1
|
Izumi S, Kawasaki I, Waki F, Nishikawa K, Nishitani N, Deyama S, Kaneda K. Chronic nicotine enhances object recognition memory via inducing long-term potentiation in the medial prefrontal cortex in mice. Neuropharmacology 2025; 273:110435. [PMID: 40154943 DOI: 10.1016/j.neuropharm.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Chronic nicotine administration enhances cognitive functions, including learning and memory, and ameliorates cognitive impairments observed in psychological and neurodegenerative disorders. However, the detailed mechanisms underlying these effects are not fully understood. In this study, we used a novel object recognition (NOR) test and in vitro slice electrophysiology in mice to investigate the involvement of the medial prefrontal cortex (mPFC), a brain region connected to the hippocampus, and the synaptic plasticity within this region in chronic nicotine-induced object recognition memory enhancement. The NOR test revealed that chronic nicotine administration for five consecutive days significantly enhanced object recognition memory in male and female mice. This effect was blocked by intra-mPFC infusion of mecamylamine (Mec), a non-selective nicotinic acetylcholine receptor (nAChR) antagonist. In parallel with these findings, whole-cell recordings demonstrated that chronic nicotine administration significantly increased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-d-aspartate (NMDA) ratio in mPFC layer V pyramidal neurons in male but not female mice. This plastic change was suppressed by systemic injection of Mec or methyllycaconitine, an α7 nAChR antagonist. Furthermore, optogenetic erasure of long-term potentiation (LTP) through chromophore-assisted light inactivation of cofilin, a protein essential for stabilizing spine expansion, suppressed chronic nicotine-induced enhancement of recognition memory. These findings suggest that chronic nicotine administration induces LTP in mPFC pyramidal neurons, likely enhancing object recognition memory.
Collapse
Affiliation(s)
- Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ibuki Kawasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Fuka Waki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Krivinko JM, Fan P, Sui Z, Happe C, Hensler C, Gilardi J, Ikonomovic MD, McKinney BC, Newman J, Ding Y, Wang L, Sweet RA, MacDonald ML. Age-related loss of large dendritic spines in the precuneus is statistically mediated by proteins which are predicted targets of existing drugs. Mol Psychiatry 2025; 30:2059-2067. [PMID: 39537705 DOI: 10.1038/s41380-024-02817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Preservation of dendritic spines is a putative mechanism of protection against cognitive impairment despite development of Alzheimer Disease (AD)-related pathologies. Aging, the chief late-onset AD risk factor, is associated with dendritic spine loss in select brain areas. However, no study to our knowledge has observed this effect in precuneus, an area selectively vulnerable to early accumulation of AD-related pathology. We therefore quantified dendritic spine density in precuneus from 98 subjects without evidence of neurocognitive decline, spanning ages 20-96, and found a significant negative correlation between age and large dendritic spine density. In these same subjects, we conducted liquid chromatography-tandem mass spectrometry of >5000 proteins and identified 203 proteins which statistically mediate the effect of age on large dendritic spine density. Using computational pharmacology, we identified ten drugs which are predicted to target these mediators, informing future studies designed to test their effects on age-related dendritic spine loss and cognitive decline.
Collapse
Affiliation(s)
- J M Krivinko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Fan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Z Sui
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - C Happe
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Hensler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Gilardi
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - B C McKinney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Newman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Ding
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - L Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - R A Sweet
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - M L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Cui Y, Ma X, Wei J, Chen C, Shakir N, Guirram H, Dai Z, Anderson T, Ferguson D, Qiu S. MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits. Neural Regen Res 2025; 20:1431-1444. [PMID: 39075910 PMCID: PMC11624886 DOI: 10.4103/nrr.nrr-d-23-01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 04/20/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
Collapse
Affiliation(s)
- Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hitesch Guirram
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Zhiyu Dai
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
4
|
Riemann K, von Ahsen J, Böhm T, Schlegel M, Kreuzer M, Fenzl T, Russ H, Parsons CG, Rammes G. GAL-201 as a Promising Amyloid-β-Targeting Small-Molecule Approach for Alzheimer's Disease Treatment: Consistent Effects on Synaptic Plasticity, Behavior and Neuroinflammation. Int J Mol Sci 2025; 26:4167. [PMID: 40362405 PMCID: PMC12071807 DOI: 10.3390/ijms26094167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Soluble oligomeric forms of Amyloid-β (Aβ) are considered the major toxic species leading to the neurodegeneration underlying Alzheimer's disease (AD). Therefore, drugs that prevent oligomer formation might be promising. The atypical dipeptide GAL-201 is orally bioavailable and interferes as a modulator of Aβ aggregation. It binds to aggregation-prone, misfolded Aβ monomers with high selectivity and affinity, thereby preventing the formation of toxic oligomers. Here, we demonstrate that the previously observed protective effect of GAL-201 on synaptic plasticity occurs irrespective of shortages and post-translational modifications (tested isoforms: Aβ1-42, Aβ(p3-42), Aβ1-40 and 3NTyr(10)-Aβ). Interestingly, the neuroprotective activity of a single dose of GAL-201 was still present after one week and correlated with a prevention of Aβ-induced spine loss. Furthermore, we could observe beneficial effects on spine morphology as well as the significantly reduced activation of proinflammatory microglia and astrocytes in the presence of an Aβ1-42-derived toxicity. In line with these in vitro data, GAL-201 additionally improved hippocampus-dependent spatial learning in the "tgArcSwe" AD mouse model after a single subcutaneous administration. By this means, we observed changes in the deposition pattern: through the clustering of misfolded monomers as off-pathway non-toxic Aβ agglomerates, toxic oligomers are removed. Our results are in line with previously collected preclinical data and warrant the initiation of Investigational New Drug (IND)-enabling studies for GAL-201. By demonstrating the highly efficient detoxification of β-sheet monomers, leading to the neutralization of Aβ oligomer toxicity, GAL-201 represents a promising drug candidate against Aβ-derived pathophysiology present in AD.
Collapse
Affiliation(s)
- Katrin Riemann
- Galimedix Therapeutics Inc., 3704 Calvend Lane, Kensington, MD 20895, USA
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jeldrik von Ahsen
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Tamara Böhm
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Martin Schlegel
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Thomas Fenzl
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Hermann Russ
- Galimedix Therapeutics Inc., 3704 Calvend Lane, Kensington, MD 20895, USA
| | | | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
5
|
Wang S, Baumert R, Séjourné G, Sivadasan Bindu D, Dimond K, Sakers K, Vazquez L, Moore JL, Tan CX, Takano T, Rodriguez MP, Brose N, Bradley L, Lessing R, Soderling SH, La Spada AR, Eroglu C. PD-linked LRRK2 G2019S mutation impairs astrocyte morphology and synapse maintenance via ERM hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes are highly complex cells that mediate critical roles in synapse formation and maintenance by establishing thousands of direct contacts with synapses through their perisynaptic processes. Here, we found that the most common Parkinsonism gene mutation, LRRK2 G2019S, enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), components of the perisynaptic astrocyte processes in a subset of cortical astrocytes. The ERM hyperphosphorylation was accompanied by decreased astrocyte morphological complexity and reduced excitatory synapse density and function. Dampening ERM phosphorylation levels in LRRK2 G2019S mouse astrocytes restored both their morphology and the excitatory synapse density in the anterior cingulate cortex. To determine how LRRK2 mutation impacts Ezrin interactome, we used an in vivo BioID proteomic approach, and we found that astrocytic Ezrin interacts with Atg7, a master regulator of autophagy. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in LRRK2 G2019S astrocytes. Importantly, the Atg7 function is required to maintain proper astrocyte morphology. Our data provide a molecular pathway through which the LRRK2 G2019S mutation alters astrocyte morphology and synaptic density in a brain-region-specific manner.
Collapse
|
6
|
Wright WJ, Hedrick NG, Komiyama T. Distinct synaptic plasticity rules operate across dendritic compartments in vivo during learning. Science 2025; 388:322-328. [PMID: 40245144 DOI: 10.1126/science.ads4706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Synaptic plasticity underlies learning by modifying specific synaptic inputs to reshape neural activity and behavior. However, the rules governing which synapses will undergo different forms of plasticity in vivo during learning and whether these rules are uniform within individual neurons remain unclear. Using in vivo longitudinal imaging with single-synapse resolution in the mouse motor cortex during motor learning, we found that apical and basal dendrites of layer 2/3 (L2/3) pyramidal neurons showed distinct activity-dependent synaptic plasticity rules. The strengthening of apical and of basal synapses is predicted by local coactivity with nearby synapses and activity coincident with postsynaptic action potentials, respectively. Blocking postsynaptic spiking diminished basal synaptic potentiation without affecting apical plasticity. Thus, individual neurons use multiple activity-dependent plasticity rules in a compartment-specific manner in vivo during learning.
