1
|
Huang JX, Yen PH, Cheng CC, Fang YC, Chiang PH. Open-source magnetic system for wireless neuromodulations in vitro and for untethered brain stimulation in vivo. Sci Rep 2025; 15:17814. [PMID: 40404843 PMCID: PMC12098840 DOI: 10.1038/s41598-025-03076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/19/2025] [Indexed: 05/24/2025] Open
Abstract
In recent years, significant advances have been made in magnetic neuromodulation technologies, enabling the manipulation of deep brain neurons without invasive implants. Wireless approaches, such as those leveraging magnetic nanoparticles and magnetosensitive proteins, have gained considerable attention. Among these, methods requiring low magnetic field density (< 50 mT) and low frequencies (< 20 Hz) show promise for broader applications due to their scalability and energy efficiency. However, the lack of cost-effective, user-friendly instruments for in vitro and in vivo experiments has hindered broader adoption. To address this, we demonstrate an open-source magnetic stimulation system that integrates Arduino-based hardware, electromagnetic coils, and real-time feedback sensors to monitor environmental parameters, including temperature, sound, vibration, and magnetic field density. Additionally, the system employs a closed-loop design, enabling adaptive control of magnetic stimulation based on tracking the subject's position and environmental feedback. A Python-based graphical user interface (GUI) allows researchers to design and control stimulation protocols while monitoring feedback signals in real-time. The system includes multiple solenoid designs optimized for diverse applications, such as cell culture studies, fluorescence microscopy, and in vivo behavioral experiments, ensuring compatibility across experimental scales. The stability and versatility of the system were evaluated in multiple behavioral paradigms, including light-dark box and place preference tests. This low-cost, easy-access, and flexible platform can facilitate magnetic neuromodulation research and promote accessibility for basic and translational studies in neuroscience and bioelectronics.
Collapse
Affiliation(s)
- Jun-Xuan Huang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ping-Hsiang Yen
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chao-Chun Cheng
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Cheng Fang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
3
|
Liu X, Yu L, Xiao A, Sun W, Wang H, Wang X, Zhou Y, Li C, Li J, Wang Y, Wang G. Analytical methods in studying cell force sensing: principles, current technologies and perspectives. Regen Biomater 2025; 12:rbaf007. [PMID: 40337625 PMCID: PMC12057814 DOI: 10.1093/rb/rbaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 05/09/2025] Open
Abstract
Mechanical stimulation plays a crucial role in numerous biological activities, including tissue development, regeneration and remodeling. Understanding how cells respond to their mechanical microenvironment is vital for investigating mechanotransduction with adequate spatial and temporal resolution. Cell force sensing-also known as mechanosensation or mechanotransduction-involves force transmission through the cytoskeleton and mechanochemical signaling. Insights into cell-extracellular matrix interactions and mechanotransduction are particularly relevant for guiding biomaterial design in tissue engineering. To establish a foundation for mechanical biomedicine, this review will provide a comprehensive overview of cell mechanotransduction mechanisms, including the structural components essential for effective mechanical responses, such as cytoskeletal elements, force-sensitive ion channels, membrane receptors and key signaling pathways. It will also discuss the clutch model in force transmission, the role of mechanotransduction in both physiology and pathological contexts, and biomechanics and biomaterial design. Additionally, we outline analytical approaches for characterizing forces at cellular and subcellular levels, discussing the advantages and limitations of each method to aid researchers in selecting appropriate techniques. Finally, we summarize recent advancements in cell force sensing and identify key challenges for future research. Overall, this review should contribute to biomedical engineering by supporting the design of biomaterials that integrate precise mechanical information.
Collapse
Affiliation(s)
- Xiaojun Liu
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Lei Yu
- Department of Traditional Chinese Medicine, Qingdao Special Service Sanatorium of PLA Navy, Qingdao 266071, China
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Wenxu Sun
- School of Sciences, Nantong University, Nantong 226019, China
| | - Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yanghao Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Jiangtao Li
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yongliang Wang
- College of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266024, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Qindao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- JinFeng Laboratory, Chongqing 401329, China
| |
Collapse
|
4
|
Antoniazzi AM, Unda SR, Norman S, Pomeranz LE, Marongiu R, Stanley SA, Friedman JM, Kaplitt MG. Non-invasive in vivo bidirectional magnetogenetic modulation of pain circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644041. [PMID: 40166248 PMCID: PMC11957015 DOI: 10.1101/2025.03.18.644041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Primary nociceptors in the dorsal root ganglion (DRG) receive sensory information from discrete parts of the body and are responsible for initiating signaling events that in supraspinal regions will be interpreted as physiological or pathological pain. Genetic, pharmacologic and electric neuromodulation of nociceptor activity in freely moving non-transgenic animals has been shown to be challenging due to many factors including the immunogenicity of non-mammalian proteins, procedure invasiveness and poor temporal precision. Here, we introduce a magnetogenetic strategy that enables remote bidirectional regulation of nociceptor activity. Magnetogenetics utilizes a source of direct magnetic field (DMF) to control neuronal activity in cells that express an anti-ferritin nanobody-TRPV1 receptor fusion protein (Nb-Ft-TRPV1). In our study, AAV2retro-mediated delivery of an excitatory Nb-Ft-TRPV1 construct into the sciatic nerve of wild-type mice resulted in stable long-term transgene expression accompanied by significant reduction of mechanical withdrawal thresholds during DMF exposure, place aversion of the DMF zone and activity changes in the anterior cingulate (ACC) nucleus. Conversely, delivery of an inhibitory variant of the Nb-Ft-TRPV1 construct, engineered to gate chloride ions in response to DMF, led to reversed behavioral manifestations of mechanical allodynia and showed place preference for the DMF zone, suggestive of functional pain relief. Changes in DRG activity were confirmed by post-mortem levels, immediately following DMF exposure, of the activity-induced gene cfos, which increased with the excitatory construct in normal mice and decreased with the inhibitory construct in pain models Our study demonstrates that magnetogenetic channels can achieve long-term expression in the periphery without losing functionality, providing a stable gene therapy system for non-invasive, magnetic field regulation of pain-related neurons for research and potential clinical applications.
Collapse
Affiliation(s)
- Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| |
Collapse
|
5
|
Ölçücü G, Jaeger K, Krauss U. Magnetizing Biotech-Advances in (In Vivo) Magnetic Enzyme Immobilization. Eng Life Sci 2025; 25:e70000. [PMID: 40083857 PMCID: PMC11904115 DOI: 10.1002/elsc.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 03/16/2025] Open
Abstract
Industrial biocatalysis, a multibillion dollar industry, relies on the selectivity and efficacy of enzymes for efficient chemical transformations. However, enzymes, evolutionary adapted to mild biological conditions, often struggle in industrial processes that require harsh reaction conditions, resulting in reduced stability and activity. Enzyme immobilization, which addresses challenges such as enzyme reuse and stability, has therefore become a vital strategy for improving enzyme use in industrial applications. Traditional immobilization techniques rely on the confinement or display of enzymes within/on organic or inorganic supports, while recent advances in synthetic biology have led to the development of solely biological in vivo immobilization methods that streamline enzyme production and immobilization. These methods offer added benefits in terms of sustainability and cost efficiency. In addition, the development and use of multifunctional materials, such as magnetic (nano)materials for enzyme immobilization, has enabled improved separation and purification processes. The combination of both "worlds," opens up new avenues in both (industrial) biocatalysis, fundamental science, and biomedicine. Therefore, in this review, we provide an overview of established and recently emerging methods for the generation of magnetic protein immobilizates, placing a special focus on in vivo immobilization solutions.
Collapse
Affiliation(s)
- Gizem Ölçücü
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Ulrich Krauss
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
- Department of BiochemistryUniversity of BayreuthBayreuthGermany
| |
Collapse
|
6
|
Yang X, Kubican SE, Yi Z, Tong S. Advances in magnetic nanoparticles for molecular medicine. Chem Commun (Camb) 2025; 61:3093-3108. [PMID: 39846549 PMCID: PMC11756346 DOI: 10.1039/d4cc05167j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.
