanded the design to include four-layer single-processing pathways and dual-layer multi-processing systems. This strategy advances intercellular DNA messaging, hierarchical signal processing, and the application of integrase in systems and synthetic biology.
Collapse
Affiliation(s)
- Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luyao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
2
|
Vaisbourd E, Bren A, Alon U, Glass DS. Preventing Multimer Formation in Commonly Used Synthetic Biology Plasmids. ACS Synth Biol 2025; 14:1309-1315. [PMID: 40101192 PMCID: PMC12012879 DOI: 10.1021/acssynbio.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Plasmids are an essential tool for basic research and biotechnology applications. To optimize plasmid-based circuits, it is crucial to control plasmid integrity, including the formation of plasmid multimers. Multimers are tandem repeats of entire plasmids formed by failed dimer resolution during replication. Multimers can affect the behavior of synthetic circuits, especially ones that include DNA-editing enzymes. However, occurrence of multimers is not commonly assayed. Here we survey four commonly used plasmid backbones for occurrence of multimers in cloning (JM109) and wild-type (MG1655) strains of Escherichia coli. We find that multimers occur appreciably only in MG1655, with the fraction of plasmids existing as multimers increasing with both plasmid copy number and culture passaging. In contrast, transforming multimers into JM109 can yield strains that contain no singlet plasmids. We present an MG1655 ΔrecA single-locus knockout that avoids multimer production. These results can aid synthetic biologists in improving design and reliability of plasmid-based circuits.
Collapse
Affiliation(s)
- Elizabeth Vaisbourd
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Anat Bren
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Uri Alon
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - David S. Glass
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| |
Collapse
|
3
|
Kalvapalle PB, Staubus A, Dysart MJ, Gambill L, Reyes Gamas K, Lu LC, Silberg JJ, Stadler LB, Chappell J. Information storage across a microbial community using universal RNA barcoding. Nat Biotechnol 2025:10.1038/s41587-025-02593-0. [PMID: 40102641 DOI: 10.1038/s41587-025-02593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Gene transfer can be studied using genetically encoded reporters or metagenomic sequencing but these methods are limited by sensitivity when used to monitor the mobile DNA host range in microbial communities. To record information about gene transfer across a wastewater microbiome, a synthetic catalytic RNA was used to barcode a highly conserved segment of ribosomal RNA (rRNA). By writing information into rRNA using a ribozyme and reading out native and modified rRNA using amplicon sequencing, we find that microbial community members from 20 taxonomic orders participate in plasmid conjugation with an Escherichia coli donor strain and observe differences in 16S rRNA barcode signal across amplicon sequence variants. Multiplexed rRNA barcoding using plasmids with pBBR1 or ColE1 origins of replication reveals differences in host range. This autonomous RNA-addressable modification provides information about gene transfer without requiring translation and will enable microbiome engineering across diverse ecological settings and studies of environmental controls on gene transfer and cellular uptake of extracellular materials.
Collapse
Affiliation(s)
- Prashant B Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - August Staubus
- Department of BioSciences, Rice University, Houston, TX, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | - Matthew J Dysart
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Lauren Gambill
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Kiara Reyes Gamas
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Li Chieh Lu
- Department of BioSciences, Rice University, Houston, TX, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - James Chappell
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Chamness JC, Cody JP, Cruz AJ, Voytas DF. Viral delivery of recombinases activates heritable genetic switches in plants. PLANT PHYSIOLOGY 2025; 197:kiaf073. [PMID: 40111273 DOI: 10.1093/plphys/kiaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 02/22/2025]
Abstract
Viral vectors provide an increasingly versatile platform for transformation-free reagent delivery to plants. RNA viral vectors can be used to induce gene silencing, overexpress proteins, or introduce gene editing reagents; however, they are often constrained by carrying capacity or restricted tropism in germline cells. Site-specific recombinases that catalyze precise genetic rearrangements are powerful tools for genome engineering that vary in size and, potentially, efficacy in plants. In this work, we show that viral vectors based on tobacco rattle virus (TRV) deliver and stably express four recombinases ranging in size from ∼0.6 to ∼1.5 kb and achieve simultaneous marker removal and reporter activation through targeted excision in transgenic Nicotiana benthamiana lines. TRV vectors with Cre, FLP, CinH, and Integrase13 efficiently mediated recombination in infected somatic tissue and led to heritable modifications at high frequency. An excision-activated Ruby reporter enabled simple and high-resolution tracing of infected cell lineages without the need for molecular genotyping. Together, our experiments broaden the scope of viral recombinase delivery and offer insights into infection dynamics that may be useful in developing future viral vectors.
Collapse
Affiliation(s)
- James C Chamness
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
- Terrana Biosciences, Cambridge, MA 02138, USA
| | - Jon P Cody
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
| | - Anna J Cruz
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
| |
Collapse
|
5
|
Diao J, Tian Y, Hu Y, Moon TS. Producing multiple chemicals through biological upcycling of waste poly(ethylene terephthalate). Trends Biotechnol 2025; 43:620-646. [PMID: 39581772 DOI: 10.1016/j.tibtech.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Poly(ethylene terephthalate) (PET) waste is of low degradability in nature, and its mismanagement threatens numerous ecosystems. To combat the accumulation of waste PET in the biosphere, PET bio-upcycling, which integrates chemical pretreatment to produce PET-derived monomers with their microbial conversion into value-added products, has shown promise. The recently discovered Rhodococcus jostii RPET strain can metabolically degrade terephthalic acid (TPA) and ethylene glycol (EG) as sole carbon sources, and it has been developed into a microbial chassis for PET upcycling. However, the scarcity of synthetic biology tools, specifically designed for this non-model microbe, limits the development of a microbial cell factory for expanding the repertoire of bioproducts from postconsumer PET. Herein, we describe the development of potent genetic tools for RPET, including two inducible and titratable expression systems for tunable gene expression, along with serine integrase-based recombinational tools (SIRT) for genome editing. Using these tools, we systematically engineered the RPET strain to ultimately establish microbial supply chains for producing multiple chemicals, including lycopene, lipids, and succinate, from postconsumer PET waste bottles, achieving the highest titer of lycopene ever reported thus far in RPET [i.e., 22.6 mg/l of lycopene, ~10 000-fold higher than that of the wild-type (WT) strain]. This work highlights the great potential of plastic upcycling as a generalizable means of sustainable production of diverse chemicals.
Collapse
Affiliation(s)
- Jinjin Diao
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA.
| | - Yuxin Tian
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Yifeng Hu
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St Louis, St Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St Louis, St Louis, MO 63130, USA; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Chen H, Li Y, Li Z, Sun Y, Gu W, Chen C, Cheng Y. Bacterial Autonomous Intelligent Microrobots for Biomedical Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70011. [PMID: 40235203 DOI: 10.1002/wnan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Micro/nanorobots are being increasingly utilized as new diagnostic and therapeutic platforms in the biomedical field, enabling remote navigation to hard-to-reach tissues and the execution of various medical procedures. Although significant progress has been made in the development of biomedical micro/nanorobots, how to achieve closed-loop control of them from sensing, memory, and precise trajectory planning to feedback to carry out biomedical tasks remains a challenge. Bacteria with self-propulsion and autonomous intelligence properties are well suited to be engineered as microrobots to achieve closed-loop control for biomedical applications. By virtue of synthetic biology, bacterial microrobots possess an expanded genetic toolbox, allowing them to load input sensors to respond or remember external signals. To achieve accurate control in the complex physiological environment, the development of bacterial microrobots should be matched with the corresponding control system design. In this review, a detailed summary of the sensing and control mechanisms of bacterial microrobots is presented. The engineering and applications of bacterial microrobots in the biomedical field are highlighted. Their future directions of bacterial autonomous intelligent microrobots for precision medicine are forecasted.