Collapse
Affiliation(s)
- William J Wright
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Nathan G Hedrick
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Takaki Komiyama
- Department of Neurobiology, University of California San Diego, La Jolla, CA, USA
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Kontra B, Mucsi Z, Ilaš J, Dunkel P. The Quinoline Photoremovable Group (PPG) Platform-A Medicinal Chemist's Approach for Photocage Development and Applications. Med Res Rev 2025. [PMID: 40221844 DOI: 10.1002/med.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Photoremovable protecting groups (PPGs) offer a straightforward solution for the temporary inactivation of biologically active substrates and their subsequent controlled release by light irradiation. Their relatively easy design and mode of application have made them useful tools for studying dynamic biological processes in vitro and in vivo. Recently, there has been a growing body of data investigating their potential application in the development of drug delivery systems. Of the various PPG scaffolds in use, quinoline photocages have a history of about 20 years. The structure-property relationships of quinoline PPGs, as well as alternative multibranch designs based on quinoline monomers have been thoroughly studied both experimentally and theoretically. Therefore, quinoline PPGs serve as a representative study of PPG development, showing how the various applications of quinoline photocages followed the chemical optimization or how the applications drove the chemical design. Since the raison d'être of PPGs lies in their application for light-activated release of various substrates or performing light-activated structural changes in materials, it is crucial to understand how PPGs are selected and utilized by their end-users, who are often not chemists themselves. Therefore, we discuss whether the conclusions drawn from the selected quinoline PPG family could lead to more general insights for the field as whole. As PPG-related applications still rely heavily on a limited number of chemical scaffolds, it is worth considering, what could be the reasons for the slow uptake of novel chemical scaffolds.
Collapse
Affiliation(s)
- Bence Kontra
- Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary
- Department of Biological Chemistry, BrainVision Center, Budapest, Hungary
| | - Zoltán Mucsi
- Department of Biological Chemistry, BrainVision Center, Budapest, Hungary
- Department of Chemistry, Femtonics Ltd., Budapest, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc, Hungary
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Dunkel
- Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Miyazaki I, Tsao KK, Kamijo Y, Nasu Y, Terai T, Campbell RE. Synthesis and application of a photocaged-L-lactate for studying the biological roles of L-lactate. Commun Chem 2025; 8:104. [PMID: 40188278 PMCID: PMC11972357 DOI: 10.1038/s42004-025-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
L-Lactate, once considered a metabolic waste product of glycolysis, is now recognized as a vitally important metabolite and signaling molecule in multiple biological pathways. However, exploring L-lactate's emerging intra- and extra-cellular roles is hindered by a lack of tools to perturb L-lactate concentration intracellularly and extracellularly. Photocaged compounds are a powerful way to introduce bioactive molecules with spatiotemporal precision using illumination. Here, we report the development of a photocaged derivative of L-lactate, 4-methoxy-7-nitroindolinyl-L-lactate (MNI-L-lac), that releases L-lactate upon illumination. We validated MNI-L-lac in cell culture by demonstrating that the photorelease of L-lactate elicits a response from genetically encoded extra- and intracellular L-lactate biosensors (eLACCO1, eLACCO2.1, R-iLACCO1.2). To demonstrate the utility of MNI-L-lac, we employed the photorelease of L-lactate to activate G protein-coupled receptor 81 (GPR81), as revealed by the inhibition of adenylyl cyclase activity and concomitant decrease of cAMP. These results indicate that MNI-L-lac may be useful for perturbing the concentration of endogenous L-lactate in order to investigate L-lactate's roles in metabolic and signaling pathways.
Collapse
Affiliation(s)
- Ikumi Miyazaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Global Standard Science Education Division, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yuki Kamijo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Nasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
9
|
Shen J, Wang Y, Liu Y, Lan J, Long S, Li Y, Chen D, Yu P, Zhao J, Wang Y, Wang S, Yang F. Behavioral Abnormalities, Cognitive Impairments, Synaptic Deficits, and Gene Replacement Therapy in a CRISPR Engineered Rat Model of 5p15.2 Deletion Associated With Cri du Chat Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415224. [PMID: 39965128 PMCID: PMC11984882 DOI: 10.1002/advs.202415224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/29/2025] [Indexed: 02/20/2025]
Abstract
The Cri du Chat Syndrome (CdCS), a devastating genetic disorder caused by a deletion on chromosome 5p, faces challenges in finding effective treatments and accurate animal models. Using CRISPR-Cas9, a novel CdCS rat model with a 2q22 deletion is developed, mirroring a common genetic alteration in CdCS patients. This model exhibits pronounced deficits in social behavior, cognition, and anxiety, accompanied by neuronal abnormalities and immune dysregulation in key brain regions such as the hippocampus and medial prefrontal cortex (mPFC). The immunostaining and RNA-seq analyses provide new insights into CdCS pathogenesis, revealing inflammatory and immune processes. Importantly, it is demonstrated that early gene replacement therapy with AAV-Ctnnd2 alleviates cognitive impairments in CdCS rats, highlighting the potential for early intervention. However, the effectiveness of this therapy is confined to the early developmental stages and does not fully restore all CdCS symptoms. The findings deepen the understanding of CdCS pathogenesis and suggest promising therapeutic directions.
Collapse
Affiliation(s)
- Jingjing Shen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yan Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yang Liu
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Junying Lan
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| | - Shuang Long
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yingbo Li
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Di Chen
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Peng Yu
- Chinese Institutes for Medical ResearchCapital Medical UniversityBeijing100069China
| | - Jing Zhao
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Clinical Center for Precision Medicine in StrokeCapital Medical UniversityBeijing100070China
- Center of Excellence for Omics Research (CORe)Beijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Shali Wang
- Institute of NeuroscienceSchool of Basic MedicineChongqing Medical UniversityChongqing400016China
| | - Feng Yang
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
- Laboratory of Cognitive and Behavioral DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijing100069China
| |
Collapse
|
10
|
Barzó P, Szöts I, Tóth M, Csajbók ÉA, Molnár G, Tamás G. Electrophysiology and morphology of human cortical supragranular pyramidal cells in a wide age range. eLife 2025; 13:RP100390. [PMID: 40152903 PMCID: PMC11952751 DOI: 10.7554/elife.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 y of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition, and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pál Barzó
- Department of Neurosurgery, University of SzegedSzegedHungary
| | - Ildikó Szöts
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Martin Tóth
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| |
Collapse
|
11
|
Forrest MP, Piguel NH, Bagchi VA, Dionisio LE, Yoon S, Dos Santos M, LeDoux MS, Penzes P. Impairment of homeostatic structural plasticity caused by the autism and schizophrenia-associated 16p11.2 duplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641931. [PMID: 40093154 PMCID: PMC11908266 DOI: 10.1101/2025.03.06.641931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Homeostatic plasticity is essential for information processing and the stability of neuronal circuits, however its relevance to neuropsychiatric disorders remains unclear. The 16p11.2 duplication (BP4-BP5) is a genetic risk factor that strongly predisposes to a range of severe mental illnesses including autism, schizophrenia, intellectual disability, and epilepsy. The duplication consists of a 600 kb region on chromosome 16, including 27 protein-coding genes, with poorly defined effects on neuronal structure and function. Here, we used a mouse model of the 16p11.2 duplication to investigate the impact of this variant on synaptic structure and downstream homeostatic plasticity. We find that 16p11.2 duplication neurons exhibit overly branched dendritic arbors and excessive spine numbers, which host an overabundance of surface AMPA receptor subunit GluA1. Using a homeostatic plasticity paradigm, we show that 16p11.2 duplication neurons fail to undergo synaptic upscaling upon activity deprivation, consistent with disrupted structural plasticity. We also observe that the increased surface abundance of GluA1 occludes further insertion events, a critical mechanism for synaptic plasticity. Finally, we show that genetically correcting the dosage of 16p11.2-encoded Prrt2 to wild-type levels rescues structural spine phenotypes. Our work suggests that aberrant plasticity could contribute to the etiology of neuropsychiatric disorders.
Collapse
|
12
|
Barron JC, Dawson LJ, Carew SJ, Grace MC, Senior KA, Ryan KC, Nafar F, Moore CS, Blundell J, Parsons MP. Huntingtin plays an essential role in the adult hippocampus. Neurobiol Dis 2025; 206:106810. [PMID: 39855476 DOI: 10.1016/j.nbd.2025.106810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis. At the synaptic level, we identified a marked reduction in presynaptic terminals 1-2 months following wtHTT loss; this was contrasted by an increased density of postsynaptic mushroom spines and larger amplitudes of spontaneous excitatory postsynaptic currents, indicative of disrupted synaptic homeostasis. Furthermore, intrinsic neuronal excitability was significantly diminished in CA1 pyramidal neurons lacking wtHTT, and we observed a complete loss of NMDA receptor-dependent long-term potentiation. Unexpectedly, synapse density returned to control levels 6-8 months following wtHTT loss, despite the ongoing presence of macroscopic morphological abnormalities, altered anxiety-related behaviors and clear impairments in spatial learning and memory. Overall, these findings uncover a previously unrecognized role of wtHTT as a critical regulator of hippocampal function in the mature brain, and highlight the hippocampus as a potentially vulnerable region to the adverse effects of non-selective HTT reduction.