Collapse
Affiliation(s)
- Xiaoyue Yang
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Sarah E Kubican
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Zhongchao Yi
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Sheng Tong
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| |
Collapse
|
7
|
Duret G, Coffler S, Avant B, Kim W, Peterchev AV, Robinson J. Magnetic activation of electrically active cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636926. [PMID: 39975002 PMCID: PMC11839070 DOI: 10.1101/2025.02.07.636926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Magnetic control of cell activity has applications ranging from non-invasive neurostimulation to remote activation of cell-based therapies. Unlike other methods of regulating cell activity like heat and light, which are based on known receptors or proteins, no magnetically gated channel has been identified to date. As a result, effective approaches for magnetic control of cell activity are based on strong alternating magnetic fields able to induce electric fields or materials that convert magnetic energy into electrical, thermal, or mechanical energy to stimulate cells. In our investigations of magnetic cell responses, we found that a spiking HEK cell line with no other co-factors responds to a magnetic field that reaches a maximum of 500 mT within 200 ms using a permanent magnet. The response is rare, approximately 1 in 50 cells, but is fast and reproducible, generating an action potential within 200 ms of magnetic field stimulation. The magnetic field stimulation is over 10,000 times slower than the magnetic fields used in transcranial magnetic stimulation (TMS) and the induced electric field is more than an order of magnitude lower than necessary for neuromodulation, suggesting that induced electric currents do not drive the cell response. Instead, our calculation suggests that this response depends on mechanoreception pathways activated by the magnetic torque of TRP-associated lipid rafts. Despite the relatively rare response to magnetic stimulation, when cells form gap junctions, the magnetic stimulation can propagate to nearby cells, causing tissue-level responses. As an example, we co-cultured spiking HEK cells with beta-pancreatic MIN6 cells and found that this co-culture responds to magnetic fields by increasing insulin production. Together, these results point toward a method for the magnetic control of biological activity without the need for a material co-factor such as synthetic nanoparticles. By better understanding this mechanism and enriching for magneto-sensitivity it may be possible to adapt this approach to the rapidly expanding tool kit for wireless cell activity regulation.
Collapse
|
8
|
Turovsky EA, Plotnikov EY, Simakin AV, Gudkov SV, Varlamova EG. New magnetic iron nanoparticle doped with selenium nanoparticles and the mechanisms of their cytoprotective effect on cortical cells under ischemia-like conditions. Arch Biochem Biophys 2025; 764:110241. [PMID: 39613283 DOI: 10.1016/j.abb.2024.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ischemic stroke is the cause of high mortality and disability Worldwide. The material costs of stroke treatment and recovery are constantly increasing, making the search for effective and more cost-effective treatment approaches an urgent task for modern biomedicine. In this study, iron nanoparticles doped with selenium nanoparticles, FeNP@SeNPs, which are three-layered structures, were created and characterized using physical methods. Fluorescence microscopy, inhibitor and PCR analyzes were used to determine the signaling pathways involved in the activation of the Ca2+ signaling system of cortical astrocytes and the protection of cells from ischemia-like conditions (oxygen-glucose deprivation and reoxygenation). In particular, when using magnetic selenium nanoparticles together with electromagnetic stimulation, an additional pathway for nanoparticle penetration into the cell is activated through the activation of TRPV4 channels and the mechanism of their endocytosis is facilitated. It has been shown that the use of magnetic selenium nanoparticles together with magnetic stimulation represents an advantage over the use of classical selenium nanoparticles, as the effective concentration of nanoparticles can be reduced many times over.
Collapse
Affiliation(s)
- Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia; V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997, Moscow, Russia
| | - Alexander V Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950, Nizhny Novgorod, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| |
Collapse
|
9
|
Nahar T, Gates M, Secret E, Siaugue JM, Fresnais J, Rotherham M, Fuller HR, Brown SJ, El Haj AJ, Telling ND. Long-range directional growth of neurites induced by magnetic forces. Acta Biomater 2025; 193:215-230. [PMID: 39755241 DOI: 10.1016/j.actbio.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons. The direction of neurite outgrowth was quantified using a 2D Fourier transform analysis, showing agreement with the derived magnetic force vectors. Orientation control was found to be effective over areas >1cm2 using modest forces of ∼10 fN per endosome, apparently limited only by the local confluence of the cells. A bioinformatics analysis of protein expression in cells exposed to magnetic forces revealed changes to cell signaling and metabolic pathways resulting in enhanced carbohydrate metabolism, as well as the perturbation of processes related to cellular organisation and proliferation. Additionally, in cell culture regions where the measured force vectors converged, large (∼100 µm) SH-SY5Y neuroclusters loaded with nanoparticles were found, connected by unusually thick linear neurite fibres. This could suggest a magnetically driven enhancement of neurocluster growth, with the clusters themselves contributing to the local forces that direct outgrowth. Such structures, which have not been previously observed, could provide new insights into the development and possible enhancement of neural circuitry. STATEMENT OF SIGNIFICANCE: A magnetic force approach for directing outgrowth in neuronal cells over macroscopic areas is successfully demonstrated. Cells were incubated with magnetic nanoparticles which were sequestered into intracellular compartments. Permanent magnet arrays created local intracellular magnetic force vectors mediated via the internalized nanoparticles, which were found to precisely guide neurite orientation. Analysis of cellular protein expression suggested the mechanism for directed growth involved specific cell signaling and metabolic pathways. In addition, highly unusual straight and thick neural fibers were observed that connected large 'magnetic' spherical cell clusters. The results reported will advance nanotechnology and cell therapy for neuro-regeneration where magnetic forces could help to reconnect damaged neurons, or even build artificial neuronal architectures.
Collapse
Affiliation(s)
- Tasmin Nahar
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Monte Gates
- School of Life Sciences, Keele University, Staffordshire, UK; School of Medicine, Keele University, Staffordshire, UK
| | - Emilie Secret
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Jérôme Fresnais
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Michael Rotherham
- School of Life Sciences, Keele University, Staffordshire, UK; Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Heidi R Fuller
- School of Allied Health Professions and Pharmacy, Keele University, Staffordshire, UK
| | - Sharon J Brown
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Neil D Telling
- School of Life Sciences, Keele University, Staffordshire, UK.
| |
Collapse
|
10
|
Zhi W, Li Y, Wang L, Hu X. Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches. Cells 2025; 14:122. [PMID: 39851550 PMCID: PMC11763439 DOI: 10.3390/cells14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques). By systematically evaluating the principles, mechanisms, advantages, limitations, and efficacy in modulating neuronal activity and the potential applications in interventions of neurological disorders of these neuromodulation techniques, a comprehensive picture is gradually emerging regarding the advantages and challenges of neuromodulation techniques, their developmental trajectory, and their potential clinical applications. This review highlights significant advancements in applying these techniques to treat neurological and psychiatric disorders. Genetic methods, such as sonogenetics and magnetogenetics, have demonstrated high specificity and temporal precision in targeting neuronal populations, while non-genetic methods, such as transcranial magnetic stimulation and photobiomodulation therapy, offer noninvasive and versatile clinical intervention options. The transformative potential of these neuromodulation techniques in neuroscience research and clinical practice is underscored, emphasizing the need for integration and innovation in technologies, the optimization of delivery methods, the improvement of mediums, and the evaluation of toxicity to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Ying Li
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| |
Collapse
|
11
|
Qiao L, Niu L, Wang M, Wang Z, Kong D, Yu G, Ye H. A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases. Nat Commun 2024; 15:10310. [PMID: 39604418 PMCID: PMC11603164 DOI: 10.1038/s41467-024-54781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Red light optogenetic systems are in high demand for the precise control of gene expression for gene- and cell-based therapies. Here, we report a red/far-red light-inducible photoswitch (REDLIP) system based on the chimeric photosensory protein FnBphP (Fn-REDLIP) or PnBphP (Pn-REDLIP) and their interaction partner LDB3, which enables efficient dynamic regulation of gene expression with a timescale of seconds without exogenous administration of a chromophore in mammals. We use the REDLIP system to establish the REDLIP-mediated CRISPR-dCas9 (REDLIPcas) system, enabling optogenetic activation of endogenous target genes in mammalian cells and mice. The REDLIP system is small enough to support packaging into adeno-associated viruses (AAVs), facilitating its therapeutic application. Demonstrating its capacity to treat metabolic diseases, we show that an AAV-delivered Fn-REDLIP system achieved optogenetic control of insulin expression to effectively lower blood glucose levels in type 1 diabetes model mice and control an anti-obesity therapeutic protein (thymic stromal lymphopoietin, TSLP) to reduce body weight in obesity model mice. REDLIP is a compact and sensitive optogenetic tool for reversible and non-invasive control that can facilitate basic biological and biomedical research.
Collapse
Affiliation(s)
- Longliang Qiao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Xincun Road 389, Shanghai, 200065, China
| | - Lingxue Niu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Meiyan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhihao Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Guiling Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| |
Collapse
|
12
|
Unda SR, Pomeranz LE, Marongiu R, Yu X, Kelly L, Hassanzadeh G, Molina H, Vaisey G, Wang P, Dyke JP, Fung EK, Grosenick L, Zirkel R, Antoniazzi AM, Norman S, Liston CM, Schaffer C, Nishimura N, Stanley SA, Friedman JM, Kaplitt MG. Bidirectional regulation of motor circuits using magnetogenetic gene therapy. SCIENCE ADVANCES 2024; 10:eadp9150. [PMID: 39383230 PMCID: PMC11463271 DOI: 10.1126/sciadv.adp9150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Here, we report a magnetogenetic system, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. Adeno-associated virus (AAV)-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine-2a receptor-Cre drivers resulted in motor freezing when placed in a magnetic resonance imaging machine or adjacent to a transcranial magnetic stimulation device. Functional imaging and fiber photometry confirmed activation in response to magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing Cre into the globus pallidus led to similar circuit specificity and motor responses. Last, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in the subthalamic nucleus in PitX2-Cre parkinsonian mice resulted in reduced c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits noninvasively in vivo using clinically available devices.
