1
|
Charoenkitamorn K, Cheamchan P, Kidhen P, Thadatuntichok P, Thepsuparungsikul N, Lomae A, Chaiyo S. Ready-made chlorpyrifos sensor using an agarose-based gel electrolyte on a reduced graphene oxide/cellulose acetate-modified screen-printed carbon electrode. Talanta 2025; 293:128174. [PMID: 40253966 DOI: 10.1016/j.talanta.2025.128174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/13/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
A ready-made electrochemical sensor has been developed as an innovative platform for detecting nonaqueous chlorpyrifos (CPF), a water-insoluble organophosphate pesticide. Despite its effectiveness, CPF is among the most frequently detected pesticides in food and water and poses severe health risks, including neurological disorders and acute poisoning. As a tool for potentially limiting the harm caused by CPF, this study introduces a CPF sensor designed for simplified sample preparation, enhanced safety, and rapid monitoring in environmental and agricultural samples. The sensor integrates an agarose-based gel electrolyte with a cellulose acetate/reduced graphene oxide-modified screen-printed carbon electrode. The gel electrolyte was prepared by dissolving agarose in a methanol-tetraethylammonium iodide solution and casting it onto the electrode. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) confirmed excellent linearity (R2 > 0.999) over 0.05-8.00 mM and 0.10-2.00 mM, respectively, with LoDs of 0.166 mM (CV) and 34.3 μM (0.012 mg/kg, DPV). This allows reliable quantitative analysis and detection below CPF residue limits set by the U.S. EPA and Thai Agricultural Standards. The recoveries for the application of ready-made sensor in environmental and agricultural samples achieved recoveries of 89.8-106.6 % with %RSD below 5 %, demonstrating high feasibility for CPF detection. This sensor enables direct CPF detection in organic solvents without complex preparation or electrochemical expertise. Its agarose gel matrix enhances safety by immobilizing the electrolyte, minimizing leakage, and improving stability, making it suitable for portable use. This ready-made sensor provides a reliable, user-friendly solution for CPF monitoring in agriculture and food safety.
Collapse
Affiliation(s)
- Kanokwan Charoenkitamorn
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Phimlaphat Cheamchan
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Pimpichaya Kidhen
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Punrada Thadatuntichok
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | | | - Atchara Lomae
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Sudkate Chaiyo
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Niu C, Liu T, Yang L, Wang D, Xiao X, Yang S, Huang Z, Yang Y, Feng L. Bifunctional sheets reduce the microbe and endotoxin contamination of tissue-derived collagen. Int J Biol Macromol 2025; 307:141411. [PMID: 39993681 DOI: 10.1016/j.ijbiomac.2025.141411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Tendon-derived type I collagen is an essential biomaterial for various biomedical devices due to its inherent bioactivity and favorable environment for cells. Correspondingly, microbial and endotoxin contamination can be easily introduced during the collagen extraction process, which is generally overlooked in fundamental scientific research, especially the endotoxin residue. Conventional approaches for mitigating endotoxin exhibit limited effectiveness when applied to biomacromolecule products because of viscosity, clogging, and diminished bioactivity. In this study, we developed a bifunctional sheet that can simultaneously reduce the microbe and endotoxin contamination in collagen solution by co-incubation and subsequent magnetic separation, avoiding the issues of blockage and bioactivity impairment. The bifunctional sheet was successfully fabricated by modifying the magnetic graphene oxide with histamine. Collagen products treated by sheets exhibited reduced microbial and endotoxin contamination while maintaining their bioactivity for encapsulated cell growth. Additionally, inflammatory stimulation of collagen was decreased in vitro and in vivo after treatment. This work may present a facile approach for diminishing microbe and endotoxin residues in collagen products in basic research, obviating the non-essential use of a sterile workshop and facilitating the development of tissue-derived collagen research.