Collapse
Affiliation(s)
- Jessica C Barron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Laura J Dawson
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Samantha J Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mackenzie C Grace
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kelsie A Senior
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katelyn C Ryan
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Firoozeh Nafar
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Craig S Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
13
|
Aydogan-Sun Y, Horz M, Weber R, Heinz M, Braun M, Heckel A, Burghardt I, Wachtveitl J. Energy transfer booster: how a leaving group controls the excited state pathway within a caging BASHY-BODIPY dyad. Phys Chem Chem Phys 2025. [PMID: 39981747 DOI: 10.1039/d4cp04776a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photocages are powerful tools for spatiotemporal control of molecule release or biological activity. However, many photocages are unsuitable for biological experiments since they are mostly activated by harmful ultraviolet (UV) light and often lack a sufficient optical readout. Thus, there is a high demand for near infrared (NIR) and/or two-photon activatable photocages with a characteristic readout. In this report, we will study a supramolecular, covalently linked energy-transfer dyad based on a BASHY fluorophore serving as a two-photon antenna for a poorly two-photon absorbing BODIPY photocage. The herein investigated systems, with and without a leaving group (LG), show different excitation energy transfer (EET) efficiencies and therefore differ in their fluorescence properties. To understand the molecular basis for these significant differences, detailed spectroscopic and theoretical analyses were employed from ultrafast transient absorption spectroscopy to excited-state electronic structure calculations and quantum dynamical modelling. The result of our comprehensive study reveals the pivotal role of the LG as an EET booster through specific pathway guidance. In contrast, without the LG, the EET efficiency is reduced and the excitation energy predominantly dissipates within the BASHY chromophore. The present study highlights that LGs can actively contribute to optimizing the properties of dyad based systems and offers new design principles for monitoring uncaging via an intrinsic fluorescence readout.
Collapse
Affiliation(s)
- Yagmur Aydogan-Sun
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| | - Maximiliane Horz
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| | - Rebekka Weber
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| | - Myron Heinz
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| | - Markus Braun
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| | - Irene Burghardt
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany.
| |
Collapse
|
14
|
Garcia SB, Schlotter AP, Pereira D, Recupero AJ, Polleux F, Hammond LA. RESPAN: A Deep Learning Pipeline for Accurate and Automated Restoration, Segmentation, and Quantification of Dendritic Spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.06.597812. [PMID: 38895232 PMCID: PMC11185717 DOI: 10.1101/2024.06.06.597812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Quantification of dendritic spines is essential for studying synaptic connectivity, yet most current approaches require manual adjustments or the combination of multiple software tools for optimal results. Here, we present Restoration Enhanced SPine And Neuron Analysis (RESPAN), an open-source pipeline integrating state-of-the-art deep learning for image restoration, segmentation, and analysis in an easily deployable, user-friendly interface. Leveraging content-aware restoration to enhance signal, contrast, and isotropic resolution further enhances RESPAN's robust detection of spines, dendritic branches, and soma across a wide variety of samples, including challenging datasets such as those from live imaging and in vivo 2-photon microscopy with limited signal. Extensive validation against expert annotations and comparison with other software demonstrates RESPAN's superior accuracy and reproducibility across multiple imaging modalities. RESPAN offers significant improvements in usability over currently available approaches, streamlining and democratizing access to a combination of advanced capabilities through an accessible resource for the neuroscience community.
Collapse
Affiliation(s)
- Sergio B. Garcia
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alexa P. Schlotter
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Aleksandra J. Recupero
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Franck Polleux
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Luke A. Hammond
- Department of Neurology, The Ohio State University, Wexner Medical School, Columbus, Ohio, USA
- Lead contact
| |
Collapse
|
15
|
Gao HC, Xu F, Cheng X, Bi C, Zheng Y, Li Y, Chen T, Li Y, Chubykin AA, Huang F. Interferometric Ultra-High Resolution 3D Imaging through Brain Sections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636258. [PMID: 39975253 PMCID: PMC11838448 DOI: 10.1101/2025.02.03.636258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Single-molecule super-resolution microscopy allows pin-pointing individual molecular positions in cells with nanometer precision. However, achieving molecular resolution through tissues is often difficult because of optical scattering and aberrations. We introduced 4Pi single-molecule nanoscopy for brain with in-situ point spread function retrieval through opaque tissue (4Pi-BRAINSPOT), integrating 4Pi single-molecule switching nanoscopy with dynamic in-situ coherent PSF modeling, single-molecule compatible tissue clearing, light-sheet illumination, and a novel quantitative analysis pipeline utilizing the highly accurate 3D molecular coordinates. This approach enables the quantification of protein distribution with sub-15-nm resolution in all three dimensions in complex tissue specimens. We demonstrated 4Pi-BRAINSPOT's capacities in revealing the molecular arrangements in various sub-cellular organelles and resolved the membrane morphology of individual dendritic spines through 50-μm transgenic mouse brain slices. This ultra-high-resolution approach allows us to decipher nanoscale organelle architecture and molecular distribution in both isolated cells and native tissue environments with precision down to a few nanometers.
Collapse
Affiliation(s)
- Hao-Cheng Gao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xi Cheng
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Cheng Bi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yue Zheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yilun Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tailong Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | | | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
16
|
Firouznia M, Kourosh-Arami M, Faez K, Semnanian S, Alikhani Koupaei J. Machine learning analysis of glutamate receptor activity in developing locus coeruleus neurons. Int J Neurosci 2025:1-10. [PMID: 39840926 DOI: 10.1080/00207454.2025.2450507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE/AIM The developing brain undergoes a remarkable process of synaptic changes. MATERIAL AND METHODS To investigate the developmental changes in glutamatergic synaptic connections using the whole-cell patch clamp method, evoked excitatory postsynaptic currents (eEPSCs) were recorded from locus coeruleus (LC) neurons, a brain region crucial for cognitive functions, in rats at ages 7, 14, and 21 days. We employed fractal analysis to compute fractal dimensions of AMPA and NMDA receptors, serving as markers for synaptic maturation. RESULTS Our findings revealed a significant increase in fractal dimensions during the third postnatal week and hence a developmental chenge of synaptic connections. A strong positive correlation between amplitude and fractal dimensions, in Pearson correlation analysis suggested that the synaptic currents' amplitude is closely related to the fractal properties of the receptors. A linear relationship between fractal dimensions and age indicated that fractal analysis can be a robust tool for predicting developmental changes. Additionally, we employed machine learning techniques to predict developmental changes based on AMPA and NMDA receptors. Support Vector Machine (SVM) models outperformed random forest models in accurately predicting age-dependent developmental changes, as indicated by the area under the curve (AUC) values. SVM achieved an AUC of 0.89 for AMPA receptors and 0.86 for NMDA receptors, demonstrating the effectiveness of fractal-based features in characterizing synaptic maturation. CONCLUSION This study offers valuable insights into synaptic development in the LC nucleus and demonstrates the potential of fractal analysis as a tool to understand brain plasticity and early development. Fractal dimensions play a crucial role in characterizing the maturation of glutamatergic synapses and neural circuitry development.
Collapse
Affiliation(s)
- Marjan Firouznia
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Karim Faez
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Semnanian
- Department of Physiology, Medical College, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
17
|
Bissen D, Cary BA, Zhang A, Sailor KA, Van Hooser SD, Turrigiano GG. Prey capture learning drives critical period-specific plasticity in mouse binocular visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635373. [PMID: 39975102 PMCID: PMC11838381 DOI: 10.1101/2025.01.28.635373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Critical periods are developmental windows of high experience-dependent plasticity essential for the correct refinement of neuronal circuitry and function. While the consequences for the visual system of sensory deprivation during the critical period have been well-characterized, far less is known about the effects of enhanced sensory experience. Here, we use prey capture learning to assess structural and functional plasticity mediating visual learning in the primary visual cortex of critical period mice. We show that prey capture learning improves temporal frequency discrimination and drives a profound remodeling of visual circuitry through an increase in excitatory connectivity and spine turnover. This global and persistent rewiring is not observed in adult hunters and is mediated by TNFα-dependent mechanisms. Our findings demonstrate that enhanced visual experience in a naturalistic paradigm during the critical period can drive structural plasticity to improve visual function, and promotes a long-lasting increase in spine dynamics that could enhance subsequent plasticity.
Collapse
Affiliation(s)
- Diane Bissen
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Brian A Cary
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Amanda Zhang
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Kurt A Sailor
- Institut Pasteur, CNRS UMR 3571, Perception and Action Unit, F-75015, Paris, France
| | | | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
- Lead Contact
| |
Collapse
|
18
|
Jacobson K, Ellis-Davies GCR. Abraham Patchornik: The Contemporary Relevance of His Work for Chemistry and Biology. JACS AU 2025; 5:3-16. [PMID: 39886589 PMCID: PMC11775701 DOI: 10.1021/jacsau.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 02/01/2025]
Abstract
Abraham Patchornik was born in 1926 in Ness Ziona, a town in Palestine founded by his great-grandfather Reuben Lehrer in 1883. He started to study chemistry as an undergraduate at the Hebrew University. However, this was interrupted by the war, and he completed his studies in various locations in West Jerusalem. From 1952 to 1956 Patchornik completed his PhD at the (new) Weizmann Institute of Science with Ephraim Katchalski. After a postdoc at the NIH, he returned to the Weizmann in 1958, when he joined the Department of Biophysics. In 1972-1979, he became chairman of the new Department of Organic Chemistry at the Weizmann, and his own research was geared toward applying creative chemistry to solve biological problems. Patchornik passed away in his hometown of Ness Ziona in 2014. Patchornik was a conceptual leader in peptide and polymer chemistry. Given the importance of selective functional group protection for the construction of oligomeric molecules, he became interested in using "nonstandard", orthogonal chemistry for this purpose, i.e. photosensitive protecting groups (PPGs) in place of thermal reactions. It was R.B. Woodward who suggested this strategy to Patchornik in 1965, while Patchornik was on sabbatical leave at Harvard. However, it was not until Patchornik returned to the Weizmann that this idea of a versatile PPG to enable multistep synthesis was realized. Here, we provide an account of the early photosensitive protecting groups that Patchornik and co-workers developed, and the immense impact they have had on various fields. In particular, we survey the use of PPGs in live cell physiology (i.e., caged compounds), and the development of gene chips via light-directed solid-phase synthesis. Further, we highlight recent work applying new PPGs for "photochemical delivery" of drugs, otherwise termed photopharmacology. Finally, we discuss the relationship between caged compounds and how contemporary neuroscience uses genetically encoded chromophores to control cell function.