Collapse
Affiliation(s)
- Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Jonathan P. Dyke
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Edward K. Fung
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Rick Zirkel
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Conor M. Liston
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Chris Schaffer
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nozomi Nishimura
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Jeffrey M. Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
13
|
Chuang KH, Qian C, Gilad AA, Pelled G. Magnetogenetic stimulation inside MRI induces spontaneous and evoked changes in neural circuits activity in rats. Front Neurosci 2024; 18:1459120. [PMID: 39411150 PMCID: PMC11473493 DOI: 10.3389/fnins.2024.1459120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The ability to modulate specific neural circuits and simultaneously visualize and measure brain activity with MRI would greatly impact our understanding of brain function in health and disease. The combination of neurostimulation methods and functional MRI in animal models have already shown promise in elucidating fundamental mechanisms associated with brain activity. We developed an innovative magnetogenetics neurostimulation technology that can trigger neural activity through magnetic fields. Similar to other genetic-based neuromodulation methods, magnetogenetics offers cell-, area-, and temporal-specific control of neural activity. The magnetogenetic protein-Electromagnetic Perceptive Gene (EPG)-is activated by non-invasive magnetic fields, providing a unique way to target neural circuits by the MRI static and gradient fields while simultaneously measuring their effect on brain activity. EPG was expressed in rat's visual cortex and the amplitude of low-frequency fluctuation, resting-state functional connectivity (FC), and sensory activation was measured using a 7T MRI. The results demonstrate that EPG-expressing rats had significantly higher signal fluctuations in the visual areas and stronger FC in sensory areas consistent with known anatomical visuosensory and visuomotor connections. This new technology complements the existing neurostimulation toolbox and provides a means to study brain function in a minimally-invasive way which was not possible previously.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Choi SH, Shin J, Park C, Lee JU, Lee J, Ambo Y, Shin W, Yu R, Kim JY, Lah JD, Shin D, Kim G, Noh K, Koh W, Lee CJ, Lee JH, Kwak M, Cheon J. In vivo magnetogenetics for cell-type-specific targeting and modulation of brain circuits. NATURE NANOTECHNOLOGY 2024; 19:1333-1343. [PMID: 38956320 DOI: 10.1038/s41565-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/05/2024] [Indexed: 07/04/2024]
Abstract
Neuromodulation technologies are crucial for investigating neuronal connectivity and brain function. Magnetic neuromodulation offers wireless and remote deep brain stimulations that are lacking in optogenetic- and wired-electrode-based tools. However, due to the limited understanding of working principles and poorly designed magnetic operating systems, earlier magnetic approaches have yet to be utilized. Furthermore, despite its importance in neuroscience research, cell-type-specific magnetic neuromodulation has remained elusive. Here we present a nanomaterials-based magnetogenetic toolbox, in conjunction with Cre-loxP technology, to selectively activate genetically encoded Piezo1 ion channels in targeted neuronal populations via torque generated by the nanomagnetic actuators in vitro and in vivo. We demonstrate this cell-type-targeting magnetic approach for remote and spatiotemporal precise control of deep brain neural activity in multiple behavioural models, such as bidirectional feeding control, long-term neuromodulation for weight control in obese mice and wireless modulation of social behaviours in multiple mice in the same physical space. Our study demonstrates the potential of cell-type-specific magnetogenetics as an effective and reliable research tool for life sciences, especially in wireless, long-term and freely behaving animals.
Collapse
Affiliation(s)
- Seo-Hyun Choi
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jihye Shin
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Chanhyun Park
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jung-Uk Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jaegyeong Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yuko Ambo
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Wookjin Shin
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Ri Yu
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Ju-Young Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jungsu David Lah
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Donghun Shin
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Gooreum Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Kunwoo Noh
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Wuhyun Koh
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| | - Minsuk Kwak
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Hu G, Huang J, Fussenegger M. Toward Photosynthetic Mammalian Cells through Artificial Endosymbiosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310310. [PMID: 38506612 DOI: 10.1002/smll.202310310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Photosynthesis in plants occurs within specialized organelles known as chloroplasts, which are postulated to have originated through endosymbiosis with cyanobacteria. In nature, instances are also observed wherein specific invertebrates engage in symbiotic relationships with photosynthetic bacteria, allowing them to subsist as photoautotrophic organisms over extended durations. Consequently, the concept of engineering artificial endosymbiosis between mammalian cells and cyanobacteria represents a promising avenue for enabling photosynthesis in mammals. The study embarked with the identification of Synechocystis PCC 6803 as a suitable candidate for establishing a long-term endosymbiotic relationship with macrophages. The cyanobacteria internalized by macrophages exhibited the capacity to rescue ATP deficiencies within their host cells under conditions of illumination. Following this discovery, a membrane-coating strategy is developed for the intracellular delivery of cyanobacteria into non-macrophage mammalian cells. This pioneering technique led to the identification of human embryonic kidney cells HEK293 as optimal hosts for achieving sustained endosymbiosis with Synechocystis PCC 6803. The study offers valuable insights that may serve as a reference for the eventual achievement of artificial photosynthesis in mammals.
Collapse
Affiliation(s)
- Guipeng Hu
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
| |
Collapse
|
16
|
Hernández-Morales M, Morales-Weil K, Han SM, Han V, Tran T, Benner EJ, Pegram K, Meanor J, Miller EW, Kramer RH, Liu C. Electrophysiological Mechanisms and Validation of Ferritin-Based Magnetogenetics for Remote Control of Neurons. J Neurosci 2024; 44:e1717232024. [PMID: 38777598 PMCID: PMC11270515 DOI: 10.1523/jneurosci.1717-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Magnetogenetics was developed to remotely control genetically targeted neurons. A variant of magnetogenetics uses magnetic fields to activate transient receptor potential vanilloid (TRPV) channels when coupled with ferritin. Stimulation with static or RF magnetic fields of neurons expressing these channels induces Ca2+ transients and modulates behavior. However, the validity of ferritin-based magnetogenetics has been questioned due to controversies surrounding the underlying mechanisms and deficits in reproducibility. Here, we validated the magnetogenetic approach Ferritin-iron Redistribution to Ion Channels (FeRIC) using electrophysiological (Ephys) and imaging techniques. Previously, interference from RF stimulation rendered patch-clamp recordings inaccessible for magnetogenetics. We solved this limitation for FeRIC, and we studied the bioelectrical properties of neurons expressing TRPV4 (nonselective cation channel) and transmembrane member 16A (TMEM16A; chloride-permeable channel) coupled to ferritin (FeRIC channels) under RF stimulation. We used cultured neurons obtained from the rat hippocampus of either sex. We show that RF decreases the membrane resistance (Rm) and depolarizes the membrane potential in neurons expressing TRPV4FeRIC RF does not directly trigger action potential firing but increases the neuronal basal spiking frequency. In neurons expressing TMEM16AFeRIC, RF decreases the Rm, hyperpolarizes the membrane potential, and decreases the spiking frequency. Additionally, we corroborated the previously described biochemical mechanism responsible for RF-induced activation of ferritin-coupled ion channels. We solved an enduring problem for ferritin-based magnetogenetics, obtaining direct Ephys evidence of RF-induced activation of ferritin-coupled ion channels. We found that RF does not yield instantaneous changes in neuronal membrane potentials. Instead, RF produces responses that are long-lasting and moderate, but effective in controlling the bioelectrical properties of neurons.
