1
|
Ho CT, Evans EB, Lukasik K, O'Shaughnessy EC, Shah A, Hsu CH, Temple B, Bear JE, Gupton SL. Coro1A and TRIM67 collaborate in netrin-dependent neuronal morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644333. [PMID: 40166342 PMCID: PMC11957122 DOI: 10.1101/2025.03.20.644333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neuronal morphogenesis depends on extracellular guidance cues accurately instructing intracellular cytoskeletal remodeling. Here, we describe a novel role for the actin binding protein Coronin 1A (Coro1A) in neuronal morphogenesis, where it mediates responses to the axon guidance cue netrin-1. We found that Coro1A localizes to growth cones and filopodial structures and is required for netrindependent axon turning, branching, and corpus callosum development. We previously discovered that Coro1A interacts with TRIM67, a brain enriched E3 ubiquitin ligase that interacts with a netrin receptor and is also required for netrin-mediated neuronal morphogenesis. Loss of Coro1A and loss of TRIM67 shared similar phenotypes, suggesting that they may function together in the same netrin pathway. A Coro1A mutant deficient in binding TRIM67 was not able to rescue loss of Coro1A phenotypes, indicating that the interaction between Coro1A and TRIM67 is required for netrin responses. Together, our findings reveal that Coro1A is required for proper neuronal morphogenesis, where it collaborates with TRIM67 downstream of netrin.
Collapse
|
2
|
Biggs KE, Fikse EN, Anderson FL, Kettenbach AN, Havrda MC. Coronin1A Regulates the Trafficking of Alpha Synuclein in Microglia. J Neurosci 2025; 45:e1337242025. [PMID: 39837661 PMCID: PMC11905355 DOI: 10.1523/jneurosci.1337-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025] Open
Abstract
Microglia respond to cytotoxic protein aggregates associated with the progression of neurodegenerative disease. Pathological protein aggregates activate the microglial NLRP3 inflammasome resulting in proinflammatory signaling, secretion, and potentially pyroptotic cell death. We characterized mixed sex primary mouse microglia exposed to microbial stressors and alpha synuclein preformed fibrils (αsyn PFFs) to identify cellular mechanisms related to Parkinson's disease. Microglia package and release the endosome fate regulator Coronin1A (Coro1A) in EVs in an Nlrp3-dependent manner in widely used experimental activation conditions. We were surprised to find that Coro1A packaging and release was not Nlrp3-dependent in αsyn PFF exposure conditions. Coro1A-/- microglia exposed to αsyn PFFs trafficked more αsyn to the lysosomal compartment increasing lysosomal membrane permeabilization. This corresponds to a decrease in αsyn released in EVs suggesting that Coro1A functions to shunt pathological proteins to a secretory pathway to attenuate lysosomal stress. αsyn PFF-driven lysosomal stress resulting from Coro1a loss was associated with enhanced cytotoxicity. Intrinsic apoptosis signaling was unaffected, but we observed elevated cytosolic cathepsin B and the presence of a cathepsin-associated 55 kD PARP cleavage product. Postmortem analysis of the PD mesencephalon supported a role for Coro1A in microglia, revealing elevated levels of Coro1A protein in human PD brains compared with those of healthy donors. Findings are relevant to the distribution of pathological αsyn and indicate that Coro1a protects microglia from lysosomal overload, inflammasome activation, and pyroptotic demise.
Collapse
Affiliation(s)
- Karl E Biggs
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766
| | - Emma N Fikse
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766
| | - Faith L Anderson
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766
| | - Arminja N Kettenbach
- Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766
| | - Matthew C Havrda
- Departments of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03766
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03766
| |
Collapse
|
3
|
Cuello AC, Do Carmo S. The dependence of basal forebrain cholinergic neurons on NGF: The case in Alzheimer pathology. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:95-122. [PMID: 40340070 DOI: 10.1016/b978-0-443-19088-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
This chapter discusses the dependency of basal forebrain cholinergic neurons (BFCNs) on endogenous nerve growth factor (NGF) for the structural and physiologic maintenance of the neuronal cell somata, axonal projections, and terminal synapses. It covers the discovery of NGF and the occurrence of a CNS neurotrophin family and their cognate receptors and their signaling mechanisms. It concludes with a description of the NGF metabolic pathway and its dysregulation in Alzheimer disease (AD) and Down syndrome pathology, explaining the progressive atrophy of BFCNs, which starts at preclinical stages and is reflected in body fluid biomarkers.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Pharmacology, Oxford University, Oxford, United Kingdom.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Ndinyanka Fabrice T, Buczak K, Schmidt A, Pieters J. T cell population size control by coronin 1 uncovered: from a spot identified by two-dimensional gel electrophoresis to quantitative proteomics. Expert Rev Proteomics 2025; 22:35-44. [PMID: 39849824 DOI: 10.1080/14789450.2025.2450812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of Mycobacterium tuberculosis. We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques. AREAS COVERED We discuss the value of 'old school' proteomics using relatively simple and cost-effective technologies that allowed to gain insights into subcellular proteomes and describe how label-free quantitative (phospho)proteomics using mass spectrometry allowed to disentangle the role for coronin 1 in eukaryotic cell population size control. Finally, we mention potential implications of coronin-mediated cell population size control for health and disease. EXPERT OPINION Proteome analysis has been revolutionized by the advent of modern-day mass spectrometers and is indispensable for a better understanding of biology. Here, we discuss how careful dissection of physio-pathological processes by a combination of proteomics, genomics, biochemistry and cell biology may allow to zoom in on the unexplored, thereby possibly tackling hitherto unasked questions and defining novel mechanisms.
Collapse
|
5
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Mason AJ, Deppmann C, Winckler B. Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. Neuroscientist 2024; 30:199-213. [PMID: 36942881 DOI: 10.1177/10738584231160521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.
Collapse
Affiliation(s)
- Ashley J Mason
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher Deppmann
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bettina Winckler
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Ndinyanka Fabrice T, Mori M, Pieters J. Coronin 1-dependent cell density sensing and regulation of the peripheral T cell population size. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae002. [PMID: 38737939 PMCID: PMC11007115 DOI: 10.1093/oxfimm/iqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 05/14/2024] Open
Abstract
The establishment and maintenance of peripheral T cells is important to ensure appropriate immunity. In mammals, T cells are produced in the thymus before seeding the periphery early in life, and thereafter progressive thymus involution impairs new T cell production. Yet, peripheral T cells are maintained lifelong at approximately similar cell numbers. The question thus arises: what are the mechanisms that enable the maintenance of the appropriate number of circulating T cells, ensuring that T cell numbers are neither too low nor too high? Here, we highlight recent research suggesting a key role for coronin 1, a member of the evolutionarily conserved family of coronin proteins, in both allowing T cells to reach as well as maintain their appropriate cell population size. This cell population size controlling pathway was found to be conserved in amoeba, mice and human. We propose that coronin 1 is an integral part of a cell-intrinsic pathway that couples cell density information with prosurvival signalling thereby regulating the appropriate number of peripheral T cells.
Collapse
Affiliation(s)
| | - Mayumi Mori
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Chen Y, Zhao C, Guo H, Zou W, Zhang Z, Wei D, Lu H, Zhang L, Zhao Y. Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a. Cell Mol Immunol 2023; 20:941-954. [PMID: 37386173 PMCID: PMC10387484 DOI: 10.1038/s41423-023-01057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection; however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28-90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.