Collapse
Affiliation(s)
- Kenneth
A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes & Digestive
& Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Graham C. R. Ellis-Davies
- Department
of Neuroscience, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
19
|
Barzó P, Szöts I, Tóth M, Csajbók ÉA, Molnár G, Tamás G. Electrophysiology and Morphology of Human Cortical Supragranular Pyramidal Cells in a Wide Age Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.13.598792. [PMID: 38915496 PMCID: PMC11195274 DOI: 10.1101/2024.06.13.598792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 years of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Ildikó Szöts
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Martin Tóth
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Bosch M, Castro J, Sur M, Hayashi Y. Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microscopy Imaging of Single Stimulated Synapses. Methods Mol Biol 2025; 2910:145-175. [PMID: 40220099 DOI: 10.1007/978-1-0716-4446-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MBF Bioscience, Williston, VT, USA
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama, Japan
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
21
|
Sollazzo R, Li Puma DD, Aceto G, Paciello F, Colussi C, Vita MG, Giuffrè GM, Pastore F, Casamassa A, Rosati J, Novelli A, Maietta S, Tiziano FD, Marra C, Ripoli C, Grassi C. Structural and functional alterations of neurons derived from sporadic Alzheimer's disease hiPSCs are associated with downregulation of the LIMK1-cofilin axis. Alzheimers Res Ther 2024; 16:267. [PMID: 39702316 DOI: 10.1186/s13195-024-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology. METHODS Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors. Through karyotyping, we assessed pluripotency markers (OCT4, SOX2, TRA-1-60) and genomic integrity. Neuronal differentiation was evaluated by immunostaining for MAP2 and NEUN. Electrophysiological properties were measured using whole-cell patch-clamp, while protein expression of Aβ, phosphorylated tau, Synapsin-1, Synaptophysin, PSD95, and GluA1 was quantified by western blot. We then focused on PAK1-LIMK1-Cofilin signaling, which plays a key role in regulating synaptic structure and function, both of which are disrupted in neurodegenerative diseases such as AD. RESULTS sAD and HS hiPSCs displayed similar stemness features and genomic stability. However, they differed in neuronal differentiation and function. sAD-derived neurons (sAD-hNs) displayed increased levels of AD-related proteins, including Aβ and phosphorylated tau. Electrophysiological analyses revealed that while both sAD- and HS-hNs generated action potentials, sAD-hNs exhibited decreased spontaneous synaptic activity. Significant reductions in the expression of synaptic proteins such as Synapsin-1, Synaptophysin, PSD95, and GluA1 were found in sAD-hNs, which are also characterized by reduced neurite length, indicating impaired differentiation. Notably, sAD-hNs demonstrated a marked reduction in LIMK1 phosphorylation, which could be the underlying cause for the changes in cytoskeletal dynamics that we found, leading to the morphological and functional modifications observed in sAD-hNs. To further investigate the involvement of the LIMK1 pathway in the morphological and functional changes observed in sAD neurons, we conducted perturbation experiments using the specific LIMK1 inhibitor, BMS-5. Neurons obtained from healthy subjects treated with the inhibitor showed similar morphological changes to those observed in sAD neurons, confirming that LIMK1 activity is crucial for maintaining normal neuronal structure. Furthermore, administration of the inhibitor to sAD neurons did not exacerbate the morphological alterations, suggesting that LIMK1 activity is already compromised in these cells. CONCLUSION Our findings demonstrate that although sAD- and HS-hiPSCs are similar in their stemness and genomic stability, sAD-hNs exhibit distinct functional and structural anomalies mirroring AD pathology. These anomalies include synaptic dysfunction, altered cytoskeletal organization, and accumulation of AD-related proteins. Our study underscores the usefulness of hiPSCs in modeling AD and provides insights into the disease's molecular underpinnings, thus highlighting potential therapeutic targets.
Collapse
Affiliation(s)
- Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto Di Analisi Dei Sistemi Ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | | | | | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
- Saint Camillus International, University of Health Sciences, 00131, Rome, Italy
| | - Agnese Novelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Sabrina Maietta
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Francesco Danilo Tiziano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Camillo Marra
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
22
|
Yazi S, Sehirli US, Gulhan R, Onat F, Kirazli O. Evaluation of dendrite morphology in Wistar and genetic absence epileptic rats. Brain Struct Funct 2024; 230:5. [PMID: 39681662 DOI: 10.1007/s00429-024-02868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Genetic Absence Epilepsy Rat from Strasbourg (GAERS), a rodent model genetically predisposed to absence epilepsy, serves as an experimental tool to elucidate the neuronal mechanisms underlying human absence epilepsy. This study aimed to investigate the morphological features of dendrites and dendritic spines of pyramidal neurons in somatosensory cortex and hippocampus of Wistar and GAERS rats. MATERIAL AND METHOD Adult male GAERS (n = 5) and control Wistar (n = 5) rats were sacrificed by transcardial perfusion and brains were removed. Brain tissues were processed by Golgi impregnation method using FD Rapid GolgiStain Kit. Coronal sections were obtained with a cryostat. Pyramidal neurons in layers V-VI of the somatosensory cortex and the CA1 region of the hippocampus were examined using a light microscope and Neurolucida 360 software. Dendrite nodes, dendrite segments (dendritic branching), dendrite terminations, total dendrite length, dendritic spine density, and dendritic spine types were analyzed. RESULTS Compared to Wistar, GAERS exhibited significantly higher numbers of nodes (p = 0.0053, p = 0.0047), segments (p = 0.0036, p = 0.0036), and terminations (p = 0.0033, p = 0.0029) in the dendrites of the somatosensory cortex and the hippocampus, respectively. Furthermore, the total dendrite length (µm) (p = 0.0002, p = 0.0007) and the density of dendritic spines (1/µm) (p = 0.0168, p = 0.0120) were significantly high in GAERS compared to Wistar. When dendritic spine types were evaluated separately, stubby-type dendritic spines in the hippocampus were higher in GAERS compared to Wistar (p = 0.0045). CONCLUSION Intense synaptic connections in the somatosensory cortex and the hippocampus of genetic absence epileptic rats led to morphological alterations in the dendrites and the dendritic spines of pyramidal neurons in these regions, potentially contributing to the pathophysiology of absence seizures.
Collapse
Affiliation(s)
- Sevdenur Yazi
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Umit S Sehirli
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Rezzan Gulhan
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Ozlem Kirazli
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
23
|
Ducote AL, Voglewede RL, Mostany R. Dendritic Spines of Layer 5 Pyramidal Neurons of the Aging Somatosensory Cortex Exhibit Reduced Volumetric Remodeling. J Neurosci 2024; 44:e1378242024. [PMID: 39448263 PMCID: PMC11638818 DOI: 10.1523/jneurosci.1378-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Impairments in synaptic dynamics and stability are observed both in neurodegenerative disorders and in the healthy aging cortex, which exhibits elevated dendritic spine turnover and decreased long-term stability of excitatory connections at baseline, as well as an altered response to plasticity induction. In addition to the discrete gain and loss of synapses, spines also change in size and strength both during learning and in the absence of neural activity, and synaptic volume has been associated with stability and incorporation into memory traces. Furthermore, intrinsic dynamics, an apparently stochastic component of spine volume changes, may serve as a homeostatic mechanism to prevent stabilization of superfluous connections. However, the effects of age on modulation of synaptic weights remain unknown. Using two-photon excitation (2PE) microscopy of spines during chemical plasticity induction in vitro and analyzing longitudinal in vivo 2PE images after a plasticity-inducing manipulation, we characterize the effects of age on volumetric changes of spines of the apical tuft of layer 5 pyramidal neurons of mouse primary somatosensory cortex. Aged mice exhibit decreased volumetric volatility and delayed rearrangement of synaptic weights of persistent connections, as well as greater susceptibility to spine shrinkage in response to chemical long-term depression. These results suggest a deficit in the aging brain's ability to fine-tune synaptic weights to properly incorporate and retain novel memories. This research provides the first evidence of alterations in spine volumetric dynamics in healthy aging and may support a model of impaired processing and learning in the aged somatosensory system.
