1
|
Hari V, Mayo NE, Brouillette MJ, Noonan M, Fellows LK. The relationship between social network size and brain structure in older adults living with HIV. Brain Imaging Behav 2025:10.1007/s11682-025-00995-x. [PMID: 40102337 DOI: 10.1007/s11682-025-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
The social brain hypothesis suggests that primate brains evolved to manage social group complexities. While chronic HIV infection is associated with both structural brain changes and social exclusion, the possibility that social experience may contribute to brain changes has not been studied in this population. Here, we aimed to estimate the direction and strength of the relationship between gray matter volume and social network size in older people living with HIV in Canada. Fifty-eight HIV + participants (3 women) from the Positive Brain Health Now cohort underwent structural brain imaging and reported the size of their social network. We tested the relationship between social network size and gray matter volume in key brain regions previously identified in healthy older adults. Negative correlations were observed between social network size and gray matter volume in all regions of interest, adjusting for age, education, and total intracranial volume. The strongest correlation was in the left anterior cingulate cortex. We found evidence that social network size is related to gray matter volume in brain regions involved in social behavior among older people, mostly men, with longstanding HIV infection. However, the direction of this effect was opposite to that predicted. This echoes some previous work in healthy male samples. These findings suggest the need to consider social as well as biological variables in studying the brain impacts of living with HIV. Further work is needed to clarify which social variables have the greatest influence, and how they affect the brain.
Collapse
Affiliation(s)
- Vinaya Hari
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Nancy E Mayo
- Department of Medicine, Division of Geriatrics, Graduate Program in Clinical and Translational Research, School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Marie-Josee Brouillette
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - MaryAnn Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Quiñones-Labernik P, Blocklinger KL, Bruce MR, Ferri SL. Excess neonatal testosterone causes male-specific social and fear memory deficits in wild-type mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.18.562939. [PMID: 37905064 PMCID: PMC10614869 DOI: 10.1101/2023.10.18.562939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neurodevelopmental disorders disproportionately affect males compared to females. The biological mechanisms of this male susceptibility or female protection have not been identified. There is evidence that fetal/neonatal gonadal hormones, which play a pivotal role in many aspects of development, may contribute. Here, we investigate the effects of excess testosterone during a critical period of sex-specific brain organization on social approach and fear learning behaviors in C57BL/6J wild-type mice. Male, but not female, mice treated with testosterone on the day of birth (PN0) exhibited decreased social approach as juveniles and decreased contextual fear memory as adults, compared to vehicle-treated controls. These deficits were not driven by anxiety-like behavior or changes in locomotion or body weight. Mice treated with the same dose of testosterone on postnatal day 18 (PN18), which is outside of the critical period of brain masculinization, did not demonstrate impairments compared to the vehicle group. These findings indicate that excess testosterone during a critical period of early development, but not shortly after, induces long-term deficits relevant to the male sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Sarah L Ferri
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Han M, Han R, Liu X, Xie D, Lin R, Hao Y, Ge H, Hu Y, Zhu Y, Yang L. Social network structure modulates neural activities underlying group norm processing: evidence from event-related potentials. Front Hum Neurosci 2024; 18:1479899. [PMID: 39606784 PMCID: PMC11599178 DOI: 10.3389/fnhum.2024.1479899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Social ties play a crucial role in determining the health and wellbeing of individuals. However, it remains unclear whether the capacity to process social information distinguishes well-connected individuals from their less-connected peers. This study explored how an individual's social network structure influences the dynamic processing of group norms, utilizing event-related potentials (ERPs). Methods The study involved 43 university students from the same class who participated in a social network study measuring metrics such as real-life social network size, in-degree, out-degree, and betweenness centrality. Subsequently, 27 students participated in an EEG study assessing their willingness to engage in various exercises after being exposed to peer feedback or in its absence. Results The results indicate that an individual's social network structure is significantly associated with the dynamic processing of group norms. Notably, well-connected individuals exhibited larger ERP amplitudes linked to feedback (e.g., N200, P300, and LPP), greater functional segregation within the brain network (e.g., local efficiency and clustering coefficient), and enhanced synchronization within frontal area and across different brain areas. Discussion These findings highlight that well-connected individuals possess enhanced sensitivity and efficiency in processing social information, pointing to potential areas for further research on the factors influencing social network evolution.
Collapse
Affiliation(s)
- Mengfei Han
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Ruoxuan Han
- Research Institute of Law, Sichuan Academy of Social Sciences, Chengdu, China
| | - Xin Liu
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Duo Xie
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Rong Lin
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Yaokun Hao
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Hanxiao Ge
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Yiwen Hu
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Yuyang Zhu
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Liu Yang
- Aviation Psychology Research Office, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| |
Collapse
|
4
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Arias-Vasquez A, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MPM, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJC, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DCM, Lin H, Longstreth WT, Lopez OL, Luciano M, et alGarcía-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Arias-Vasquez A, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MPM, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJC, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DCM, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Maniega SM, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BWJH, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van T Ent D, van Bokhoven H, van der Meer D, van der Wee NJA, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. Nat Genet 2024; 56:2333-2344. [PMID: 39433889 DOI: 10.1038/s41588-024-01951-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Adrian I Campos
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Zuriel Ceja
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Brittany L Mitchell
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Katrina L Grasby
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jackson G Thorp
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Molecular and Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
- National Ageing Research Institute, Parkville, Victoria, Australia
| | - Philippe Amouyel
- Universite Lille, U1167-RID-AGE-LabEx DISTALZ-Risk Factors and Molecular Determinants of Aging Diseases, Lille, France
- Institut National de la Santé et de la Recherche Médicale, Lille, France
- Centre Hospitalier Universitaire de Lille Department of Public Health, Lille, France
- Institut Pasteur de Lille UMR1167, Lille, France
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alejandro Arias-Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marco P M Boks
- Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)-Georgia State, Georgia Tech and Emory University, Atlanta, GA, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Christopher R K Ching
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion Biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, Spain
| | | | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stéphanie Debette
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Susanne Erk
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychology, Oslo New University College, Oslo, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Evan Fletcher
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, Germany
- Goethe-University Frankfurt, Frankfurt, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Heinz
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE)-Site Rostock/Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Neda Jahanshad
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Rene S Kahn
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicholas G Martin
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales Psychiatrie', Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep and Stress Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics Program, Amsterdam, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, Seattle, WA, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, Germany
| | - Rafael Romero-Garcia
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | | - Arvin Saremi
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Gottfried Schatz Center for Signaling, Metabolism and Aging, Medical University Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Gunter Schumann
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, PR China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jason L Stein
- Department of Genetics and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophia I Thomopoulos
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The National Centre of Excellence in Intellectual Disability Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Dennis van T Ent
- Department of Biological Psychology and Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael W Weiner
- University of California, San Francisco, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Paul M Thompson
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sarah E Medland
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel E Rentería
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Capella J, Telzer EH. A framework for integrating neural development and social networks in adolescence. Dev Cogn Neurosci 2024; 69:101442. [PMID: 39241455 PMCID: PMC11408384 DOI: 10.1016/j.dcn.2024.101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Adolescence is a developmental period characterized by increasingly complex and influential peer contexts. Concurrently, developmental changes in neural circuits, particularly those related to social cognition, affective salience, and cognitive control, contribute to individuals' social interactions and behaviors. However, while adolescents' behaviors and overall outcomes are influenced by the entirety of their social environments, insights from developmental and social neuroscience often come from studies of individual relationships or specific social actors. By capturing information about both adolescents' individual relations and their larger social contexts, social network analysis offers a powerful opportunity to enhance our understanding of how social factors interact with adolescent development. In this review, we highlight the relevant features of adolescent social and neural development that should be considered when integrating social network analysis and neuroimaging methods. We focus on broad themes of adolescent development, including identity formation, peer sensitivity, and the pursuit of social goals, that serve as potential mechanisms for the relations between neural processes and social network features. With these factors in mind, we review the current research and propose future applications of these methods and theories.
Collapse
Affiliation(s)
- Jimmy Capella
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, USA.
| | - Eva H Telzer
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
6
|
Ding N, Fu L, Qian L, Sun B, Li C, Gao H, Lei T, Ke X. The correlation between brain structure characteristics and emotion regulation ability in children at high risk of autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:3247-3262. [PMID: 38402375 DOI: 10.1007/s00787-024-02369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/08/2024] [Indexed: 02/26/2024]
Abstract
As indicated by longitudinal observation, autism has difficulty controlling emotions to a certain extent in early childhood, and most children's emotional and behavioral problems are further aggravated with the growth of age. This study aimed at exploring the correlation between white matter and white matter fiber bundle connectivity characteristics and their emotional regulation ability in children with autism using machine learning methods, which can lay an empirical basis for early clinical intervention of autism. Fifty-five high risk of autism spectrum disorder (HR-ASD) children and 52 typical development (TD) children were selected to complete the skull 3D-T1 structure and diffusion tensor imaging (DTI). The emotional regulation ability of the two groups was compared using the still-face paradigm (SFP). The classification and regression models of white matter characteristics and white matter fiber bundle connections of emotion regulation ability in the HR-ASD group were built based on the machine learning method. The volume of the right amygdala (R2 = 0.245) and the volume of the right hippocampus (R2 = 0.197) affected constructive emotion regulation strategies. FA (R2 = 0.32) and MD (R2 = 0.34) had the predictive effect on self-stimulating behaviour. White matter fiber bundle connection predicted constructive regulation strategies (positive edging R2 = 0.333, negative edging R2 = 0.334) and mother-seeking behaviors (positive edging R2 = 0.667, negative edging R2 = 0.363). The emotional regulation ability of HR-ASD children is significantly correlated with the connections of multiple white matter fiber bundles, which is a potential neuro-biomarker of emotional regulation ability.
Collapse
Affiliation(s)
- Ning Ding
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Qingdao Women and Children' s Hospital, Qingdao University, Qingdao, 266011, China
| | - Linyan Fu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lu Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bei Sun
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chunyan Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huiyun Gao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianyu Lei
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Engfors LM, Wilmer J, Palermo R, Gignac GE, Germine LT, Jeffery L. Face recognition's practical relevance: Social bonds, not social butterflies. Cognition 2024; 250:105816. [PMID: 38908305 PMCID: PMC11445692 DOI: 10.1016/j.cognition.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/22/2023] [Accepted: 05/14/2024] [Indexed: 06/24/2024]
Abstract
Research on individual differences in face recognition has provided important foundational insights: their broad range, cognitive specificity, strong heritability, and resilience to change. Elusive, however, has been the key issue of practical relevance: do these individual differences correlate with aspects of life that go beyond the recognition of faces, per se? Though often assumed, especially in social realms, such correlates remain largely theoretical, without empirical support. Here, we investigate an array of potential social correlates of face recognition. We establish social relationship quality as a reproducible correlate. This link generalises across face recognition tasks and across independent samples. In contrast, we detect no robust association with the sheer quantity of social connections, whether measured directly via number of social contacts or indirectly via extraversion-related personality indices. These findings document the existence of a key social correlate of face recognition and provide some of the first evidence to support its practical relevance. At the same time, they challenge the naive assumption that face recognition relates equally to all social outcomes. In contrast, they suggest a focused link of face recognition to the quality, not quantity, of one's social connections.