Collapse
Affiliation(s)
- Chuan Niu
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tian Liu
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Liping Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Dan Wang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiong Xiao
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shaojie Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ziwei Huang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yuchu Yang
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Feng
- Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
3
|
Paz de la Vega A, Liendo F, Pichún B, Penagos J, Segura R, Aguirre MJ. Electrochemically Reduced Graphene Oxide Covalently Bound Sensor for Paracetamol Voltammetric Determination. Int J Mol Sci 2025; 26:4267. [PMID: 40362502 DOI: 10.3390/ijms26094267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Designing a highly sensitive and efficient functionalized electrode for precise drug analysis remains a significant challenge. In this work, an electrochemical sensor based on a glassy carbon electrode (GCE) modified with phenyl diazonium salts (ph) and electrochemically reduced graphene oxide (ERGO), labeled GCE/ph/ERGO, was developed for the detection of paracetamol (PAR) in pharmaceutical matrices using square wave voltammetry (SWV). The modified electrode was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Compared to the bare GCE, the GCE/ph/ERGO sensor demonstrated significantly improved conductivity and anodic current peak for PAR over two orders of magnitude higher, indicating a substantial enhancement in electrochemical performance. Under optimized conditions, the developed sensor exhibited a low detection limit of 18.2 nM and a quantification limit of 60.6 nM. Precision studies yielded relative standard deviations (RSDs) below 8%. The sensor demonstrated excellent selectivity in the presence of common pharmaceutical excipients and high accuracy in the analysis of generic pharmaceutical formulations, with results comparable to those obtained by the HPLC technique. These findings confirm the sensor's reliability, stability, robustness, and suitability for routine analysis of PAR in pharmaceutical samples.
Collapse
Affiliation(s)
- Amaya Paz de la Vega
- Department of Chemistry of Materials, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Fabiana Liendo
- Department of Chemistry of Materials, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Bryan Pichún
- Department of Chemistry of Materials, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Millennium Institute on Green Ammonia as Energy Vector-MIGA (ICN2021_023), Santiago 7820436, Chile
| | - Johisner Penagos
- Department of Chemistry of Materials, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Rodrigo Segura
- Department of Chemistry of Materials, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - María Jesús Aguirre
- Department of Chemistry of Materials, Faculty of Chemistry and Biology, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- Millennium Institute on Green Ammonia as Energy Vector-MIGA (ICN2021_023), Santiago 7820436, Chile
| |
Collapse
|
4
|
Park J, Rahman MM, Ahn SJ, Lee JJ. Phase transitions and morphology control of Langmuir Blodget (LB) films of graphene oxide. J Colloid Interface Sci 2025; 684:215-224. [PMID: 39826509 DOI: 10.1016/j.jcis.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
HYPOTHESIS Understanding the Langmuir film formation process of flexible and soft materials like graphene oxide (GO) is essential, as it shows different trends compared to the conventional surface pressure-area (π-A) and compressional modulus (ε) isotherms of hard materials. Additionally, the size distribution and mechanical properties of the GO are assumed to affect the distinctive Langmuir-Blodgett (LB) film morphologies, such as overlaps and wrinkles. EXPERIMENT To gain a deeper insights of phase transitions in GO LB films, we propose a novel analysis of elastic tensile modulus versus surface pressure (|ε|-π) isotherms. This approach involves applying adequate compression to the GO sheets to generate an elastic force, followed by measuring the |ε|-π isotherms during the film's expansion. Additionally, we compared the surface morphology of GO LB films deposited under identical conditions using various GO colloidal solutions, each containing sheets with different size distributions. FINDING Upon expanding the GO Langmuir film after sufficient compression, a rapid stress release is observed leading to a clear inflection in the |ε|-π isotherms, indicating a phase transition from solid to liquid. Therefore, this study provides comprehensive insights into the behavior of GO Langmuir films. Furthermore, we demonstrated that morphological features, such as wrinkles and overlaps in GO LB films, can be effectively controlled by adjusting the size distribution and mechanical properties of GO sheets in the colloidal solution.