Collapse
Affiliation(s)
- Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Sympathetic neurons secrete retrogradely transported TrkA on extracellular vesicles. Sci Rep 2023; 13:3657. [PMID: 36871060 PMCID: PMC9985603 DOI: 10.1038/s41598-023-30728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Proper wiring of the peripheral nervous system relies on neurotrophic signaling via nerve growth factor (NGF). NGF secreted by target organs (i.e. eye) binds to the TrkA receptor expressed on the distal axons of postganglionic neurons. Upon binding, TrkA is internalized into a signaling endosome and retrogradely trafficked back to the soma and into the dendrites to promote cell survival and postsynaptic maturation, respectively. Much progress has been made in recent years to define the fate of the retrogradely trafficked TrkA signaling endosome, yet it has not been fully characterized. Here we investigate extracellular vesicles (EVs) as a novel route of neurotrophic signaling. Using the mouse superior cervical ganglion (SCG) as a model, we isolate EVs derived from sympathetic cultures and characterize them using immunoblot assays, nanoparticle tracking analysis, and cryo-electron microscopy. Furthermore, using a compartmentalized culture system, we find that TrkA derived from endosomes originating in the distal axon can be detected on EVs secreted from the somatodendritic domain. In addition, inhibition of classic TrkA downstream pathways, specifically in somatodendritic compartments, greatly decreases TrkA packaging into EVs. Our results suggest a novel trafficking route for TrkA: it can travel long distances to the cell body, be packaged into EVs, and be secreted. Secretion of TrkA via EVs appears to be regulated by its own downstream effector cascades, raising intriguing future questions about novel functionalities associated with TrkA+ EVs.
Collapse
|
10
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
11
|
Burk K. The endocytosis, trafficking, sorting and signaling of neurotrophic receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:141-165. [PMID: 36813356 DOI: 10.1016/bs.pmbts.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurotrophins are soluble factors secreted by neurons themselves as well as by post-synaptic target tissues. Neurotrophic signaling regulates several processes such as neurite growth, neuronal survival and synaptogenesis. In order to signal, neurotrophins bind to their receptors, the tropomyosin receptor tyrosine kinase (Trk), which causes internalization of the ligand-receptor complex. Subsequently, this complex is routed into the endosomal system from where Trks can start their downstream signaling. Depending on their endosomal localization, co-receptors involved, but also due to the expression patterns of adaptor proteins, Trks regulate a variety of mechanisms. In this chapter, I provide an overview of the endocytosis, trafficking, sorting and signaling of neurotrophic receptors.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
| |
Collapse
|
12
|
Kulkarni VV, Stempel MH, Anand A, Sidibe DK, Maday S. Retrograde Axonal Autophagy and Endocytic Pathways Are Parallel and Separate in Neurons. J Neurosci 2022; 42:8524-8541. [PMID: 36167783 PMCID: PMC9665928 DOI: 10.1523/jneurosci.1292-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Autophagy and endocytic trafficking are two key pathways that regulate the composition and integrity of the neuronal proteome. Alterations in these pathways are sufficient to cause neurodevelopmental and neurodegenerative disorders. Thus, defining how autophagy and endocytic pathways are organized in neurons remains a key area of investigation. These pathways share many features and converge on lysosomes for cargo degradation, but what remains unclear is the degree to which the identity of each pathway is preserved in each compartment of the neuron. Here, we elucidate the degree of intersection between autophagic and endocytic pathways in axons of primary mouse cortical neurons of both sexes. Using microfluidic chambers, we labeled newly-generated bulk endosomes and signaling endosomes in the distal axon, and systematically tracked their trajectories, molecular composition, and functional characteristics relative to autophagosomes. We find that newly-formed endosomes and autophagosomes both undergo retrograde transport in the axon, but as distinct organelle populations. Moreover, these pathways differ in their degree of acidification and association with molecular determinants of organelle maturation. These results suggest that the identity of autophagic and newly endocytosed organelles is preserved for the length of the axon. Lastly, we find that expression of a pathogenic form of α-synuclein, a protein enriched in presynaptic terminals, increases merging between autophagic and endocytic pathways. Thus, aberrant merging of these pathways may represent a mechanism contributing to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.SIGNIFICANCE STATEMENT Autophagy and endocytic trafficking are retrograde pathways in neuronal axons that fulfill critical degradative and signaling functions. These pathways share many features and converge on lysosomes for cargo degradation, but the extent to which the identity of each pathway is preserved in axons is unclear. We find that autophagosomes and endosomes formed in the distal axon undergo retrograde transport to the soma in parallel and separate pathways. These pathways also have distinct maturation profiles along the mid-axon, further highlighting differences in the potential fate of transported cargo. Strikingly, expression of a pathogenic variant of α-synuclein increases merging between autophagic and endocytic pathways, suggesting that mis-sorting of axonal cargo may contribute to neuronal dysfunction in Parkinson's disease (PD) and related α-synucleinopathies.
Collapse
Affiliation(s)
- Vineet Vinay Kulkarni
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Max Henry Stempel
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Anip Anand
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David Kader Sidibe
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
13
|
Ndinyanka Fabrice T, Bianda C, Zhang H, Jayachandran R, Ruer-Laventie J, Mori M, Moshous D, Fucile G, Schmidt A, Pieters J. An evolutionarily conserved coronin-dependent pathway defines cell population size. Sci Signal 2022; 15:eabo5363. [DOI: 10.1126/scisignal.abo5363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density–sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated “kin-to-kin” or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density–dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size.
Collapse
Affiliation(s)
| | | | - Haiyan Zhang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Mayumi Mori
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Despina Moshous
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris and Imagine Institute, INSERM UMR1163, Université de Paris, 75015 Paris, France
| | - Geoffrey Fucile
- SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, 4056 Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Sidibe DK, Kulkarni VV, Dong A, Herr JB, Vogel MC, Stempel MH, Maday S. Brain-derived neurotrophic factor stimulates the retrograde pathway for axonal autophagy. J Biol Chem 2022; 298:102673. [PMID: 36336077 PMCID: PMC9768381 DOI: 10.1016/j.jbc.2022.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a lysosomal degradation pathway important for neuronal development, function, and survival. How autophagy in axons is regulated by neurotrophins to impact neuronal viability and function is poorly understood. Here, we use live-cell imaging in primary neurons to investigate the regulation of axonal autophagy by the neurotrophin brain-derived neurotrophic factor (BDNF) and elucidate whether autophagosomes carry BDNF-mediated signaling information. We find that BDNF induces autophagic flux in primary neurons by stimulating the retrograde pathway for autophagy in axons. We observed an increase in autophagosome density and retrograde flux in axons, and a corresponding increase in autophagosome density in the soma. However, we find little evidence of autophagosomes comigrating with BDNF. In contrast, BDNF effectively engages its cognate receptor TrkB to undergo retrograde transport in the axon. These compartments, however, are distinct from LC3-positive autophagic organelles in the axon. Together, we find that BDNF stimulates autophagy in the axon, but retrograde autophagosomes do not appear to carry BDNF cargo. Thus, autophagosomes likely do not play a major role in relaying neurotrophic signaling information across the axon in the form of active BDNF/TrkB complexes. Rather, BDNF likely stimulates autophagy as a consequence of BDNF-induced processes that require canonical roles for autophagy in degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
15
|
Zhou Q, He L, Hu J, Gao Y, Shen D, Ni Y, Qin Y, Liang H, Liu J, Le W, Chen S. Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target. Front Med 2022; 16:723-735. [PMID: 35648369 DOI: 10.1007/s11684-021-0905-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. At present, no definite ALS biomarkers are available. In this study, exosomes from the plasma of patients with ALS and healthy controls were extracted, and differentially expressed exosomal proteins were compared. Among them, the expression of exosomal coronin-1a (CORO1A) was 5.3-fold higher than that in the controls. CORO1A increased with disease progression at a certain proportion in the plasma of patients with ALS and in the spinal cord of ALS mice. CORO1A was also overexpressed in NSC-34 motor neuron-like cells, and apoptosis, oxidative stress, and autophagic protein expression were evaluated. CORO1A overexpression resulted in increased apoptosis and oxidative stress, overactivated autophagy, and hindered the formation of autolysosomes. Moreover, CORO1A activated Ca2+-dependent phosphatase calcineurin, thereby blocking the fusion of autophagosomes and lysosomes. The inhibition of calcineurin activation by cyclosporin A reversed the damaged autolysosomes. In conclusion, the role of CORO1A in ALS pathogenesis was discovered, potentially affecting the disease onset and progression by blocking autophagic flux. Therefore, CORO1A might be a potential biomarker and therapeutic target for ALS.