Collapse
Affiliation(s)
- Laura M Engfors
- Justice and Society, University of South Australia, Adelaide, SA, Australia; School of Psychological Science, University of Western Australia, Perth, WA, Australia.
| | - Jeremy Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, USA
| | - Romina Palermo
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Gilles E Gignac
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Laura T Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Linda Jeffery
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Vasquez AA, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MP, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJ, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DC, Lin H, Longstreth WT, Lopez OL, Luciano M, et alGarcía-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Vasquez AA, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MP, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJ, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DC, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Muñoz Maniega S, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BW, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van 't Ent D, van Bokhoven H, van der Meer D, van der Wee NJ, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.13.24311922. [PMID: 39371125 PMCID: PMC11451674 DOI: 10.1101/2024.08.13.24311922] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. We performed GWAS meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and, for the first time, the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signalling and brain ageing-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and ADHD. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Adrian I Campos
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Zuriel Ceja
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Brittany L Mitchell
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katrina L Grasby
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jackson G Thorp
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Ingrid Agartz
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, 0407, Norway
- Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, SE-11364, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Molecular & Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, D15, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Kew, VIC, 3101, Australia
- National Ageing Research Institute, Parkville, VIC, 3052, Australia
| | - Philippe Amouyel
- Universite Lille, U1167 - RID-AGE - LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, Lille, F-59000, France
- Institut National de la Sante et de la Recherche Medicale, U1167, Lille, F-59000, France
- Centre Hospitalier Universitaire de Lille, Department of Public Health, Lille, F-59000, Franch
- Institut Pasteur de Lille UMR1167, Lille, F-59000, France
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0407, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, 0407, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | - Alejandro Arias Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway, Oslo, 0455, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
| | - Marco Pm Boks
- Brain Center University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | | | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neurocience, VU Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, 93053, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
- Altrecht Mental Health Institute, Utrecht, 3512PG, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), {Georgia State, Georgia Tech, Emory}, Atlanta, GA, 30303, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Department of Biomedicine, University of Basel, Basel, CH-4031, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, 4031, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, 41013, Spain
| | - Fabrice Crivello
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux, 33076, France
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, 92093, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, University of Bristol, Bristol, BS8 BN, United Kingdom
| | - Eco Jc de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10538, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Stéphanie Debette
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, F-33000, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, 1070, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, United Kingdom
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, 0450, Norway
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, 01307, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
- Department of Psychology, Oslo New University College, Oslo, 0456, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, 91190, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6500 HE, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Evan Fletcher
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, 68159, Germany
- Goethe-University Frankfurt, Frankfurt am Main, 60528, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, D-69115, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, 7030, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, 7006, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, 0450, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Andreas Heinz
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52246, USA
| | - David F Hoehn
- Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- Accare Child Study Center, Groningen, 9723 HE, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE) - site Rostock/Greifswald, Greifswald, 17489, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, 17475, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, 3015 CN , The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, 7925, South Africa
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, SE-11364, Sweden
| | - Rene S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, United Kingdom
| | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, 33076, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, 98104-2420, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Nicholas G Martin
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, 911
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, 14152, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics program, Amsterdam, 1081 HV, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, D-40225, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, CH-4031, Switzerland
| | - Bertram Müller-Myhsok
- Statistics Genetics Group, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, 17489, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, 17489, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- General internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, 1100 DD, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, 1070, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, M5G 0A4, Canada
| | - Brenda Wjh Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Health Systems and Population Health, Seattle, WA, 98195-9458, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, 80804, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, 68159, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, 10117, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, 14197, Germany
| | - Rafael Romero-Garcia
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/ CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Sevilla, 41013, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | | | - Arvin Saremi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, F-33000, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Orygen, Parkville, VIC, 3052, Australia
| | - Helena Schmidt
- Institute of Molecular Biology & Biochemistry, Gottfried Schatz Center for Signaling, Metabolism & Aging, Medical University Graz, Graz, 8010, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, 8023, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, 04107, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, 200031, P.R. China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, 10017, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, M5G 0A4, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Mediciine, University of Eastern Finland, Kuopio, 70100, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7250, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Arthur W Toga
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, E-39005, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, 39011, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- The National Centre of Excellence in Intellectual Disability Health,, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Dennis van 't Ent
- Department of Biological Psychology & Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Nic Ja van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla - IDIVAL, Santander, 39008, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, 39008, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, 41013, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Michael W Weiner
- University of California San Francisco, San Francisco, CA, 94121, USA
- Northern California Institute for Research & Education (NCIRE), San Francisco, CA, 94121, USA
- Veterans Administration Medical Center, San Francisco, CA, 94121, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, 14183, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, 20892-1276, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Sarah E Medland
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel E Rentería
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
9
|
McGugin RW, Roche A, Ma J, Gauthier I. Challenges in replication: Does amygdala gray matter volume relate to social network size? COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:707-719. [PMID: 38549033 PMCID: PMC11233388 DOI: 10.3758/s13415-024-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 07/11/2024]
Abstract
In this work, we tried to replicate and extend prior research on the relationship between social network size and the volume of the amygdala. We focused on the earliest evidence for this relationship (Bickart et al., Nature Neuroscience 14(2), 163-164, 2011) and another methodologically unique study that often is cited as a replication (Kanai et al., Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1327-1334, 2012). Despite their tight link in the literature, we argue that Kanai et al. (Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1327-1334, 2012) is not a replication of Bickart et al. Nature Neuroscience 14(2), 163-164 (2011), because it uses different morphometric measurements. We collected data from 128 participants on a 7-Tesla MRI and examined variations in gray matter volume (GMV) in the amygdala and its nuclei. We found inconclusive support for a correlation between measures of real-world social network and amygdala GMV, with small effect sizes and only anecdotal evidence for a positive relationship. We found support for the absence of a correlation between measures of online social network and amygdala GMV. We discuss different challenges faced in replication attempts for small effects, as initially reported in these two studies, and suggest that the results would be most helpful in the context of estimation and future meta-analytical efforts. Our findings underscore the value of a narrow approach in replication of brain-behavior relationships, one that is focused enough to investigate the specifics of what is measured. This approach can provide a complementary perspective to the more popular "thematic" alternative, in which conclusions are often broader but where conclusions may become disconnected from the evidence.
Collapse
Affiliation(s)
- Rankin W McGugin
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA
| | - Alexandra Roche
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA
| | - Jonathan Ma
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA
| | - Isabel Gauthier
- Department of Psychology, Vanderbilt University, 111 21st Avenue South, Nashville, TN, 37240, USA.
| |
Collapse
|
10
|
Wu X, Zhang Y, Xue M, Li J, Li X, Cui Z, Gao JH, Yang G. Heritability of functional gradients in the human subcortico-cortical connectivity. Commun Biol 2024; 7:854. [PMID: 38997510 PMCID: PMC11245549 DOI: 10.1038/s42003-024-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
The human subcortex plays a pivotal role in cognition and is widely implicated in the pathophysiology of many psychiatric disorders. However, the heritability of functional gradients based on subcortico-cortical functional connectivity remains elusive. Here, leveraging twin functional MRI (fMRI) data from both the Human Connectome Project (n = 1023) and the Adolescent Brain Cognitive Development study (n = 936) datasets, we construct large-scale subcortical functional gradients and delineate an increased principal functional gradient pattern from unimodal sensory/motor networks to transmodal association networks. We observed that this principal functional gradient is heritable, and the strength of heritability exhibits a heterogeneous pattern along a hierarchical unimodal-transmodal axis in subcortex for both young adults and children. Furthermore, employing a machine learning framework, we show that this heterogeneous pattern of the principal functional gradient in subcortex can accurately discern the relationship between monozygotic twin pairs and dizygotic twin pairs with an accuracy of 76.2% (P < 0.001). The heritability of functional gradients is associated with the anatomical myelin proxied by MRI-derived T1-weighted/T2-weighted (T1w/T2w) ratio mapping in subcortex. This study provides new insights into the biological basis of subcortical functional hierarchy by revealing the structural and genetic properties of the subcortical functional gradients.