Collapse
Affiliation(s)
- Haotian Chen
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuantai Sun
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weicheng Gu
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Essington EA, Vezeau GE, Cetnar DP, Grandinette E, Bell TH, Salis HM. An autonomous microbial sensor enables long-term detection of TNT explosive in natural soil. Nat Commun 2024; 15:10471. [PMID: 39622841 PMCID: PMC11612163 DOI: 10.1038/s41467-024-54866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Microbes can be engineered to sense target chemicals for environmental and geospatial detection. However, when engineered microbes operate in real-world environments, it remains unclear how competition with natural microbes affect their performance over long time periods. Here, we engineer sensors and memory-storing genetic circuits inside the soil bacterium Bacillus subtilis to sense the TNT explosive and maintain a long-term response, using predictive models to design riboswitch sensors, tune transcription rates, and improve the genetic circuit's dynamic range. We characterize the autonomous microbial sensor's ability to detect TNT in a natural soil system, measuring single-cell and population-level behavior over a 28-day period. The autonomous microbial sensor activates its response by 14-fold when exposed to low TNT concentrations and maintains stable activation for over 21 days, exhibiting exponential decay dynamics at the population-level with a half-life of about 5 days. Overall, we show that autonomous microbial sensors can carry out long-term detection of an important chemical in natural soil with competitive growth dynamics serving as additional biocontainment.
Collapse
Affiliation(s)
- Erin A Essington
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Grace E Vezeau
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Daniel P Cetnar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Emily Grandinette
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Terrence H Bell
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Canada
| | - Howard M Salis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Birchler JA, Kelly J, Singh J, Liu H, Zhang Z, Char SN, Sharma M, Yang H, Albert PS, Yang B. Synthetic minichromosomes in plants: past, present, and promise. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2356-2366. [PMID: 39546384 DOI: 10.1111/tpj.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
The status of engineered mini-chromosomes/artificial chromosomes/synthetic chromosomes in plants is summarized. Their promise is that they provide a means to accumulate foreign genes on an independent entity other than the normal chromosomes, which would facilitate stacking of novel traits in a way that would not be linked to endogenous genes and that would facilitate transfer between lines. Centromeres in plants are epigenetic, and therefore the isolation of DNA underlying centromeres and reintroduction into plant cells will not establish a functional kinetochore, which obviates this approach for in vitro assembly of plant artificial chromosomes. This issue was bypassed by using telomere-mediated chromosomal truncation to produce mini-chromosomes with little more than an endogenous centromere that could in turn be used as a foundation to build synthetic chromosomes. Site-specific recombinases and various iterations of CRISPR-Cas9 editing provide many tools for the development and re-engineering of synthetic chromosomes.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jacob Kelly
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jasnoor Singh
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Liu
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhengzhi Zhang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Si Nian Char
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Malika Sharma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Bing Yang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
- Donald Danforth Plant Sciences Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
9
|
Flores AI, Liester MB. The Role of Cells in Encoding and Storing Information: A Narrative Review of Cellular Memory. Cureus 2024; 16:e73063. [PMID: 39640131 PMCID: PMC11620785 DOI: 10.7759/cureus.73063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Memory, a fundamental aspect of human cognition and consciousness, is multifaceted and extends beyond traditional conceptualizations of mental recall. This review article explores memory through various lenses, including brain-based, body-based, and cellular mechanisms. At its core, memory involves the encoding, storage, and retrieval of information. Advances in neuroscience reveal that synaptic changes and molecular modifications, particularly in the hippocampus, are crucial for memory consolidation. Additionally, body memory, or somatic memory, highlights how sensory experiences and traumatic events are stored and influence behavior, underscoring the role of implicit memory. Multiple studies have demonstrated that memories can be encoded and stored in cells. Evidence suggests that these memories can then be transferred between individuals through organ transplantation. Additionally, observations in organisms that lack a nervous system, such as bacteria, fungi, and plants, expand traditional memory concepts. This review highlights and compiles novel research from the last few decades that explores information encoding and storage at a cellular level across a wide variety of disciplines. Our aim is to integrate these findings into a cohesive framework that helps explain the role of cellular processes in memory retention and transfer. By compiling research across diverse fields, this review aims to establish a foundation for future investigation into the physiological and psychological significance of cellular memory. Despite substantial progress, critical gaps persist in our understanding of how cellular memory interfaces with neural memory systems and the precise pathways through which information is encoded, stored, retrieved, and transferred at the cellular level. There has been a noticeable lack of research focused on cellular memory, and more rigorous investigations are needed to uncover how cells participate in memory and the extent to which these processes influence human behavior and cognition.
Collapse
Affiliation(s)
- Ana I Flores
- Department of Psychology, University of California San Diego, San Diego, USA
| | - Mitchell B Liester
- Department of Psychiatry, University of Colorado School of Medicine, Colorado Springs, USA
| |
Collapse
|
10
|
Maranas CJ, George W, Scallon SK, VanGilder S, Nemhauser JL, Guiziou S. A history-dependent integrase recorder of plant gene expression with single-cell resolution. Nat Commun 2024; 15:9362. [PMID: 39472426 PMCID: PMC11522408 DOI: 10.1038/s41467-024-53716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
During development, most cells experience a progressive restriction of fate that ultimately results in a fully differentiated mature state. Understanding more about the gene expression patterns that underlie developmental programs can inform engineering efforts for new or optimized forms. Here, we present a four-state integrase-based recorder of gene expression history and demonstrate its use in tracking gene expression events in Arabidopsis thaliana in two developmental contexts: lateral root initiation and stomatal differentiation. The recorder uses two serine integrases to mediate sequential DNA recombination events, resulting in step-wise, history-dependent switching between expression of fluorescent reporters. By using promoters that express at different times along each of the two differentiation pathways to drive integrase expression, we tie fluorescent status to an ordered progression of gene expression along the developmental trajectory. In one snapshot of a mature tissue, our recorder is able to reveal past gene expression with single cell resolution. In this way, we are able to capture heterogeneity in stomatal development, confirming the existence of two alternate paths of differentiation.
Collapse
Affiliation(s)
| | - Wesley George
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sarah K Scallon
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sydney VanGilder
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Sarah Guiziou
- Engineering Biology, Earlham Institute, Norwich, UK.
| |
Collapse
|
11
|
Appleton E, Mehdipour N, Daifuku T, Briers D, Haghighi I, Moret M, Chao G, Wannier T, Chiappino-Pepe A, Huang J, Belta C, Church GM. Algorithms for Autonomous Formation of Multicellular Shapes from Single Cells. ACS Synth Biol 2024; 13:2753-2763. [PMID: 39194023 DOI: 10.1021/acssynbio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Multicellular organisms originate from a single cell, ultimately giving rise to mature organisms of heterogeneous cell type composition in complex structures. Recent work in the areas of stem cell biology and tissue engineering has laid major groundwork in the ability to convert certain types of cells into other types, but there has been limited progress in the ability to control the morphology of cellular masses as they grow. Contemporary approaches to this problem have included the use of artificial scaffolds, 3D bioprinting, and complex media formulations; however, there are no existing approaches to controlling this process purely through genetics and from a single-cell starting point. Here we describe a computer-aided design approach, called CellArchitect, for designing recombinase-based genetic circuits for controlling the formation of multicellular masses into arbitrary shapes in human cells.
Collapse
Affiliation(s)
- Evan Appleton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Noushin Mehdipour
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Tristan Daifuku
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Demarcus Briers
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, United States
| | - Iman Haghighi
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michaël Moret
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - George Chao
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Timothy Wannier
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anush Chiappino-Pepe
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jeremy Huang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Calin Belta
- Department of Systems Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Jang H, Yim SS. Toward DNA-Based Recording of Biological Processes. Int J Mol Sci 2024; 25:9233. [PMID: 39273181 PMCID: PMC11394691 DOI: 10.3390/ijms25179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Exploiting the inherent compatibility of DNA-based data storage with living cells, various cellular recording approaches have been developed for recording and retrieving biologically relevant signals in otherwise inaccessible locations, such as inside the body. This review provides an overview of the current state of engineered cellular memory systems, highlighting their design principles, advantages, and limitations. We examine various technologies, including CRISPR-Cas systems, recombinases, retrons, and DNA methylation, that enable these recording systems. Additionally, we discuss potential strategies for improving recording accuracy, scalability, and durability to address current limitations in the field. This emerging modality of biological measurement will be key to gaining novel insights into diverse biological processes and fostering the development of various biotechnological applications, from environmental sensing to disease monitoring and beyond.