Collapse
Affiliation(s)
- Jongdeok Park
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Md Mahbubur Rahman
- Department of Energy Materials Science and Engineering, Konkuk University, Chungju 27478 Republic of Korea
| | - Sang Jung Ahn
- Korea Research Institute of Standards and Science (KRISS), Yuseong-gu, Daejeon, Republic of Korea.
| | - Jae-Joon Lee
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
5
|
Ali Khan B, Haider F, Zhang T, Zahra S. Advances in Graphene-Transition Metal Selenides Hybrid Materials for High-Performance Supercapacitors: A Review. CHEM REC 2025:e202500037. [PMID: 40165724 DOI: 10.1002/tcr.202500037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Supercapacitors have attracted significant attention as energy storage devices due to their high power density, rapid charge-discharge capability, and long cycle life. Their performance is primarily influenced by electrode materials, electrolytes, and operational voltage windows. Among these, the development of advanced electrode materials is crucial for enhancing energy density, specific capacitance, and cyclic stability. This review focuses on recent advancements in graphene-based hybrid materials, particularly their integration with transition metal selenides (TMSs) for supercapacitor applications. Combining graphene and its derivatives with TMSs, which possess multiple oxidation states and high theoretical capacitance, results in hybrids with superior electrochemical performance. Studies show that these materials achieve higher specific capacitance, energy density, and power density compared to graphene composites with carbides, nitrides, phosphides, and oxides. Key findings include synthesis strategies, structural modifications, and electrochemical properties of graphene-TMS hybrids. Notably, these hybrids have demonstrated specific capacitances exceeding 3105 F/g at 1 A/g, power densities up to 5597.77 W/kg, and energy densities reaching 126.3 Wh/kg, making them highly promising for next-generation supercapacitors. This review critically evaluates the current state-of-the-art, explores the synergistic effects between graphene and TMSs, such as improved charge transfer kinetics and structural stability, and identifies challenges and future directions in graphene-TMS hybrid supercapacitors.
Collapse
Affiliation(s)
- Basit Ali Khan
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Farasast Haider
- Student, Graduate School of Nanoscience and technology, Chulalonkorn University, Bangkok, Thailand, 10330
| | - Tongsheng Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P.R. China
| | - Sana Zahra
- University of science and technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
7
|
Basu S, Rana N, Morgan D, Sen K. Gold Nanoparticle Incorporated Graphene Oxide as a SERS Platform for Ultratrace Antibody Free Sensing of the Cancer Biomarker CEA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7886-7901. [PMID: 40062598 DOI: 10.1021/acs.langmuir.5c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
A simple, fast, low-cost, and efficient method is designed for the synthesis of graphene oxide (GO) (20 nm) from graphite using a strong oxidant Ce(IV). GO is further modified with gold nanoparticles (AuNPs) (5-8 nm) to generate a AuGO nanocomposite (25 nm). Raman spectral analyses confirm that the synthesized AuGO has a potential selective sensing ability for the cancer biomarker carcinoembryonic antigen (CEA) in serum. Sensing assays are also carried out in the presence of high concentrations of glucose, cholesterol, and insulin using this method, which become significantly elevated in conditions of different pathophysiological disorders. Ultratrace antibody free sensing of CEA in serum is achieved using surface-enhanced Raman spectroscopy with an amazing LOD of 12.5 fg/mL. The interaction between CEA and AuGO is further established using Raman, fluorescence, circular dichroism spectroscopy, and theoretical studies. The specificity of sensing is tested by checking the response in the presence of other cancer biomarkers, such as CA 19-9, CA 125, and PSA, which do not show any signal enhancement with AuGO in Raman spectroscopy.