Collapse
Affiliation(s)
- Xinyu Wu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Yu Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Mufan Xue
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jinlong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- McGovern Institute for Brain Research, Peking University, Beijing, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
11
|
Wronski ML, Bernardoni F, Bahnsen K, Seidel M, Arold D, Doose A, Steinhäuser JL, Borucki K, Breithaupt L, Lawson EA, Holsen LM, Weidner K, Roessner V, King JA, Plessow F, Ehrlich S. Dynamic Amygdala Nuclei Alterations in Relation to Weight Status in Anorexia Nervosa Are Mediated by Leptin. J Am Acad Child Adolesc Psychiatry 2024; 63:624-639. [PMID: 37797814 DOI: 10.1016/j.jaac.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/02/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE The amygdaloid complex is a subcortical limbic group of distinct nuclei. In a previous patient-control study, differential amygdala nuclei alterations were found in acute anorexia nervosa (AN); rostral-medial nuclei involved in fear and reward processing were substantially reduced in volume and associated with hypoleptinemia, a key neuroendocrine characteristic of AN. Here, longitudinal amygdala nuclei alterations in AN were investigated in relation to weight status and their associations with leptin levels. METHOD T1-weighted structural magnetic resonance imaging scans were longitudinally processed with FreeSurfer. Amygdala nuclei volumes in young female patients with acute AN before and after short-term weight restoration (n = 110, >14% body mass index increase over 3 months) and female participants with a history of AN (n = 79, long-term [mean 5 years] weight recovered) were compared with female healthy control participants (n = 271) using linear mixed effects models. RESULTS Rostral-medially clustered amygdala nuclei volumes, accessory basal, cortical, medial nuclei, and corticoamygdaloid transition, increased during short-term weight restoration (Cohen's d range 0.18-0.30). However, volumetric normalization across nuclei was heterogeneous. Right cortical, medial nuclei, bilateral corticoamygdaloid transitions, and anterior amygdaloid areas were only partially normalized following short-term weight restoration. Right anterior amygdaloid area remained reduced after long-term weight recovery compared with control participants (d = 0.36). Leptin increase, accompanying short-term weight restoration, mediated the effect of weight gain on volumetric increase in left corticoamygdaloid transition and bilateral medial nuclei. CONCLUSION Rostral-medially clustered amygdala nuclei show pronounced volumetric increase but incomplete normalization in AN during and after short-term weight restoration. Leptin increase may be relevant for the recovery of specific amygdala nuclei in addition to nutritional rehabilitation, indicating links between amygdala substructure and leptin dynamics of potential pathophysiological and clinical relevance in AN. PLAIN LANGUAGE SUMMARY The amygdala plays a critical role in processing fearful and rewarding stimuli, and alterations in the amygdala are associated with anorexia nervosa. In this study, the authors measured amygdala nuclei volumes in female patients with acute anorexia nervosa undergoing weight-restoration treatment (n = 110), long-term weight-recovered individuals with anorexia (n = 79), and healthy control participants (n = 271). Structural magnetic resonance imaging revealed that volumes of specific nuclei, clustered in the rostral-medial amygdala, were substantially reduced in acute anorexia nervosa and only partially normalized following weight restoration treatment. Residual reductions in volume persisted even after long-term weight-recovery, compared to healthy control participants. Short-term weight restoration was associated with increases in the neurohormone leptin, and increasing leptin levels were found to mediate the positive impact of weight gain on increased amygdala volume over the treatment course. DIVERSITY & INCLUSION STATEMENT We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. One or more of the authors of this paper received support from a program designed to increase minority representation in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. While citing references scientifically relevant for this work, we also actively worked to promote sex and gender balance in our reference list. While citing references scientifically relevant for this work, we also actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our reference list. The author list of this paper includes contributors from the location and/or community where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany; Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany
| | - Maria Seidel
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany
| | - Dominic Arold
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany
| | - Jonas L Steinhäuser
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany
| | - Katrin Borucki
- Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lauren Breithaupt
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Laura M Holsen
- Division of Women's Health, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kerstin Weidner
- University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Veit Roessner
- University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany
| | - Franziska Plessow
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, TU Dresden, Dresden, Germany; University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Sacchini S, Bombardi C, Arbelo M, Herráez P. The amygdaloid body of the family Delphinidae: a morphological study of its central nucleus through calbindin-D28k. Front Neuroanat 2024; 18:1382036. [PMID: 38899230 PMCID: PMC11186458 DOI: 10.3389/fnana.2024.1382036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction The amygdala is a noticeable bilateral structure in the medial temporal lobe and it is composed of at least 13 different nuclei and cortical areas, subdivided into the deep nuclei, the superficial nuclei, and the remaining nuclei which contain the central nucleus (CeA). CeA mediates the behavioral and physiological responses associated with fear and anxiety through pituitary-adrenal responses by modulating the liberation of the hypothalamic Corticotropin Releasing Factor/Hormone. Methods Five dolphins of three different species, belonging to the family Delphinidae (three striped dolphins, one common dolphin, and one Atlantic spotted dolphin), were used for this study. For a precise overview of the CeA's structure, thionine staining and the immunoperoxidase method using calbindin D-28k were employed. Results CeA extended mainly dorsal to the lateral nucleus and ventral to the striatum. It was medial to the internal capsule and lateral to the optic tract and the medial nucleus of the amygdala. Discussion The dolphin amygdaloid complex resembles that of primates, including the subdivision, volume, and location of the CeA.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
| |
Collapse
|
13
|
Lee H, Yong SY, Choi H, Yoon GY, Koh S. Association between loneliness and cognitive function, and brain volume in community-dwelling elderly. Front Aging Neurosci 2024; 16:1389476. [PMID: 38741916 PMCID: PMC11089178 DOI: 10.3389/fnagi.2024.1389476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction We investigated the relationship between loneliness, cognitive impairment, and regional brain volume among elderly individuals residing in the Korean community. Methods Data from the ARIRANG aging-cognition sub-cohort, collected between 2020 and 2022, were utilized for the present study. Loneliness was assessed using the UCLA-Loneliness Scale (UCLA-LS) questionnaire and the relevant item from Center for Epidemiologic Studies Depression Scale Korean version (CES-D-K). Cognitive impairment was measured through Mini-Mental State Examination (K-MMSE-2) and Seoul Neuropsychological Screening Battery (SNSB-C), with five sub-categories: attention, memory, visuospatial function, language, and executive function. Logistic regression was employed for prevalence ratios related to cognitive impairment, while linear regression was used for regional brain volume including white matter hyperintensity (WMH) and cortical thickness. Results Our analysis involved 785 participants (292 men and 493 women). We observed increased cognitive impairment assessed by K-MMSE-2 [UCLA-LS: odds ratio (OR) 3.133, 95% confidence interval (CI) 1.536-6.393; loneliness from CES-D: OR 2.823, 95% CI 1.426-5.590] and SNSB-C total score (UCLA-LS: OR 2.145, 95% CI 1.304-3.529) in the lonely group compared to the non-lonely group. Specifically, the lonely group identified by UCLA-LS showed an association with declined visuospatial (OR 1.591, 95% CI 1.029-2.460) and executive function (OR 1.971, 95% CI 1.036-3.750). The lonely group identified by CES-D-K was associated with impaired memory (OR 1.577, 95% CI 1.009-2.466) and executive function (OR 1.863, 95% CI 1.036-3.350). In the regional brain volume analysis, loneliness was linked to reduced brain volume in frontal white matter (left: -1.24, 95% CI -2.37 ∼-0.12; right: -1.16, 95% CI -2.31 ∼ -0.00), putamen (left: -0.07, 95% CI -0.12 ∼-0.02; right: -0.06, 95% CI -0.11 ∼-0.01), and globus pallidus (-15.53, 95% CI -30.13 ∼-0.93). There was no observed association in WMH and cortical thickness. Conclusion Loneliness is associated with cognitive decline and volumetric reduction in the frontal white matter, putamen, and globus pallidus.
Collapse
Affiliation(s)
- Hunju Lee
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Institute of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Sang Yeol Yong
- Department of Rehabilitation Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- International Olympic Committee Research Centre Korea, Yonsei Institute of Sports Science and Exercise Medicine, Wonju, Republic of Korea
| | - Hyowon Choi
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Ga Young Yoon
- Department of Radiology, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Sangbaek Koh
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Institute of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
14
|
Shamay-Tsoory SG, Kanterman A. Away from the herd: loneliness as a dysfunction of social alignment. Soc Cogn Affect Neurosci 2024; 19:nsae005. [PMID: 38287695 PMCID: PMC10873844 DOI: 10.1093/scan/nsae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
The tendency of all humans to experience loneliness at some point in their lives implies that it serves an adaptive function. Building on biological theories of herding in animals, according to which collective movement emerges from local interactions that are based on principles of attraction, repulsion and alignment, we propose an approach that synthesizes these principles with theories of loneliness in humans. We present here the 'herding model of loneliness' that extends these principles into the psychological domain. We hold that these principles serve as basic building blocks of human interactions and propose that distorted attraction and repulsion tendencies may lead to inability to align properly with others, which may be a core component in loneliness emergence and perpetuation. We describe a neural model of herding in humans and suggest that loneliness may be associated with altered interactions between the gap/error detection, reward signaling, threat and observation-execution systems. The proposed model offers a framework to predict the behavior of lonely individuals and thus may inform intervention designs for reducing loneliness intensity.
Collapse
Affiliation(s)
| | - Alisa Kanterman
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
15
|
Manchella MK, Logan PE, Perry BL, Peng S, Risacher SL, Saykin AJ, Apostolova LG. Associations Between Social Network Characteristics and Brain Structure Among Older Adults. Alzheimers Dement 2024; 20:1406-1420. [PMID: 38015980 PMCID: PMC10916942 DOI: 10.1002/alz.13534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/10/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Social connectedness is associated with slower cognitive decline among older adults. Recent research suggests that distinct aspects of social networks may have differential effects on cognitive resilience, but few studies analyze brain structure. METHODS This study includes 117 cognitively impaired and 59 unimpaired older adults. The effects of social network characteristics (bridging/bonding) on brain regions of interests were analyzed using linear regressions and voxel-wise multiple linear regressions of gray matter density. RESULTS Increased social bridging was associated with greater bilateral amygdala volume and insular thickness, and left frontal lobe thickness, putamen, and thalamic volumes. Increased social bonding was associated with greater bilateral medial orbitofrontal and caudal anterior cingulate thickness, as well as right frontal lobe thickness, putamen, and amygdala volumes. DISCUSSION The associations between social connectedness and brain structure vary depending on the types of social enrichment accessible through social networks, suggesting that psychosocial interventions could mitigate neurodegeneration. HIGHLIGHTS Distinct forms of social capital are uniquely linked to gray matter density (GMD). Bridging is associated with preserved GMD in limbic system structures. Bonding is associated with preserved GMD in frontal lobe regions. Bridging is associated with increased brain reserve in sensory processing regions. Bonding is associated with increased brain reserve in regions of stress modulation.
Collapse
Affiliation(s)
- Mohit K. Manchella
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Paige E. Logan
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Brea L. Perry
- Indiana University Network Science InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Siyun Peng
- Indiana University Network Science InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Shannon L. Risacher
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Network Science InstituteIndiana UniversityBloomingtonIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana University Network Science InstituteIndiana UniversityBloomingtonIndianaUSA
- Indiana Alzheimer's Disease Research CenterIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
16
|
Watve A, Haugg A, Frei N, Koush Y, Willinger D, Bruehl AB, Stämpfli P, Scharnowski F, Sladky R. Facing emotions: real-time fMRI-based neurofeedback using dynamic emotional faces to modulate amygdala activity. Front Neurosci 2024; 17:1286665. [PMID: 38274498 PMCID: PMC10808718 DOI: 10.3389/fnins.2023.1286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity. Methods The feasibility of this experimental approach was tested on 64 healthy participants who completed a single training session with four neurofeedback runs. Participants were assigned to one of the four experimental groups (n = 16 per group), i.e., happy-up, happy-down, fear-up, fear-down. Depending on the group assignment, they were either instructed to "try to make the face happier" by upregulating (happy-up) or downregulating (happy-down) the amygdala or to "try to make the face less fearful" by upregulating (fear-up) or downregulating (fear-down) the amygdala feedback signal. Results Linear mixed effect analyses revealed significant amygdala activity changes in the fear condition, specifically in the fear-down group with significant amygdala downregulation in the last two neurofeedback runs as compared to the first run. The happy-up and happy-down groups did not show significant amygdala activity changes over four runs. We did not observe significant improvement in the questionnaire scores and subsequent behavior. Furthermore, task-dependent effective connectivity changes between the amygdala, fusiform face area (FFA), and the medial orbitofrontal cortex (mOFC) were examined using dynamic causal modeling. The effective connectivity between FFA and the amygdala was significantly increased in the happy-up group (facilitatory effect) and decreased in the fear-down group. Notably, the amygdala was downregulated through an inhibitory mechanism mediated by mOFC during the first training run. Discussion In this feasibility study, we intended to address key neurofeedback processes like naturalistic facial stimuli, participant engagement in the task, bidirectional regulation, task congruence, and their influence on learning success. It demonstrated that such a versatile emotional face feedback paradigm can be tailored to target biased emotion processing in affective disorders.
Collapse
Affiliation(s)
- Apurva Watve
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Nada Frei
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Yury Koush
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - David Willinger
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Psychodynamics, Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Lower Austria, Austria
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Annette Beatrix Bruehl
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Center for Affective, Stress and Sleep Disorders, Psychiatric University Hospital Basel, Basel, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, Faculty of Medicine, University of Zürich, Zürich, Switzerland
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Lu H, Song Y, Wang X, Liu J. The neural correlates of perceived social support and its relationship to psychological well-being. Front Behav Neurosci 2024; 17:1295668. [PMID: 38259632 PMCID: PMC10800560 DOI: 10.3389/fnbeh.2023.1295668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Perceived social support is considered to play a significant role in promoting individuals' health and well-being, and yet the neural correlates of perceived social support were not fully understood. An exploration of the neural correlates of individual differences in the SPS can help us to gain more comprehensive understanding about the neural correlates of perceived social support. What's more, our study will explore the relationship among perceived social support, brain regions, and psychological well-being, which may provide new insights into the neural correlates underlying the relationship between perceived social support and psychological well-being from the perspective of cognitive neuroscience. Methods Herein, we used the Social Provisions Scale to assess individuals' perceived social support, and magnetic resonance imaging was used to measure the gray matter (GM) volume of the whole brain. What's more, we also measured psychological well-being using the Psychological Well-Being Scale, and mediation analysis was used to explore the relationship among perceived social support, brain regions, and psychological well-being. Results The voxel-based morphometry analysis of the whole brain revealed that perceived social support was positively correlated with GM volume of the left middle temporal gyrus (MTG). The finding indicated that a person with greater GM volume in the left MTG perceived more social support. More importantly, the left MTG GM volume observed above was also associated with psychological well-being, and the link between the two was mediated by perceived social support. Discussion These results revealed the importance of MTG for perceived social support and psychological well-being, and also suggested that perceived social support might explain the relationship between MTG and psychological well-being.