Collapse
Affiliation(s)
- Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Hu
- Department of Neurology, the First Hospital of Jiaxing & the Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dingding Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuening Qin
- Department of Dermatology, The People's Hospital of Rushan, Weihai, 264500, China
| | - Huafeng Liang
- Department of Neurology, Xinrui Hospital, Wuxi, 214000, China
| | - Jun Liu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610072, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| |
Collapse
|
16
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
17
|
Yap CC, Winckler B. Spatial regulation of endosomes in growing dendrites. Dev Biol 2022; 486:5-14. [PMID: 35306006 PMCID: PMC10646839 DOI: 10.1016/j.ydbio.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/19/2023]
Abstract
Many membrane proteins are highly enriched in either dendrites or axons. This non-uniform distribution is a critical feature of neuronal polarity and underlies neuronal function. The molecular mechanisms responsible for polarized distribution of membrane proteins has been studied for some time and many answers have emerged. A less well studied feature of neurons is that organelles are also frequently non-uniformly distributed. For instance, EEA1-positive early endosomes are somatodendritic whereas synaptic vesicles are axonal. In addition, some organelles are present in both axons and dendrites, but not distributed uniformly along the processes. One well known example are lysosomes which are abundant in the soma and proximal dendrite, but sparse in the distal dendrite and the distal axon. The mechanisms that determine the spatial distribution of organelles along dendrites are only starting to be studied. In this review, we will discuss the cell biological mechanisms of how the distribution of diverse sets of endosomes along the proximal-distal axis of dendrites might be regulated. In particular, we will focus on the regulation of bulk homeostatic mechanisms as opposed to local regulation. We posit that immature dendrites regulate organelle motility differently from mature dendrites in order to spatially organize dendrite growth, branching and sculpting.
Collapse
|
18
|
Pandey HS, Kapoor R, Bindu, Seth P. Coronin 1A facilitates calcium mobilization and promotes astrocyte reactivity in HIV-1 neuropathogenesis. FASEB Bioadv 2022; 4:254-272. [PMID: 35415462 PMCID: PMC8984076 DOI: 10.1096/fba.2021-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022] Open
Abstract
Astrocyte reactivity, a phenomenon observed in a variety of neurodegenerative disorders, can have both beneficial and detrimental manifestations which significantly affect neuronal physiology. In neuroAIDS, reactive astrocytes have been observed to severely affect the neuronal population present in their vicinity. Calcium signaling plays a central role in mediating astrocyte reactivity. Coronin 1A, an actin-binding protein, majorly reported in hematopoietic cells, regulates cell activity in a calcium-dependent manner, but its role in astrocyte physiology and reactivity is largely unknown. Using a well-characterized primary culture of human astroglia and neurons, we explored the roles of coronin 1A in astrocyte physiology and its involvement in facilitating astrocyte reactivity. In this study, we report coronin 1A expression in human primary astrocytes and autopsy brain sections, and that it plays activity-dependent roles by facilitating calcium mobilization from the intracellular stores. HIV-1 Tat, a potent neurotoxicant that turns astrocytes reactive, augments coronin 1A expression, apart from affecting GFAP and pro-inflammatory molecules. Also, the autopsy brain tissue of HIV-1 infected individuals has a higher expression of coronin 1A. Downregulation of coronin 1A attenuated the HIV-1 Tat-induced deleterious effects of reactive astrocytes, measured as the upregulated expression of GFAP, pro-inflammatory molecules, and enhanced release of IL-6, and hence reduced astrocyte-mediated neurodegeneration. Our findings also suggest that out of a pool of dysregulated miRNAs studied by us, hsa-miR-92b-5p regulates coronin 1A expression under the effect of HIV-1 Tat. These findings highlight the novel roles of coronin 1A in regulating astrocyte activity in stimulated conditions and astrocyte reactivity observed in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology SectionNational Brain Research CentreGurgaonHaryanaIndia
| | - Rishabh Kapoor
- Department of Cellular and Molecular Neuroscience, Neurovirology SectionNational Brain Research CentreGurgaonHaryanaIndia
| | - Bindu
- Department of Cellular and Molecular Neuroscience, Neurovirology SectionNational Brain Research CentreGurgaonHaryanaIndia
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology SectionNational Brain Research CentreGurgaonHaryanaIndia
| |
Collapse
|
19
|
Mori M, Ruer-Laventie J, Duchemin W, Demougin P, Ndinyanka Fabrice T, Wymann MP, Pieters J. Suppression of caspase 8 activity by a coronin 1-PI3Kδ pathway promotes T cell survival independently of TCR and IL-7 signaling. Sci Signal 2021; 14:eabj0057. [PMID: 34932374 DOI: 10.1126/scisignal.abj0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The control of T cell survival is crucial for defense against infectious pathogens or emerging cancers. Although the survival of peripheral naïve T cells has been proposed to be controlled by interleukin-7 (IL-7) signaling and T cell receptor (TCR) activation by peptide-loaded major histocompatibility complexes (pMHC), the essential roles for these pathways in thymic output and T cell proliferation have complicated the analysis of their contributions to T cell survival. Here, we showed that the WD repeat–containing protein coronin 1, which is dispensable for thymic selection and output, promoted naïve T cell survival in the periphery in a manner that was independent of TCR and IL-7 signaling. Coronin 1 was required for the maintenance of the basal activity of phosphoinositide 3-kinase δ (PI3Kδ), thereby suppressing caspase 8–mediated apoptosis. These results therefore reveal a coronin 1–dependent PI3Kδ pathway that is independent of pMHC:TCR and IL-7 signaling and essential for peripheral T cell survival.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Wandrille Duchemin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Scientific Computing (sciCORE), University of Basel, Basel, Switzerland
| | - Philippe Demougin
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | | | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Major Outer Membrane Protein from Legionella pneumophila Inhibits Phagocytosis but Enhances Chemotaxis of RAW 264.7 Macrophages by Regulating the FOXO1/Coronin-1 Axis. J Immunol Res 2021; 2021:9409777. [PMID: 34812410 PMCID: PMC8605921 DOI: 10.1155/2021/9409777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen that can cause Legionnaire's disease by invading alveolar epithelial cells and macrophages. The major outer membrane protein (MOMP) plays an important role in the interaction between bacteria and host cells. However, the role of MOMP in the process of L. pneumophila invasion of macrophages and its working mechanism remain unknown. We aimed to explore the effects of MOMP on phagocytosis and chemotaxis of RAW 264.7 macrophages. The chemotactic activity, toxicity, and phagocytosis of RAW 264.7 cocultured with different concentrations of MOMP were determined by Transwell, CCK-8, and neutral red uptake assays, respectively. Target genes were detected by double-luciferase and pull down assays. qRT-PCR and Western blot were performed to analyze the expression of several important proteins involved in the immune response pathway, including coronin-1, interleukins (IL-10), forkhead transcription factor 1 (FOXO1), nucleotide-binding oligomerization domain protein (NOD) 1, NOD2, and receptor-interacting protein (RIP) 2. After coculturing with MOMP, cytological observation indicated a decrease of phagocytosis and a marked increase of chemotaxis in RAW 264.7 macrophages. The phagocytosis degree of RAW 264.7 macrophage varied with the concentration gradient of MOMP in a time-dependent manner. MOMP could increase the expression levels of MCP-1, IL-10, NOD2, and RIP2 and decrease the expression levels of FOXO1 and coronin-1 in cell culture supernatants. In addition, we found that FOXO1 could promote its transcription by binding to the promoter of coronin-1. The results of the present study suggested that MOMP could inhibit phagocytosis and facilitate chemotaxis of RAW 264.7 macrophage, which might be associated with the FOXO1/coronin-1 axis.