Collapse
Affiliation(s)
- Miriam Hernández-Morales
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Koyam Morales-Weil
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Sang Min Han
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Victor Han
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Tiffany Tran
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Eric J Benner
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, North Carolina 27710
| | - Kelly Pegram
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, North Carolina 27710
| | - Jenna Meanor
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, North Carolina 27710
| | - Evan W Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Department of Chemistry, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| |
Collapse
|
17
|
Vyas A, Petrášek Z, Nidetzky B. Limits of Non-invasive Enzymatic Activation by Local Temperature Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312220. [PMID: 38344893 DOI: 10.1002/smll.202312220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 07/26/2024]
Abstract
Enzymatic activity depends on and can therefore be regulated by temperature. Selective modulation of the activity of different enzymes in one reaction pot would require temperature control local to each type of enzyme. It has been suggested previously that immobilization of enzyme on magnetic nanoparticles and exposing them to alternating magnetic field can enhance the reaction rate. This enhancement has been explained as being mediated by temperature increase caused by dissipation of the absorbed field energy in the form of heat. However, the possibility of spatially limiting this temperature increase on the microscale has been questioned. Here, it is investigated whether an activity enhancement of the enzyme sucrose phosphorylase immobilized on magnetic beads can be achieved, how this effect is related to the increase in temperature, and whether temperature differences within one reaction pot could be generated in this way. It is found that alternating magnetic field stimulation leads to increased enzymatic activity fully attributable to the increase of bulk temperature. Both theoretical analysis and experimental data indicate that no local heating near the particle surface takes place. It is further concluded that relevant increase of surface temperature can be obtained only with macroscopic, millimeter-sized, magnetic particles.
Collapse
Affiliation(s)
- Anisha Vyas
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Zdeněk Petrášek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, A-8010, Austria
- Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz, A-8010, Austria
| |
Collapse
|
18
|
Yang F, Ma Y, Zhang A, Yao J, Jiang S, He C, Peng H, Ren G, Yang Y, Wu A. Engineering magnetic nanosystem for TRPV1 and TRPV4 channel activation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1987. [PMID: 39136188 DOI: 10.1002/wnan.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024]
Abstract
Recently, physical tools for remotely stimulating mechanical force-sensitive and temperature-sensitive proteins to regulate intracellular pathways have opened up novel and exciting avenues for basic research and clinical applications. Among the numerous modes of physical stimulation, magnetic stimulation is significantly attractive for biological applications due to the advantages of depth penetration and spatial-temporally controlled transduction. Herein, the physicochemical parameters (e.g., shape, size, composition) that influence the magnetic properties of magnetic nanosystems as well as the characteristics of transient receptor potential vanilloid-1 (TRPV1) and transient receptor potential vanilloid-4 (TRPV4) channels are systematically summarized, which offer opportunities for magnetic manipulation of cell fate in a precise and effective manner. In addition, representative regulatory applications involving magnetic nanosystem-based TRPV1 and TRPV4 channel activation are highlighted, both at the cellular level and in animal models. Furthermore, perspectives on the further development of this magnetic stimulation mode are commented on, with emphasis on scientific limitations and possible directions for exploitation. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Fang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yaqi Ma
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoran Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Junlie Yao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Chenglong He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Hao Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Guiping Ren
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiqian Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
19
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
20
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, Dobie G, Khan AA. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Int J Nanomedicine 2024; 19:5335-5363. [PMID: 38859956 PMCID: PMC11164216 DOI: 10.2147/ijn.s455574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | - Rand Mohammad Almousa
- Department of Education, General Directorate of Education, Qassim 52361, Saudi Arabia
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan 82911, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
21
|
Chen C, Chen H, Wang P, Wang X, Wang X, Chen C, Pan W. Reactive Oxygen Species Activate a Ferritin-Linked TRPV4 Channel under a Static Magnetic Field. ACS Chem Biol 2024; 19:1151-1160. [PMID: 38648729 DOI: 10.1021/acschembio.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Magnetogenetics has shown great potential for cell function and neuromodulation using heat or force effects under different magnetic fields; however, there is still a contradiction between experimental effects and underlying mechanisms by theoretical computation. In this study, we aimed to investigate the role of reactive oxygen species (ROS) in mechanical force-dependent regulation from a physicochemical perspective. The transient receptor potential vanilloid 4 (TRPV4) cation channels fused to ferritin (T4F) were overexpressed in HEK293T cells and exposed to static magnetic fields (sMF, 1.4-5.0 mT; gradient: 1.62 mT/cm). An elevation of ROS levels was found under sMF in T4F-overexpressing cells, which could lead to lipid oxidation. Compared with the overexpression of TRPV4, ferritin in T4F promoted the generation of ROS under the stimulation of sMF, probably related to the release of iron ions from ferritin. Then, the resulting ROS regulated the opening of the TRPV4 channel, which was attenuated by the direct addition of ROS inhibitors or an iron ion chelator, highlighting a close relationship among iron release, ROS production, and TRPV4 channel activation. Taken together, these findings indicate that the produced ROS under sMF act on the TRPV4 channel, regulating the influx of calcium ions. The study would provide a scientific basis for the application of magnetic regulation in cellular or neural regulation and disease treatment and contribute to the development of the more sensitive regulatory technology.
Collapse
Affiliation(s)
- Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| |
Collapse
|
22
|
Guan W, Gao H, Liu Y, Sun S, Li G. Application of magnetism in tissue regeneration: recent progress and future prospects. Regen Biomater 2024; 11:rbae048. [PMID: 38939044 PMCID: PMC11208728 DOI: 10.1093/rb/rbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.
Collapse
Affiliation(s)
- Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
23
|
Cooper L, Malinao MG, Hong G. Force-Based Neuromodulation. Acc Chem Res 2024; 57:1384-1397. [PMID: 38657038 PMCID: PMC11401649 DOI: 10.1021/acs.accounts.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Technologies for neuromodulation have rapidly developed in the past decade with a particular emphasis on creating noninvasive tools with high spatial and temporal precision. The existence of such tools is critical in the advancement of our understanding of neural circuitry and its influence on behavior and neurological disease. Existing technologies have employed various modalities, such as light, electrical, and magnetic fields, to interface with neural activity. While each method offers unique advantages, many struggle with modulating activity with high spatiotemporal precision without the need for invasive tools. One modality of interest for neuromodulation has been the use of mechanical force. Mechanical force encapsulates a broad range of techniques, ranging from mechanical waves delivered via focused ultrasound (FUS) to torque applied to the cell membrane.Mechanical force can be delivered to the tissue in two forms. The first form is the delivery of a mechanical force through focused ultrasound. Energy delivery facilitated by FUS has been the foundation for many neuromodulation techniques, owing to its precision and penetration depth. FUS possesses the potential to penetrate deeply (∼centimeters) into tissue while maintaining relatively precise spatial resolution, although there exists a trade-off between the penetration depth and spatial resolution. FUS may work synergistically with ultrasound-responsive nanotransducers or devices to produce a secondary energy, such as light, heat, or an electric field, in the target region. This layered technology, first enabled by noninvasive FUS, overcomes the need for bulky invasive implants and also often improves the spatiotemporal precision of light, heat, electrical fields, or other techniques alone. Conversely, the second form of mechanical force modulation is the generation of mechanical force from other modalities, such as light or magnetic fields, for neuromodulation via mechanosensitive proteins. This approach localizes the mechanical force at the cellular level, enhancing the precision of the original energy delivery. Direct interaction of mechanical force with tissue presents translational potential in its ability to interface with endogenous mechanosensitive proteins without the need for transgenes.In this Account, we categorize force-mediated neuromodulation into two categories: 1) methods where mechanical force is the primary stimulus and 2) methods where mechanical force is generated as a secondary stimulus in response to other modalities. We summarize the general design principles and current progress of each respective approach. We identify the key advantages of the limitations of each technology, particularly noting features in spatiotemporal precision, the need for transgene delivery, and the potential outlook. Finally, we highlight recent technologies that leverage mechanical force for enhanced spatiotemporal precision and advanced applications.
Collapse
Affiliation(s)
- Lauren Cooper
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
| | - Marigold Gil Malinao
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Guosong Hong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Unda SR, Pomeranz LE, Marongiu R, Yu X, Kelly L, Hassanzadeh G, Molina H, Vaisey G, Wang P, Dyke JP, Fung EK, Grosenick L, Zirkel R, Antoniazzi AM, Norman S, Liston CM, Schaffer C, Nishimura N, Stanley SA, Friedman JM, Kaplitt MG. Bidirectional Regulation of Motor Circuits Using Magnetogenetic Gene Therapy Short: Magnetogenetic Regulation of Motor Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.13.548699. [PMID: 37503198 PMCID: PMC10369996 DOI: 10.1101/2023.07.13.548699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here we report a novel suite of magnetogenetic tools, based on a single anti-ferritin nanobody-TRPV1 receptor fusion protein, which regulated neuronal activity when exposed to magnetic fields. AAV-mediated delivery of a floxed nanobody-TRPV1 into the striatum of adenosine 2a receptor-cre driver mice resulted in motor freezing when placed in an MRI or adjacent to a transcranial magnetic stimulation (TMS) device. Functional imaging and fiber photometry both confirmed activation of the target region in response to the magnetic fields. Expression of the same construct in the striatum of wild-type mice along with a second injection of an AAVretro expressing cre into the globus pallidus led to similar circuit specificity and motor responses. Finally, a mutation was generated to gate chloride and inhibit neuronal activity. Expression of this variant in subthalamic nucleus in PitX2-cre parkinsonian mice resulted in reduced local c-fos expression and motor rotational behavior. These data demonstrate that magnetogenetic constructs can bidirectionally regulate activity of specific neuronal circuits non-invasively in-vivo using clinically available devices.