Collapse
Affiliation(s)
- Alexis Lionel Ducote
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| | - Rebecca Lynn Voglewede
- Neuroscience Program, Tulane University School of Science and Engineering, New Orleans, Louisiana 70118
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| | - Ricardo Mostany
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana 70118
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| |
Collapse
|
24
|
Abstract
The brain has the powerful ability to transform experiences into anatomic maps and continuously integrate massive amounts of information to form new memories. The manner in which the brain performs these processes has been investigated extensively for decades. Emerging reports suggest that dendritic spines are the structural basis of information storage. The complex orchestration of functional and structural dynamics of dendritic spines is associated with learning and memory. Owing to advancements in techniques, more precise observations and manipulation enable the investigation of dendritic spines and provide clues to the challenging question of how memories reside in dendritic spines. In this review, we summarize the remarkable progress made in revealing the role of dendritic spines in fear memory and the techniques used in this field.
Collapse
Affiliation(s)
- Ja Eun Choi
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Jasińska M, Jasek-Gajda E, Ziaja M, Litwin JA, Lis GJ, Pyza E. Light-Modulated Circadian Synaptic Plasticity in the Somatosensory Cortex: Link to Locomotor Activity. Int J Mol Sci 2024; 25:12870. [PMID: 39684579 DOI: 10.3390/ijms252312870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day-night cycle. This study examined the effects of the circadian clock and light on synaptic plasticity, and explored how locomotor activity contributes to these processes. We analyzed synaptic protein expression and excitatory synapse density in the somatosensory cortex of mice from four groups exposed to different lighting conditions (LD 12:12, DD, LD 16:8, and LL). Locomotor activity was assessed through individual wheel-running monitoring. To explore daily and circadian changes in synaptic proteins, we performed double-immunofluorescence labeling and laser scanning confocal microscopy imaging, targeting three pairs of presynaptic and postsynaptic proteins (Synaptophysin 1/PSD95, Piccolo/Homer 1, Neurexins/PICK1). Excitatory synapse density was evaluated by co-labeling presynaptic and postsynaptic markers. Our results demonstrated that all the analyzed synaptic proteins exhibited circadian regulation modulated by light. Under constant light conditions, only Piccolo and Homer 1 showed rhythmicity. Locomotor activity was also associated with the circadian clock's effects on synaptic proteins, showing a stronger connection to changes in postsynaptic protein levels. Excitatory synapse density peaked during the day/subjective day and exhibited an inverse relationship with locomotor activity. Continued light exposure disrupted cyclic changes in synapse density but kept it consistently elevated. These findings underscore the crucial roles of light and locomotor activity in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Małgorzata Jasińska
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Marek Ziaja
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jan A Litwin
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
26
|
Yan R, Wei D, Varshneya A, Shan L, Dai B, Asencio HJ, Gollamudi A, Lin D. The multi-stage plasticity in the aggression circuit underlying the winner effect. Cell 2024; 187:6785-6803.e18. [PMID: 39406242 PMCID: PMC11784869 DOI: 10.1016/j.cell.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect." Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice. This behavioral change is supported by three causally linked plasticity events in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10 days of winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, transient local connectivity strengthening, and a delayed excitability increase. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the same cascade of plasticity events observed during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning, ultimately leading to increased "aggressiveness" in repeated winners.
Collapse
Affiliation(s)
- Rongzhen Yan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Dongyu Wei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Avni Varshneya
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Lynn Shan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Bing Dai
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Hector J Asencio
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Aishwarya Gollamudi
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
27
|
Haetzel LM, Iafrati J, Cording KR, Farhan M, Noveir SD, Rumbaugh G, Bateup HS. Haploinsufficiency of Syngap1 in Striatal Indirect Pathway Neurons Alters Motor and Goal-Directed Behaviors in Mice. J Neurosci 2024; 44:e1264232024. [PMID: 39358043 PMCID: PMC11604145 DOI: 10.1523/jneurosci.1264-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
SYNGAP1 is a high-confidence autism spectrum disorder (ASD) risk gene, and mutations in SYNGAP1 lead to a neurodevelopmental disorder (NDD) that presents with epilepsy, ASD, motor developmental delay, and intellectual disability. SYNGAP1 codes for Ras/Rap GTP-ase activating protein SynGAP (SynGAP). SynGAP is located in the postsynaptic density of glutamatergic synapses and regulates glutamate receptor trafficking in an activity-dependent manner. In addition to forebrain glutamatergic neurons, Syngap1 is highly expressed in the striatum, although the functions of SynGAP in the striatum have not been extensively studied. Here we show that Syngap1 is expressed in both direct and indirect pathway striatal projection neurons (dSPNs and iSPNs) in mice of both sexes. In a mouse model of Syngap1 haploinsufficiency, dendritic spine density, morphology, and intrinsic excitability are altered primarily in iSPNs, but not dSPNs. At the behavioral level, SynGAP reduction alters striatal-dependent motor learning and goal-directed behavior. Several behavioral phenotypes are reproduced by iSPN-specific Syngap1 reduction and, in turn, prevented by iSPN-specific Syngap1 rescue. These results establish the importance of SynGAP to striatal neuron function and pinpoint the indirect pathway as a key circuit in the neurobiology of SYNGAP1-related NDD.
Collapse
Affiliation(s)
- Laura M Haetzel
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Jillian Iafrati
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Katherine R Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
- Neuroscience, University of California, Berkeley, California 94720
| | - Mahmoud Farhan
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Sasan D Noveir
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Gavin Rumbaugh
- Departments of Neuroscience and Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458
- Skaggs Graduate School of Chemical and Biological Sciences, Jupiter, Florida 33458
| | - Helen S Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720
- Neuroscience, University of California, Berkeley, California 94720
- Weill Neurohub Investigator, University of California, Berkeley, California 94720
| |
Collapse
|
28
|
Ng B, Tasaki S, Greathouse KM, Walker CK, Zhang A, Covitz S, Cieslak M, Weber AJ, Adamson AB, Andrade JP, Poovey EH, Curtis KA, Muhammad HM, Seidlitz J, Satterthwaite T, Bennett DA, Seyfried NT, Vogel J, Gaiteri C, Herskowitz JH. Integration across biophysical scales identifies molecular and cellular correlates of person-to-person variability in human brain connectivity. Nat Neurosci 2024; 27:2240-2252. [PMID: 39482360 PMCID: PMC11537986 DOI: 10.1038/s41593-024-01788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Brain connectivity arises from interactions across biophysical scales, ranging from molecular to cellular to anatomical to network level. To date, there has been little progress toward integrated analysis across these scales. To bridge this gap, from a unique cohort of 98 individuals, we collected antemortem neuroimaging and genetic data, as well as postmortem dendritic spine morphometric, proteomic and gene expression data from the superior frontal and inferior temporal gyri. Through the integration of the molecular and dendritic spine morphology data, we identified hundreds of proteins that explain interindividual differences in functional connectivity and structural covariation. These proteins are enriched for synaptic structures and functions, energy metabolism and RNA processing. By integrating data at the genetic, molecular, subcellular and tissue levels, we link specific biochemical changes at synapses to connectivity between brain regions. These results demonstrate the feasibility of integrating data from vastly different biophysical scales to provide a more comprehensive understanding of brain connectivity.
Collapse
Affiliation(s)
- Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ada Zhang
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sydney Covitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Matt Cieslak
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley B Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia P Andrade
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily H Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hamad M Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jakob Seidlitz
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ted Satterthwaite
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob Vogel
- Penn/CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Clinical Science, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
29
|
Yang F, You H, Mizui T, Ishikawa Y, Takao K, Miyakawa T, Li X, Bai T, Xia K, Zhang L, Pang D, Xu Y, Zhu C, Kojima M, Lu B. Inhibiting proBDNF to mature BDNF conversion leads to ASD-like phenotypes in vivo. Mol Psychiatry 2024; 29:3462-3474. [PMID: 38762692 DOI: 10.1038/s41380-024-02595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Autism Spectrum Disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is regulated by mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF in a diametrically opposite manner: proBDNF inhibits while mBDNF potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is attenuated. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity in the hippocampus. They also exhibited ASD-like phenotypes, including stereotypical behaviors and deficits in social interaction. Moreover, the plasma proBDNF/mBDNF ratio was significantly increased in ASD patients compared to normal children in a case-control study. Thus, deficits in proBDNF to mBDNF conversion in the brain may contribute to ASD-like behaviors, and plasma proBDNF/mBDNF ratio may be a potential biomarker for ASD.
Collapse
Affiliation(s)
- Feng Yang
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - He You
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China
| | - Toshiyuki Mizui
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Keizo Takao
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tsuyoshi Miyakawa
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Xiaofei Li
- China National Clinical Research Center for Neurological Diseases, Basic and Translational Medicine Center, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China
| | - Ting Bai
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Masami Kojima
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan.
- Biomedical Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology (KIT), Ishikawa, 924-0838, Japan.
| | - Bai Lu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100070, Beijing, China.