Collapse
Affiliation(s)
- Hyeri Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Hew BE, Gupta S, Sato R, Waller DF, Stoytchev I, Short JE, Sharek L, Tran CT, Badran AH, Owens JB. Directed evolution of hyperactive integrases for site specific insertion of transgenes. Nucleic Acids Res 2024; 52:e64. [PMID: 38953167 DOI: 10.1093/nar/gkae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
The ability to deliver large transgenes to a single genomic sequence with high efficiency would accelerate biomedical interventions. Current methods suffer from low insertion efficiency and most rely on undesired double-strand DNA breaks. Serine integrases catalyze the insertion of large DNA cargos at attachment (att) sites. By targeting att sites to the genome using technologies such as prime editing, integrases can target safe loci while avoiding double-strand breaks. We developed a method of phage-assisted continuous evolution we call IntePACE, that we used to rapidly perform hundreds of rounds of mutagenesis to systematically improve activity of PhiC31 and Bxb1 serine integrases. Novel hyperactive mutants were generated by combining synergistic mutations resulting in integration of a multi-gene cargo at rates as high as 80% of target chromosomes. Hyperactive integrases inserted a 15.7 kb therapeutic DNA cargo containing von Willebrand Factor. This technology could accelerate gene delivery therapeutics and our directed evolution strategy can easily be adapted to improve novel integrases from nature.
Collapse
Affiliation(s)
- Brian E Hew
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Sabranth Gupta
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ryuei Sato
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - David F Waller
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ilko Stoytchev
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - James E Short
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Lisa Sharek
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Christopher T Tran
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| | - Ahmed H Badran
- Department of Chemistry, Department of Integrative Structural and Computational Biology, Beckman Center for Chemical Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jesse B Owens
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96814, USA
| |
Collapse
|
14
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
15
|
Hew BE, Gupta S, Sato R, Waller DF, Stoytchev I, Short JE, Sharek L, Tran CT, Badran AH, Owens JB. Directed evolution of hyperactive integrases for site specific insertion of transgenes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598370. [PMID: 38915697 PMCID: PMC11195097 DOI: 10.1101/2024.06.10.598370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The ability to deliver large transgenes to a single genomic sequence with high efficiency would accelerate biomedical interventions. Current methods suffer from low insertion efficiency and most rely on undesired double-strand DNA breaks. Serine integrases catalyze the insertion of large DNA cargos at attachment (att) sites. By targeting att sites to the genome using technologies such as prime editing, integrases can target safe loci while avoiding double-strand breaks. We developed a method of phage-assisted continuous evolution we call IntePACE, that we used to rapidly perform hundreds of rounds of mutagenesis to systematically improve activity of PhiC31 and Bxb1 serine integrases. Novel hyperactive mutants were generated by combining synergistic mutations resulting in integration of a multi-gene cargo at rates as high as 80% of target chromosomes. Hyperactive integrases inserted a 15.7 kb therapeutic DNA cargo containing Von Willebrand Factor. This technology could accelerate gene delivery therapeutics and our directed evolution strategy can easily be adapted to improve novel integrases from nature.
Collapse
Affiliation(s)
- Brian E. Hew
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - Sabranth Gupta
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - Ryuei Sato
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - David F. Waller
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - Ilko Stoytchev
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - James E. Short
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - Lisa Sharek
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - Christopher T. Tran
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| | - Ahmed H. Badran
- Department of Chemistry, Department of Integrative Structural and Computational Biology, Beckman Center for Chemical Sciences, The Scripps Research Institute, La Jolla, California, 92037 USA
| | - Jesse B. Owens
- Department of Cell and Molecular Biology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, 96814 USA
| |
Collapse
|
16
|
de Oliveira MA, Florentino LH, Sales TT, Lima RN, Barros LRC, Limia CG, Almeida MSM, Robledo ML, Barros LMG, Melo EO, Bittencourt DM, Rehen SK, Bonamino MH, Rech E. Protocol for the establishment of a serine integrase-based platform for functional validation of genetic switch controllers in eukaryotic cells. PLoS One 2024; 19:e0303999. [PMID: 38781126 PMCID: PMC11115199 DOI: 10.1371/journal.pone.0303999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Serine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms. To help expand the number of Ints available for the assembly of more complex multifunctional circuits in eukaryotic cells, this protocol describes a platform for the assembly and functional screening of serine-integrase-based genetic switches designed to control gene expression by directional inversions of DNA sequence orientation. The system consists of two sets of plasmids, an effector module and a reporter module, both sets assembled with regulatory components (as promoter and terminator regions) appropriate for expression in mammals, including humans, and plants. The complete method involves plasmid design, DNA delivery, testing and both molecular and phenotypical assessment of results. This platform presents a suitable workflow for the identification and functional validation of new tools for the genetic regulation and reprogramming of organisms with importance in different fields, from medical applications to crop enhancement, as shown by the initial results obtained. This protocol can be completed in 4 weeks for mammalian cells or up to 8 weeks for plant cells, considering cell culture or plant growth time.
Collapse
Affiliation(s)
- Marco A. de Oliveira
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
| | - Lilian H. Florentino
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Thais T. Sales
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Rayane N. Lima
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Luciana R. C. Barros
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Universidade de São Paulo, São Paulo, Brazil
| | - Cintia G. Limia
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana S. M. Almeida
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Maria L. Robledo
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Leila M. G. Barros
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Eduardo O. Melo
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Daniela M. Bittencourt
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martín H. Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), FIOCRUZ – Oswaldo Cruz Foundation Institute, Rio de Janeiro, Brazil
| | - Elibio Rech
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| |
Collapse
|
17
|
Kalvapalle PB, Sridhar S, Silberg JJ, Stadler LB. Long-duration environmental biosensing by recording analyte detection in DNA using recombinase memory. Appl Environ Microbiol 2024; 90:e0236323. [PMID: 38551351 PMCID: PMC11022584 DOI: 10.1128/aem.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024] Open
Abstract
Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure. These biosensors sense the analyte and trigger the expression of a recombinase enzyme which flips a segment of DNA, creating a genetic memory, and initiates fluorescent protein expression. The initial designs failed over time due to unintended DNA flipping in the absence of the analyte and loss of the flipped state after exposure to the analyte. Biosensor performance was improved by decreasing recombinase expression, removing the fluorescent protein output, and using quantitative PCR to read out stored information. Application of memory biosensors in wastewater isolates achieved memory of analyte exposure in an uncharacterized Pseudomonas isolate. By returning these engineered isolates to their native environments, recombinase-memory systems are expected to enable longer duration and in situ investigation of microbial signaling, cross-feeding, community shifts, and gene transfer beyond the reach of traditional environmental biosensors.IMPORTANCEMicrobes mediate ecological processes over timescales that can far exceed the half-lives of transient metabolites and signals that drive their collective behaviors. We investigated strategies for engineering microbes to stably record their transient exposure to a chemical over many generations through DNA rearrangements. We identify genetic architectures that improve memory biosensor performance and characterize these in wastewater isolates. Memory biosensors are expected to be useful for monitoring cell-cell signals in biofilms, detecting transient exposure to chemical pollutants, and observing microbial cross-feeding through short-lived metabolites within cryptic methane, nitrogen, and sulfur cycling processes. They will also enable in situ studies of microbial responses to ephemeral environmental changes, or other ecological processes that are currently challenging to monitor non-destructively using real-time biosensors and analytical instruments.
Collapse
Affiliation(s)
| | - Swetha Sridhar
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
18
|
Huang BD, Kim D, Yu Y, Wilson CJ. Engineering intelligent chassis cells via recombinase-based MEMORY circuits. Nat Commun 2024; 15:2418. [PMID: 38499601 PMCID: PMC10948884 DOI: 10.1038/s41467-024-46755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Synthetic biologists seek to engineer intelligent living systems capable of decision-making, communication, and memory. Separate technologies exist for each tenet of intelligence; however, the unification of all three properties in a living system has not been achieved. Here, we engineer completely intelligent Escherichia coli strains that harbor six orthogonal and inducible genome-integrated recombinases, forming Molecularly Encoded Memory via an Orthogonal Recombinase arraY (MEMORY). MEMORY chassis cells facilitate intelligence via the discrete multi-input regulation of recombinase functions enabling inheritable DNA inversions, deletions, and genomic insertions. MEMORY cells can achieve programmable and permanent gain (or loss) of functions extrachromosomally or from a specific genomic locus, without the loss or modification of the MEMORY platform - enabling the sequential programming and reprogramming of DNA circuits within the cell. We demonstrate all three tenets of intelligence via a probiotic (Nissle 1917) MEMORY strain capable of information exchange with the gastrointestinal commensal Bacteroides thetaiotaomicron.