Collapse
Affiliation(s)
- Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai, 200433
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Jonathan P. Dyke
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Edward K. Fung
- Citigroup Bioimaging Center, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Rick Zirkel
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Conor M. Liston
- Department of Psychiatry, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Chris Schaffer
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nozomi Nishimura
- Meining School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| |
Collapse
|
25
|
Pomeranz L, Li R, Yu X, Kelly L, Hassanzadeh G, Molina H, Gross D, Brier M, Vaisey G, Wang P, Jimenez-Gonzalez M, Garcia-Ocana A, Dordick J, Friedman J, Stanley S. Magnetogenetic cell activation using endogenous ferritin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545120. [PMID: 37786709 PMCID: PMC10541561 DOI: 10.1101/2023.06.20.545120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation in vitro. In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel in vivo. Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice in vivo. Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.
Collapse
Affiliation(s)
- Lisa Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Rosemary Li
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaofei Yu
- School of Life Sciences, Fudan University, Shanghai, 200433
| | - Leah Kelly
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | - Henrik Molina
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Gross
- Current address, Dept. of Radiology, Weill Cornell Medicine, 1300 York Avenue New York, NY 10065
| | - Matthew Brier
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - George Vaisey
- Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010
| | - Jonathan Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Jeffrey Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | - Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
26
|
Grady CJ, Castellanos Franco EA, Schossau J, Ashbaugh RC, Pelled G, Gilad AA. A putative design for the electromagnetic activation of split proteins for molecular and cellular manipulation. Front Bioeng Biotechnol 2024; 12:1355915. [PMID: 38605993 PMCID: PMC11007078 DOI: 10.3389/fbioe.2024.1355915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
The ability to manipulate cellular function using an external stimulus is a powerful strategy for studying complex biological phenomena. One approach to modulate the function of the cellular environment is split proteins. In this method, a biologically active protein or an enzyme is fragmented so that it reassembles only upon a specific stimulus. Although many tools are available to induce these systems, nature has provided other mechanisms to expand the split protein toolbox. Here, we show a novel method for reconstituting split proteins using magnetic stimulation. We found that the electromagnetic perceptive gene (EPG) changes conformation due to magnetic field stimulation. By fusing split fragments of a certain protein to both termini of the EPG, the fragments can be reassembled into a functional protein under magnetic stimulation due to conformational change. We show this effect with three separate split proteins: NanoLuc, APEX2, and herpes simplex virus type-1 thymidine kinase. Our results show, for the first time, that reconstitution of split proteins can be achieved only with magnetic fields. We anticipate that this study will be a starting point for future magnetically inducible split protein designs for cellular perturbation and manipulation. With this technology, we can help expand the toolbox of the split protein platform and allow better elucidation of complex biological systems.
Collapse
Affiliation(s)
- Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | | | - Jory Schossau
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Ryan C. Ashbaugh
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
27
|
Hahmann J, Ishaqat A, Lammers T, Herrmann A. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angew Chem Int Ed Engl 2024; 63:e202317112. [PMID: 38197549 DOI: 10.1002/anie.202317112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Ultrasound technology, synergistically harnessed with genetic engineering and chemistry concepts, has started to open the gateway to the remarkable realm of sonogenetics-a pioneering paradigm for remotely orchestrating cellular functions at the molecular level. This fusion not only enables precisely targeted imaging and therapeutic interventions, but also advances our comprehension of mechanobiology to unparalleled depths. Sonogenetic tools harness mechanical force within small tissue volumes while preserving the integrity of the surrounding physiological environment, reaching depths of up to tens of centimeters with high spatiotemporal precision. These capabilities circumvent the inherent physical limitations of alternative in vivo control methods such as optogenetics and magnetogenetics. In this review, we first discuss mechanosensitive ion channels, the most commonly utilized sonogenetic mediators, in both mammalian and non-mammalian systems. Subsequently, we provide a comprehensive overview of state-of-the-art sonogenetic approaches that leverage thermal or mechanical features of ultrasonic waves. Additionally, we explore strategies centered around the design of mechanochemically reactive macromolecular systems. Furthermore, we delve into the realm of ultrasound imaging of biomolecular function, encompassing the utilization of gas vesicles and acoustic reporter genes. Finally, we shed light on limitations and challenges of sonogenetics and present a perspective on the future of this promising technology.
Collapse
Affiliation(s)
- Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), RWTH Aachen University Clinic, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
28
|
Mundell JW, Brier MI, Orloff E, Stanley SA, Dordick JS. Alternating magnetic fields drive stimulation of gene expression via generation of reactive oxygen species. iScience 2024; 27:109186. [PMID: 38420587 PMCID: PMC10901079 DOI: 10.1016/j.isci.2024.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Magnetogenetics represents a method for remote control of cellular function. Previous work suggests that generation of reactive oxygen species (ROS) initiates downstream signaling. Herein, a chemical biology approach was used to elucidate further the mechanism of radio frequency-alternating magnetic field (RF-AMF) stimulation of a TRPV1-ferritin magnetogenetics platform that leads to Ca2+ flux. RF-AMF stimulation of HEK293T cells expressing TRPV1-ferritin resulted in ∼30% and ∼140% increase in intra- and extracellular ROS levels, respectively. Mutations to specific cysteine residues in TRPV1 responsible for ROS sensitivity eliminated RF-AMF driven Ca2+-dependent transcription of secreted embryonic alkaline phosphatase (SEAP). Using a non-tethered (to TRPV1) ferritin also eliminated RF-AMF driven SEAP production, and using specific inhibitors, ROS-activated TRPV1 signaling involves protein kinase C, NADPH oxidase, and the endoplasmic reticulum. These results suggest ferritin-dependent ROS activation of TRPV1 plays a key role in the initiation of magnetogenetics, and provides relevance for potential applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Jordan W. Mundell
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Matthew I. Brier
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Everest Orloff
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
29
|
Wang S, Chen CY, Rzasa JR, Tsao CY, Li J, VanArsdale E, Kim E, Zakaria FR, Payne GF, Bentley WE. Redox-enabled electronic interrogation and feedback control of hierarchical and networked biological systems. Nat Commun 2023; 14:8514. [PMID: 38129428 PMCID: PMC10739708 DOI: 10.1038/s41467-023-44223-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Microelectronic devices can directly communicate with biology, as electronic information can be transmitted via redox reactions within biological systems. By engineering biology's native redox networks, we enable electronic interrogation and control of biological systems at several hierarchical levels: proteins, cells, and cell consortia. First, electro-biofabrication facilitates on-device biological component assembly. Then, electrode-actuated redox data transmission and redox-linked synthetic biology allows programming of enzyme activity and closed-loop electrogenetic control of cellular function. Specifically, horseradish peroxidase is assembled onto interdigitated electrodes where electrode-generated hydrogen peroxide controls its activity. E. coli's stress response regulon, oxyRS, is rewired to enable algorithm-based feedback control of gene expression, including an eCRISPR module that switches cell-cell quorum sensing communication from one autoinducer to another-creating an electronically controlled 'bilingual' cell. Then, these disparate redox-guided devices are wirelessly connected, enabling real-time communication and user-based control. We suggest these methodologies will help us to better understand and develop sophisticated control for biology.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - John R Rzasa
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Chen-Yu Tsao
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Jinyang Li
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- National Research Council Postdoctoral Research Associate, United States Naval Research Laboratory, Washington, DC, USA
| | - Eunkyoung Kim
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Gregory F Payne
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA.