- School of Pharmaceutical Sciences and IDG/McGovern Institute for Brain Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
30
|
Kwak MJ, Choi SJ, Cai WT, Cho BR, Han J, Park JW, Riecken LB, Morrison H, Choi SY, Kim WY, Kim JH. Manipulation of radixin phosphorylation in the nucleus accumbens core modulates risky choice behavior. Prog Neurobiol 2024; 242:102681. [PMID: 39437882 DOI: 10.1016/j.pneurobio.2024.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Ezrin-Radixin-Moesin (ERM) proteins are actin-binding proteins that contribute to morphological changes in dendritic spines. Despite their significant role in regulating spine structure, the role of ERM proteins in the nucleus accumbnes (NAcc) is not well known, especially in in the context of risk-reward decision-making. Here, we measured the relationship between synaptic excitation and inhibition (E/I ratio) from medium spiny neurons in the NAcc core obtained in the rat after a rat gambling task (rGT). Then, after surgery of a phosphomimetic pseudo-active mutant form of radixin (Rdx-T564D) in the NAcc core, we examined its role in synaptic plasticity and the accompanying risk-choice behavior in rGT. We found that basal E/I ratio in the NAcc core was higher in risk-averse rats than risk-seeking rats. However, it was significantly reduced in risk-averse rats similar to that in risk-seeking rats in the presence of Rdx-T564D in the NAcc core. Furthermore, the head sizes of spines were shifted in risk-averse rats expressing Rdx-T564D in the NAcc core, similar to those observed in risk-seeking rats. The effects of Rdx-T564D in risk-averse rats were again manifested as behavioral changes, with reduced selection of optimal choices and increased selection of disadvantageous ones. In this study, we demonstrated that manipulation of radixin phosphorylation status in the NAcc core can alter glutamatergic synaptic transmission and spine structure at this site, as well as risk choice behaviors in the rGT. These novel findings illustrate that radixin in the NAcc core plays a significant role in determining risk preference during the rGT.
Collapse
Affiliation(s)
- Myung Ji Kwak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su Jeong Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Wen Ting Cai
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bo Ram Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joonyeup Han
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Woo Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipman Institute, Jena 07745, Germany
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea.
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Jeong-Hoon Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
31
|
Morabito A, Zerlau Y, Dhanasobhon D, Berthaux E, Tzilivaki A, Moneron G, Cathala L, Poirazi P, Bacci A, DiGregorio D, Lourenço J, Rebola N. A dendritic substrate for temporal diversity of cortical inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602783. [PMID: 39026855 PMCID: PMC11257522 DOI: 10.1101/2024.07.09.602783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In the mammalian neocortex, GABAergic interneurons (INs) inhibit cortical networks in profoundly different ways. The extent to which this depends on how different INs process excitatory signals along their dendrites is poorly understood. Here, we reveal that the functional specialization of two major populations of cortical INs is determined by the unique association of different dendritic integration modes with distinct synaptic organization motifs. We found that somatostatin (SST)-INs exhibit NMDAR-dependent dendritic integration and uniform synapse density along the dendritic tree. In contrast, dendrites of parvalbumin (PV)-INs exhibit passive synaptic integration coupled with proximally enriched synaptic distributions. Theoretical analysis shows that these two dendritic configurations result in different strategies to optimize synaptic efficacy in thin dendritic structures. Yet, the two configurations lead to distinct temporal engagement of each IN during network activity. We confirmed these predictions with in vivo recordings of IN activity in the visual cortex of awake mice, revealing a rapid and linear recruitment of PV-INs as opposed to a long-lasting integrative activation of SST-INs. Our work reveals the existence of distinct dendritic strategies that confer distinct temporal representations for the two major classes of neocortical INs and thus dynamics of inhibition.
Collapse
Affiliation(s)
- Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Yann Zerlau
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
- Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - Gael Moneron
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Laurence Cathala
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Alberto Bacci
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - David DiGregorio
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Joana Lourenço
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| |
Collapse
|
32
|
Pantl O, Chiovini B, Szalay G, Turczel G, Kovács E, Mucsi Z, Rózsa B, Cseri L. Seeing and Cleaving: Turn-Off Fluorophore Uncaging and Its Application in Hydrogel Photopatterning and Traceable Neurotransmitter Photocages. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39368105 PMCID: PMC11492179 DOI: 10.1021/acsami.4c10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
The advancements in targeted drug release and experimental neuroscience have amplified the scientific interest in photolabile protecting groups (PPGs) and photouncaging. The growing need for the detection of uncaging events has led to the development of reporters with fluorescence turn-on upon uncaging. In contrast, fluorescent tags with turn-off properties have been drastically underexplored, although there are applications where they would be sought after. In this work, a rhodamine-based fluorescent tag is developed with signal turn-off following photouncaging. One-photon photolysis experiments reveal a ready loss of red fluorescence signal upon UV (365 nm) irradiation, while no significant change is observed in control experiments in the absence of PPG or with irradiation around the absorption maximum of the fluorophore (595 nm). The two-photon photolysis of the turn-off fluorescent tag is explored in hydrogel photolithography experiments. The hydrogel-bound tag enables the power-, dwell time-, and wavelength-dependent construction of intricate patterns and gradients. Finally, a prominent caged neurotransmitter (MNI-Glu) is modified with the fluorescent tag, resulting in the glutamate precursor named as GlutaTrace with fluorescence traceability and turn-off upon photouncaging. GlutaTrace is successfully applied for the visualization of glutamate precursor distribution following capillary microinjection and for the selective excitation of neurons in a mouse brain model.
Collapse
Affiliation(s)
- Orsolya Pantl
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
| | - Balázs Chiovini
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
| | - Gergely Szalay
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
| | - Gábor Turczel
- NMR
Research Laboratory, Centre for Structural Science, HUN-REN Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Ervin Kovács
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
- Institute
of Materials and Environmental Chemistry, HUN-REN Research Centre
for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Zoltán Mucsi
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Institute
of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc, Hungary
| | - Balázs Rózsa
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Laboratory
of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, 43 Szigony Str., H-1083 Budapest, Hungary
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter Str., H-1083 Budapest, Hungary
| | - Levente Cseri
- BrainVisionCenter, 43−45 Liliom Str., H-1094 Budapest, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 3 Műegyetem rakpart, H-1111 Budapest, Hungary
| |
Collapse
|
33
|
Sawada T, Iino Y, Yoshida K, Okazaki H, Nomura S, Shimizu C, Arima T, Juichi M, Zhou S, Kurabayashi N, Sakurai T, Yagishita S, Yanagisawa M, Toyoizumi T, Kasai H, Shi S. Prefrontal synaptic regulation of homeostatic sleep pressure revealed through synaptic chemogenetics. Science 2024; 385:1459-1465. [PMID: 39325885 DOI: 10.1126/science.adl3043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Sleep is regulated by homeostatic processes, yet the biological basis of sleep pressure that accumulates during wakefulness, triggers sleep, and dissipates during sleep remains elusive. We explored a causal relationship between cellular synaptic strength and electroencephalography delta power indicating macro-level sleep pressure by developing a theoretical framework and a molecular tool to manipulate synaptic strength. The mathematical model predicted that increased synaptic strength promotes the neuronal "down state" and raises the delta power. Our molecular tool (synapse-targeted chemically induced translocation of Kalirin-7, SYNCit-K), which induces dendritic spine enlargement and synaptic potentiation through chemically induced translocation of protein Kalirin-7, demonstrated that synaptic potentiation of excitatory neurons in the prefrontal cortex (PFC) increases nonrapid eye movement sleep amounts and delta power. Thus, synaptic strength of PFC excitatory neurons dictates sleep pressure in mammals.
Collapse
Affiliation(s)
- Takeshi Sawada
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Iino
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kensuke Yoshida
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hitoshi Okazaki
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Nomura
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chika Shimizu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoki Arima
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Motoki Juichi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Siqi Zhou
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Behavioral Physiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sho Yagishita
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taro Toyoizumi
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruo Kasai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoi Shi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Okada S, Ohkawa N, Moriya K, Saitoh Y, Ishikawa M, Oya K, Nishikawa A, Sekiguchi H. Photopharmacological modulation of hippocampal local field potential by caged-glutamate with MicroLED probe. Neuropsychopharmacol Rep 2024; 44:658-662. [PMID: 39126158 PMCID: PMC11544434 DOI: 10.1002/npr2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
AIM Photopharmacology is a new technique for modulating biological phenomena through the photoconversion of substances in a specific target region at precise times. Caged compounds are thought to be compatible with photopharmacology as uncaged ligands are released and function in a light irradiation-dependent manner. Here, we investigated whether a microscale light-emitting diode (MicroLED) probe is applicable for the photoconversion of caged-glutamate (caged-Glu) in vivo. METHODS A needle-shaped MicroLED probe was fabricated and inserted into the mouse hippocampal dentate gyrus (DG) with a cannula for drug injection and a recording electrode for measuring the local field potential (LFP). Artificial cerebrospinal fluid (ACSF) or caged-Glu was infused into the DG and illuminated with light from a MicroLED probe. RESULTS In the caged-Glu-injected DG, the LFP changed in the 10-20 Hz frequency ranges after light illumination, whereas there was no change in the ACSF control condition. CONCLUSION The MicroLED probe is applicable for photopharmacological experiments to modulate LFP with caged-Glu in vivo.