Collapse
Affiliation(s)
- Brian D Huang
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia
| | - Dowan Kim
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia
| | - Yongjoon Yu
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA, 30332-0100, Georgia.
| |
Collapse
|
19
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Hong J, Sohn KC, Park HW, Jeon H, Ju E, Lee JG, Lee JS, Rho J, Hur GM, Ro H. All-in-one IQ toggle switches with high versatilities for fine-tuning of transgene expression in mammalian cells and tissues. Mol Ther Methods Clin Dev 2024; 32:101202. [PMID: 38374964 PMCID: PMC10875299 DOI: 10.1016/j.omtm.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
The transgene toggling device is recognized as a powerful tool for gene- and cell-based biological research and precision medicine. However, many of these devices often operate in binary mode, exhibit unacceptable leakiness, suffer from transgene silencing, show cytotoxicity, and have low potency. Here, we present a novel transgene switch, SIQ, wherein all the elements for gene toggling are packed into a single vector. SIQ has superior potency in inducing transgene expression in response to tebufenozide compared with the Gal4/UAS system, while completely avoiding transgene leakiness. Additionally, the ease and versatility of SIQ make it possible with a single construct to perform transient transfection, establish stable cell lines by targeting a predetermined genomic locus, and simultaneously produce adenovirus for transduction into cells and mammalian tissues. Furthermore, we integrated a cumate switch into SIQ, called SIQmate, to operate a Boolean AND logic gate, enabling swift toggling-off of the transgene after the removal of chemical inducers, tebufenozide and cumate. Both SIQ and SIQmate offer precise transgene toggling, making them adjustable for various researches, including synthetic biology, genome engineering, and therapeutics.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Kyung-Cheol Sohn
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hye-Won Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Eunjin Ju
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Jae-Geun Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| |
Collapse
|
21
|
Glass DS, Bren A, Vaisbourd E, Mayo A, Alon U. A synthetic differentiation circuit in Escherichia coli for suppressing mutant takeover. Cell 2024; 187:931-944.e12. [PMID: 38320549 PMCID: PMC10882425 DOI: 10.1016/j.cell.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.
Collapse
Affiliation(s)
- David S Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anat Bren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elizabeth Vaisbourd
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
22
|
Ngo HTT, Nguyen DH, You SH, Van Nguyen K, Kim SY, Hong Y, Min JJ. Reprogramming a Doxycycline-Inducible Gene Switch System for Bacteria-Mediated Cancer Therapy. Mol Imaging Biol 2024; 26:148-161. [PMID: 38017353 DOI: 10.1007/s11307-023-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE Attenuated Salmonella typhimurium is a potential biotherapeutic antitumor agent because it can colonize tumors and inhibit their growth. The present study aimed to develop a doxycycline (Doxy)-inducible gene switch system in attenuated S. typhimurium and assess its therapeutic efficacy in various tumor-bearing mice models. PROCEDURES A Doxy-inducible gene switch system comprising two plasmids was engineered to trigger the expression of cargo genes (Rluc8 and clyA). Attenuated S. typhimurium carrying Rluc8 were injected intravenously into BALB/c mice bearing CT26 tumors, and bioluminescence images were captured at specified intervals post-administration of doxycycline. The tumor-suppressive effects of bacteria carrying clyA were evaluated in BALB/c mice bearing CT26 tumors and in C57BL/6 mice bearing MC38 tumors. RESULTS Expression of the fimE gene, induced only in the presence of Doxy, triggered a unidirectional switch of the POXB20 promoter to induce expression of the cargo genes. The switch event was maintained over a long period of bacterial culture. After intravenous injection of transformed Salmonella into mice bearing CT26 tumors, the bacteria transformed with the Doxy-inducible gene switch system for Rluc8 targeted only tumor tissues and expressed the payloads 2 days after Doxy treatment. Notably, bacteria carrying the Doxy-inducible gene switch system for clyA effectively suppressed tumor growth and prolonged survival, even after just one Doxy induction. CONCLUSIONS These results suggest that attenuated S. typhimurium carrying this novel gene switch system elicited significant therapeutic effects through a single induction triggering and were a potential biotherapeutic agent for tumor therapy.
Collapse
Affiliation(s)
- Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, No 1, Ton That Tung St., Dong Da, Hanoi, 100000, Vietnam
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Biotech, Hwasun, 58128, Republic of Korea
| | - Yeongjin Hong
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Biotech, Hwasun, 58128, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
23
|
Wang S, Mao X, Wang F, Zuo X, Fan C. Data Storage Using DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307499. [PMID: 37800877 DOI: 10.1002/adma.202307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.
Collapse
Affiliation(s)
- Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Nou XA, Voigt CA. Sentinel cells programmed to respond to environmental DNA including human sequences. Nat Chem Biol 2024; 20:211-220. [PMID: 37770697 DOI: 10.1038/s41589-023-01431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
Monitoring environmental DNA can track the presence of organisms, from viruses to animals, but requires continuous sampling of transient sequences from a complex milieu. Here we designed living sentinels using Bacillus subtilis to report the uptake of a DNA sequence after matching it to a preencoded target. Overexpression of ComK increased DNA uptake 3,000-fold, allowing for femtomolar detection in samples dominated by background DNA. This capability was demonstrated using human sequences containing single-nucleotide polymorphisms (SNPs) associated with facial features. Sequences were recorded with high efficiency and were protected from nucleases for weeks. The SNP could be determined by sequencing or in vivo using CRISPR interference to turn on reporter expression in response to a specific base. Multiple SNPs were recorded by one cell or through a consortium in which each member recorded a different sequence. Sentinel cells could surveil for specific sequences over long periods of time for applications spanning forensics, ecology and epidemiology.
Collapse
Affiliation(s)
- Xuefei Angelina Nou
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
25
|
Gao Y, Wang L, Wang B. Customizing cellular signal processing by synthetic multi-level regulatory circuits. Nat Commun 2023; 14:8415. [PMID: 38110405 PMCID: PMC10728147 DOI: 10.1038/s41467-023-44256-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
As synthetic biology permeates society, the signal processing circuits in engineered living systems must be customized to meet practical demands. Towards this mission, novel regulatory mechanisms and genetic circuits with unprecedented complexity have been implemented over the past decade. These regulatory mechanisms, such as transcription and translation control, could be integrated into hybrid circuits termed "multi-level circuits". The multi-level circuit design will tremendously benefit the current genetic circuit design paradigm, from modifying basic circuit dynamics to facilitating real-world applications, unleashing our capabilities to customize cellular signal processing and address global challenges through synthetic biology.
Collapse
Affiliation(s)
- Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Lei Wang
- Center of Synthetic Biology and Integrated Bioengineering & School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou, 311100, China.
| |
Collapse
|
26
|
Franco RAL, Brenner G, Zocca VFB, de Paiva GB, Lima RN, Rech EL, Amaral DT, Lins MRCR, Pedrolli DB. Signal Amplification for Cell-Free Biosensors, an Analog-to-Digital Converter. ACS Synth Biol 2023; 12:2819-2826. [PMID: 37792474 DOI: 10.1021/acssynbio.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Toehold switches are biosensors useful for the detection of endogenous and environmental RNAs. They have been successfully engineered to detect virus RNAs in cell-free gene expression reactions. Their inherent sequence programmability makes engineering a fast and predictable process. Despite improvements in the design, toehold switches suffer from leaky translation in the OFF state, which compromises the fold change and sensitivity of the biosensor. To address this, we constructed and tested signal amplification circuits for three toehold switches triggered by Dengue and SARS-CoV-2 RNAs and an artificial RNA. The serine integrase circuit efficiently contained leakage, boosted the expression fold change from OFF to ON, and decreased the detection limit of the switches by 3-4 orders of magnitude. Ultimately, the integrase circuit converted the analog switches' signals into digital-like output. The circuit is broadly useful for biosensors and eliminates the hard work of designing and testing multiple switches to find the best possible performer.