Collapse
Affiliation(s)
- Huanhua Lu
- School of Marxism, China University of Geosciences, Beijing, China
| | - Yiying Song
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, National Demonstration Center for Experimental Psychology Education, Beijing Normal University, Beijing, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Liu
- Tsinghua Laboratory of Brain and Intelligence, Department of Psychology, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Taheri F, Joushi S, Mohammadipoor-Ghasemabad L, Rad I, Esmaeilpour K, Sheibani V. Effects of music on cognitive behavioral impairments in both sex of adult rats exposed prenatally to valproic acid. Birth Defects Res 2024; 116:e2300. [PMID: 38277409 DOI: 10.1002/bdr2.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive behaviors and interests. In previous studies, music has been identified as an intervention therapy for children with ASD. OBJECTIVES The present study evaluated the effects of music on cognitive behavioral impairments in both sexes of adult rats exposed prenatally to Valproic acid. METHODS For induction of autism, pregnant female rats were pretreated with either saline or VPA (600 mg/kg.i.p.) at gestational day (GD) 12.5. Male and female offspring were divided into Saline.Non-Music, VPA.Non-Music, Saline.Music, and VPA.Music groups. The adult rats in the music groups were exposed to Mozart's piano sonata K.448 for 30 days (4 h/day), from postnatal day (PND) 60 to 90. Social interaction and Morris water maze (MWM) tasks were tested at PND 90. RESULTS Our results revealed that prenatal exposure to VPA decreased sociability and social memory performance in both sexes of adult rats. Moreover, prenatal exposure to VPA created learning and memory impairments in both sexes of adult rats in the MWM task. Music intervention improved sociability in both sexes of VPA-exposed rats and social memory in both sexes of VPA-exposed rats, especially in females. Furthermore, our results revealed that music ameliorated learning impairments in VPA-exposed female rats in the MWM task. In addition, music improved spatial memory impairments in VPA-exposed rats of both sexes, especially in females, which needs more investigation in molecular and histological fields in future studies. CONCLUSION Music intervention improved sociability and social memory in adult VPA-exposed rats, especially in female animals. Furthermore, music improved memory impairments in VPA-exposed rats of both sexes. It seems that music had a better influence on female rats. However, future studies need more investigations in molecular and histological fields.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Iman Rad
- Pathology and Stem Cell Research Center Afzalipour Medical University of Medical Science, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- School of Public Health Sciences, University of Waterloo, Waterloo, Canada
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
19
|
Veerareddy A, Fang H, Safari N, Xu P, Krueger F. Cognitive empathy mediates the relationship between gray matter volume size of dorsomedial prefrontal cortex and social network size: A voxel-based morphometry study. Cortex 2023; 169:279-289. [PMID: 37972460 DOI: 10.1016/j.cortex.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
Social networks are an important factor in developing and maintaining social relationships. The social brain network comprises brain regions that differ in terms of their location, structure, and functioning, and these differences tend to vary among individuals with different social network sizes. However, it remains unknown how social cognitive abilities such as empathy can affect social network size. The goal of our study was to examine the relationship between brain regions in the social brain network, empathy, and individual social network size by using the Social Network Index, which measures social network diversity, size, and complexity by assessing 12 different types of relationships. We performed voxel-based morphometry and mediation analyses using data from questionnaires and structural magnetic resonance imaging data in a sample of 204 young adults. Our findings showed that the gray matter volume of the dorsomedial prefrontal cortex (dmPFC) was inversely associated with social network size and cognitive empathy mediated this association, suggesting that decreased gray matter volume in the dmPFC is associated with greater utilization of cognitive empathy, which, in turn, seems to increase social network size. A potential mechanism explaining this inverse relationship could be cognitive pruning, a phenomenon that occurs in the brain between early adolescence and adulthood, but future longitudinal studies are needed. In conclusion, our findings provide information about the neurocognitive mechanisms involved in the formation and maintenance of social networks.
Collapse
Affiliation(s)
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China; Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Nooshin Safari
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA; Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
20
|
Lee S, Moon H, Ko J, Cankaya B, Caine E, You S. Social connectedness and mental health before and during the COVID-19 pandemic in a community sample in Korea. PLoS One 2023; 18:e0292219. [PMID: 37856559 PMCID: PMC10586704 DOI: 10.1371/journal.pone.0292219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
This study compared social connectedness patterns and examined the relationships between objective or subjective social connectedness and mental health before and during the COVID-19 pandemic among community dwelling adults in South Korea. An identical online survey was administered at two time points, in 2019 prior to the onset and again in 2021. Objective (network diversity and network size) and subjective (thwarted belongingness and perceived burdensomeness) social connectedness were measured along with positive and negative indices of mental health (depression, suicidal behavior, happiness, and life satisfaction). The results indicated that among social connectedness indices perceived burdensomeness were significantly higher during the COVID-19 pandemic compared to the prior period, while network size was smaller. Subjective social connectedness was associated with all aspects of mental health consequences, either positive or negative. Among objective social connectedness, only network diversity was significantly associated with increased happiness and life satisfaction, and objective social connectedness was not associated with depression and suicidal behavior. These associations did not differ across the two time periods. The findings, both before and during the pandemic, indicated that network diversity is an important factor for positive indices of mental health and that efforts to increase subjective social connectedness are needed to decrease the risk of depression and suicidal behavior.
Collapse
Affiliation(s)
- Sojung Lee
- Department of Psychology, Chungbuk National University, Cheongju, South Korea
| | - Hyejoo Moon
- Department of Psychology, Chungbuk National University, Cheongju, South Korea
| | - Jisu Ko
- Department of Psychology, Chungbuk National University, Cheongju, South Korea
| | - Banu Cankaya
- Department of Psychology, MEF University, Istanbul, Turkey
| | - Eric Caine
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sungeun You
- Department of Psychology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
21
|
Fulford D, Holt DJ. Social Withdrawal, Loneliness, and Health in Schizophrenia: Psychological and Neural Mechanisms. Schizophr Bull 2023; 49:1138-1149. [PMID: 37419082 PMCID: PMC10483452 DOI: 10.1093/schbul/sbad099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
BACKGROUND AND HYPOTHESIS Some of the most debilitating aspects of schizophrenia and other serious mental illnesses (SMI) are the impairments in social perception, motivation, and behavior that frequently accompany these conditions. These impairments may ultimately lead to chronic social disconnection (ie, social withdrawal, objective isolation, and perceived social isolation or loneliness), which may contribute to the poor cardiometabolic health and early mortality commonly observed in SMI. However, the psychological and neurobiological mechanisms underlying relationships between impairments in social perception and motivation and social isolation and loneliness in SMI remain incompletely understood. STUDY DESIGN A narrative, selective review of studies on social withdrawal, isolation, loneliness, and health in SMI. STUDY RESULTS We describe some of what is known and hypothesized about the psychological and neurobiological mechanisms of social disconnection in the general population, and how these mechanisms may contribute to social isolation and loneliness, and their consequences, in individuals with SMI. CONCLUSIONS A synthesis of evolutionary and cognitive theories with the "social homeostasis" model of social isolation and loneliness represents one testable framework for understanding the dynamic cognitive and biological correlates, as well as the health consequences, of social disconnection in SMI. The development of such an understanding may provide the basis for novel approaches for preventing or treating both functional disability and poor physical health that diminish the quality and length of life for many individuals with these conditions.
Collapse
Affiliation(s)
- Daniel Fulford
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Mahmoudian B, Dalal H, Lau J, Corrigan B, Abbas M, Barker K, Rankin A, Chen ECS, Peters T, Martinez-Trujillo JC. A method for chronic and semi-chronic microelectrode array implantation in deep brain structures using image guided neuronavigation. J Neurosci Methods 2023; 397:109948. [PMID: 37572883 DOI: 10.1016/j.jneumeth.2023.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Accurate targeting of brain structures for in-vivo electrophysiological recordings is essential for basic as well as clinical neuroscience research. Although methodologies for precise targeting and recording from the cortical surface are abundant, such protocols are scarce for deep brain structures. NEW METHOD We have incorporated stable fiducial markers within a custom cranial cap for improved image-guided neuronavigation targeting of subcortical structures in macaque monkeys. Anchor bolt chambers allowed for a minimally invasive entrance into the brain for chronic recordings. A 3D-printed microdrive allowed for semi-chronic applications. RESULTS We achieved an average Euclidean targeting error of 1.6 mm and a radial error of 1.2 mm over three implantations in two animals. Chronic and semi-chronic implantations allowed for recording of extracellular neuronal activity, with single-neuron activity examples shown from one macaque monkey. COMPARISON WITH EXISTING METHOD(S) Traditional stereotactic methods ignore individual anatomical variability. Our targeting approach allows for a flexible, subject-specific surgical plan with targeting errors lower than what is reported in humans, and equal to or lower than animal models using similar methods. Utilizing an anchor bolt as a chamber reduced the craniotomy size needed for electrode implantation, compared to conventional large access chambers which are prone to infection. Installation of an in-house, 3D-printed, screw-to-mount mechanical microdrive is in contrast to existing semi-chronic methods requiring fabrication, assembly, and installation of complex parts. CONCLUSIONS Leveraging commercially available tools for implantation, our protocol decreases the risk of infection from open craniotomies, and improves the accuracy of chronic electrode implantations targeting deep brain structures in large animal models.