Collapse
|
21
|
Abstract
The sympathetic nervous system prepares the body for 'fight or flight' responses and maintains homeostasis during daily activities such as exercise, eating a meal or regulation of body temperature. Sympathetic regulation of bodily functions requires the establishment and refinement of anatomically and functionally precise connections between postganglionic sympathetic neurons and peripheral organs distributed widely throughout the body. Mechanistic studies of key events in the formation of postganglionic sympathetic neurons during embryonic and early postnatal life, including axon growth, target innervation, neuron survival, and dendrite growth and synapse formation, have advanced the understanding of how neuronal development is shaped by interactions with peripheral tissues and organs. Recent progress has also been made in identifying how the cellular and molecular diversity of sympathetic neurons is established to meet the functional demands of peripheral organs. In this Review, we summarize current knowledge of signalling pathways underlying the development of the sympathetic nervous system. These findings have implications for unravelling the contribution of sympathetic dysfunction stemming, in part, from developmental perturbations to the pathophysiology of peripheral neuropathies and cardiovascular and metabolic disorders.
Collapse
|
22
|
Markworth R, Dambeck V, Steinbeck LM, Koufali A, Bues B, Dankovich TM, Wichmann C, Burk K. Tubular microdomains of Rab7-positive endosomes retrieve TrkA, a mechanism disrupted in Charcot-Marie-Tooth disease 2B. J Cell Sci 2021; 134:272650. [PMID: 34486665 DOI: 10.1242/jcs.258559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Axonal survival and growth requires signalling from tropomyosin receptor kinases (Trks). To transmit their signals, receptor-ligand complexes are endocytosed and undergo retrograde trafficking to the soma, where downstream signalling occurs. Vesicles transporting neurotrophic receptors to the soma are reported to be Rab7-positive late endosomes and/or multivesicular bodies (MVBs), where receptors localize within so-called intraluminal vesicles (herein Rab7 corresponds to Rab7A unless specified otherwise). Therefore, one challenging question is how downstream signalling is possible given the insulating properties of intraluminal vesicles. In this study, we report that Rab7-positive endosomes and MVBs retrieve TrkA (also known as NTRK1) through tubular microdomains. Interestingly, this phenotype is absent for the EGF receptor. Furthermore, we found that endophilinA1, endophilinA2 and endophilinA3, together with WASH1 (also known as WASHC1), are involved in the tubulation process. In Charcot-Marie-Tooth disease 2B (CMT2B), a neuropathy of the peripheral nervous system, this tubulating mechanism is disrupted. In addition, the ability to tubulate correlates with the phosphorylation levels of TrkA as well as with neurite length in neuronal cultures from dorsal root ganglia. In all, we report a new retrieval mechanism of late Rab7-positive endosomes, which enables TrkA signalling and sheds new light onto how neurotrophic signalling is disrupted in CMT2B. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,European Neuroscience Institute, Grisebachstraße 5, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Lars Malte Steinbeck
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Angeliki Koufali
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Bastian Bues
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Tal M Dankovich
- Institute for Neuro- and Sensory Physiology, Humboldtallee 23, 37073 Göttingen, Germany
| | - Carolin Wichmann
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Centers 889 'Cellular Mechanisms of Sensory Processing' and 1286 'Quantitative Synaptology', 37099 Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,European Neuroscience Institute, Grisebachstraße 5, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| |
Collapse
|
23
|
Schieweck R, Schöneweiss EC, Harner M, Rieger D, Illig C, Saccà B, Popper B, Kiebler MA. Pumilio2 Promotes Growth of Mature Neurons. Int J Mol Sci 2021; 22:ijms22168998. [PMID: 34445704 PMCID: PMC8396670 DOI: 10.3390/ijms22168998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are essential regulators controlling both the cellular transcriptome and translatome. These processes enable cellular plasticity, an important prerequisite for growth. Cellular growth is a complex, tightly controlled process. Using cancer cells as model, we looked for RBPs displaying strong expression in published transcriptome datasets. Interestingly, we found the Pumilio (Pum) protein family to be highly expressed in all these cells. Moreover, we observed that Pum2 is regulated by basic fibroblast growth factor (bFGF). bFGF selectively enhances protein levels of Pum2 and the eukaryotic initiation factor 4E (eIF4E). Exploiting atomic force microscopy and in vitro pulldown assays, we show that Pum2 selects for eIF4E mRNA binding. Loss of Pum2 reduces eIF4E translation. Accordingly, depletion of Pum2 led to decreased soma size and dendritic branching of mature neurons, which was accompanied by a reduction in essential growth factors. In conclusion, we identify Pum2 as an important growth factor for mature neurons. Consequently, it is tempting to speculate that Pum2 may promote cancer growth.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Elisa-Charlott Schöneweiss
- Zentrum für Medizinische Biotechnologie (ZMB), University of Duisburg-Essen, 41541 Duisburg, Germany; (E.-C.S.); (B.S.)
| | - Max Harner
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Daniela Rieger
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Christin Illig
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Barbara Saccà
- Zentrum für Medizinische Biotechnologie (ZMB), University of Duisburg-Essen, 41541 Duisburg, Germany; (E.-C.S.); (B.S.)
| | - Bastian Popper
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
- Biomedical Center (BMC), Core Facility Animal Models, Ludwig-Maximilians-University, 82152 München, Germany
- Correspondence: ; Tel.: +49-89-2180-71996
| | - Michael A. Kiebler
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| |
Collapse
|
24
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
25
|
Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. Long-distance regressive signaling in neural development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e382. [PMID: 32391977 PMCID: PMC7655682 DOI: 10.1002/wdev.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Nervous system development proceeds via well-orchestrated processes involving a balance between progressive and regressive events including stabilization or elimination of axons, synapses, and even entire neurons. These progressive and regressive events are driven by functionally antagonistic signaling pathways with the dominant pathway eventually determining whether a neural element is retained or removed. Many of these developmental sculpting events are triggered by final target innervation necessitating a long-distance mode of communication. While long-distance progressive signaling has been well characterized, particularly for neurotrophic factors, there remains relatively little known about how regressive events are triggered from a distance. Here we discuss the emergent phenomenon of long-distance regressive signaling pathways. In particular, we will cover (a) progressive and regressive cues known to be employed after target innervation, (b) the mechanisms of long-distance signaling from an endosomal platform, (c) recent evidence that long-distance regressive cues emanate from platforms like death receptors or repulsive axon guidance receptors, and (d) evidence that these pathways are exploited in pathological scenarios. This article is categorized under: Nervous System Development > Vertebrates: General Principles Signaling Pathways > Global Signaling Mechanisms Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shayla Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Francisca C. Bronfman
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Christopher D. Deppmann
- Departments of Biology, Cell Biology, Biomedical Engineering, and Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
26
|
Menon S, Goldfarb D, Ho CT, Cloer EW, Boyer NP, Hardie C, Bock AJ, Johnson EC, Anil J, Major MB, Gupton SL. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis. Mol Biol Cell 2021; 32:314-330. [PMID: 33378226 PMCID: PMC8098814 DOI: 10.1091/mbc.e20-10-0622] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
TRIM9 and TRIM67 are neuronally enriched E3 ubiquitin ligases essential for appropriate morphogenesis of cortical and hippocampal neurons and fidelitous responses to the axon guidance cue netrin-1. Deletion of murine Trim9 or Trim67 results in neuroanatomical defects and striking behavioral deficits, particularly in spatial learning and memory. TRIM9 and TRIM67 interact with cytoskeletal and exocytic proteins, but the full interactome is not known. Here we performed the unbiased proximity-dependent biotin identification (BioID) approach to define TRIM9 and TRIM67 protein-protein proximity network in developing cortical neurons and identified putative neuronal TRIM interaction partners. Candidates included cytoskeletal regulators, cytosolic protein transporters, exocytosis and endocytosis regulators, and proteins necessary for synaptic regulation. A subset of high-priority candidates was validated, including Myo16, Coro1A, MAP1B, ExoC1, GRIP1, PRG-1, and KIF1A. For a subset of validated candidates, we utilized total internal reflection fluorescence microscopy to demonstrate dynamic colocalization with TRIM proteins at the axonal periphery, including at the tips of filopodia. Further analysis demonstrated that the RNA interference-based knockdown of the unconventional myosin Myo16 in cortical neurons altered growth cone filopodia density and axonal branching patterns in a TRIM9- and netrin-1-dependent manner. Future analysis of other validated candidates will likely identify novel proteins and mechanisms by which TRIM9 and TRIM67 regulate neuronal form and function. [Media: see text].