Collapse
Affiliation(s)
- Rafael A L Franco
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Gabriel Brenner
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Vitória F B Zocca
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Gabriela B de Paiva
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Rayane N Lima
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology - Synthetic Biology, 70770-917 Brasília, Brazil
| | - Elibio L Rech
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology - Synthetic Biology, 70770-917 Brasília, Brazil
| | - Danilo T Amaral
- Federal University of ABC (UFABC), Center for Natural and Human Sciences, Campus Santo André, Avenida dos Estados 5001, 09210-580 Santo André, Brazil
| | - Milca R C R Lins
- Federal University of ABC (UFABC), Center for Natural and Human Sciences, Campus Santo André, Avenida dos Estados 5001, 09210-580 Santo André, Brazil
| | - Danielle B Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| |
Collapse
|
27
|
Short AE, Kim D, Milner PT, Wilson CJ. Next generation synthetic memory via intercepting recombinase function. Nat Commun 2023; 14:5255. [PMID: 37644045 PMCID: PMC10465543 DOI: 10.1038/s41467-023-41043-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Here we present a technology to facilitate synthetic memory in a living system via repurposing Transcriptional Programming (i.e., our decision-making technology) parts, to regulate (intercept) recombinase function post-translation. We show that interception synthetic memory can facilitate programmable loss-of-function via site-specific deletion, programmable gain-of-function by way of site-specific inversion, and synthetic memory operations with nested Boolean logical operations. We can expand interception synthetic memory capacity more than 5-fold for a single recombinase, with reconfiguration specificity for multiple sites in parallel. Interception synthetic memory is ~10-times faster than previous generations of recombinase-based memory. We posit that the faster recombination speed of our next-generation memory technology is due to the post-translational regulation of recombinase function. This iteration of synthetic memory is complementary to decision-making via Transcriptional Programming - thus can be used to develop intelligent synthetic biological systems for myriad applications.
Collapse
Affiliation(s)
- Andrew E Short
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA
| | - Dowan Kim
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA
| | - Prasaad T Milner
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, GA, USA.
| |
Collapse
|
28
|
Lim CK, Yeoh JW, Kunartama AA, Yew WS, Poh CL. A biological camera that captures and stores images directly into DNA. Nat Commun 2023; 14:3921. [PMID: 37400476 DOI: 10.1038/s41467-023-38876-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2023] [Indexed: 07/05/2023] Open
Abstract
The increasing integration between biological and digital interfaces has led to heightened interest in utilizing biological materials to store digital data, with the most promising one involving the storage of data within defined sequences of DNA that are created by de novo DNA synthesis. However, there is a lack of methods that can obviate the need for de novo DNA synthesis, which tends to be costly and inefficient. Here, in this work, we detail a method of capturing 2-dimensional light patterns into DNA, by utilizing optogenetic circuits to record light exposure into DNA, encoding spatial locations with barcoding, and retrieving stored images via high-throughput next-generation sequencing. We demonstrate the encoding of multiple images into DNA, totaling 1152 bits, selective image retrieval, as well as robustness to drying, heat and UV. We also demonstrate successful multiplexing using multiple wavelengths of light, capturing 2 different images simultaneously using red and blue light. This work thus establishes a 'living digital camera', paving the way towards integrating biological systems with digital devices.
Collapse
Affiliation(s)
- Cheng Kai Lim
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Jing Wui Yeoh
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Aurelius Andrew Kunartama
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Chueh Loo Poh
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Triassi AJ, Fields BD, Monahan CE, Means JM, Park Y, Doosthosseini H, Padmakumar JP, Isabella VM, Voigt CA. Redesign of an Escherichia coli Nissle treatment for phenylketonuria using insulated genomic landing pads and genetic circuits to reduce burden. Cell Syst 2023; 14:512-524.e12. [PMID: 37348465 DOI: 10.1016/j.cels.2023.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
To build therapeutic strains, Escherichia coli Nissle (EcN) have been engineered to express antibiotics, toxin-degrading enzymes, immunoregulators, and anti-cancer chemotherapies. For efficacy, the recombinant genes need to be highly expressed, but this imposes a burden on the cell, and plasmids are difficult to maintain in the body. To address these problems, we have developed landing pads in the EcN genome and genetic circuits to control therapeutic gene expression. These tools were applied to EcN SYNB1618, undergoing clinical trials as a phenylketonuria treatment. The pathway for converting phenylalanine to trans-cinnamic acid was moved to a landing pad under the control of a circuit that keeps the pathway off during storage. The resulting strain (EcN SYN8784) achieved higher activity than EcN SYNB1618, reaching levels near when the pathway is carried on a plasmid. This work demonstrates a simple system for engineering EcN that aids quantitative strain design for therapeutics.
Collapse
Affiliation(s)
- Alexander J Triassi
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brandon D Fields
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Yongjin Park
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hamid Doosthosseini
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jai P Padmakumar
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Lear SK, Lopez SC, González-Delgado A, Bhattarai-Kline S, Shipman SL. Temporally resolved transcriptional recording in E. coli DNA using a Retro-Cascorder. Nat Protoc 2023; 18:1866-1892. [PMID: 37059915 PMCID: PMC10631475 DOI: 10.1038/s41596-023-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
Biological signals occur over time in living cells. Yet most current approaches to interrogate biology, particularly gene expression, use destructive techniques that quantify signals only at a single point in time. A recent technological advance, termed the Retro-Cascorder, overcomes this limitation by molecularly logging a record of gene expression events in a temporally organized genomic ledger. The Retro-Cascorder works by converting a transcriptional event into a DNA barcode using a retron reverse transcriptase and then storing that event in a unidirectionally expanding clustered regularly interspaced short palindromic repeats (CRISPR) array via acquisition by CRISPR-Cas integrases. This CRISPR array-based ledger of gene expression can be retrieved at a later point in time by sequencing. Here we describe an implementation of the Retro-Cascorder in which the relative timing of transcriptional events from multiple promoters of interest is recorded chronologically in Escherichia coli populations over multiple days. We detail the molecular components required for this technology, provide a step-by-step guide to generate the recording and retrieve the data by Illumina sequencing, and give instructions for how to use custom software to infer the relative transcriptional timing from the sequencing data. The example recording is generated in 2 d, preparation of sequencing libraries and sequencing can be accomplished in 2-3 d, and analysis of data takes up to several hours. This protocol can be implemented by someone familiar with basic bacterial culture, molecular biology and bioinformatics. Analysis can be minimally run on a personal computer.
Collapse
Affiliation(s)
- Sierra K Lear
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCSF-UCB Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Santiago C Lopez
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCSF-UCB Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | | | - Santi Bhattarai-Kline
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
31
|
Chen S, Chen X, Su H, Guo M, Liu H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int J Mol Sci 2023; 24:ijms24097989. [PMID: 37175695 PMCID: PMC10178329 DOI: 10.3390/ijms24097989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A whole-cell biosensor based on synthetic biology provides a promising new method for the on-site detection of food contaminants. The basic components of whole-cell biosensors include the sensing elements, such as transcription factors and riboswitches, and reporting elements, such as fluorescence, gas, etc. The sensing and reporting elements are coupled through gene expression regulation to form a simple gene circuit for the detection of target substances. Additionally, a more complex gene circuit can involve other functional elements or modules such as signal amplification, multiple detection, and delay reporting. With the help of synthetic biology, whole-cell biosensors are becoming more versatile and integrated, that is, integrating pre-detection sample processing, detection processes, and post-detection signal calculation and storage processes into cells. Due to the relative stability of the intracellular environment, whole-cell biosensors are highly resistant to interference without the need of complex sample preprocessing. Due to the reproduction of chassis cells, whole-cell biosensors replicate all elements automatically without the need for purification processing. Therefore, whole-cell biosensors are easy to operate and simple to produce. Based on the above advantages, whole-cell biosensors are more suitable for on-site detection than other rapid detection methods. Whole-cell biosensors have been applied in various forms such as test strips and kits, with the latest reported forms being wearable devices such as masks, hand rings, and clothing. This paper examines the composition, construction methods, and types of the fundamental components of synthetic biological whole-cell biosensors. We also introduce the prospect and development trend of whole-cell biosensors in commercial applications.