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA.
| |
Collapse
|
30
|
Gadanec LK, Swiderski J, Apostolopoulos V, Kelaidonis K, Vidali VP, Canko A, Moore GJ, Matsoukas JM, Zulli A. Existence of Quantum Pharmacology in Sartans: Evidence in Isolated Rabbit Iliac Arteries. Int J Mol Sci 2023; 24:17559. [PMID: 38139391 PMCID: PMC10744031 DOI: 10.3390/ijms242417559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Quantum pharmacology introduces theoretical models to describe the possibility of ultra-high dilutions to produce biological effects, which may help to explain the placebo effect observed in hypertensive clinical trials. To determine this within physiology and to evaluate novel ARBs, we tested the ability of known angiotensin II receptor blockers (ARBs) (candesartan and telmisartan) used to treat hypertension and other cardiovascular diseases, as well as novel ARBs (benzimidazole-N-biphenyl tetrazole (ACC519T), benzimidazole-bis-N,N'-biphenyl tetrazole (ACC519T(2)) and 4-butyl-N,N0-bis[[20-2Htetrazol-5-yl)biphenyl-4-yl]methyl)imidazolium bromide (BV6(K+)2), and nirmatrelvir (the active ingredient in Paxlovid) to modulate vascular contraction in iliac rings from healthy male New Zealand White rabbits in responses to various vasopressors (angiotensin A, angiotensin II and phenylephrine). Additionally, the hemodynamic effect of ACC519T and telmisartan on mean arterial pressure in conscious rabbits was determined, while the ex vivo ability of BV6(K+)2 to activate angiotensin-converting enzyme-2 (ACE2) was also investigated. We show that commercially available and novel ARBs can modulate contraction responses at ultra-high dilutions to different vasopressors. ACC519T produced a dose-dependent reduction in rabbit mean arterial pressure while BV6(K+)2 significantly increased ACE2 metabolism. The ability of ARBs to inhibit contraction responses even at ultra-low concentrations provides evidence of the existence of quantum pharmacology. Furthermore, the ability of ACC519T and BV6(K+)2 to modulate blood pressure and ACE2 activity, respectively, indicates their therapeutic potential against hypertension.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| | - Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | | | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 153 41 Athens, Greece; (V.P.V.); (A.C.)
| | - Aleksander Canko
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 153 41 Athens, Greece; (V.P.V.); (A.C.)
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John M. Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
- NewDrug PC, Patras Science Park, 26 504 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Chemistry, University of Patras, 265 04 Patras, Greece
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| |
Collapse
|
31
|
Knapman FL, Cohen EM, Kulaga T, Lovell N, Lisowski L, McMullan S, Burke PGR, Bilston LE. Direct optogenetic activation of upper airway muscles in an acute model of upper airway hypotonia mimicking sleep onset. Sleep 2023; 46:zsad226. [PMID: 37651221 DOI: 10.1093/sleep/zsad226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA), where the upper airway collapses repeatedly during sleep due to inadequate dilator muscle tone, is challenging to treat as current therapies are poorly tolerated or have variable and unpredictable efficacy. We propose a novel, optogenetics-based therapy, that stimulates upper airway dilator muscle contractions in response to light. To determine the feasibility of a novel optogenetics-based OSA therapy, we developed a rodent model of human sleep-related upper airway muscle atonia. Using this model, we evaluated intralingual delivery of candidate optogenetic constructs, notably a muscle-targeted approach that will likely have a favorable safety profile. METHODS rAAV serotype 9 viral vectors expressing a channelrhodopsin-2 variant, driven by a muscle-specific or nonspecific promoter were injected into rat tongues to compare strength and specificity of opsin expression. Light-evoked electromyographic responses were recorded in an acute, rodent model of OSA. Airway dilation was captured with ultrasound. RESULTS The muscle-specific promoter produced sufficient opsin expression for light stimulation to restore and/or enhance electromyographic signals (linear mixed model, F = 140.0, p < 0.001) and induce visible tongue contraction and airway dilation. The muscle-specific promoter induced stronger (RM-ANOVA, F(1,8) = 10.0, p = 0.013) and more specific opsin expression than the nonspecific promoter in an otherwise equivalent construct. Viral DNA and RNA were robust in the tongue, but low or absent in all other tissues. CONCLUSIONS Significant functional responses to direct optogenetic muscle activation were achieved following muscle-specific promoter-driven rAAV-mediated transduction, providing proof-of-concept for an optogenetic therapy for patients with inadequate dilator muscle activity during sleep.
Collapse
Affiliation(s)
- Fiona L Knapman
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Tom Kulaga
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nigel Lovell
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Simon McMullan
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Peter G R Burke
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
32
|
Yan Z, Sun T, Tan W, Wang Z, Yan J, Miao J, Wu X, Feng P, Deng Y. Magnetic Field Boosts the Transmembrane Transport Efficiency of Magnesium Ions from PLLA Bone Scaffold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301426. [PMID: 37271895 DOI: 10.1002/smll.202301426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/27/2023] [Indexed: 06/06/2023]
Abstract
In the system of magnesium-loaded scaffolds, the effect of magnesium ions (Mg2+ ) on the osteogenesis induction is restricted due to the low transmembrane transport efficiency of Mg2+ into the cell, which limits the application for bone defect repair. Inspired by the fact that magnetic field can regulate ion channel proteins on the cell membrane, magnetite nanoparticle is introduced into the poly (l-lactic acid) /magnesium oxide composite in this study, and a magnetic magnesium-loaded bone scaffold is prepared via selective laser sintering . Notably, the activities of the Mg2+ channel protein (MAGT1) on the membrane of bone marrow mesenchymal stem cells (rBMSCs) are enhanced via magnetic torque effect (via integrin αV β3/actin), under the action of static magnetic field (SMF), which promoted rBMSCs to capture Mg2+ in the microenvironment and induced osteogenesis. In vitro experiments showed that the magnetic magnesium-loaded scaffold, under the action of SMF, can accelerate the inflow of Mg2+ from surrounding microenvironment, which improved cellular activities, osteogenesis-related gene expression (ALP, Runx2, OCN, and OPN), and mineralization. Besides, in vivo skull defect repair experiments showed that the scaffolds possessed good ability to promote bone differentiation and new bone regeneration.
Collapse
Affiliation(s)
- Zuyun Yan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Tianshi Sun
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhicheng Wang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410017, P. R. China
| | - Jinglei Miao
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
33
|
Niraula G, Toneto D, Goya GF, Zoppellaro G, Coaquira JAH, Muraca D, Denardin JC, Almeida TP, Knobel M, Ayesh AI, Sharma SK. Observation of magnetic vortex configuration in non-stoichiometric Fe 3O 4 nanospheres. NANOSCALE ADVANCES 2023; 5:5015-5028. [PMID: 37705767 PMCID: PMC10496882 DOI: 10.1039/d3na00433c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Theoretical and micromagnetic simulation studies of magnetic nanospheres with vortex configurations suggest that such nanostructured materials have technological advantages over conventional nanosystems for applications based on high-power-rate absorption and subsequent emission. However, full experimental evidence of magnetic vortex configurations in spheres of submicrometer size is still lacking. Here, we report the microwave irradiation fabrication of Fe3O4 nanospheres and establish their magnetic vortex configuration based on experimental results, theoretical analysis, and micromagnetic simulations. Detailed magnetic and electrical measurements, together with Mössbauer spectroscopy data, provide evidence of a loss of stoichiometry in vortex nanospheres owing to the presence of a surface oxide layer, defects, and a higher concentration of cation vacancies. The results indicate that the magnetic vortex spin configuration can be established in bulk spherical magnetite materials. This study provides crucial information that can aid the synthesis of magnetic nanospheres with magnetically tailored properties; consequently, they may be promising candidates for future technological applications based on three-dimensional magnetic vortex structures.