Collapse
Affiliation(s)
- Borna Mahmoudian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Hitarth Dalal
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Jonathan Lau
- Department of Clinical Neurological Sciences, Division of Neurosurgery, London Health Sciences Centre, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Benjamin Corrigan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Mohamad Abbas
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Clinical Neurological Sciences, Division of Neurosurgery, London Health Sciences Centre, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | | | - Adam Rankin
- Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Elvis C S Chen
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Medical Biophysics, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, ON N6C2R5, Canada; Department of Electrical and Computer Engineering, Thompson Engineering Building, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Terry Peters
- Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Center for Functional and Metabolic Mapping, Robarts Research Institute, Department of Medical Biophysics and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, ON N6C2R5, Canada.
| |
Collapse
|
23
|
Lu H, Li X, Wang Y, Song Y, Liu J. Hippocampus links perceived social support with self-esteem. Soc Neurosci 2023; 18:132-141. [PMID: 37200111 DOI: 10.1080/17470919.2023.2216471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 05/20/2023]
Abstract
Self-esteem is an important psychological resource with adaptive values, and numerous investigations have revealed that self-esteem is influenced by perceived social support. However, the potential neural basis linking perceived social support with self-esteem remains unclear. Therefore, we used voxel-based morphometry to explore whether the hippocampus and amygdala function as the neuroanatomical basis linking perceived social support with self-esteem in a cohort of 243 young healthy adults (128 women; mean age 22.64 years, standard deviation 1.01 years). The Social Provisions Scale and Rosenberg Self Esteem Scale were used for the survey. Magnetic resonance imaging was used to measure the gray matter volume of the hippocampus and amygdala. Correlation analysis revealed that those who perceived more social support had higher self-esteem. Notably, mediation analysis showed that hippocampal gray matter volume linked perceived social support with self-esteem. Our study suggests that the hippocampus plays a primary, but not exclusive, role in linking perceived social support with self-esteem, which provides a novel explanation for how perceived social support affects self-esteem from the perspective of cognitive neuroscience.
Collapse
Affiliation(s)
- Huanhua Lu
- School of Marxism, China University of Geosciences (Beijing), Beijing, China
| | - Xueting Li
- Department of Psychology, Renmin University of China, Beijing, China
| | - Yinan Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yiying Song
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jia Liu
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Dunbar RIM, Shultz S. Four errors and a fallacy: pitfalls for the unwary in comparative brain analyses. Biol Rev Camb Philos Soc 2023; 98:1278-1309. [PMID: 37001905 DOI: 10.1111/brv.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Comparative analyses are the backbone of evolutionary analysis. However, their record in producing a consensus has not always been good. This is especially true of attempts to understand the factors responsible for the evolution of large brains, which have been embroiled in an increasingly polarised debate over the past three decades. We argue that most of these disputes arise from a number of conceptual errors and associated logical fallacies that are the result of a failure to adopt a biological systems-based approach to hypothesis-testing. We identify four principal classes of error: a failure to heed Tinbergen's Four Questions when testing biological hypotheses, misapplying Dobzhansky's Dictum when testing hypotheses of evolutionary adaptation, poorly chosen behavioural proxies for underlying hypotheses, and the use of inappropriate statistical methods. In the interests of progress, we urge a more careful and considered approach to comparative analyses, and the adoption of a broader, rather than a narrower, taxonomic perspective.
Collapse
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
25
|
Sharma R, Dillon K, Williams SEE, McIntosh R. Does emotion regulation network mediate the effect of social network on psychological distress among older adults? Soc Neurosci 2023; 18:142-154. [PMID: 37267049 DOI: 10.1080/17470919.2023.2218619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Socio-emotional interactions are integral for regulating emotions and buffering psychological distress. Social neuroscience perspectives on aging suggest that empathetic interpersonal interactions are supported by the activation of brain regions involved in regulating negative affect. The current study tested whether resting state functional connectivity of a network of brain regions activated during cognitive emotion regulation, i.e., emotion regulation network (ERN), statistically mediates the frequency of social contact with friends or family on psychological distress. Here, a 10-min resting-state functional MRI scan was collected along with self-reported anxiety/depressive, somatic, and thought problems and social networking from 90 community-dwelling older adults (aged 65-85 years). The frequency of social interactions with family, but not friends and neighbors, was associated with lower psychological distress. The magnitude of this effect was reduced by 33.34% to non-significant upon adding resting state ERN connectivity as a mediator. Follow-up whole-brain graph network analyses revealed that efficiency and centrality of the left inferior frontal gyrus and the right middle temporal gyrus relate to greater family interactions and lower distress. These hubs may help to buffer psychological problems in older adults through interactions involving empathetic and cognitive emotion regulation with close family.
Collapse
Affiliation(s)
| | - Kaitlyn Dillon
- Department of Psychology, University of Miami, Miami, Florida, USA
| | | | - Roger McIntosh
- Department of Psychology, University of Miami, Miami, Florida, USA
| |
Collapse
|
26
|
Duffner LA, DeJong NR, Jansen JFA, Backes WH, de Vugt M, Deckers K, Köhler S. Associations between social health factors, cognitive activity and neurostructural markers for brain health - A systematic literature review and meta-analysis. Ageing Res Rev 2023; 89:101986. [PMID: 37356551 DOI: 10.1016/j.arr.2023.101986] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Social health factors (e.g., social activities or social support) and cognitive activity engagement have been associated with dementia risk, but their neural substrates have not been well established. This systematic review and meta-analysis summarizes the available evidence regarding the association between these factors and cerebral macro- and micro-structure. A comprehensive literature search was conducted in various databases, following predefined criteria. Heterogeneity, risk of publication bias and overall certainty of evidence were assessed using standardized scales and, whenever appropriate, random effects meta-analysis was conducted. Of 6715 identified articles, 43 were included. Overall, consistency of findings was low and methodological heterogeneity high for all outcomes. However, in some studies cognitive and social activities were positively associated with total brain, global and cortical grey matter and hippocampal volume as well as white matter microstructural integrity. Furthermore, structural social network characteristics (e.g., social network size) were associated with regional grey matter volumes, while functional social network characteristics (e.g., social support) were additionally associated with total brain volume. Meta-analyses revealed small but significant partial correlations between cognitive and social activities and hippocampal (three studies; n = 892; rz =0.07) and white matter hyperintensity volume (three studies; n = 2934; rz =-0.04). More prospective studies are needed to assess temporal associations.
Collapse
Affiliation(s)
- Lukas A Duffner
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Nathan R DeJong
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marjolein de Vugt
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Kay Deckers
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Sebastian Köhler
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
27
|
Tusche A, Spunt RP, Paul LK, Tyszka JM, Adolphs R. Neural signatures of social inferences predict the number of real-life social contacts and autism severity. Nat Commun 2023; 14:4399. [PMID: 37474575 PMCID: PMC10359299 DOI: 10.1038/s41467-023-40078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
We regularly infer other people's thoughts and feelings from observing their actions, but how this ability contributes to successful social behavior and interactions remains unknown. We show that neural activation patterns during social inferences obtained in the laboratory predict the number of social contacts in the real world, as measured by the social network index, in three neurotypical samples (total n = 126) and one sample of autistic adults (n = 23). We also show that brain patterns during social inference generalize across individuals in these groups. Cross-validated associations between brain activations and social inference localize selectively to the right posterior superior temporal sulcus and were specific for social, but not nonsocial, inference. Activation within this same brain region also predicts autism-like trait scores from questionnaires and autism symptom severity. Thus, neural activations produced while thinking about other people's mental states predict variance in multiple indices of social functioning in the real world.
Collapse
Affiliation(s)
- Anita Tusche
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
- Department of Psychology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Robert P Spunt
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Julian M Tyszka
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
28
|
Rollings J, Micheletta J, Van Laar D, Waller BM. Personality Traits Predict Social Network Size in Older Adults. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2023; 49:925-938. [PMID: 35393911 PMCID: PMC10226003 DOI: 10.1177/01461672221078664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Humans live in unusually large groups, where relationships are thought to be maintained through complex socio-communicative abilities. The size and quality of social networks are associated with health and well-being outcomes throughout life. However, how some individuals manage to form larger social networks is not well understood. If socio-communicative traits evolved to form and maintain relationships, personality traits should be associated with variation in network size. Here, using the English Longitudinal Study of Ageing (ELSA), we investigate the impact of extraversion, agreeableness, and verbal communication on network size (N = 5,202) and network size change over time (N = 1,511) in later life for kin and friend networks. Higher levels of extraversion and agreeableness were associated with greater social network sizes but did not predict network size change over 14 years. The findings are discussed considering the evolutionary hypothesis that communicative and affiliative traits may have evolved to support the maintenance of social networks.
Collapse
|
29
|
Li G, Chen MH, Li G, Wu D, Lian C, Sun Q, Rushmore RJ, Wang L. Volumetric Analysis of Amygdala and Hippocampal Subfields for Infants with Autism. J Autism Dev Disord 2023; 53:2475-2489. [PMID: 35389185 PMCID: PMC9537344 DOI: 10.1007/s10803-022-05535-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated abnormal brain overgrowth in children with autism spectrum disorder (ASD), but the development of specific brain regions, such as the amygdala and hippocampal subfields in infants, is incompletely documented. To address this issue, we performed the first MRI study of amygdala and hippocampal subfields in infants from 6 to 24 months of age using a longitudinal dataset. A novel deep learning approach, Dilated-Dense U-Net, was proposed to address the challenge of low tissue contrast and small structural size of these subfields. We performed a volume-based analysis on the segmentation results. Our results show that infants who were later diagnosed with ASD had larger left and right volumes of amygdala and hippocampal subfields than typically developing controls.
Collapse
Affiliation(s)
- Guannan Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunfeng Lian
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Quansen Sun
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
30
|
Taheri F, Joushi S, Esmaeilpour K, Sheibani V, Ebrahimi MN, Taheri Zadeh Z. Music alleviates cognitive impairments in an animal model of autism. Int J Dev Neurosci 2023. [PMID: 37246451 DOI: 10.1002/jdn.10260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 05/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms including impairment in social communication and restrictive and repetitive behaviors and interests. Music has emerged in the past decade as an intervention therapy for children with ASD. The aim of the present study was to evaluate the effects of music on cognition impairments in the valproic acid (VPA) rat model of autism. The VPA was administered for animal modeling of autism on embryonic day 12.5 (E12.5) (600 mg/kg). Male and female pups were sub divided into four main groups (Saline.Non-music, VPA.Non-music, Saline.Music, and VPA.Music). The rats in the music groups were exposed to Mozart's piano sonata K.448 for 30 days (4 h/day), from postnatal day (PND) 21 to 50. Autistic-like behaviors were tested using a social interaction, the Morris water maze (MWM), and a passive avoidance tasks at the end of the PND 50. Our results demonstrated that VPA-exposed rat pups had significantly lower sociability and social memory performance compared with the saline-exposed rats in both sexes. VPA-exposed rat pups exhibited learning and memory impairments in the MWM and passive avoidance tasks. Our results demonstrated that music improved sociability in VPA-exposed rats, especially in males. Furthermore, our findings revealed that music improved learning impairments in VPA-exposed male rats in MWM task. In addition, music improved spatial memory impairments in VPA-exposed rats of both sexes. We also found that music improved passive avoidance memory impairments in VPA-exposed rats of both sexes, especially in females. More investigation in future studies are needed.
Collapse
Affiliation(s)
- Farahnaz Taheri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physics and Astronomy department, University of Waterloo, Waterloo, Ontario, Canada
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Taheri Zadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Sakai T, Hata J, Shintaku Y, Ohta H, Sogabe K, Mori S, Miyabe-Nishiwaki T, Okano HJ, Hamada Y, Hirabayashi T, Minamimoto T, Sadato N, Okano H, Oishi K. The Japan Monkey Centre Primates Brain Imaging Repository of high-resolution postmortem magnetic resonance imaging: the second phase of the archive of digital records. Neuroimage 2023; 273:120096. [PMID: 37031828 DOI: 10.1016/j.neuroimage.2023.120096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/17/2022] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes' monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form.