Collapse
Affiliation(s)
- Shijing Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiaolin Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Mingzhang Guo
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
32
|
Marken JP, Murray RM. Addressable and adaptable intercellular communication via DNA messaging. Nat Commun 2023; 14:2358. [PMID: 37095088 PMCID: PMC10126159 DOI: 10.1038/s41467-023-37788-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Engineered consortia are a major research focus for synthetic biologists because they can implement sophisticated behaviors inaccessible to single-strain systems. However, this functional capacity is constrained by their constituent strains' ability to engage in complex communication. DNA messaging, by enabling information-rich channel-decoupled communication, is a promising candidate architecture for implementing complex communication. But its major advantage, its messages' dynamic mutability, is still unexplored. We develop a framework for addressable and adaptable DNA messaging that leverages all three of these advantages and implement it using plasmid conjugation in E. coli. Our system can bias the transfer of messages to targeted receiver strains by 100- to 1000-fold, and their recipient lists can be dynamically updated in situ to control the flow of information through the population. This work lays the foundation for future developments that further utilize the unique advantages of DNA messaging to engineer previously-inaccessible levels of complexity into biological systems.
Collapse
Affiliation(s)
- John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
33
|
Avidan N, Levy M, Daube SS, Bar-Ziv RH. Toward Memory in a DNA Brush: Site-Specific Recombination Responsive to Polymer Density, Orientation, and Conformation. J Am Chem Soc 2023; 145:9729-9736. [PMID: 37071757 PMCID: PMC10161217 DOI: 10.1021/jacs.3c01375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Site-specific recombination is a cellular process for the integration, inversion, and excision of DNA segments that could be tailored for memory transactions in artificial cells. Here, we demonstrate the compartmentalization of cascaded gene expression reactions in a DNA brush, starting from the cell-free synthesis of a unidirectional recombinase that exchanges information between two DNA molecules, leading to gene expression turn-on/turn-off. We show that recombination yield in the DNA brush was responsive to gene composition, density, and orientation, with kinetics faster than in a homogeneous dilute bulk solution reaction. Recombination yield scaled with a power law greater than 1 with respect to the fraction of recombining DNA polymers in a dense brush. The exponent approached either 1 or 2, depending on the intermolecular distance in the brush and the position of the recombination site along the DNA contour length, suggesting that a restricted-reach effect between the recombination sites governs the recombination yield. We further demonstrate the ability to encode the DNA recombinase in the same DNA brush with its substrate constructs, enabling multiple spatially resolved orthogonal recombination transactions within a common reaction volume. Our results highlight the DNA brush as a favorable compartment to study DNA recombination, with unique properties for encoding autonomous memory transactions in DNA-based artificial cells.
Collapse
Affiliation(s)
- Noa Avidan
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Levy
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shirley S Daube
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roy H Bar-Ziv
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
34
|
Durrant MG, Fanton A, Tycko J, Hinks M, Chandrasekaran SS, Perry NT, Schaepe J, Du PP, Lotfy P, Bassik MC, Bintu L, Bhatt AS, Hsu PD. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat Biotechnol 2023; 41:488-499. [PMID: 36217031 PMCID: PMC10083194 DOI: 10.1038/s41587-022-01494-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities. We tested their recombination activity in human cells, classifying them as landing pad, genome-targeting or multi-targeting LSRs. Overall, we achieved up to seven-fold higher recombination than Bxb1 and genome integration efficiencies of 40-75% with cargo sizes over 7 kb. We also demonstrate virus-free, direct integration of plasmid or amplicon libraries for improved functional genomics applications. This systematic discovery of recombinases directly from microbial sequencing data provides a resource of over 60 LSRs experimentally characterized in human cells for large-payload genome insertion without exposed DNA double-stranded breaks.
Collapse
Affiliation(s)
- Matthew G Durrant
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alison Fanton
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michaela Hinks
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sita S Chandrasekaran
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Nicholas T Perry
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Julia Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter Lotfy
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA.
| | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
35
|
Sun F, Dong Y, Ni M, Ping Z, Sun Y, Ouyang Q, Qian L. Mobile and Self-Sustained Data Storage in an Extremophile Genomic DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206201. [PMID: 36737843 PMCID: PMC10074078 DOI: 10.1002/advs.202206201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
DNA has been pursued as a novel biomaterial for digital data storage. While large-scale data storage and random access have been achieved in DNA oligonucleotide pools, repeated data accessing requires constant data replenishment, and these implementations are confined in professional facilities. Here, a mobile data storage system in the genome of the extremophile Halomonas bluephagenesis, which enables dual-mode storage, dynamic data maintenance, rapid readout, and robust recovery. The system relies on two key components: A versatile genetic toolbox for the integration of 10-100 kb scale synthetic DNA into H. bluephagenesis genome and an efficient error correction coding scheme targeting noisy nanopore sequencing reads. The storage and repeated retrieval of 5 KB data under non-laboratory conditions are demonstrated. The work highlights the potential of DNA data storage in domestic and field scenarios, and expands its application domain from archival data to frequently accessed data.
Collapse
Affiliation(s)
- Fajia Sun
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Yiming Dong
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Ming Ni
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Zhi Ping
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Yuhui Sun
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Qi Ouyang
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Long Qian
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| |
Collapse
|
36
|
Elmore JR, Dexter GN, Baldino H, Huenemann JD, Francis R, Peabody GL, Martinez-Baird J, Riley LA, Simmons T, Coleman-Derr D, Guss AM, Egbert RG. High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration. SCIENCE ADVANCES 2023; 9:eade1285. [PMID: 36897939 PMCID: PMC10005180 DOI: 10.1126/sciadv.ade1285] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/01/2023] [Indexed: 05/31/2023]
Abstract
Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.
Collapse
Affiliation(s)
- Joshua R. Elmore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gara N. Dexter
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Henri Baldino
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jay D. Huenemann
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Ryan Francis
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Jessica Martinez-Baird
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Lauren A. Riley
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN 37996,USA
| | - Tuesday Simmons
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
| | - Devin Coleman-Derr
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94701, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA
| | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Robert G. Egbert
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
37
|
Abioye J, Lawson-Williams M, Lecanda A, Calhoon B, McQue AL, Colloms SD, Stark WM, Olorunniji FJ. High fidelity one-pot DNA assembly using orthogonal serine integrases. Biotechnol J 2023; 18:e2200411. [PMID: 36504358 DOI: 10.1002/biot.202200411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Large serine integrases (LSIs, derived from temperate phages) have been adapted for use in a multipart DNA assembly process in vitro, called serine integrase recombinational assembly (SIRA). The versatility, efficiency, and fidelity of SIRA is limited by lack of a sufficient number of LSIs whose activities have been characterized in vitro. METHODS AND MAJOR RESULTS In this report, we compared the activities in vitro of 10 orthogonal LSIs to explore their suitability for multiplex SIRA reactions. We found that Bxb1, ϕR4, and TG1 integrases were the most active among the set we studied, but several others were also usable. As proof of principle, we demonstrated high-efficiency one-pot assembly of six DNA fragments (made by PCR) into a 7.5 kb plasmid that expresses the enzymes of the β-carotenoid pathway in Escherichia coli, using six different LSIs. We further showed that a combined approach using a few highly active LSIs, each acting on multiple pairs of att sites with distinct central dinucleotides, can be used to scale up "poly-part" gene assembly and editing. CONCLUSIONS AND IMPLICATIONS We conclude that use of multiple orthogonal integrases may be the most predictable, efficient, and programmable approach for SIRA and other in vitro applications.