Collapse
Affiliation(s)
- Shalmali Basu
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Nabakumar Rana
- Department of Physics, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - David Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| |
Collapse
|
8
|
Yadav A, Panjikar S, Singh Raman RK. Graphene-Based Impregnation into Polymeric Coating for Corrosion Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:486. [PMID: 40214532 PMCID: PMC11990139 DOI: 10.3390/nano15070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
This review explores the development and application of the impregnation of graphene-based materials into polymeric coatings to enhance corrosion resistance. Derivatives of graphene, such as graphene oxide (GO) and reduced graphene oxide (rGO), have been increasingly integrated into polymer matrices to enhance polymers' mechanical, thermal, and barrier properties. Various synthesis approaches, viz., electrochemical deposition, chemical reduction, and the incorporation of functionalised graphene derivatives, have been explored for improving the dispersion and stability of graphene within polymers. These graphene-impregnated coatings have shown promising results in improving corrosion resistance by enhancing impermeability to corrosive agents and reinforcing mechanical strength under corrosive conditions. While the addition of graphene notably enhances coating performance, challenges remain in achieving uniform graphene dispersion and addressing the trade-offs between thickness and flexibility. This review highlights current advancements, limitations, and future directions, with a particular emphasis on optimising the synthesis techniques to maximise corrosion resistance while maintaining coating durability and economic feasibility.
Collapse
Affiliation(s)
- Arti Yadav
- Department of Chemical and Biological Engineering, Monash University, Melbourne, VIC 3800, Australia;
| | - Santosh Panjikar
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia;
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - R. K. Singh Raman
- Department of Chemical and Biological Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
9
|
Saghiri MA, Saini RS, Kuruniyan MS, Mosaddad SA, Heboyan A. Graphene and its modifications for enhanced adhesion in dental restoratives: a molecular docking and dynamics study. Sci Rep 2025; 15:9455. [PMID: 40108266 PMCID: PMC11923170 DOI: 10.1038/s41598-025-93653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Graphene has attracted significant attention in dentistry due to its structural and adhesive properties, enhancing the mechanical performance of dental composites. This study investigates the behavior and interaction of monomers and graphene-based adhesives using molecular docking and molecular dynamics (MD) simulations. Binding energies and interactions between monomers and graphene derivatives were assessed using molecular docking, while MD simulations with the Forcite module and COMPASS II force field provided insights into the mechanical properties of the composites. The simulations involved energy minimization, NVT/NPT ensembles, and equilibration for 50 ns. The binding energies of the monomer-graphene complexes ranged from - 16.27 to -18.55 kcal/mol, with the Bis-GMA-Graphene Quantum Dot complex showing the most stable interaction. Mechanical properties such as Young's modulus, shear modulus, and flexural strength were calculated for selected complexes: Bis-GMA-Graphene Quantum Dot (14.74 GPa, 9.32 GPa, 120.51 MPa), EBPADMA-Graphene Quantum Dot (14.28 GPa, 9.13 GPa, 118.22 MPa), HEMA-Nitrogen-doped Graphene (9.85 GPa, 6.86 GPa, 95.7 MPa), TEGDMA-Graphene Oxide (11.96 GPa, 8.12 GPa, 110.23 MPa), and UDMA-CCOOH Functionalized Graphene (13.82 GPa, 8.43 GPa, 115.4 MPa). The Bis-GMA-Graphene Quantum Dot complex showed the highest stability with 20 hydrogen bonds. These results highlight graphene quantum dots and functionalized graphene derivatives as promising candidates for high-performance dental composites, offering strong adhesive properties and improved mechanical strength. Future research may focus on further optimizing these interactions and exploring additional graphene modifications.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Department of Restorative Dentistry, Director of Biomaterial and Prosthodontic Laboratory, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Ravinder S Saini
- Department of Dental Health Sciences COAMS, King Khalid University, Abha, Saudi Arabia
| | | | - Seyed Ali Mosaddad
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
- Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
- Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Qasr-e-Dasht Street, Shiraz, Fars, Iran.
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, 0025, Armenia.