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Erica W. Cloer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicholas P. Boyer
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher Hardie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew J. Bock
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emma C. Johnson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Joel Anil
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M. Ben Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
27
|
Abstract
During the development of the nervous system, neurons respond to diffusible cues secreted by target cells. Because such target-derived factors regulate development, maturation, and maintenance of axons as well as somatodendritic compartments, signals initiated at distal axons must be retrogradely transmitted toward cell bodies. Neurotrophins, including the nerve growth factor (NGF), provide one of the best-known examples of target-derived growth factors. The cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies are key mechanisms by which target-derived neurotrophins influence neurons. Evidence accumulated over the past several decades has begun to uncover the molecular mechanisms of formation, transport, and biological functions of these specialized endosomes called "signaling endosomes."
Collapse
|
28
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Induction of Allograft Tolerance While Maintaining Immunity Against Microbial Pathogens: Does Coronin 1 Hold a Key? Transplantation 2020; 104:1350-1357. [PMID: 31895336 DOI: 10.1097/tp.0000000000003101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Selective suppression of graft rejection while maintaining anti-pathogen responses has been elusive. Thus far, the most successful strategies to induce suppression of graft rejection relies on inhibition of T-cell activation. However, the very same mechanisms that induce allograft-specific T-cell suppression are also important for immunity against microbial pathogens as well as oncogenically transformed cells, resulting in significant immunosuppression-associated comorbidities. Therefore, defining the pathways that differentially regulate anti-graft versus antimicrobial T-cell responses may allow the development of regimen to induce allograft-specific tolerance. Recent work has defined a molecular pathway driven by the immunoregulatory protein coronin 1 that regulates the phosphodiesterase/cyclic adenosine monophosphate pathway and modulates T cell responses. Interestingly, disruption of coronin 1 promotes allograft tolerance while immunity towards a range of pathogenic microbes is maintained. Here, we briefly review the work leading up to these findings as well as their possible implications for transplantation medicine.
Collapse
|
30
|
The Rab5-Rab11 Endosomal Pathway is Required for BDNF-Induced CREB Transcriptional Regulation in Hippocampal Neurons. J Neurosci 2020; 40:8042-8054. [PMID: 32928890 DOI: 10.1523/jneurosci.2063-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key regulator of the morphology and connectivity of central neurons. We have previously shown that BDNF/TrkB signaling regulates the activity and mobility of the GTPases Rab5 and Rab11, which in turn determine the postendocytic sorting of signaling TrkB receptors. Moreover, decreased Rab5 or Rab11 activity inhibits BDNF-induced dendritic branching. Whether Rab5 or Rab11 activity is important for local events only or for regulating nuclear signaling and gene expression is unknown. Here, we investigated, in rat hippocampal neuronal cultures derived from embryos of unknown sex, whether BDNF-induced signaling cascades are altered when early and recycling endosomes are disrupted by the expression of dominant-negative mutants of Rab5 and Rab11. The activity of both Rab5 and Rab11 was required for sustained activity of Erk1/2 and nuclear CREB phosphorylation, and increased transcription of a BDNF-dependent program of gene expression containing CRE binding sites, which includes activity-regulated genes such as Arc, Dusp1, c-fos, Egr1, and Egr2, and growth and survival genes such as Atf3 and Gem Based on our results, we propose that early and recycling endosomes provide a platform for the integration of neurotrophic signaling from the plasma membrane to the nucleus in neurons, and that this mechanism is likely to regulate neuronal plasticity and survival.SIGNIFICANCE STATEMENT BDNF is a neurotrophic factor that regulates plastic changes in the brain, including dendritic growth. The cellular and molecular mechanisms underlying this process are not completely understood. Our results uncover the cellular requirements that central neurons possess to integrate the plasma membrane into nuclear signaling in neurons. Our results indicate that the endosomal pathway is required for the signaling cascade initiated by BDNF and its receptors at the plasma membrane to modulate BDNF-dependent gene expression and neuronal dendritic growth mediated by the CREB transcription factor. CREB is a key transcription factor regulating circuit development and learning and memory.
Collapse
|
31
|
Chen Y, Xu J, Zhang Y, Ma S, Yi W, Liu S, Yu X, Wang J, Chen Y. Coronin 2B regulates dendrite outgrowth by modulating actin dynamics. FEBS Lett 2020; 594:2975-2987. [PMID: 32692409 DOI: 10.1002/1873-3468.13886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 01/31/2023]
Abstract
Cytoskeletal remodeling is indispensable for the development and maintenance of neuronal structures and functions. However, the molecular machinery that controls the balance between actin polymerization and depolymerization during these processes is incompletely understood. Here, we report that coronin 2B, a conserved actin-binding protein, is concentrated at the tips of developing dendrites and that knockdown of coronin 2B inhibits the growth of dendrites. Importantly, coronin 2B interacts with actin and reduces the F-actin/G-actin ratio. Furthermore, the coiled-coil domain of coronin 2B is required for its oligomerization, thus confining coronin 2B to neurite tips. Our findings collectively suggest that coronin 2B is important for promoting dendrite outgrowth by limiting the speed of actin polymerization at growth cones.
Collapse
Affiliation(s)
- Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science - Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Jinying Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science - Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Zhang
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Shuangshuang Ma
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Wanying Yi
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Saijuan Liu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Xiaojun Yu
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Jiali Wang
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science - Shenzhen Fundamental Research Institutions, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
32
|
Fiedler T, Fabrice TN, Studer V, Vinet A, Faltova L, Kammerer RA, Steinmetz MO, Sharpe T, Pieters J. Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Lett 2020; 594:2116-2127. [PMID: 32298460 DOI: 10.1002/1873-3468.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/09/2022]
Abstract
Coronin proteins are widely expressed among eukaryotic organisms. Most coronins consist of a WD-repeat domain followed by a C-terminal coiled coil. Dictyostelium discoideum expresses a single short coronin coronin A, which has been implicated in both actin modulation and multicellular differentiation. Whether coronin A's coiled coil is important for functionality, as well as the oligomeric state of coronin A is not known. Here, we show that the coiled-coil domain in Dictyostelium coronin A functions in homodimerization, is dispensable for coronin A stability and localization but essential for multicellular differentiation. These results allow a better understanding of the role for the coiled-coil domain of coronin A in oligomerization and demonstrate that its presence is essential for multicellular differentiation.