Collapse
Affiliation(s)
- Jumai Abioye
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Makeba Lawson-Williams
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Alicia Lecanda
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Brecken Calhoon
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Arlene L McQue
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Sean D Colloms
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Femi J Olorunniji
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
38
|
Lear SK, Shipman SL. Molecular recording: transcriptional data collection into the genome. Curr Opin Biotechnol 2023; 79:102855. [PMID: 36481341 PMCID: PMC10547096 DOI: 10.1016/j.copbio.2022.102855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Advances in regenerative medicine depend upon understanding the complex transcriptional choreography that guides cellular development. Transcriptional molecular recorders, tools that record different transcriptional events into the genome of cells, hold promise to elucidate both the intensity and timing of transcriptional activity at single-cell resolution without requiring destructive multitime point assays. These technologies are dependent on DNA writers, which translate transcriptional signals into stable genomic mutations that encode the duration, intensity, and order of transcriptional events. In this review, we highlight recent progress toward more informative and multiplexable transcriptional recording through the use of three different types of DNA writing - recombineering, Cas1-Cas2 acquisition, and prime editing - and the architecture of the genomic data generated.
Collapse
Affiliation(s)
- Sierra K Lear
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, CA, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
39
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
40
|
Zúñiga A, Bonnet J, Guiziou S. Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications. Methods Mol Biol 2023; 2553:155-171. [PMID: 36227543 DOI: 10.1007/978-1-0716-2617-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synthetic biology aims at engineering new biological systems and functions that can be used to provide new technological solutions to worldwide challenges. Detection and processing of multiple signals are crucial for many synthetic biology applications. A variety of logic circuits operating in living cells have been implemented. One particular class of logic circuits uses site-specific recombinases mediating specific DNA inversion or excision. Recombinase logic offers many interesting features, including single-layer architectures, memory, low metabolic footprint, and portability in many species. Here, we present two automated design strategies for both Boolean and history-dependent recombinase-based logic circuits. One approach is based on the distribution of computation within multicellular consortia, and the other is a single-cell design. Both are complementary and adapted for non-expert users via a web design interface, called CALIN and RECOMBINATOR, for multicellular and single-cell design strategies, respectively. In this book chapter, we are guiding the reader step by step through recombinase logic circuit design, from selecting the design strategy fitting to their final system of interest to obtaining the final design using one of our design web interfaces.
Collapse
Affiliation(s)
- Ana Zúñiga
- Centre de Biologie Structurale (CBS), Univ. Montpellier, INSERM U1054, CNRS UMR5048, Montpellier, France
| | - Jérôme Bonnet
- Centre de Biologie Structurale (CBS), Univ. Montpellier, INSERM U1054, CNRS UMR5048, Montpellier, France
| | - Sarah Guiziou
- Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Hamidi Nia L, Claesen J. Engineered Cancer Targeting Microbes and Encapsulation Devices for Human Gut Microbiome Applications. Biochemistry 2022; 61:2841-2848. [PMID: 35868631 PMCID: PMC9785036 DOI: 10.1021/acs.biochem.2c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Indexed: 12/26/2022]
Abstract
The gut microbiota produce specialized metabolites that are important for maintaining host health homeostasis. Hence, unstable production of these metabolites can contribute to diseases such as inflammatory bowel disease and colon cancer. While fecal transplantation or dietary modification approaches can be used to correct the gut microbial community's metabolic output, this Perspective focuses on the use of engineered bacteria. We highlight recent advances in bacterial synthetic biology approaches for the treatment of colorectal cancer and systemic tumors and discuss the functionality and biochemical properties of novel containment approaches using hydrogel-based and electronic devices. Synthetic circuitry refinement and incorporation of novel functional modules have enabled more targeted detection of colonic tumors and delivery of anticancer compounds inside the gastrointestinal (GI) tract, as well as the design of tumor-homing bacteria capable of recruiting infiltrating T cells. Engineering challenges in these applications include the stability of the genetic circuits, long-term engraftment of the chosen chassis, and containment of the synthetic microbes' activity to the diseased tissues. Hydrogels are well-suited to the encapsulationo of living organisms due to their matrix structure and tunable porosity. The matrix structure allows a dried hydrogel to collect and contain GI contents. Engineered bacteria that sense GI tract inflammation or tumors and release bioactive metabolites to the targeted area can be encapsulated. Electronic devices can be enabled with additional measuring and data processing capabilities. We expect that engineered devices will become more important in the containment and delivery of synthetic microbes for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Layan Hamidi Nia
- Department
of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, United States
- Department
of Biomedical Engineering, Cleveland State
University, Cleveland, Ohio 44115, United
States
| | - Jan Claesen
- Department
of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, United States
- Center
for Microbiome and Human Health, Lerner
Research Institute of the Cleveland Clinic, Cleveland, Ohio 44195, United States
- Department
of Molecular Medicine, Cleveland Clinic
Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, United States
| |
Collapse
|
42
|
Doricchi A, Platnich CM, Gimpel A, Horn F, Earle M, Lanzavecchia G, Cortajarena AL, Liz-Marzán LM, Liu N, Heckel R, Grass RN, Krahne R, Keyser UF, Garoli D. Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS NANO 2022; 16:17552-17571. [PMID: 36256971 PMCID: PMC9706676 DOI: 10.1021/acsnano.2c06748] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the total amount of worldwide data skyrocketing, the global data storage demand is predicted to grow to 1.75 × 1014 GB by 2025. Traditional storage methods have difficulties keeping pace given that current storage media have a maximum density of 103 GB/mm3. As such, data production will far exceed the capacity of currently available storage methods. The costs of maintaining and transferring data, as well as the limited lifespans and significant data losses associated with current technologies also demand advanced solutions for information storage. Nature offers a powerful alternative through the storage of information that defines living organisms in unique orders of four bases (A, T, C, G) located in molecules called deoxyribonucleic acid (DNA). DNA molecules as information carriers have many advantages over traditional storage media. Their high storage density, potentially low maintenance cost, ease of synthesis, and chemical modification make them an ideal alternative for information storage. To this end, rapid progress has been made over the past decade by exploiting user-defined DNA materials to encode information. In this review, we discuss the most recent advances of DNA-based data storage with a major focus on the challenges that remain in this promising field, including the current intrinsic low speed in data writing and reading and the high cost per byte stored. Alternatively, data storage relying on DNA nanostructures (as opposed to DNA sequence) as well as on other combinations of nanomaterials and biomolecules are proposed with promising technological and economic advantages. In summarizing the advances that have been made and underlining the challenges that remain, we provide a roadmap for the ongoing research in this rapidly growing field, which will enable the development of technological solutions to the global demand for superior storage methodologies.
Collapse
Affiliation(s)
- Andrea Doricchi
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, via Dodecaneso
31, 16146 Genova, Italy
| | - Casey M. Platnich
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Andreas Gimpel
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Friederikee Horn
- Technical
University of Munich, Department of Electrical
and Computer Engineering Munchen, Bayern, DE 80333, Germany
| | - Max Earle
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - German Lanzavecchia
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Dipartimento
di Fisica, Università di Genova, via Dodecaneso 33, 16146 Genova, Italy
| | - Aitziber L. Cortajarena
- Center
for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5. Pabellón 11.
Planta 0, 28029 Madrid, Spain
| | - Na Liu
- Second
Physics Institute, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Reinhard Heckel
- Technical
University of Munich, Department of Electrical
and Computer Engineering Munchen, Bayern, DE 80333, Germany
| | - Robert N. Grass
- Institute
for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Ulrich F. Keyser
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
43
|
Huang Y, Lin X, Yu S, Chen R, Chen W. Intestinal Engineered Probiotics as Living Therapeutics: Chassis Selection, Colonization Enhancement, Gene Circuit Design, and Biocontainment. ACS Synth Biol 2022; 11:3134-3153. [PMID: 36094344 DOI: 10.1021/acssynbio.2c00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intestinal probiotics are often used for the in situ treatment of diseases, such as metabolic disorders, tumors, and chronic inflammatory infections. Recently, there has been an increased emphasis on intelligent, customized treatments with a focus on long-term efficacy; however, traditional probiotic therapy has not kept up with this trend. The use of synthetic biology to construct gut-engineered probiotics as live therapeutics is a promising avenue in the treatment of specific diseases, such as phenylketonuria and inflammatory bowel disease. These studies generally involve a series of fundamental design issues: choosing an engineered chassis, improving the colonization ability of engineered probiotics, designing functional gene circuits, and ensuring the safety of engineered probiotics. In this review, we summarize the relevant past research, the progress of current research, and discuss the key issues that restrict the widespread application of intestinal engineered probiotic living therapeutics.