| |
Collapse
|
10
|
Kumar L, Gupta B, Kumar Purkait M. Photo-induced degradation of toxic recalcitrant compounds from surface water: Insights into advanced nanomaterials, hybrid photocatalytic systems, and real applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124610. [PMID: 39999753 DOI: 10.1016/j.jenvman.2025.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in toxic recalcitrant organic compounds (ROCs) from various industrial, residential, and agricultural sources poses a significant public health concern and threatens environmental preservation. The presence of these toxic ROCs weakens the effectiveness of conventional water and wastewater treatment systems. As a result, numerous physicochemical and biological treatment processes have been explored, each demonstrating varying removal efficiencies depending on experimental conditions. Given the limitations of existing treatment methods, research has increasingly focused on advanced oxidation processes, particularly photocatalysis. Photocatalysis is a prominent treatment technique due to its low sludge production, non-toxic nature, reusable characteristics, and ability to harness visible light. This review comprehensively examines the ecotoxicological effects of ROCs, existing biological and physicochemical treatment methods, advancements in photocatalyst synthesis, the transition from conventional to advanced photocatalysts, and hybrid treatment systems. In the context of photocatalytic removal of ROCs, the review also addresses several influencing parameters, including initial pollutant concentration, solution pH, light intensity, catalyst dose, and catalyst type. Global case studies focusing on the mechanisms of photocatalytic degradation of ROCs are highlighted. The documented photocatalysts for removing ROCs from water and wastewater have shown promising results. Moreover, integrating photocatalysis with advanced physicochemical and biological processes has effectively removed various dissolved (e.g., ROCs) and suspended impurities, showcasing its practical applications. Thus, this study could serve as a valuable resource for researchers and engineers working on the treatment of various micropollutants, such as ROCs, in real wastewater.
Collapse
Affiliation(s)
- Lokesh Kumar
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Bramha Gupta
- Centre for Sustainable Water Research, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
11
|
Jalilian M, Parvizi P, Zangeneh MR. Advances in graphene-based nanomaterials for heavy metal removal from water: Mini review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70062. [PMID: 40123408 DOI: 10.1002/wer.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The environment and public health are seriously at risk from the increasing levels of heavy metal (HM) pollution in water bodies, hence efficient remediation techniques must be developed. Unique physicochemical properties of graphene (Gn) such as its enormous surface area, chemical stability, and extraordinary adsorption capabilities have made it a promising candidate for application in various adsorption processes. Recent studies indicate the heavy metal removal capabilities of Gn-based materials such as Gn oxide (GO) and reduced GO (rGO) reach 99% efficiency rates for lead (Pb2+), cadmium (Cd2+), and mercury (Hg2+) through strong electrostatic bonds and metal coordination along with π-π stacking interactions. In addition, the selective nature of Gn-based adsorbents grows better through functionalization because it incorporates thiol, amine, and sulfonic acid groups. The integration of Gn-based materials with metal-organic frameworks (MOFs) combined with magnetic nanoparticles along with bio-based polymers enhances adsorption efficiency and increases stability while offering recyclability features. The conclusion of this study discusses the current obstacles such as cost, scalability, environmental impact, and selectivity and potential future developments for the widespread use of Gn-based adsorbents in water treatment, highlighting the significance of continued research to improve these substances for useful environmental applications. PRACTITIONER POINTS: Graphene-based materials exhibit high capacity for adsorbing various heavy metals, enhancing water purification. Functionalization of graphene improves its ability to selectively target and remove specific heavy metals like mercury and lead. Graphene derivatives can achieve heavy metal removal within minutes, making them efficient for water treatment. Despite high synthesis costs, graphene's superior performance may lower long-term operational costs in wastewater treatment.
Collapse
Affiliation(s)
- Milad Jalilian
- Department of Physics, Faculty of Science, Lorestan University, Khorramabad, Iran
- Pooya Power Knowledge Enterprise, Tehran, Iran
| | - Pooya Parvizi
- Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, Edgbaston, UK
| | - Mohammad Reza Zangeneh
- Pooya Power Knowledge Enterprise, Tehran, Iran
- Department of Energy and Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
12
|
Sun Q, Dai M, Hong J, Feng S, Wang C, Yuan Z. Graphene Nanopore Fabrication and Applications. Int J Mol Sci 2025; 26:1709. [PMID: 40004171 PMCID: PMC11855882 DOI: 10.3390/ijms26041709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Graphene is a revolutionary material with excellent optical, electrical and mechanical properties and has garnered significant attention in the realm of nanopore technology. Devices incorporating graphene nanopores leverage the material's atomic thickness to enhance detection precision in solid-state nanopores. These nanopores exhibit high spatial resolution and ion selectivity, making them promising sensors for biomolecular detection. Additionally, their unique characteristics suggest their considerable potential for applications in material separation and osmotic power generation. In recent years, several literature reviews on graphene nanopores have been published; however, some have not fully addressed certain important aspects, such as the depth of theoretical analysis, the extent of coverage on technological advancements, and the exploration of potential applications. This paper reviews current fabrication methods, including "top-down" etching and "bottom-up" synthesis, highlighting their advantages and limitations. We also summarize diverse applications of graphene nanopores, such as in biomolecule detection and water desalination. Our findings emphasize the need for a deeper exploration of these aspects, advancing the field by showcasing the broader potential of graphene nanopores in addressing various technological challenges.