Collapse
Affiliation(s)
- Gopal Niraula
- Department of Physics, Federal University of Maranhao Sao Luis 65080-805 Brazil
- Laboratory of Magnetic Materials, NFA, Institute of Physics, University of Brasilia Brasilia 70910-900 Brazil
| | | | - Gerardo F Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza 50018 Zaragoza Spain
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Palacky University in Olomouc Slechtitelu 27 77900 Olomouc Czech Republic
| | - Jose A H Coaquira
- Laboratory of Magnetic Materials, NFA, Institute of Physics, University of Brasilia Brasilia 70910-900 Brazil
| | - Diego Muraca
- Institute of Physics "Gleb Wataghin" (IFGW), University of Campinas (Unicamp) Campinas SP Brazil
| | - Juliano C Denardin
- Universidad de Santiago de Chile (USACH), CEDENNA and Departamento de Física Santiago 9170124 Chile
| | - Trevor P Almeida
- SUPA, School of Physics and Astronomy, University of Glasgow Glasgow G12 8QQ UK
| | - Marcelo Knobel
- Institute of Physics "Gleb Wataghin" (IFGW), University of Campinas (Unicamp) Campinas SP Brazil
| | - Ahmad I Ayesh
- Physics Program, Department of Math., Stat. and Physics, College of Arts and Sciences, Qatar University P. O. Box 2713 Doha Qatar
| | - Surender K Sharma
- Department of Physics, Central University of Punjab Bathinda 151401 India
- Department of Physics, Federal University of Maranhao Sao Luis 65080-805 Brazil
| |
Collapse
|
34
|
Delille F, Balloul E, Hajj B, Hanafi M, Morand C, Xu XZ, Dumas S, Coulon A, Lequeux N, Pons T. Sulfobetaine-Phosphonate Block Copolymer Coated Iron Oxide Nanoparticles for Genomic Locus Targeting and Magnetic Micromanipulation in the Nucleus of Living Cells. NANO LETTERS 2023. [PMID: 37390368 DOI: 10.1021/acs.nanolett.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Exerting forces on biomolecules inside living cells would allow us to probe their dynamic interactions in their native environment. Magnetic iron oxide nanoparticles represent a unique tool capable of pulling on biomolecules with the application of an external magnetic field gradient; however, their use has been restricted to biomolecules accessible from the extracellular medium. Targeting intracellular biomolecules represents an additional challenge due to potential nonspecific interactions with cytoplasmic or nuclear components. We present the synthesis of sulfobetaine-phosphonate block copolymer ligands, which provide magnetic nanoparticles that are stealthy and targetable in living cells. We demonstrate, for the first time, their efficient targeting in the nucleus and their use for magnetic micromanipulation of a specific genomic locus in living cells. We believe that these stable and sensitive magnetic nanoprobes represent a promising tool to manipulate specific biomolecules in living cells and probe the mechanical properties of living matter at the molecular scale.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Elie Balloul
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Bassam Hajj
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
| | - Mohamed Hanafi
- Sciences et Ingénierie de la Matière Molle, UMR 7615, ESPCI Paris PSL-CNRS-Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France
| | - Colin Morand
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Xiang Zhen Xu
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Simon Dumas
- Institut Pierre-Gilles de Gennes, Institut Curie, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Antoine Coulon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, 75005 Paris, France
- Laboratoire Dynamique du Noyau, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| | - Thomas Pons
- Laboratoire Physique et Etude des Matériaux, ESPCI-Paris, PSL Research University, CNRS, Sorbonne Université, UMR 8213, 10, rue Vauquelin, 75005 Paris, France
| |
Collapse
|
35
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
36
|
Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WAI, Aljamaan AN, Rahmani AH, Khan AA. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Int J Mol Sci 2023; 24:7052. [PMID: 37108214 PMCID: PMC10139162 DOI: 10.3390/ijms24087052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
37
|
Huang Y, Huang J, Yin W, Xie F, Coleman B, Cao Y, Aya S, Zhu W, Yang Z, Jiang L. Encoding Coacervate Droplets with Paramagnetism for Dynamical Reconfigurability and Spatial Addressability. ACS NANO 2023; 17:6234-6246. [PMID: 36951305 DOI: 10.1021/acsnano.2c09617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is an ongoing endeavor in chemistry and materials science to regulate coacervate droplets on a physiologically relevant spatiotemporal scale to ultimately match or even surpass living cells' precision, complexity, and functionality. Herein, we develop a magnetic strategy orthogonal to the thermal, pH, light, or chemical counterparts that are commonly employed by biotic or artificial systems; its successful implementation thus adds a missing piece to the current arsenal of manipulative methodologies. Specifically, we paramagnetize the otherwise diamagnetic coacervate droplets by cooperatively combining paramagnetic ingredients (including organic radicals, metal ions, and Fe3O4 nanoparticles) and coacervate ingredients to obtain "MagCoa" droplets. A simple model is derived theoretically to account for migration and division of MagCoa droplets in an uneven magnetic field. Experimentally, we produce an array of compartmentalized and monodispersed droplets using microfluidics and magnetically steer them with uniformity and synchronicity. We design and fabricate spatial magnetic modulators to engineer the landscape of a magnetic field that, in turn, directs the MagCoa droplets into predesigned patterns in a reconfigurable fashion. These programmable liquid patterns can be potentially extended to dynamic assembly and information encryption. We envision that the toolbox established here is of generality and multitudes to serve as a practical guide to control droplets magnetically.
Collapse
Affiliation(s)
- Yangkun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jinpeng Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wenxiang Yin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fei Xie
- Institute of Information Technology, Handan University, Handan 056005, China
| | - Benjamin Coleman
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yaoyu Cao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Satoshi Aya
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
38
|
Surpi A, Shelyakova T, Murgia M, Rivas J, Piñeiro Y, Greco P, Fini M, Dediu VA. Versatile magnetic configuration for the control and manipulation of superparamagnetic nanoparticles. Sci Rep 2023; 13:5301. [PMID: 37002375 PMCID: PMC10066313 DOI: 10.1038/s41598-023-32299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The control and manipulation of superparamagnetic nanoparticles (SP-MNP) is a significant challenge and has become increasingly important in various fields, especially in biomedical research. Yet, most of applications rely on relatively large nanoparticles, 50 nm or higher, mainly due to the fact that the magnetic control of smaller MNPs is often hampered by the thermally induced Brownian motion. Here we present a magnetic device able to manipulate remotely in microfluidic environment SP-MNPs smaller than 10 nm. The device is based on a specifically tailored configuration of movable permanent magnets. The experiments performed in 500 µm capillary have shown the ability to concentrate the SP-MNPs into regions characterized by different shapes and sizes ranging from 100 to 200 µm. The results are explained by straightforward calculations and comparison between magnetic and thermal energies. We provide then a comprehensive description of the magnetic field intensity and its spatial distribution for the confinement and motion of magnetic nanoparticles for a wide range of sizes. We believe this description could be used to establish accurate and quantitative magnetic protocols not only for biomedical applications, but also for environment, food, security, and other areas.
Collapse
Affiliation(s)
- Alessandro Surpi
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), 40129, Bologna, Italy.
| | - Tatiana Shelyakova
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136, Bologna, Italy.
| | - Mauro Murgia
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), 40129, Bologna, Italy
- Italian Institute of Technology, Center for Translational Neurophysiology (IIT), 44121, Ferrara, Italy
| | - José Rivas
- Laboratorio de Nanomagnetismo y Nanotecnologia, Departamento de Fisica Aplicada, Istituto NANOMAG, Universitade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Yolanda Piñeiro
- Laboratorio de Nanomagnetismo y Nanotecnologia, Departamento de Fisica Aplicada, Istituto NANOMAG, Universitade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Pierpaolo Greco
- Italian Institute of Technology, Center for Translational Neurophysiology (IIT), 44121, Ferrara, Italy
- Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, 44121, Ferrara, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136, Bologna, Italy
| | - Valentin Alek Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), 40129, Bologna, Italy.
| |
Collapse
|
39
|
Smith IT, Zhang E, Yildirim YA, Campos MA, Abdel-Mottaleb M, Yildirim B, Ramezani Z, Andre VL, Scott-Vandeusen A, Liang P, Khizroev S. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1849. [PMID: 36056752 DOI: 10.1002/wnan.1849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Isadora Takako Smith
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Yagmur Akin Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Manuel Alberteris Campos
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Mostafa Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Burak Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Zeinab Ramezani
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Victoria Louise Andre
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Aidan Scott-Vandeusen
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Ping Liang
- Cellular Nanomed, Inc. (CNMI), Irvine, California, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
40
|
Central Nervous System Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
41
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
42
|
Dhillon K, Aizel K, Broomhall TJ, Secret E, Goodman T, Rotherham M, Telling N, Siaugue JM, Ménager C, Fresnais J, Coppey M, El Haj AJ, Gates MA. Directional control of neurite outgrowth: emerging technologies for Parkinson's disease using magnetic nanoparticles and magnetic field gradients. J R Soc Interface 2022; 19:20220576. [PMID: 36349444 PMCID: PMC9653228 DOI: 10.1098/rsif.2022.0576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m-1). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models. Results showed that MNP-labelled cells exhibited a shift in directional neurite outgrowth when cultured in a magnetic field gradient, which broadly agreed with mathematical modelling of the magnetic force gradients and predicted MNP force direction. We translated our approach to an ex vivo rat brain slice where we observed directional neurite outgrowth of transplanted MNP-labelled cells from the substantia nigra towards the striatum. The improved directionality highlights the viability of this approach as a remote-control methodology for the control and manipulation of cellular growth for regenerative medicine applications. This study presents a new tool to overcome challenges faced in the development of new therapies for PD.
Collapse
Affiliation(s)
- K. Dhillon
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - K. Aizel
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - T. J. Broomhall
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - E. Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - T. Goodman
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - M. Rotherham
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - N. Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - J. M. Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - C. Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - J. Fresnais
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - M. Coppey
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - A. J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - M. A. Gates
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
- School of Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
43
|
Ko MJ, Hong H, Choi H, Kang H, Kim D. Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Min Jun Ko
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Hyunsik Hong
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunjun Choi
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
- College of Medicine Korea University Seoul 02841 Republic of Korea
| | - Dong‐Hyun Kim
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
- Department of Biomedical Engineering McCormick School of Engineering Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago Illinois 60611 USA
| |
Collapse
|
44
|
Sebesta C, Torres Hinojosa D, Wang B, Asfouri J, Li Z, Duret G, Jiang K, Xiao Z, Zhang L, Zhang Q, Colvin VL, Goetz SM, Peterchev AV, Dierick HA, Bao G, Robinson JT. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. NATURE MATERIALS 2022; 21:951-958. [PMID: 35761060 PMCID: PMC10965118 DOI: 10.1038/s41563-022-01281-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or 'magnetogenetics', using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.