Collapse
Affiliation(s)
- Yan Huang
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Lin
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Siyang Yu
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruiyue Chen
- Team SZU-China at iGEM 2021, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Weizhao Chen
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory for Microbial Gene Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
44
|
Abstract
AbstractComputational properties of neuronal networks have been applied to computing systems using simplified models comprising repeated connected nodes, e.g., perceptrons, with decision-making capabilities and flexible weighted links. Analogously to their revolutionary impact on computing, neuro-inspired models can transform synthetic gene circuit design in a manner that is reliable, efficient in resource utilization, and readily reconfigurable for different tasks. To this end, we introduce the perceptgene, a perceptron that computes in the logarithmic domain, which enables efficient implementation of artificial neural networks in Escherichia coli cells. We successfully modify perceptgene parameters to create devices that encode a minimum, maximum, and average of analog inputs. With these devices, we create multi-layer perceptgene circuits that compute a soft majority function, perform an analog-to-digital conversion, and implement a ternary switch. We also create a programmable perceptgene circuit whose computation can be modified from OR to AND logic using small molecule induction. Finally, we show that our approach enables circuit optimization via artificial intelligence algorithms.
Collapse
|
45
|
Robinson CM, Short NE, Riglar DT. Achieving spatially precise diagnosis and therapy in the mammalian gut using synthetic microbial gene circuits. Front Bioeng Biotechnol 2022; 10:959441. [PMID: 36118573 PMCID: PMC9478464 DOI: 10.3389/fbioe.2022.959441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian gut and its microbiome form a temporally dynamic and spatially heterogeneous environment. The inaccessibility of the gut and the spatially restricted nature of many gut diseases translate into difficulties in diagnosis and therapy for which novel tools are needed. Engineered bacterial whole-cell biosensors and therapeutics have shown early promise at addressing these challenges. Natural and engineered sensing systems can be repurposed in synthetic genetic circuits to detect spatially specific biomarkers during health and disease. Heat, light, and magnetic signals can also activate gene circuit function with externally directed spatial precision. The resulting engineered bacteria can report on conditions in situ within the complex gut environment or produce biotherapeutics that specifically target host or microbiome activity. Here, we review the current approaches to engineering spatial precision for in vivo bacterial diagnostics and therapeutics using synthetic circuits, and the challenges and opportunities this technology presents.
Collapse
Affiliation(s)
| | | | - David T. Riglar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Bhattarai-Kline S, Lear SK, Fishman CB, Lopez SC, Lockshin ER, Schubert MG, Nivala J, Church GM, Shipman SL. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 2022; 608:217-225. [PMID: 35896746 PMCID: PMC9357182 DOI: 10.1038/s41586-022-04994-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/17/2022] [Indexed: 02/03/2023]
Abstract
Biological processes depend on the differential expression of genes over time, but methods to make physical recordings of these processes are limited. Here we report a molecular system for making time-ordered recordings of transcriptional events into living genomes. We do this through engineered RNA barcodes, based on prokaryotic retrons1, that are reverse transcribed into DNA and integrated into the genome using the CRISPR-Cas system2. The unidirectional integration of barcodes by CRISPR integrases enables reconstruction of transcriptional event timing based on a physical record through simple, logical rules rather than relying on pretrained classifiers or post hoc inferential methods. For disambiguation in the field, we will refer to this system as a Retro-Cascorder.
Collapse
Affiliation(s)
| | - Sierra K Lear
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, San Francisco, CA, USA
| | - Chloe B Fishman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Santiago C Lopez
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, San Francisco, CA, USA
| | - Elana R Lockshin
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Max G Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Zhang Q, Azarin SM, Sarkar CA. Model-guided engineering of DNA sequences with predictable site-specific recombination rates. Nat Commun 2022; 13:4152. [PMID: 35858965 PMCID: PMC9300676 DOI: 10.1038/s41467-022-31538-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Site-specific recombination (SSR) is an important tool in synthetic biology, but its applications are limited by the inability to predictably tune SSR reaction rates. Facile rate manipulation could be achieved by modifying the DNA substrate sequence; however, this approach lacks rational design principles. Here, we develop an integrated experimental and computational method to engineer the DNA attachment sequence attP for predictably modulating the inversion reaction mediated by the recombinase Bxb1. After developing a qPCR method to measure SSR reaction rate, we design, select, and sequence attP libraries to inform a machine-learning model that computes Bxb1 inversion rate as a function of attP sequence. We use this model to predict reaction rates of attP variants in vitro and demonstrate their utility in gene circuit design in Escherichia coli. Our high-throughput, model-guided approach for rationally tuning SSR reaction rates enhances our understanding of recombinase function and expands the synthetic biology toolbox.
Collapse
Affiliation(s)
- Qiuge Zhang
- grid.17635.360000000419368657Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Samira M. Azarin
- grid.17635.360000000419368657Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Casim A. Sarkar
- grid.17635.360000000419368657Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
48
|
Zhang Y, Ren Y, Liu Y, Wang F, Zhang H, Liu K. Preservation and Encryption in DNA Digital Data Storage. Chempluschem 2022; 87:e202200183. [PMID: 35856827 DOI: 10.1002/cplu.202200183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Indexed: 11/08/2022]
Abstract
The exponential growth of the total amount of global data presents a huge challenge to mainstream storage media. The emergence of molecular digital storage inspires the development of the new-generation higher-density digital data storage. In particular, DNA with high storage density, reproducibility, and long recoverable lifetime behaves the ideal representative of molecular digital storage media. With the development of DNA synthesis and sequencing technologies and the reduction of cost, DNA digital storage has attracted more and more attention and achieved significant breakthroughs. Herein, this Review briefly describes the workflow of DNA storage, and highlights the storage step of DNA digital data storage. Then, according to different information storage forms, the current DNA information encryption methods are emphatically expounded. Finally, the brief perspectives on the current challenges and optimizing proposals in DNA information preservation and encryption are presented.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yangyi Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
49
|
Kempton HR, Love KS, Guo LY, Qi LS. Scalable biological signal recording in mammalian cells using Cas12a base editors. Nat Chem Biol 2022; 18:742-750. [PMID: 35637351 PMCID: PMC9246900 DOI: 10.1038/s41589-022-01034-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/06/2022] [Indexed: 12/26/2022]
Abstract
Biological signal recording enables the study of molecular inputs experienced throughout cellular history. However, current methods are limited in their ability to scale up beyond a single signal in mammalian contexts. Here, we develop an approach using a hyper-efficient dCas12a base editor for multi-signal parallel recording in human cells. We link signals of interest to expression of guide RNAs to catalyze specific nucleotide conversions as a permanent record, enabled by Cas12's guide-processing abilities. We show this approach is plug-and-play with diverse biologically relevant inputs and extend it for more sophisticated applications, including recording of time-delimited events and history of chimeric antigen receptor T cells' antigen exposure. We also demonstrate efficient recording of up to four signals in parallel on an endogenous safe-harbor locus. This work provides a versatile platform for scalable recording of signals of interest for a variety of biological applications.
Collapse
Affiliation(s)
- Hannah R Kempton
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kasey S Love
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lucie Y Guo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
50
|
Cao S, Wang F, Wang L, Fan C, Li J. DNA nanotechnology-empowered finite state machines. NANOSCALE HORIZONS 2022; 7:578-588. [PMID: 35502877 DOI: 10.1039/d2nh00060a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A finite state machine (FSM, or automaton) is an abstract machine that can switch among a finite number of states in response to temporally ordered inputs, which allows storage and processing of information in an order-sensitive manner. In recent decades, DNA molecules have been actively exploited to develop information storage and nanoengineering materials, which hold great promise for smart nanodevices and nanorobotics under the framework of FSM. In this review, we summarize recent progress in utilizing DNA self-assembly and DNA nanostructures to implement FSMs. We describe basic principles for representative DNA FSM prototypes and highlight their advantages and potential in diverse applications. The challenges in this field and future directions have also been discussed.
Collapse
Affiliation(s)
- Shuting Cao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|