Collapse
Affiliation(s)
- Shogo Okada
- Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyToyohashiAichiJapan
| | - Noriaki Ohkawa
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical ScienceDokkyo Medical UniversityTochigiJapan
| | - Kazuki Moriya
- Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyToyohashiAichiJapan
| | - Yoshito Saitoh
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical ScienceDokkyo Medical UniversityTochigiJapan
| | - Mikiko Ishikawa
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical ScienceDokkyo Medical UniversityTochigiJapan
| | - Kakeru Oya
- Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyToyohashiAichiJapan
| | | | - Hiroto Sekiguchi
- Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyToyohashiAichiJapan
| |
Collapse
|
35
|
Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT. A dendritic mechanism for balancing synaptic flexibility and stability. Cell Rep 2024; 43:114638. [PMID: 39167486 PMCID: PMC11403626 DOI: 10.1016/j.celrep.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
Collapse
Affiliation(s)
- Courtney E Yaeger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitra Vardalaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Trang L D Pham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
37
|
Yan R, Wei D, Varshneya A, Shan L, Asencio HJ, Lin D. The multi-stage plasticity in the aggression circuit underlying the winner effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608611. [PMID: 39229201 PMCID: PMC11370333 DOI: 10.1101/2024.08.19.608611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Winning increases the readiness to attack and the probability of winning, a widespread phenomenon known as the "winner effect". Here, we reveal a transition from target-specific to generalized aggression enhancement over 10 days of winning in male mice, which is supported by three stages of plasticity in the ventrolateral part of the ventromedial hypothalamus (VMHvl), a critical node for aggression. Over 10-day winning, VMHvl cells experience monotonic potentiation of long-range excitatory inputs, a transient local connectivity strengthening, and a delayed excitability increase. These plasticity events are causally linked. Optogenetically coactivating the posterior amygdala (PA) terminals and VMHvl cells potentiates the PA-VMHvl pathway and triggers the cascade of plasticity events as those during repeated winning. Optogenetically blocking PA-VMHvl synaptic potentiation eliminates all winning-induced plasticity. These results reveal the complex Hebbian synaptic and excitability plasticity in the aggression circuit during winning that ultimately leads to an increase in "aggressiveness" in repeated winners.
Collapse
|
38
|
Wong VC, Houlihan PR, Liu H, Walpita D, DeSantis MC, Liu Z, O'Shea EK. Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking. eLife 2024; 13:e80622. [PMID: 39146380 PMCID: PMC11326776 DOI: 10.7554/elife.80622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.
Collapse
Affiliation(s)
- Victor C Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patrick R Houlihan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hui Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael C DeSantis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Erin K O'Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
39
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
40
|
Xiao S, Yadav S, Jayant K. Probing multiplexed basal dendritic computations using two-photon 3D holographic uncaging. Cell Rep 2024; 43:114413. [PMID: 38943640 DOI: 10.1016/j.celrep.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
Basal dendrites of layer 5 cortical pyramidal neurons exhibit Na+ and N-methyl-D-aspartate receptor (NMDAR) regenerative spikes and are uniquely poised to influence somatic output. Nevertheless, due to technical limitations, how multibranch basal dendritic integration shapes and enables multiplexed barcoding of synaptic streams remains poorly mapped. Here, we combine 3D two-photon holographic transmitter uncaging, whole-cell dynamic clamp, and biophysical modeling to reveal how synchronously activated synapses (distributed and clustered) across multiple basal dendritic branches are multiplexed under quiescent and in vivo-like conditions. While dendritic regenerative Na+ spikes promote millisecond somatic spike precision, distributed synaptic inputs and NMDAR spikes regulate gain. These concomitantly occurring dendritic nonlinearities enable multiplexed information transfer amid an ongoing noisy background, including under back-propagating voltage resets, by barcoding the axo-somatic spike structure. Our results unveil a multibranch dendritic integration framework in which dendritic nonlinearities are critical for multiplexing different spatial-temporal synaptic input patterns, enabling optimal feature binding.
Collapse
Affiliation(s)
- Shulan Xiao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Saumitra Yadav
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
41
|
Manning A, Bender PTR, Boyd-Pratt H, Mendelson BZ, Hruska M, Anderson CT. Trans-synaptic Association of Vesicular Zinc Transporter 3 and Shank3 Supports Synapse-Specific Dendritic Spine Structure and Function in the Mouse Auditory Cortex. J Neurosci 2024; 44:e0619242024. [PMID: 38830758 PMCID: PMC11236586 DOI: 10.1523/jneurosci.0619-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Shank3 is a synaptic scaffolding protein that assists in tethering and organizing structural proteins and glutamatergic receptors in the postsynaptic density of excitatory synapses. The localization of Shank3 at excitatory synapses and the formation of stable Shank3 complexes is regulated by the binding of zinc to the C-terminal sterile-alpha-motif (SAM) domain of Shank3. Mutations in the SAM domain of Shank3 result in altered synaptic function and morphology, and disruption of zinc in synapses that express Shank3 leads to a reduction of postsynaptic proteins important for synaptic structure and function. This suggests that zinc supports the localization of postsynaptic proteins via Shank3. Many regions of the brain are highly enriched with free zinc inside glutamatergic vesicles at presynaptic terminals. At these synapses, zinc transporter 3 (ZnT3) moves zinc into vesicles where it is co-released with glutamate. Alterations in ZnT3 are implicated in multiple neurodevelopmental disorders, and ZnT3 knock-out (KO) mice-which lack synaptic zinc-show behavioral deficits associated with autism spectrum disorder and schizophrenia. Here we show that male and female ZnT3 KO mice have smaller dendritic spines and miniature excitatory postsynaptic current amplitudes than wildtype (WT) mice in the auditory cortex. Additionally, spine size deficits in ZnT3 KO mice are restricted to synapses that express Shank3. In WT mice, synapses that express both Shank3 and ZnT3 have larger spines compared to synapses that express Shank3 but not ZnT3. Together these findings suggest a mechanism whereby presynaptic ZnT3-dependent zinc supports postsynaptic structure and function via Shank3 in a synapse-specific manner.
Collapse
Affiliation(s)
- Abbey Manning
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Philip T R Bender
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Helen Boyd-Pratt
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
- Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Benjamin Z Mendelson
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Martin Hruska
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Charles T Anderson
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
42
|
Rößler N, Smilovic D, Vuksic M, Jedlicka P, Deller T. Maintenance of Lognormal-Like Skewed Dendritic Spine Size Distributions in Dentate Granule Cells of TNF, TNF-R1, TNF-R2, and TNF-R1/2-Deficient Mice. J Comp Neurol 2024; 532:e25645. [PMID: 38943486 DOI: 10.1002/cne.25645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 07/01/2024]
Abstract
Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.
Collapse
MESH Headings
- Animals
- Dendritic Spines/metabolism
- Mice
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Mice, Knockout
- Dentate Gyrus/metabolism
- Dentate Gyrus/cytology
- Tumor Necrosis Factor-alpha/metabolism
- Mice, Inbred C57BL
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Neurons/metabolism
- Male
- Microfilament Proteins/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/deficiency
Collapse
Affiliation(s)
- Nina Rößler
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Computer-Based Modelling, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Dinko Smilovic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Vuksic
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Computer-Based Modelling, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
43
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
44
|
Hira R. Closed-loop experiments and brain machine interfaces with multiphoton microscopy. NEUROPHOTONICS 2024; 11:033405. [PMID: 38375331 PMCID: PMC10876015 DOI: 10.1117/1.nph.11.3.033405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In the field of neuroscience, the importance of constructing closed-loop experimental systems has increased in conjunction with technological advances in measuring and controlling neural activity in live animals. We provide an overview of recent technological advances in the field, focusing on closed-loop experimental systems where multiphoton microscopy-the only method capable of recording and controlling targeted population activity of neurons at a single-cell resolution in vivo-works through real-time feedback. Specifically, we present some examples of brain machine interfaces (BMIs) using in vivo two-photon calcium imaging and discuss applications of two-photon optogenetic stimulation and adaptive optics to real-time BMIs. We also consider conditions for realizing future optical BMIs at the synaptic level, and their possible roles in understanding the computational principles of the brain.
Collapse
Affiliation(s)
- Riichiro Hira
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Physiology and Cell Biology, Tokyo, Japan
| |
Collapse
|
45
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
46
|
Gupta B, Saxena A, Perillo ML, Wade-Kleyn LC, Thompson CH, Purcell EK. Structural, Functional, and Genetic Changes Surrounding Electrodes Implanted in the Brain. Acc Chem Res 2024; 57:1346-1359. [PMID: 38630432 PMCID: PMC11079975 DOI: 10.1021/acs.accounts.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Implantable neurotechnology enables monitoring and stimulating of the brain signals responsible for performing cognitive, motor, and sensory tasks. Electrode arrays implanted in the brain are increasingly used in the clinic to treat a variety of sources of neurological diseases and injuries. However, the implantation of a foreign body typically initiates a tissue response characterized by physical disruption of vasculature and the neuropil as well as the initiation of inflammation and the induction of reactive glial states. Likewise, electrical stimulation can induce damage to the surrounding tissue depending on the intensity and waveform parameters of the applied stimulus. These phenomena, in turn, are likely influenced by the surface chemistry and characteristics of the materials employed, but further information is needed to effectively link the biological responses observed to specific aspects of device design. In order to inform improved design of implantable neurotechnology, we are investigating the basic science principles governing device-tissue integration. We are employing multiple techniques to characterize the structural, functional, and genetic changes that occur in the cells surrounding implanted electrodes. First, we have developed a new "device-in-slice" technique to capture chronically implanted electrodes within thick slices of live rat brain tissue for interrogation with single-cell electrophysiology and two-photon imaging techniques. Our data revealed several new observations of tissue remodeling surrounding devices: (a) there was significant disruption of dendritic arbors in neurons near implants, where losses were driven asymmetrically on the implant-facing side. (b) There was a significant loss of dendritic spine densities in neurons near implants, with a shift toward more immature (nonfunctional) morphologies. (c) There was a reduction in excitatory neurotransmission surrounding implants, as evidenced by a reduction in the frequency of excitatory postsynaptic currents (EPSCs). Lastly, (d) there were changes in the electrophysiological underpinnings of neuronal spiking regularity. In parallel, we initiated new studies to explore changes in gene expression surrounding devices through spatial transcriptomics, which we applied to both recording and stimulating arrays. We found that (a) device implantation is associated with the induction of hundreds of genes associated with neuroinflammation, glial reactivity, oligodendrocyte function, and cellular metabolism and (b) electrical stimulation induces gene expression associated with damage or plasticity in a manner dependent upon the intensity of the applied stimulus. We are currently developing computational analysis tools to distill biomarkers of device-tissue interactions from large transcriptomics data sets. These results improve the current understanding of the biological response to electrodes implanted in the brain while producing new biomarkers for benchmarking the effects of novel electrode designs on responses. As the next generation of neurotechnology is developed, it will be increasingly important to understand the influence of novel materials, surface chemistries, and implant architectures on device performance as well as the relationship with the induction of specific cellular signaling pathways.