Collapse
Affiliation(s)
- Qijiao Sun
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Dai
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Hong
- School of Integrated Circuit, Guangdong University of Technology, Guangzhou 510006, China;
| | - Silu Feng
- School of Integrated Circuit, Guangdong University of Technology, Guangzhou 510006, China;
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishan Yuan
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Q.S.); (M.D.); (C.W.)
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Cardoso Oliveira T, Alves Nunes Simonetti E, Simone Cividanes L. Nanocarbons Reinforcement Effect into Polyethylene Nanocomposites: γ-Ray Attenuation Potential and Hardness Improvement by the Taguchi Method. ACS OMEGA 2025; 10:4827-4835. [PMID: 39959053 PMCID: PMC11822500 DOI: 10.1021/acsomega.4c10046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
High-density polyethylene (HDPE) is a light and low-cost polymer widely explored as an excellent barrier material for γ-ray and neutron radiation in situations of high exposure (e.g., aerospace). Nevertheless, this polymer is not a suitable structural material due to its low mechanical resistance. Herein, amino-functionalized carbon nanotubes (CNTs) and graphene oxide (GO) were incorporated into HDPE and statistically studied through a Taguchi design of experiments (DoE) model that investigated their synergistic effect. After incorporating these nanocarbons, microscopy images suggest their homogeneous distribution into HDPE. Furthermore, X-ray diffraction shows that the HDPE crystallinity degree increased due to a nucleation effect caused by the nanofillers. Additionally, all nanocomposites presented improved microhardness resistance (up to 69%), particularly when both nanocarbons were incorporated into the matrix. The nanocomposite with higher microhardness resistance had the γ-ray attenuation potential, exhibiting a similar radiation shielding effect to HDPE, with a linear attenuation coefficient higher than Aluminum, a reference material. Hence, this study shows that the synergy between these nanocarbons can be explored to improve HDPE hardness without negatively affecting its attenuation ability. Therefore, these nanocomposites with improved hardness and γ-ray shielding are potential materials for applications requiring surface durability and radiation resistance, such as in air-/spacecraft systems.