Collapse
Affiliation(s)
| | | | - Vera Studer
- Biozentrum, University of Basel, Switzerland
| | | | - Lenka Faltova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Michel O Steinmetz
- Biozentrum, University of Basel, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | | | | |
Collapse
|
33
|
Wang T, Bai S, Wang W, Chen Z, Chen J, Liang Z, Qi X, Shen H, Xie P. Diterpene Ginkgolides Exert an Antidepressant Effect Through the NT3-TrkA and Ras-MAPK Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1279-1294. [PMID: 32308365 PMCID: PMC7132272 DOI: 10.2147/dddt.s229145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Background Depression is a highly prevalent mental illness that severely impacts the quality of life of affected individuals. Our recent studies demonstrated that diterpene ginkgolides (DG) have antidepressant effects in mice. However, the underlying molecular mechanisms remained much unclear. Methods In this study, we assessed the antidepressant effects of chronic DG therapy in rats by evaluating depression-related behaviors, we also examined potential side effects using biochemical indicators. Furthermore, we performed an in-depth molecular network analysis of gene–protein–metabolite interactions on the basis of metabolomics. Results Chronic DG treatment significantly ameliorated the depressive-like behavioral phenotype. Furthermore, the neurotrophin signaling-related NT3-TrkA and Ras-MAPK pathways may play an important role in the antidepressant effect of DG in the hippocampus. Conclusion These findings provide novel insight into the mechanisms underlying the antidepressant action of DG, and should help advance the development of new therapeutic strategies for depression.
Collapse
Affiliation(s)
- Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Wei Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Jianjun Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Zihong Liang
- Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Xunzhong Qi
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hailan Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peng Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, People's Republic of China.,Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Fabrice TN, Fiedler T, Studer V, Vinet A, Brogna F, Schmidt A, Pieters J. Interactome and F-Actin Interaction Analysis of Dictyostelium discoideum Coronin A. Int J Mol Sci 2020; 21:E1469. [PMID: 32098122 PMCID: PMC7073074 DOI: 10.3390/ijms21041469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Coronin proteins are evolutionary conserved WD repeat containing proteins that have been proposed to carry out different functions. In Dictyostelium, the short coronin isoform, coronin A, has been implicated in cytoskeletal reorganization, chemotaxis, phagocytosis and the initiation of multicellular development. Generally thought of as modulators of F-actin, coronin A and its mammalian homologs have also been shown to mediate cellular processes in an F-actin-independent manner. Therefore, it remains unclear whether or not coronin A carries out its functions through its capacity to interact with F-actin. Moreover, the interacting partners of coronin A are not known. Here, we analyzed the interactome of coronin A as well as its interaction with F-actin within cells and in vitro. Interactome analysis showed the association with a diverse set of interaction partners, including fimbrin, talin and myosin subunits, with only a transient interaction with the minor actin10 isoform, but not the major form of actin, actin8, which was consistent with the absence of a coronin A-actin interaction as analyzed by co-sedimentation from cells and lysates. In vitro, however, purified coronin A co-precipitated with rabbit muscle F-actin in a coiled-coil-dependent manner. Our results suggest that an in vitro interaction of coronin A and rabbit muscle actin may not reflect the cellular interaction state of coronin A with actin, and that coronin A interacts with diverse proteins in a time-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (T.N.F.); (T.F.); (V.S.); (A.V.); (F.B.); (A.S.)
| |
Collapse
|
35
|
Kang HY, Kim HJ, Kim K, Oh SI, Yoon S, Kim J, Park S, Cheon Y, Her S, Lee M, Lu B, Lee S. Actin-microtubule crosslinker Pod-1 tunes PAR-1 signaling to control synaptic development and tau-mediated synaptic toxicity. Neurobiol Aging 2020; 90:93-98. [PMID: 32169355 DOI: 10.1016/j.neurobiolaging.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/30/2020] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
Abstract
Partitioning-defective 1 (PAR-1), a conserved cell polarity regulator, plays an important role in synaptic development, and its mutation affects the formation of synaptic boutons and localization of postsynaptic density protein Discs large (Dlg) at the neuromuscular junction (NMJ) in Drosophila. Drosophila PAR-1 and its human homolog, Microtubule affinity-regulating kinases (MARK), are also known to be implicated in Alzheimer's disease (AD) by controlling tau-mediated Aβ toxicity. However, the molecular mechanisms of PAR-1 function remain incompletely understood. Here we identified Pod-1, an actin-microtubule crosslinker, which functionally and physically interacts with PAR-1 in Drosophila. Pod-1 prominently co-localizes with PAR-1 in the postsynaptic region and regulates PAR-1 activity at the NMJ. Synaptic defects, including the reduction of boutons and delocalization of Dlg caused by PAR-1 overexpression, were rescued by Pod-1 knockdown. Conversely, the reduction of synaptic boutons in PAR-1 overexpressed NMJ was synergistically enhanced by the overexpression of Pod-1. Furthermore, Pod-1 increases the PAR-1 dependent S262 phosphorylation of tau, which is known to contribute to tau-mediated Aβ toxicity. In line with the change of tau phosphorylation, Pod-1 knockdown rescued tau-mediated synaptic toxicity at the NMJ. Our results suggest that Pod-1 may act as a modulator of PAR-1 in synaptic development and tau-mediated toxicity.
Collapse
Affiliation(s)
- Ha-Young Kang
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, South Korea
| | - Seung-Il Oh
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea
| | - Sunggyu Yoon
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea; Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Sangwoo Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea
| | - Yeongmi Cheon
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea
| | - Song Her
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, South Korea.
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, South Korea.
| |
Collapse
|
36
|
Liu AM, Chen BL, Yu LT, Liu T, Shi LL, Yu PP, Qu YB, So KF, Zhou LB. Human adipose tissue- and umbilical cord-derived stem cells: which is a better alternative to treat spinal cord injury? Neural Regen Res 2020; 15:2306-2317. [PMID: 32594054 PMCID: PMC7749492 DOI: 10.4103/1673-5374.284997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple types of stem cells have been proposed for the treatment of spinal cord injury, but their comparative information remains elusive. In this study, a rat model of T10 contusion spinal cord injury was established by the impactor method. Human umbilical cord-derived mesenchymal stem cells (UCMSCs) or human adipose tissue-derived mesenchymal stem cells (ADMSCs) (2.5 μL/injection site, 1 × 105 cells/μL) was injected on rostral and caudal of the injury segment on the ninth day after injury. Rats injected with mesenchymal stem cell culture medium were used as controls. Our results show that although transplanted UCMSCs and ADMSCs failed to differentiate into neurons or glial cells in vivo, both significantly improved motor and sensory function. After spinal cord injury, UCMSCs and ADMSCs similarly promoted spinal neuron survival and axonal regeneration, decreased glial scar and lesion cavity formation, and reduced numbers of active macrophages. Bio-Plex analysis of spinal samples showed a specific increase of interleukin-10 and decrease of tumor necrosis factor α in the ADMSC group, as well as a downregulation of macrophage inflammatory protein 3α in both UCMSC and ADMSC groups at 3 days after cell transplantation. Upregulation of interleukin-10 and interleukin-13 was observed in both UCMSC and ADMSC groups at 7 days after cell transplantation. Isobaric tagging for relative and absolute quantitation proteomics analyses showed that UCMSCs and ADMSCs induced changes of multiple genes related to axonal regeneration, neurotrophy, and cell apoptosis in common and specific manners. In conclusion, UCMSC and ADMSC transplants yielded quite similar contributions to motor and sensory recovery after spinal cord injury via anti-inflammation and improved axonal growth. However, there were some differences in cytokine and gene expression induced by these two types of transplanted cells. Animal experiments were approved by the Laboratory Animal Ethics Committee at Jinan University (approval No. 20180228026) on February 28, 2018, and the application of human stem cells was approved by the Medical Ethics Committee of Medical College of Jinan University of China (approval No. 2016041303) on April 13, 2016.