Collapse
Affiliation(s)
- Bhavna Gupta
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Akash Saxena
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Mason L. Perillo
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Lauren C. Wade-Kleyn
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Cort H. Thompson
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| | - Erin K. Purcell
- Department
of Biomedical Engineering, Michigan State
University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Neuroscience
Program, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, Michigan 48824, United States
| |
Collapse
|
47
|
Xie C, Zhang Q, Ye X, Wu W, Cheng X, Ye X, Ruan J, Pan X. Periodontitis-induced neuroinflammation impacts dendritic spine immaturity and cognitive impairment. Oral Dis 2024; 30:2558-2569. [PMID: 37455416 DOI: 10.1111/odi.14674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE This study investigated the spinal changes in ligature-induced periodontitis and the role of periodontitis in cognitive impairment. METHODS Twenty mice were randomized into the control and chronic periodontitis (CP) groups, with the latter receiving ligature-induced periodontitis. Cognitive performance was assessed by fear conditioning test. Periodontal inflammation and alveolar bone resorption were evaluated by micro-computed tomography and histopathology. The hippocampal microglial activation was evaluated by immunohistochemistry (IHC). The expressions of hippocampal cytokines (TNF-α, iNOS, IL-1β, IL-4, IL-10, and TREM2) were measured by reverse transcription-polymerase chain reaction. The morphology and density of the dendritic spines were determined by Golgi-Cox staining. RESULTS The CP mice reported significant inflammatory cell infiltration and alveolar bone resorption, with marked increases in cytokine levels (TNF-α, iNOS, IL-1β, and TREM2) in the brain. Moreover, the CP mice showed significantly reduced freezing to the conditioned stimulus in the cued and contextual tests, indicating impaired memory. Further analyses revealed, in the hippocampus of the CP mice, enhanced microglial activation, decreased dendritic spine density, and increased proportion of thin dendritic spines. CONCLUSIONS Periodontitis-induced neuroinflammation may impair the cognitive function by activating hippocampal microglia and inducing dendritic spine immaturity.
Collapse
Affiliation(s)
- Changfu Xie
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qiuyang Zhang
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou Second Hospital, Fuzhou, China
| | - Xinyi Ye
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Weiliang Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojuan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaoan Ye
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jianyong Ruan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
48
|
Yang W, Chen C, Jiang X, Zhao Y, Wang J, Zhang Q, Zhang J, Feng Y, Cui S. CACNA1B protects naked mole-rat hippocampal neuron from apoptosis via altering the subcellular localization of Nrf2 after 60Co irradiation. Cell Biol Int 2024; 48:695-711. [PMID: 38389270 DOI: 10.1002/cbin.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Although radiotherapy is the most effective treatment modality for brain tumors, it always injures the central nervous system, leading to potential sequelae such as cognitive dysfunction. Radiation induces molecular, cellular, and functional changes in neuronal and glial cells. The hippocampus plays a critical role in learning and memory; therefore, concerns about radiation-induced injury are widespread. Multiple studies have focused on this complex problem, but the results have not been fully elucidated. Naked mole rat brains were irradiated with 60Co at a dose of 10 Gy. On 7 days, 14 days, and 28 days after irradiation, hippocampi in the control groups were obtained for next-generation sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently performed. Venn diagrams revealed 580 differentially expressed genes (DEGs) that were common at different times after irradiation. GO and KEGG analyses revealed that the 580 common DEGs were enriched in molecular transducer activity. In particular, CACNA1B mediated regulatory effects after irradiation. CACNA1B expression increased significantly after irradiation. Downregulation of CACNA1B led to a reduction in apoptosis and reactive oxygen species levels in hippocampal neurons. This was due to the interaction between CACNA1B and Nrf2, which disturbed the normal nuclear localization of Nrf2. In addition, CACNA1B downregulation led to a decrease in the cognitive functions of naked mole rats. These findings reveal the pivotal role of CACNA1B in regulating radiation-induced brain injury and will lead to the development of a novel strategy to prevent brain injury after irradiation.
Collapse
Affiliation(s)
- Wenjing Yang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Chao Chen
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Xiaolong Jiang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yining Zhao
- Clinical Laboratory, Shanghai Yangpu district mental health center, Shanghai University of Medicine and Health Sciences Teaching Hospital, Shanghai, China
| | - Junyang Wang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Qianqian Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Jingyuan Zhang
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Yan Feng
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Science Department, Basic Medical School, Naval Medical University, Shanghai, China
| |
Collapse
|
49
|
Kietzman HW, Trinoskey-Rice G, Seo EH, Guo J, Gourley SL. Neuronal Ensembles in the Amygdala Allow Social Information to Motivate Later Decisions. J Neurosci 2024; 44:e1848232024. [PMID: 38499360 PMCID: PMC11026342 DOI: 10.1523/jneurosci.1848-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Social experiences carry tremendous weight in our decision-making, even when social partners are not present. To determine mechanisms, we trained female mice to respond for two food reinforcers. Then, one food was paired with a novel conspecific. Mice later favored the conspecific-associated food, even in the absence of the conspecific. Chemogenetically silencing projections from the prelimbic subregion (PL) of the medial prefrontal cortex to the basolateral amygdala (BLA) obstructed this preference while leaving social discrimination intact, indicating that these projections are necessary for socially driven choice. Further, mice that performed the task had greater densities of dendritic spines on excitatory BLA neurons relative to mice that did not. We next induced chemogenetic receptors in cells active during social interactions-when mice were encoding information that impacted later behavior. BLA neurons stimulated by social experience were necessary for mice to later favor rewards associated with social conspecifics but not make other choices. This profile contrasted with that of PL neurons stimulated by social experience, which were necessary for choice behavior in social and nonsocial contexts alike. The PL may convey a generalized signal allowing mice to favor particular rewards, while units in the BLA process more specialized information, together supporting choice motivated by social information.
Collapse
Affiliation(s)
- Henry W Kietzman
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Gracy Trinoskey-Rice
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Esther H Seo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Jidong Guo
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Psychiatry, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Neuroscience, Emory University, Atlanta, Georgia 30322
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| |
Collapse
|
50
|
Shen L, Ma X, Wang Y, Wang Z, Zhang Y, Pham HQH, Tao X, Cui Y, Wei J, Lin D, Abeywanada T, Hardikar S, Halabelian L, Smith N, Chen T, Barsyte-Lovejoy D, Qiu S, Xing Y, Yang Y. Loss-of-function mutation in PRMT9 causes abnormal synapse development by dysregulation of RNA alternative splicing. Nat Commun 2024; 15:2809. [PMID: 38561334 PMCID: PMC10984984 DOI: 10.1038/s41467-024-47107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Protein arginine methyltransferase 9 (PRMT9) is a recently identified member of the PRMT family, yet its biological function remains largely unknown. Here, by characterizing an intellectual disability associated PRMT9 mutation (G189R) and establishing a Prmt9 conditional knockout (cKO) mouse model, we uncover an important function of PRMT9 in neuronal development. The G189R mutation abolishes PRMT9 methyltransferase activity and reduces its protein stability. Knockout of Prmt9 in hippocampal neurons causes alternative splicing of ~1900 genes, which likely accounts for the aberrant synapse development and impaired learning and memory in the Prmt9 cKO mice. Mechanistically, we discover a methylation-sensitive protein-RNA interaction between the arginine 508 (R508) of the splicing factor 3B subunit 2 (SF3B2), the site that is exclusively methylated by PRMT9, and the pre-mRNA anchoring site, a cis-regulatory element that is critical for RNA splicing. Additionally, using human and mouse cell lines, as well as an SF3B2 arginine methylation-deficient mouse model, we provide strong evidence that SF3B2 is the primary methylation substrate of PRMT9, thus highlighting the conserved function of the PRMT9/SF3B2 axis in regulating pre-mRNA splicing.
Collapse
Affiliation(s)
- Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yuanyuan Wang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, CA, 90095, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Zhihao Wang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Yi Zhang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Hoang Quoc Hai Pham
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xiaoqun Tao
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Dimitri Lin
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Tharindumala Abeywanada
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Noah Smith
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|