Collapse
Affiliation(s)
- Tomoko Sakai
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Yuta Shintaku
- Wildlife Research Center, Kyoto University, Kyoto, Japan; Japan Monkey Centre, Inuyama, Aichi, Japan
| | - Hiroki Ohta
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazumi Sogabe
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kenney Krieger Institute, Baltimore, MD, USA
| | - Takako Miyabe-Nishiwaki
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuzuru Hamada
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| |
Collapse
|
32
|
Kieckhaefer C, Schilbach L, Bzdok D. Social belonging: brain structure and function is linked to membership in sports teams, religious groups, and social clubs. Cereb Cortex 2023; 33:4405-4420. [PMID: 36161309 PMCID: PMC10110433 DOI: 10.1093/cercor/bhac351] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
Human behavior across the life span is driven by the psychological need to belong, right from kindergarten to bingo nights. Being part of social groups constitutes a backbone for communal life and confers many benefits for the physical and mental health. Capitalizing on the neuroimaging and behavioral data from ∼40,000 participants from the UK Biobank population cohort, we used structural and functional analyses to explore how social participation is reflected in the human brain. Across 3 different types of social groups, structural analyses point toward the variance in ventromedial prefrontal cortex, fusiform gyrus, and anterior cingulate cortex as structural substrates tightly linked to social participation. Functional connectivity analyses not only emphasized the importance of default mode and limbic network but also showed differences for sports teams and religious groups as compared to social clubs. Taken together, our findings establish the structural and functional integrity of the default mode network as a neural signature of social belonging.
Collapse
Affiliation(s)
- Carolin Kieckhaefer
- LVR Klinikum Düsseldorf, Department of Psychiatry and Psychotherapy, Heinrich-Heine-University Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
| | - Leonhard Schilbach
- LVR Klinikum Düsseldorf, Department of Psychiatry and Psychotherapy, Heinrich-Heine-University Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
- Medical Faculty, Ludwig Maximilians University, Bavariaring 19, 80336 Munich, Germany
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Faculty of Medicine and Health Sciences, Montreal Neurological Institute (MNI), McGill University, 3801 rue University, Montreal, Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, 3775 rue University, Montreal, Quebec H3A 2B4, Canada
- Mila - Quebec Artificial Intelligence Institute, 6666 rue Saint-Urbain, Montreal, Quebec H2S 3H1, Canada
| |
Collapse
|
33
|
Home alone: A population neuroscience investigation of brain morphology substrates. Neuroimage 2023; 269:119936. [PMID: 36781113 DOI: 10.1016/j.neuroimage.2023.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
As a social species, ready exchange with peers is a pivotal asset - our "social capital". Yet, single-person households have come to pervade metropolitan cities worldwide, with unknown consequences in the long run. Here, we systematically explore the morphological manifestations associated with singular living in ∼40,000 UK Biobank participants. The uncovered population-level signature spotlights the highly associative default mode network, in addition to findings such as in the amygdala central, cortical and corticoamygdaloid nuclei groups, as well as the hippocampal fimbria and dentate gyrus. Both positive effects, equating to greater gray matter volume associated with living alone, and negative effects, which can be interpreted as greater gray matter associations with not living alone, were found across the cortex and subcortical structures Sex-stratified analyses revealed male-specific neural substrates, including somatomotor, saliency and visual systems, while female-specific neural substrates centered on the dorsomedial prefrontal cortex. In line with our demographic profiling results, the discovered neural pattern of living alone is potentially linked to alcohol and tobacco consumption, anxiety, sleep quality as well as daily TV watching. The persistent trend for solitary living will require new answers from public-health decision makers. SIGNIFICANCE STATEMENT: Living alone has profound consequences for mental and physical health. Despite this, there has been a rapid increase in single-person households worldwide, with the long-term consequences yet unknown. In the largest study of its kind, we investigate how the objective lack of everyday social interaction, through living alone, manifests in the brain. Our population neuroscience approach uncovered a gray matter signature that converged on the 'default network', alongside targeted subcortical, sex and demographic profiling analyses. The human urge for social relationships is highlighted by the evolving COVID-19 pandemic. Better understanding of how social isolation relates to the brain will influence health and social policy decision-making of pandemic planning, as well as social interventions in light of global shifts in houseful structures.
Collapse
|
34
|
The importance of high quality real-life social interactions during the COVID-19 pandemic. Sci Rep 2023; 13:3675. [PMID: 36871079 PMCID: PMC9985477 DOI: 10.1038/s41598-023-30803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The coronavirus pandemic has brought about dramatic restrictions to real-life social interactions and a shift towards more online social encounters. Positive social interactions have been highlighted as an important protective factor, with previous studies suggesting an involvement of the amygdala in the relationship between social embeddedness and well-being. The present study investigated the effect of the quality of real-life and online social interactions on mood, and explored whether this association is affected by an individual's amygdala activity. Sixty-two participants of a longitudinal study took part in a one-week ecological momentary assessment (EMA) during the first lockdown, reporting their momentary well-being and their engagement in real-life and online social interactions eight times per day (N ~ 3000 observations). Amygdala activity was assessed before the pandemic during an emotion-processing task. Mixed models were calculated to estimate the association between social interactions and well-being, including two-way interactions to test for the moderating effect of amygdala activity. We found a positive relationship between real-life interactions and momentary well-being. In contrast, online interactions had no effect on well-being. Moreover, positive real-life social interactions augmented this social affective benefit, especially in individuals with higher amygdala being more sensitive to the interaction quality. Our findings demonstrate a mood-lifting effect of positive real-life social interactions during the pandemic, which was dependent on amygdala activity before the pandemic. As no corresponding effect was found between online social interactions and well-being, it can be concluded that increased online social interactions may not compensate for the absence of real-life social interactions.
Collapse
|
35
|
Balagtas JPM, Tolomeo S, Ragunath BL, Rigo P, Bornstein MH, Esposito G. Neuroanatomical correlates of system-justifying ideologies: a pre-registered voxel-based morphometry study on right-wing authoritarianism and social dominance orientation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230196. [PMID: 36968234 PMCID: PMC10031404 DOI: 10.1098/rsos.230196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/14/2023]
Abstract
System-justifying ideologies are a cluster of ideals that perpetuate a hierarchical social system despite being fraught with inequalities. Right-wing authoritarianism (RWA) and social dominance orientation (SDO) are two ideologies that have received much attention in the literature separately and together. Given that these ideologies are considered to be stable individual differences that are likely to have an evolutionary basis, there has yet to be any examination for volumetric brain structures associated with these variables. Here, we proposed an investigation of overlapping and non-overlapping brain regions associated with RWA and SDO in a sample recruited in Singapore. Indeed, it will be interesting to determine how RWA and SDO correlate in a country that proactively promotes institutionalized multi-culturalism such as Singapore. RWA and SDO scores were collected via self-report measures from healthy individuals (39 males and 43 females; age 25.89 ± 5.68 years). Consequently, voxel-based morphometry (VBM) whole brain and region of interest (ROI) analyses were employed to identify neuroanatomical correlates of these system-justifying ideologies. RWA and SDO scores were strongly correlated despite the low ideological contrast in Singapore's sociopolitical context. The whole brain analysis did not reveal any significant clusters associated with either RWA or SDO. The ROI analyses revealed clusters in the bilateral amygdala and ventromedial prefrontal cortex (vmPFC) that were associated with both RWA and SDO scores, whereas two clusters in the left anterior insula were negatively associated with only SDO scores. The study corroborates the claim of RWA and SDO as stable individual differences with identifiable neuroanatomical correlates, but our exploratory analysis suggests evidence that precludes any definitive conclusion based on the present evidence.
Collapse
Affiliation(s)
- Jan Paolo M. Balagtas
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore
| | | | - Bindiya L. Ragunath
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore
| | - Paola Rigo
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Marc H. Bornstein
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, USA
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| |
Collapse
|
36
|
Balagtas JPM, Tolomeo S, Ragunath BL, Rigo P, Bornstein MH, Esposito G. Neuroanatomical correlates of system-justifying ideologies: a pre-registered voxel-based morphometry study on right-wing authoritarianism and social dominance orientation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230196. [PMID: 36968234 DOI: 10.6084/m9.figshare.c.6461060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
System-justifying ideologies are a cluster of ideals that perpetuate a hierarchical social system despite being fraught with inequalities. Right-wing authoritarianism (RWA) and social dominance orientation (SDO) are two ideologies that have received much attention in the literature separately and together. Given that these ideologies are considered to be stable individual differences that are likely to have an evolutionary basis, there has yet to be any examination for volumetric brain structures associated with these variables. Here, we proposed an investigation of overlapping and non-overlapping brain regions associated with RWA and SDO in a sample recruited in Singapore. Indeed, it will be interesting to determine how RWA and SDO correlate in a country that proactively promotes institutionalized multi-culturalism such as Singapore. RWA and SDO scores were collected via self-report measures from healthy individuals (39 males and 43 females; age 25.89 ± 5.68 years). Consequently, voxel-based morphometry (VBM) whole brain and region of interest (ROI) analyses were employed to identify neuroanatomical correlates of these system-justifying ideologies. RWA and SDO scores were strongly correlated despite the low ideological contrast in Singapore's sociopolitical context. The whole brain analysis did not reveal any significant clusters associated with either RWA or SDO. The ROI analyses revealed clusters in the bilateral amygdala and ventromedial prefrontal cortex (vmPFC) that were associated with both RWA and SDO scores, whereas two clusters in the left anterior insula were negatively associated with only SDO scores. The study corroborates the claim of RWA and SDO as stable individual differences with identifiable neuroanatomical correlates, but our exploratory analysis suggests evidence that precludes any definitive conclusion based on the present evidence.
Collapse
Affiliation(s)
- Jan Paolo M Balagtas
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore
| | | | - Bindiya L Ragunath
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore
| | - Paola Rigo
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Marc H Bornstein
- Child and Family Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, USA
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| |
Collapse
|
37
|
Driver C, Moore L, Mohamed A, Boyes A, Sacks DD, Mills L, McLoughlin LT, Lagopoulos J, Hermens DF. Structural connectivity and its association with social connectedness in early adolescence. Behav Brain Res 2023; 440:114259. [PMID: 36528168 DOI: 10.1016/j.bbr.2022.114259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Adolescence is a critical period of social and neural development. Brain regions which process social information develop throughout adolescence as young people learn to navigate social environments. Studies investigating brain structural connectivity (indexed by white matter (WM) integrity), and social connectedness in adolescents have been limited until recently, with literature stemming mostly from adult samples, broad age ranges within adolescence or based on social network characteristics as opposed to social connectedness. This cross-sectional study of 12-year-olds (N = 73) explored the relationship between social connectedness (SCS) and structural connectivity in early adolescence, to gauge how this snapshot of WM development is associated with social behaviour. Whole brain voxel-wise diffusion tensor imaging was undertaken to determine correlations between SCS and fractional anisotropy (FA), radial (RD) and axial (AD) diffusivity of clusters within WM tracts. Significant negative relationships between FA and SCS scores were found in clusters within 11 WM tracts, with significant positive correlations between SCS and both RD and AD across clusters within 13 and 8 clusters, respectively. Clusters within the genu of the corpus callosum (CCgn) showed strong correlations for all three metrics, and regression models that included gender, age, and psychological distress, revealed SCS to be the only significant predictor of CCgn FA, RD and AD values. Overall, these findings suggest that those with lower social connectedness had a WM profile suggestive of reduced axonal density and/or coherence. Longitudinal research is needed to track such WM profiles during adolescent development and determine the associations with mental health and well-being outcomes.