Collapse
Affiliation(s)
- Ai-Mei Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Bo-Li Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Tai Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Ling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Pan-Pan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Bo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Bing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
37
|
Feng J, Chen S, Wang Y, Liu Q, Yang M, Li X, Nie C, Qin J, Chen H, Yuan X, Huang Y, Zhang Q. Maternal exposure to cadmium impairs cognitive development of male offspring by targeting the Coronin-1a signaling pathway. CHEMOSPHERE 2019; 225:765-774. [PMID: 30903850 DOI: 10.1016/j.chemosphere.2019.03.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Direct exposure to cadmium (Cd) may induce persistent impairment in learning and memory. However, the outcomes of maternal exposure on the neurological development of offspring are much less clear, and the underlying mechanism leading to toxicity remains undisclosed. Following chronic exposure of female rats during gestation and lactation, low level of Cd was detectable in the cerebral cortex but not in the hippocampus of F1 male offspring. The synapses and neurites in hippocampus were destroyed by high Cd exposure level as evidenced by abnormal morphology and cognitive behavior deficit lasting from childhood to adulthood. The membrane glycoprotein M6a (GPM6A) regulates the filopodium formation, neurite outgrowth and synaptogenesis, and is a possible target which Cd acts upon. The signaling pathway Coronin-1a (CORO1A), Ras-related C3 botulinum toxin substrate 1 (RAC1) and p21-activated kinase 1 (PAK1) promotes GPM6A-induced filopodium formation. Our results showed that maternal exposure dramatically down-regulated the level of CORO1A as well as the expression of downstream effectors RAC1, PAK1 and GPM6A. CORO1A-knockdown by siRNA caused decreases in the expression of RAC1, PAK1 and GPM6A; and siRNA targeting combined with Cd insult further decreased the expression of these proteins. Following CORO1A overexpression, the neurites were lengthened with increased expression of all the effector proteins in SH-SY5Y cells exposed to Cd, confirming the significance of CORO1A in mediating the Cd neurotoxicity. These findings may help to disclose how Cd impairs the learning and cognitive development in children, and facilitate finding of potential therapeutic targets for the treatment of Cd poisoning.
Collapse
Affiliation(s)
- Jianfeng Feng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Shaomin Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qunxing Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Chuan Nie
- Guangdong Women and Children Hospital, Guangzhou, 510000, China
| | - Jianxiang Qin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaohui Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
38
|
Jayachandran R, Gumienny A, Bolinger B, Ruehl S, Lang MJ, Fucile G, Mazumder S, Tchang V, Woischnig AK, Stiess M, Kunz G, Claudi B, Schmaler M, Siegmund K, Li J, Dertschnig S, Holländer G, Medina E, Karrer U, Moshous D, Bumann D, Khanna N, Rossi SW, Pieters J. Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity. Immunity 2019; 50:152-165.e8. [PMID: 30611611 DOI: 10.1016/j.immuni.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey Fucile
- Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | | | | | - Anne-Kathrin Woischnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | | | - Mathias Schmaler
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | - Simone Dertschnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - George Holländer
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urs Karrer
- Division of Infectious Diseases and Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France and APHP Hôpital Universitaire Necker-Enfants Malades, Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Paris, France
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Division of Infectious Diseases, University and University Hospital of Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Yamashita N. [Recent findings of nerve growth factor-dependent retrograde signaling]. Nihon Yakurigaku Zasshi 2019; 154:84. [PMID: 31406048 DOI: 10.1254/fpj.154.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
40
|
Wang ZY, Ragsdale CW. Multiple optic gland signaling pathways implicated in octopus maternal behaviors and death. J Exp Biol 2018; 221:jeb185751. [PMID: 30104305 PMCID: PMC6198452 DOI: 10.1242/jeb.185751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
Post-reproductive life in the female octopus is characterized by an extreme pattern of maternal care: the mother cares for her clutch of eggs without feeding until her death. These maternal behaviors are eradicated if the optic glands, the octopus analog of the vertebrate pituitary gland, are removed from brooding females. Despite the optic gland's importance in regulating maternal behavior, the molecular features underlying optic gland function are unknown. Here, we identify major signaling systems of the Octopus bimaculoides optic gland. Through behavioral analyses and transcriptome sequencing, we report that the optic gland undergoes remarkable molecular changes that coincide with transitions between behavioral stages. These include the dramatic upregulation and downregulation of catecholamine, steroid, insulin and feeding peptide pathways. Transcriptome analyses in other tissues demonstrate that these molecular changes are not generalized markers of senescence, but instead, specific features of the optic glands. Our study expands the classic optic gland-pituitary gland analogy and more specifically, it indicates that, rather than a single 'self-destruct' hormone, the maternal optic glands employ multiple pathways as systemic hormonal signals of behavioral regulation.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 2018; 91:25-33. [PMID: 29596897 DOI: 10.1016/j.mcn.2018.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
In neurons, long-distance communication between axon terminals and cell bodies is a critical determinant in establishing and maintaining neural circuits. Neurotrophins are soluble factors secreted by post-synaptic target tissues that retrogradely control axon and dendrite growth, survival, and synaptogenesis of innervating neurons. Neurotrophins bind Trk receptor tyrosine kinases in axon terminals to promote endocytosis of ligand-bound phosphorylated receptors into signaling endosomes. Trk-harboring endosomes function locally in axons to acutely promote growth events, and can also be retrogradely transported long-distances to remote cell bodies and dendrites to stimulate cytoplasmic and transcriptional signaling necessary for neuron survival, morphogenesis, and maturation. Neuronal responsiveness to target-derived neurotrophins also requires the precise axonal targeting of newly synthesized Trk receptors. Recent studies suggest that anterograde delivery of Trk receptors is regulated by retrograde neurotrophin signaling. In this review, we summarize current knowledge on the functions and mechanisms of retrograde trafficking of Trk signaling endosomes, and highlight recent discoveries on the forward trafficking of nascent receptors.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
42
|
Mori M, Mode R, Pieters J. From Phagocytes to Immune Defense: Roles for Coronin Proteins in Dictyostelium and Mammalian Immunity. Front Cell Infect Microbiol 2018; 8:77. [PMID: 29623258 PMCID: PMC5874285 DOI: 10.3389/fcimb.2018.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Microbes have interacted with eukaryotic cells for as long as they have been co-existing. While many of these interactions are beneficial for both the microbe as well as the eukaryotic cell, several microbes have evolved into pathogenic species. For some of these pathogens, host cell invasion results in irreparable damage and thus host cell destruction, whereas others use the host to avoid immune detection and elimination. One of the latter pathogens is Mycobacterium tuberculosis, arguably one of the most notorious pathogens on earth. In mammalian macrophages, M. tuberculosis manages to survive within infected macrophages by avoiding intracellular degradation in lysosomes using a number of different strategies. One of these is based on the recruitment and phagosomal retention of the host protein coronin 1, that is a member of the coronin protein family and a mammalian homolog of coronin A, a protein identified in Dictyostelium. Besides mediating mycobacterial survival in macrophages, coronin 1 is also an important regulator of naïve T cell homeostasis. How, exactly, coronin 1 mediates its activity in immune cells remains unclear. While in lower eukaryotes coronins are involved in cytoskeletal regulation, the functions of the seven coronin members in mammals are less clear. Dictyostelium coronins may have maintained multiple functions, whereas the mammalian coronins may have evolved from regulators of the cytoskeleton to modulators of signal transduction. In this minireview, we will discuss the different studies that have contributed to understand the molecular and cellular functions of coronin proteins in mammals and Dictyostelium.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Barford K, Keeler A, McMahon L, McDaniel K, Yap CC, Deppmann CD, Winckler B. Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Sci Rep 2018; 8:4715. [PMID: 29549340 PMCID: PMC5856830 DOI: 10.1038/s41598-018-23036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 01/16/2023] Open
Abstract
The development of the peripheral nervous system relies on long-distance signaling from target organs back to the soma. In sympathetic neurons, this long-distance signaling is mediated by target derived Nerve Growth Factor (NGF) interacting with its axonal receptor, TrkA. This ligand receptor complex internalizes into what is commonly referred to as the signaling endosome which is transported retrogradely to the soma and dendrites to mediate survival signaling and synapse formation, respectively. The molecular identity of signaling endosomes in dendrites has not yet been determined. Here, we perform a detailed analysis of TrkA endosomal compartments and trafficking patterns. We find that signaling endosomes are not uniform but molecularly diversified into Rab7 (late endosome) and Rab11 (recycling endosome) populations in axons and dendrites in vitro and in the soma in vivo. Surprisingly, TrkA-NGF signaling endosomes in dendrites undergo dynamic trafficking events, including putative fusion and fission. Overall, we find that signaling endosomes do not remain as a singular endosomal subtype but instead exist in multiple populations that undergo dynamic endosomal trafficking events. These dynamic events might drive functional diversification of the signaling endosome.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Austin Keeler
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Kathryn McDaniel
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Christopher D Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA. .,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903, USA.