Collapse
Affiliation(s)
- Charles Sebesta
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Boshuo Wang
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Joseph Asfouri
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Zhongxi Li
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhen Xiao
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Linlin Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Vicki L Colvin
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Stefan M Goetz
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
- Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Engineering, School of Technology, University of Cambridge, Cambridge, UK
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, School of Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, School of Engineering, Duke University, Durham, NC, USA
| | - Herman A Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
45
|
Liu Z, Yang N, Dong J, Tian W, Chang L, Ma J, Guo J, Tan J, Dong A, He K, Zhou J, Cinar R, Wu J, Salinas AG, Sun L, Kumar M, Sullivan BT, Oldham BB, Pitz V, Makarious MB, Ding J, Kung J, Xie C, Hawes SL, Wang L, Wang T, Chan P, Zhang Z, Le W, Chen S, Lovinger DM, Blauwendraat C, Singleton AB, Cui G, Li Y, Cai H, Tang B. Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nat Commun 2022; 13:3490. [PMID: 35715418 PMCID: PMC9205912 DOI: 10.1038/s41467-022-31168-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Endocannabinoid (eCB), 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain, regulates diverse neural functions. Here we linked multiple homozygous loss-of-function mutations in 2-AG synthase diacylglycerol lipase β (DAGLB) to an early onset autosomal recessive Parkinsonism. DAGLB is the main 2-AG synthase in human and mouse substantia nigra (SN) dopaminergic neurons (DANs). In mice, the SN 2-AG levels were markedly correlated with motor performance during locomotor skill acquisition. Genetic knockdown of Daglb in nigral DANs substantially reduced SN 2-AG levels and impaired locomotor skill learning, particularly the across-session learning. Conversely, pharmacological inhibition of 2-AG degradation increased nigral 2-AG levels, DAN activity and dopamine release and rescued the locomotor skill learning deficits. Together, we demonstrate that DAGLB-deficiency contributes to the pathogenesis of Parkinsonism, reveal the importance of DAGLB-mediated 2-AG biosynthesis in nigral DANs in regulating neuronal activity and dopamine release, and suggest potential benefits of 2-AG augmentation in alleviating Parkinsonism.
Collapse
Affiliation(s)
- Zhenhua Liu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Nannan Yang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jie Dong
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, 116011, Dalian, Liaoning, China
| | - Wotu Tian
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 20025, Shanghai, China
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jieqiong Tan
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
| | - Ao Dong
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Kaikai He
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, 100871, Beijing, China
| | - Jingheng Zhou
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junbing Wu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mantosh Kumar
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Breanna T Sullivan
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Braden B Oldham
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vanessa Pitz
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Justin Kung
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah L Hawes
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lupeng Wang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053, Beijing, China
| | - Zhuohua Zhang
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
- Department of Neurosciences, University of South China Medical School, 421200, Hengyang, Hunan, China
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, 116011, Dalian, Liaoning, China
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Medical School of University of Electronics & Technology of China, 610045, Chengdu, Sichuan, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 20025, Shanghai, China
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guohong Cui
- In Vivo Neurobiology Group, Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
46
|
Xie C, Kang P, Cazals J, Castelán OM, Randrianalisoa J, Qin Z. Single pulse heating of a nanoparticle array for biological applications. NANOSCALE ADVANCES 2022; 4:2090-2097. [PMID: 35530423 PMCID: PMC9063739 DOI: 10.1039/d1na00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
With the ability to convert external excitation into heat, nanomaterials play an essential role in many biomedical applications. Two modes of nanoparticle (NP) array heating, nanoscale-confined heating (NCH) and macroscale-collective heating (MCH), have been found and extensively studied. Despite this, the resulting biological response at the protein level remains elusive. In this study, we developed a computational model to systematically investigate the single-pulsed heating of the NP array and corresponding protein denaturation/activation. We found that NCH may lead to targeted protein denaturation, however, nanoparticle heating does not lead to nanoscale selective TRPV1 channel activation. The excitation duration and NP concentration are primary factors that determine a window for targeted protein denaturation, and together with heating power, we defined quantified boundaries for targeted protein denaturation. Our results boost our understandings of the NCH and MCH under realistic physical constraints and provide robust guidance to customize biomedical platforms with desired NP heating.
Collapse
Affiliation(s)
- Chen Xie
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Peiyuan Kang
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Johan Cazals
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Omar Morales Castelán
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
| | - Jaona Randrianalisoa
- Institut de Thermique, Mécanique, Matériaux (ITheMM EA 7548), University of Reims Champagne-ArdenneReimsCedex 251687France
| | - Zhenpeng Qin
- Department of Mechanical Engineering, University of Texas at Dallas800 West Campbell Road EW31RichardsonTexas 75080USA
- Department of Bioengineering, Center for Advanced Pain Studies, University of Texas at Dallas800 West Campbell RoadRichardsonTexas 75080USA
- Department of Surgery, University of Texas at Southwestern Medical Center5323 Harry Hines BoulevardDallasTexas 75390USA
| |
Collapse
|
47
|
Zou L, Xu K, Tian H, Fang Y. Remote neural regulation mediated by nanomaterials. NANOTECHNOLOGY 2022; 33:272002. [PMID: 35442216 DOI: 10.1088/1361-6528/ac62b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Neural regulation techniques play an essential role in the functional dissection of neural circuits and also the treatment of neurological diseases. Recently, a series of nanomaterials, including upconversion nanoparticles (UCNPs), magnetic nanoparticles (MNPs), and silicon nanomaterials (SNMs) that are responsive to remote optical or magnetic stimulation, have been applied as transducers to facilitate localized control of neural activities. In this review, we summarize the latest advances in nanomaterial-mediated neural regulation, especially in a remote and minimally invasive manner. We first give an overview of existing neural stimulation techniques, including electrical stimulation, transcranial magnetic stimulation, chemogenetics, and optogenetics, with an emphasis on their current limitations. Then we focus on recent developments in nanomaterial-mediated neural regulation, including UCNP-mediated fiberless optogenetics, MNP-mediated magnetic neural regulation, and SNM-mediated non-genetic neural regulation. Finally, we discuss the possibilities and challenges for nanomaterial-mediated neural regulation.
Collapse
Affiliation(s)
- Liang Zou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
48
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
49
|
Saha R, Wu K, Bloom RP, Liang S, Tonini D, Wang JP. A review on magnetic and spintronic neurostimulation: challenges and prospects. NANOTECHNOLOGY 2022; 33:182004. [PMID: 35013010 DOI: 10.1088/1361-6528/ac49be] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In the treatment of neurodegenerative, sensory and cardiovascular diseases, electrical probes and arrays have shown quite a promising success rate. However, despite the outstanding clinical outcomes, their operation is significantly hindered by non-selective control of electric fields. A promising alternative is micromagnetic stimulation (μMS) due to the high permeability of magnetic field through biological tissues. The induced electric field from the time-varying magnetic field generated by magnetic neurostimulators is used to remotely stimulate neighboring neurons. Due to the spatial asymmetry of the induced electric field, high spatial selectivity of neurostimulation has been realized. Herein, some popular choices of magnetic neurostimulators such as microcoils (μcoils) and spintronic nanodevices are reviewed. The neurostimulator features such as power consumption and resolution (aiming at cellular level) are discussed. In addition, the chronic stability and biocompatibility of these implantable neurostimulator are commented in favor of further translation to clinical settings. Furthermore, magnetic nanoparticles (MNPs), as another invaluable neurostimulation material, has emerged in recent years. Thus, in this review we have also included MNPs as a remote neurostimulation solution that overcomes physical limitations of invasive implants. Overall, this review provides peers with the recent development of ultra-low power, cellular-level, spatially selective magnetic neurostimulators of dimensions within micro- to nano-range for treating chronic neurological disorders. At the end of this review, some potential applications of next generation neuro-devices have also been discussed.
Collapse
Affiliation(s)
- Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Robert P Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
50
|
Del Sol-Fernández S, Martínez-Vicente P, Gomollón-Zueco P, Castro-Hinojosa C, Gutiérrez L, Fratila RM, Moros M. Magnetogenetics: remote activation of cellular functions triggered by magnetic switches. NANOSCALE 2022; 14:2091-2118. [PMID: 35103278 PMCID: PMC8830762 DOI: 10.1039/d1nr06303k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/13/2021] [Indexed: 05/03/2023]
Abstract
During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.
Collapse
Affiliation(s)
- Susel Del Sol-Fernández
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pablo Martínez-Vicente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Pilar Gomollón-Zueco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Christian Castro-Hinojosa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Analítica, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Departamento de Química Orgánica, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - María Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|