Collapse
Affiliation(s)
- Christina Driver
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia.
| | - Lisa Moore
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Abdalla Mohamed
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Amanda Boyes
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Dashiell D Sacks
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Lia Mills
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Larisa T McLoughlin
- Behaviour-Brain-Body Research Centre, University of South Australia, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Innovation Parkway, Birtinya, QLD, Australia
| |
Collapse
|
38
|
Jaqua E, Biddy E, Moore C, Browne G. The Impact of the Six Pillars of Lifestyle Medicine on Brain Health. Cureus 2023; 15:e34605. [PMID: 36883088 PMCID: PMC9985951 DOI: 10.7759/cureus.34605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Dementia is growing exponentially worldwide. Unfortunately, the treatment available does not reverse any type of cognitive impairment. As a result, healthcare professionals are focusing on other evidence-based options, such as lifestyle medicine (LM). Current evidence demonstrates improvement in neurocognitive decline by applying the six pillars of LM, which include plant-based nutrition, physical activity, stress management, avoidance of risky substances, restorative sleep, and social connections. Plant-based nutrition has a positive impact on cognition by decreasing the risk for Alzheimer's disease (AD) with high adherence to the Mediterranean-Dietary Approach to Systolic Hypertension (DASH) Intervention for Neurodegenerative Delay (MIND). Physical activity also might prevent neurocognitive decline by increasing fibronectin type III domain-containing protein 5 (FNDC5) and Irisin in the hippocampus, which increases energy expenditure and prolongs endurance. Additionally, higher perceived stress in adulthood and the use of risky substances such as alcohol, nicotine, and opioids are significantly associated with developing mild cognitive impairment and all-cause dementia. Furthermore, there is a positive correlation between poor sleep and social isolation with a rapid progression in cognitive decline. Lifestyle changes have a substantial impact on brain health. Therefore, the focus should always be on prevention as the primary treatment tool.
Collapse
Affiliation(s)
- Ecler Jaqua
- Family Medicine, Loma Linda University Medical Center, Loma Linda, USA
| | - Edna Biddy
- Geriatrics, University of California Irvine, Irvine, USA
| | - Clare Moore
- Family Medicine, Loma Linda University Medical Center, Loma Linda, USA
| | - Genise Browne
- Family Medicine, Loma Linda University School of Medicine, Loma Linda, USA
| |
Collapse
|
39
|
Vandenbulcke M, Van de Vliet L, Sun J, Huang YA, Van Den Bossche MJA, Sunaert S, Peeters R, Zhu Q, Vanduffel W, de Gelder B, De Winter FL, Van den Stock J. A paleo-neurologic investigation of the social brain hypothesis in frontotemporal dementia. Cereb Cortex 2023; 33:622-633. [PMID: 35253853 DOI: 10.1093/cercor/bhac089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/03/2023] Open
Abstract
The social brain hypothesis posits that a disproportionate encephalization in primates enabled to adapt behavior to a social context. Also, it has been proposed that phylogenetically recent brain areas are disproportionally affected by neurodegeneration. Using structural and functional magnetic resonance imaging, the present study investigates brain-behavior associations and neural integrity of hyperspecialized and domain-general cortical social brain areas in behavioral variant frontotemporal dementia (bvFTD). The results revealed that both structure and function of hyperspecialized social areas in the middle portion of the superior temporal sulcus (STS) are compromised in bvFTD, while no deterioration was observed in domain general social areas in the posterior STS. While the structural findings adhered to an anterior-posterior gradient, the functional group differences only occurred in the hyperspecialized locations. Activity in specialized regions was associated with structural integrity of the amygdala and with social deficits in bvFTD. In conclusion, the results are in line with the paleo-neurology hypothesis positing that neurodegeneration primarily hits cortical areas showing increased specialization, but also with the compatible alternative explanation that anterior STS regions degenerate earlier, based on stronger connections to and trans-neuronal spreading from regions affected early in bvFTD.
Collapse
Affiliation(s)
- Mathieu Vandenbulcke
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Laura Van de Vliet
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Jiaze Sun
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Yun-An Huang
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Maarten J A Van Den Bossche
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Ron Peeters
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Beatrice de Gelder
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands.,Department of Computer Science, University College London, London WC1E 6BT, UK
| | - François-Laurent De Winter
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Jan Van den Stock
- Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
40
|
Goldman AW. Olfaction in (Social) Context: The Role of Social Complexity in Trajectories of Older Adults' Olfactory Abilities. J Aging Health 2023; 35:108-124. [PMID: 35739641 DOI: 10.1177/08982643221108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: Olfaction is an important correlate of later-life health, including cognition and mortality risk. Environmental enrichment protects against olfactory decline, yet little research considers the social context as a source of sensory enrichment or stimulation. This study examines how exposure to social complexity (i.e., diversity or novelty in social networks and activities) shapes later-life olfaction. Methods: Cross-sectional and longitudinal ordered logit models analyze data from 1,447 older adults interviewed at Rounds 1 and 2 of the National Social Life, Health, and Aging Project. Results: Exposure to greater social complexity (larger social networks, greater network diversity) is associated with significantly better olfaction at baseline. Increases in network diversity and fewer network losses significantly protect against olfactory decline over time. Discussion: Findings highlight the social context as an important, yet relatively overlooked source of sensory enrichment, and underscore the need for biological applications to integrate social life dynamics into studies of health trajectories.
Collapse
Affiliation(s)
- Alyssa W Goldman
- Department of Sociology, 6019Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
41
|
Moore PA, Turnbull OH. Like a rolling stone: Psychotherapy without (episodic) memory. Front Psychiatry 2022; 13:958194. [PMID: 36405914 PMCID: PMC9666688 DOI: 10.3389/fpsyt.2022.958194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
People with profound amnesia still retain the capacity to learn about the emotional value of experiences, which is crucial in developing and sustaining interpersonal relationships. In a 2017 paper, we demonstrated for the first time (with patient JL) that transferential feelings develop across the therapeutic process, despite profound episodic memory impairment after medial temporal lesions. This paper reports a second case (GA) of a profoundly amnesic patient in psychotherapy, this time after lesions to the anterior fornix. The work with GA opens issues such as the differences and similarities to the previous case, counter-transference phenomena, and the effects of hyperphagia. The findings make it clear that many phenomena are common to both GA and JL, such as forgetfulness, various types of repetition, the importance of the therapeutic alliance, and the ability to make therapeutic gain. However, there were differences between the cases, for example as regards confabulation, which may relate to either pre-morbid personality or lesion site. The paper also discusses the way in which patients of this type bear the very status of psychotherapeutic work with profoundly amnesic patients. Where others have seen barriers and in principle problems in working with such patients, we see many opportunities.
Collapse
Affiliation(s)
- Paul A. Moore
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Oliver Hugh Turnbull
- School of Human and Behavioral Sciences, Bangor University, Wales, United Kingdom
| |
Collapse
|
42
|
Zhang YJ, Hu HX, Wang LL, Wang X, Wang Y, Huang J, Wang Y, Lui SSY, Hui L, Chan RCK. Altered neural mechanism of social reward anticipation in individuals with schizophrenia and social anhedonia. Eur Arch Psychiatry Clin Neurosci 2022:10.1007/s00406-022-01505-6. [PMID: 36305919 DOI: 10.1007/s00406-022-01505-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Altered social reward anticipation could be found in schizophrenia (SCZ) patients and individuals with high levels of social anhedonia (SA). However, few research investigated the putative neural processing for altered social reward anticipation in these populations on the SCZ spectrum. This study aimed to examine the underlying neural mechanisms of social reward anticipation in these populations. Twenty-three SCZ patients and 17 healthy controls (HC), 37 SA individuals and 50 respective HCs completed the Social Incentive Delay (SID) imaging task while they were undertaking MRI brain scans. We used the group contrast to examine the alterations of BOLD activation and functional connectivity (FC, psychophysiological interactions analysis). We then characterized the beta-series social brain network (SBN) based on the meta-analysis results from NeuroSynth and examined their prediction effects on real-life social network (SN) characteristics using the partial least squared regression analysis. The results showed that SCZ patients exhibited hypo-activation of the left medial frontal gyrus and the negative FCs with the left parietal regions, while individuals with SA showed the hyper-activation of the left middle frontal gyrus when anticipating social reward. For the beta-series SBNs, SCZ patients had strengthened cerebellum-temporal FCs, while SA individuals had strengthened left frontal regions FCs. However, such FCs of the SBN failed to predict the real-life SN characteristics. These preliminary findings suggested that SCZ patients and SA individuals appear to exhibit altered neural processing for social reward anticipation, and such neural activities showed a weakened association with real-life SN characteristics.
Collapse
Affiliation(s)
- Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Xin Hu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Hui
- The Affiliated Guangji Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Xuan FL, Yan L, Li Y, Fan F, Deng H, Gou M, Chithanathan K, Heinla I, Yuan L, Seppa K, Zharkovsky A, Kalda A, Hong LE, Hu GF, Tan Y, Tian L. Glial receptor PLXNB2 regulates schizophrenia-related stress perception via the amygdala. Front Immunol 2022; 13:1005067. [PMID: 36325348 PMCID: PMC9619215 DOI: 10.3389/fimmu.2022.1005067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Stress is a trigger for the development of psychiatric disorders. However, how stress trait differs in schizophrenia patients is still unclear. Stress also induces and exacerbates immune activation in psychiatric disorders. Plexins (Plxn) and its ligands semaphorins (Sema) are important cellular receptors with plural functions in both the brain and the immune system. Recently, the role of Plxn/Sema in regulation of neuroinflammation was also noticed. Here, when investigating immune mechanisms underlying stress susceptibility in schizophrenia, we discovered the role of Plxnb2 in stress response. Patients of first-episode schizophrenia (FES) with high stress (FES-hs, n=51) and low stress (FES-ls, n=50) perception and healthy controls (HCs) (n=49) were first recruited for neuroimaging and blood bulk RNA sequencing (RNA-seq). A mouse model of chronic unpredictable stress (CUS) and intra-amygdaloid functional blocking of Plxnb2 were further explored to depict target gene functions. Compared to HCs, FES-hs patients had bigger caudate and thalamus (FDR=0.02&0.001, respectively) whereas FES-ls patients had smaller amygdala (FDR=0.002). Blood RNA-seq showed differentially expressed PLXNB2 and its ligands among patient groups and HCs (FDR<0.05~0.01). Amygdaloid size and PLXNB2 level were both negatively correlated with stress perception (p<0.01&0.05, respectively), which fully mediated the amygdaloid positive association with PLXNB2 expression (β=0.9318, 95% CI: 0.058~1.886) in FES-hs patients. In mice, Plxnb2 was enriched in astrocytes and microglia and CUS reduced its expression in astrocytes (p<0.05). Inhibition of amygdaloid Plxnb2 by its functional blocking monoclonal antibody (mAb)-102 induced mice anxiety (p<0.05), amygdaloid enlargement (p<0.05), and microglial ramification (p<0.001) compared to saline. These data suggest that PLXNB2 regulates amygdala-dependent stress responses.