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA.
| |
Collapse
|
44
|
Ye M, Lehigh KM, Ginty DD. Multivesicular bodies mediate long-range retrograde NGF-TrkA signaling. eLife 2018; 7:33012. [PMID: 29381137 PMCID: PMC5811214 DOI: 10.7554/elife.33012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
The development of neurons in the peripheral nervous system is dependent on target-derived, long-range retrograde neurotrophic factor signals. The prevailing view is that target-derived nerve growth factor (NGF), the prototypical neurotrophin, and its receptor TrkA are carried retrogradely by early endosomes, which serve as TrkA signaling platforms in cell bodies. Here, we report that the majority of retrograde TrkA signaling endosomes in mouse sympathetic neurons are ultrastructurally and molecularly defined multivesicular bodies (MVBs). In contrast to MVBs that carry non-TrkA cargoes from distal axons to cell bodies, retrogradely transported TrkA+ MVBs that arrive in cell bodies evade lysosomal fusion and instead evolve into TrkA+ single-membrane vesicles that are signaling competent. Moreover, TrkA kinase activity associated with retrogradely transported TrkA+ MVBs determines TrkA+ endosome evolution and fate. Thus, MVBs deliver long-range retrograde NGF signals and serve as signaling and sorting platforms in the cell soma, and MVB cargoes dictate their vesicular fate.
Collapse
Affiliation(s)
- Mengchen Ye
- Human Genetics Training Program, The Johns Hopkins University, School of Medicine, Baltimore, United States.,Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Kathryn M Lehigh
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, United States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
45
|
Kulkarni VV, Maday S. Compartment-specific dynamics and functions of autophagy in neurons. Dev Neurobiol 2017; 78:298-310. [PMID: 29197160 DOI: 10.1002/dneu.22562] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is a lysosomal degradation pathway that is critical to maintaining neuronal homeostasis and viability. Autophagy sequesters damaged and aged cellular components from the intracellular environment, and shuttles these diverse macromolecules to lysosomes for destruction. This active surveillance of the quality of the cytoplasm and organelles is essential in neurons to sustain their long-term functionality and viability. Indeed, defective autophagy is linked to neurodevelopmental abnormalities and neurodegeneration in mammals. Here, we review the mechanisms of autophagy in neurons and functional roles for autophagy in neuronal homeostasis. We focus on the compartment-specific dynamics of autophagy in neurons, and how autophagy might perform non-canonical functions critical for neurons. We suggest the existence of multiple populations of autophagosomes with compartment-specific functions important for neural activity and function. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 298-310, 2018.
Collapse
Affiliation(s)
- Vineet Vinay Kulkarni
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
46
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
47
|
Abstract
In neurons, correct targeting of receptors to the axon is critical for cell survival and circuit formation. In this issue of Developmental Cell, Yamashita et al. (2017) report that the ER-resident phosphatase PTP1B is required to prime TrkA for axonal transport.
Collapse
|
48
|
Yamashita N, Joshi R, Zhang S, Zhang ZY, Kuruvilla R. Phospho-Regulation of Soma-to-Axon Transcytosis of Neurotrophin Receptors. Dev Cell 2017; 42:626-639.e5. [PMID: 28919207 DOI: 10.1016/j.devcel.2017.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
Abstract
Axonal targeting of signaling receptors is essential for neuronal responses to extracellular cues. Here, we report that retrograde signaling by target-derived nerve growth factor (NGF) is necessary for soma-to-axon transcytosis of TrkA receptors in sympathetic neurons, and we define the molecular underpinnings of this positive feedback regulation that enhances neuronal sensitivity to trophic factors. Activated TrkA receptors are retrogradely transported in signaling endosomes from distal axons to cell bodies, where they are inserted on soma surfaces and promote phosphorylation of resident naive receptors, resulting in their internalization. Endocytosed TrkA receptors are then dephosphorylated by PTP1B, an ER-resident protein tyrosine phosphatase, prior to axonal transport. PTP1B inactivation prevents TrkA exit from soma and causes receptor degradation, suggesting a "gatekeeper" mechanism that ensures targeting of inactive receptors to axons to engage with ligand. In mice, PTP1B deletion reduces axonal TrkA levels and attenuates neuron survival and target innervation under limiting NGF (NGF+/-) conditions.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rajshri Joshi
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Sheng Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Robert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Robert E. Heine Pharmacy Building, Room 202A, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
49
|
Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P. Brain Transforming Growth Factor-β Resists Hypertension Via Regulating Microglial Activation. Stroke 2017; 48:2557-2564. [PMID: 28698257 DOI: 10.1161/strokeaha.117.017370] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. METHODS Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. RESULTS Transforming growth factor-β (TGF-β) is constitutively expressed in the brains of normotensive mice. Removal of TGF-β or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-β1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-β on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-β by qRT-PCR array. CONCLUSIONS Our results identify that TGF-β-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance.
Collapse
Affiliation(s)
- You Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Xiao Z Shen
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Liang Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Tuantuan V Zhao
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Kenneth E Bernstein
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Alan K Johnson
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Patrick Lyden
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Jianmin Fang
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Peng Shi
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.).
| |
Collapse
|
50
|
Hosseinibarkooie S, Schneider S, Wirth B. Advances in understanding the role of disease-associated proteins in spinal muscular atrophy. Expert Rev Proteomics 2017. [PMID: 28635376 DOI: 10.1080/14789450.2017.1345631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by alpha motor neuron loss in the spinal cord due to reduced survival motor neuron (SMN) protein level. While the genetic basis of SMA is well described, the specific molecular pathway underlying SMA is still not fully understood. Areas covered: This review discusses the recent advancements in understanding the molecular pathways in SMA using different omics approaches and genetic modifiers identified in both vertebrate and invertebrate systems. The findings that are summarized in this article were deduced from original articles and reviews with a particular focus on the latest advancements in the field. Expert commentary: The identification of genetic modifiers such as PLS3 and NCALD in humans or of SMA modulators such as Elavl4 (HuD), Copa, Uba1, Mapk10 (Jnk3), Nrxn2 and Tmem41b (Stasimon) in various SMA animal models improved our knowledge of impaired cellular pathways in SMA. Inspiration from modifier genes and their functions in motor neuron and neuromuscular junctions may open a new avenue for future SMA combinatorial therapies.
Collapse
Affiliation(s)
- Seyyedmohsen Hosseinibarkooie
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Svenja Schneider
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany
| | - Brunhilde Wirth
- a Institute of Human Genetics , University of Cologne , Cologne , Germany.,b Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,c Institute for Genetics , University of Cologne , Cologne , Germany.,d Center for Rare Diseases Cologne , University Hospital of Cologne, University of Cologne , Cologne , Germany
| |
Collapse
|