Collapse
Affiliation(s)
- Fang-Ling Xuan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ling Yan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Yanli Li
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Fengmei Fan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Hu Deng
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Mengzhuang Gou
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Keerthana Chithanathan
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Indrek Heinla
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Liang Yuan
- Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Kadri Seppa
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Anti Kalda
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Guo-Fu Hu
- Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | - Yunlong Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
- *Correspondence: Li Tian, ; Yunlong Tan,
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- *Correspondence: Li Tian, ; Yunlong Tan,
| |
Collapse
|
44
|
Burke N, Brezack N, Woodward A. Children’s social networks in developmental psychology: A network approach to capture and describe early social environments. Front Psychol 2022; 13:1009422. [PMID: 36312073 PMCID: PMC9614093 DOI: 10.3389/fpsyg.2022.1009422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Psychologists are interested in understanding how early social environments impact children’s behavior and cognition. Early social environments are comprised of social relationships; however, there have been relatively few tools available to quantify the depth and breadth of children’s social relationships. We harnessed the power of social networks to demonstrate that networks can be used to describe children’s early social environments. Descriptive data from American children aged 6 months–5 years (n = 280; 47% female, 56% White) demonstrates that network properties can be used to provide a quantitative analysis of children’s early social environments and highlights how these environments vary across development. Social network methodology will provide researchers with a comprehensive picture of children’s early social experiences and improve studies exploring individual differences.
Collapse
Affiliation(s)
- Nicole Burke
- Department of Psychology, New York University, New York, NY, United States
- Department of Psychology, University of Chicago, Chicago, IL, United States
- *Correspondence: Nicole Burke,
| | - Natalie Brezack
- Department of Psychology, University of Chicago, Chicago, IL, United States
| | - Amanda Woodward
- Department of Psychology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
45
|
White matter connectivity in brain networks supporting social and affective processing predicts real-world social network characteristics. Commun Biol 2022; 5:1048. [PMID: 36192629 PMCID: PMC9529948 DOI: 10.1038/s42003-022-03655-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Abstract
Human behavior is embedded in social networks. Certain characteristics of the positions that people occupy within these networks appear to be stable within individuals. Such traits likely stem in part from individual differences in how people tend to think and behave, which may be driven by individual differences in the neuroanatomy supporting socio-affective processing. To investigate this possibility, we reconstructed the full social networks of three graduate student cohorts (N = 275; N = 279; N = 285), a subset of whom (N = 112) underwent diffusion magnetic resonance imaging. Although no single tract in isolation appears to be necessary or sufficient to predict social network characteristics, distributed patterns of white matter microstructural integrity in brain networks supporting social and affective processing predict eigenvector centrality (how well-connected someone is to well-connected others) and brokerage (how much one connects otherwise unconnected others). Thus, where individuals sit in their real-world social networks is reflected in their structural brain networks. More broadly, these results suggest that the application of data-driven methods to neuroimaging data can be a promising approach to investigate how brains shape and are shaped by individuals' positions in their real-world social networks.
Collapse
|
46
|
Shultz S, Dunbar RIM. Socioecological complexity in primate groups and its cognitive correlates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210296. [PMID: 35934968 PMCID: PMC9358314 DOI: 10.1098/rstb.2021.0296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Characterizing non-human primate social complexity and its cognitive bases has proved challenging. Using principal component analyses, we show that primate social, ecological and reproductive behaviours condense into two components: socioecological complexity (including most social and ecological variables) and reproductive cooperation (comprising mainly a suite of behaviours associated with pairbonded monogamy). We contextualize these results using a meta-analysis of 44 published analyses of primate brain evolution. These studies yield two main consistent results: cognition, sociality and cooperative behaviours are associated with absolute brain volume, neocortex size and neocortex ratio, whereas diet composition and life history are consistently associated with relative brain size. We use a path analysis to evaluate the causal relationships among these variables, demonstrating that social group size is predicted by the neocortex, whereas ecological traits are predicted by the volume of brain structures other than the neocortex. That a range of social and technical behaviours covary, and are correlated with social group size and brain size, suggests that primate cognition has evolved along a continuum resulting in an increasingly flexible, domain-general capacity to solve a range of socioecological challenges culminating in a capacity for, and reliance on, innovation and social information use in the great apes and humans. This article is part of the theme issue 'Cognition, communication and social bonds in primates'.
Collapse
Affiliation(s)
- Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
47
|
Beadle JN, Heller A, Rosenbaum RS, Davidson PSR, Tranel D, Duff M. Amygdala but not hippocampal damage associated with smaller social network size. Neuropsychologia 2022; 174:108311. [PMID: 35810880 PMCID: PMC9887793 DOI: 10.1016/j.neuropsychologia.2022.108311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/02/2023]
Abstract
Social network size has been associated with complex socio-cognitive processes (e.g., memory, perspective taking). Supporting this idea, recent neuroimaging studies in healthy adults have reported a relationship between social network size and brain volumes in regions related to memory and social cognition (e.g., hippocampus, amygdala). Lesion-deficit studies in neurological patients are rare and have been inconclusive due to differences in participant sampling and measurement. The present study uses a multiple case study approach. We investigated patients with focal damage to the hippocampus and/or amygdala (two neural structures thought to be critical for social networks), and examined the patients' social network size, loneliness, and life satisfaction relative to a non-injured comparison group. Patients with amygdalar damage had smaller social networks and reported higher levels of loneliness and lower life satisfaction, on average, than comparison participants. Patients with damage to the hippocampus reported more friends than the comparison participants, but did not differ in their ratings of loneliness or life satisfaction. This lesion study offers new evidence that the amygdala is critical for social networks, life satisfaction, and reduced loneliness.
Collapse
Affiliation(s)
- Janelle N Beadle
- Department of Gerontology, University of Nebraska at Omaha, USA.
| | - Abi Heller
- Department of Gerontology, University of Nebraska at Omaha, USA
| | - R Shayna Rosenbaum
- Department of Psychology and Vision: Science to Applications (VISTA) Program, York University, Canada
| | | | - Daniel Tranel
- Departments of Neurology and Psychological and Brain Sciences, University of Iowa, USA
| | - Melissa Duff
- Department of Hearing and Speech Sciences, Vanderbilt University, USA
| |
Collapse
|
48
|
Zhang YJ, Li Y, Wang YM, Wang SK, Pu CC, Zhou SZ, Ma YT, Wang Y, Lui SSY, Yu X, Chan RCK. Hub-connected functional connectivity within social brain network weakens the association with real-life social network in schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2022; 272:1033-1043. [PMID: 34626218 DOI: 10.1007/s00406-021-01344-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/04/2021] [Indexed: 01/10/2023]
Abstract
Hubs in the brain network are the regions with high centrality and are crucial in the network communication and information integration. Patients with schizophrenia (SCZ) exhibit wide range of abnormality in the hub regions and their connected functional connectivity (FC) at the whole-brain network level. Study of the hubs in the brain networks supporting complex social behavior (social brain network, SBN) would contribute to understand the social dysfunction in patients with SCZ. Forty-nine patients with SCZ and 27 healthy controls (HC) were recruited to undertake the resting-state magnetic resonance imaging scanning and completed a social network (SN) questionnaire. The resting-state SBN was constructed based on the automatic analysis results from the NeuroSynth. Our results showed that the left temporal lobe was the only hub of SBN, and its connected FCs strength was higher than the remaining FCs in both two groups. SCZ patients showed the lower association between the hub-connected FCs (compared to the FCs not connected to the hub regions) with the real-life SN characteristics. These results were replicated in another independent sample (30 SCZ and 28 HC). These preliminary findings suggested that the hub-connected FCs of SBN in SCZ patients exhibit the abnormality in predicting real-life SN characteristics.
Collapse
Affiliation(s)
- Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yong-Ming Wang
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Shuang-Kun Wang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cheng-Cheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shu-Zhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Centre for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yan-Tao Ma
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xin Yu
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Motion, Relation, and Passion in Brain Physiological and Cognitive Aging. Brain Sci 2022; 12:brainsci12091122. [PMID: 36138858 PMCID: PMC9496869 DOI: 10.3390/brainsci12091122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the current paper was to present important factors for keeping the basic structures of a person’s brain function, i.e., the grey and white matter, intact. Several lines of evidence have shown that motion, relation, and passion are central factors for preserving the neural system in the grey and white matter during ageing. An active lifestyle has shown to contribute to the development of the central nervous system and to contrast brain ageing. Interpersonal relationships, and interactions, have shown to contribute to complex biological factors that benefit the cognitive resilience to decline. Furthermore, the current scientific literature suggests that passion, strong interest, could be the driving factor motivating individuals to learn new things, thus influencing the development and maintenance of the neural functional network over time. The present theoretical perspective paper aims to convey several key messages: (1) brain development is critically affected by lifestyle; (2) physical training allows one to develop and maintain brain structures during ageing, and may be one of the keys for good quality of life as an older person; (3) diverse stimuli are a key factor in maintaining brain structures; (4) motion, relation, and passion are key elements for contrasting the loss of the grey and white matter of the brain.
Collapse
|
50
|
Perry BL, Roth AR, Peng S, Risacher SL, Saykin AJ, Apostolova LG. Social Networks and Cognitive Reserve: Network Structure Moderates the Association Between Amygdalar Volume and Cognitive Outcomes. J Gerontol B Psychol Sci Soc Sci 2022; 77:1490-1500. [PMID: 34655218 PMCID: PMC9371450 DOI: 10.1093/geronb/gbab192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The cognitive reserve hypothesis has been proposed as a key mechanism explaining the link between social networks and cognitive function but has rarely been empirically tested using neuroimaging data. This study examines whether social network attributes moderate the association between amygdalar volume and cognitive function. METHODS Data were from the Social Networks in Alzheimer Disease study (N = 154) and Indiana Alzheimer's Disease Research Center. Social networks were measured using the PhenX Social Network Battery. Regional data from magnetic resonance imaging (amygdalar volume [AV]) were analyzed using FreeSurfer software. Cognitive function was measured using the Montreal Cognitive Assessment (MoCA) and consensus diagnosis. Linear regression analyses were conducted to test the moderating role of social networks on the association between AV and cognitive function. RESULTS Participants with greater ability to span multiple social roles and subgroups within their networks scored higher on the MoCA after adjusting for sociodemographic variables, depression, frequency of contact, and AV. Social networks moderated the association between AV and cognitive function. DISCUSSION Among participants who engaged in diverse and loosely connected social networks, the expected adverse cognitive effects of brain volume in regions implicated in socioemotional processing were attenuated. These findings suggest that cognitive stimulation achieved through social interaction with a diverse array of social relationships across multiple contexts may help promote cognitive reserve.
Collapse
Affiliation(s)
- Brea L Perry
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, Indiana, USA
| | - Adam R Roth
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, Indiana, USA
| | - Siyun Peng
- Department of Sociology, Indiana University, Bloomington, Indiana, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liana G Apostolova
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|