Collapse
Affiliation(s)
- Thais Cardoso Oliveira
- Department
of Chemistry, Fundamental Sciences Division, Aeronautics Institute of Technology (ITA), São Jose dos Campos, São
Paulo12228-900, Brazil
| | - Evelyn Alves Nunes Simonetti
- Department
of Chemistry, Fundamental Sciences Division, Aeronautics Institute of Technology (ITA), São Jose dos Campos, São
Paulo12228-900, Brazil
- Department
of Chemistry, Federal Institute of São
Paulo (IFSP), São José
dos Campos, São Paulo 12223-201, Brazil
| | - Luciana Simone Cividanes
- Department
of Chemistry, Fundamental Sciences Division, Aeronautics Institute of Technology (ITA), São Jose dos Campos, São
Paulo12228-900, Brazil
| |
Collapse
|
14
|
Sharma S, Kundu P, Tyagi D, Shanmugam V. Graphene-based nanomaterials applications for agricultural and food sector. Adv Colloid Interface Sci 2025; 336:103377. [PMID: 39662337 DOI: 10.1016/j.cis.2024.103377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
In the past decade, graphene-based nanomaterials (GBNs) have been considerably investigated in agriculture due to their exceptionally enriched physicochemical properties. Productivity in the agricultural sector relies significantly on agrochemicals. However, conventional systems suffer from a lack of application efficiency, resulting in environmental pollution and associated problems. Due to high surface area, easy functionalization, high chemical stability, biocompatibility, and ability to adhere to biological structures, GBNs become a promising candidate for agro-delivery carriers. A comprehensive review on developments of GBNs for pesticide delivery, nutrient delivery, food packaging and preservation, and their impacts on plant growth and development are missing in the literature. To address this, here we presented a detailed review on the material design, agrochemicals loading, release or diffusion kinetics, in-vivo applications, and effects of GBNs on plants. The GBNs found to improve the efficacy of existing agrochemicals and food preservatives, aiming to decrease the overall burden of these substances. The incorporation of GBNs in biocompatible and biodegradable polymers is reported to improve their oxygen barrier and mechanical properties for food packaging applications, targeting to reduce the use of petroleum-derived polymers based current food packaging materials, which leads to serious environmental impacts. In the context of plant nanobionics, GBNs has been found to boost the plant growth at low concentrations. Here, recommendations for future research have been deliberated, drawing reference from the relevant area to gain a deeper understanding of the underlying science, and to develop better delivery and packaging applications approaches. Additionally, discussions on recommendations regarding the safe concentration of GBNs for plant nanobionics are presented to facilitate their secure and effective utilization.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States.
| | - Priya Kundu
- National Agri-Food Biotechnology Institute, Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Deepak Tyagi
- Zang Crop Care (OPC) Pvt. Ltd, Sonipat 131039, Haryana, India
| | | |
Collapse
|
15
|
Singh RK, Verma K, Kumar GCM, Jalageri MB. Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:191-211. [PMID: 39190630 DOI: 10.1080/09205063.2024.2396224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Khyati Verma
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - G C Mohan Kumar
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Mallikarjun B Jalageri
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| |
Collapse
|
16
|
Hajipour Keyvani A, Mohammadnejad P, Pazoki-Toroudi H, Perez Gilabert I, Chu T, Manshian BB, Soenen SJ, Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2756-2790. [PMID: 39745785 DOI: 10.1021/acsami.4c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects. This review explores the roles of graphene, graphene oxide (GO), and graphene quantum dots (GQDs) in combination therapies and highlights their potential to enhance immunotherapy and targeted cancer therapies. The large surface area and high drug-loading capacity of graphene facilitate the codelivery of multiple therapeutic agents, promoting targeted and sustained release. GQDs, with their unique optical properties, offer real-time imaging capabilities, adding another layer of precision to treatment. However, challenges such as biocompatibility, long-term toxicity, and scalability need to be addressed to ensure clinical safety. Preclinical studies show promising results for GBNs, suggesting their potential to revolutionize cancer treatment through innovative combination therapies.
Collapse
Affiliation(s)
- Armin Hajipour Keyvani
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parizad Mohammadnejad
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, RK-Herestraat 49 - Box 505,3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
- Leuven Cancer Institute, Faculty of Medicine, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
17
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2025; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
18
|
Peng Q, Li J, Cai X, Chen G, Huang Z, Zheng L, Li H, Chen XJ, Hu Z. Atomistic Study on the Mechanical Properties of HOP-Graphene Under Variable Strain, Temperature, and Defect Conditions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:31. [PMID: 39791790 PMCID: PMC11723169 DOI: 10.3390/nano15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
HOP-graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP-graphene, utilizing molecular dynamics simulations. The results revealed that Young's modulus of HOP-graphene in the armchair direction is 21.5% higher than that in the zigzag direction, indicating that it exhibits greater rigidity in the former direction. The reliability of the tensile simulations was contingent upon the size and strain rate. An increase in temperature from 100 K to 900 K resulted in a decrease in Young's modulus by 7.8% and 2.9% for stretching along the armchair and zigzag directions, respectively. An increase in the concentration of introduced void defects from 0% to 3% resulted in a decrease in Young's modulus by 24.7% and 23.1% for stretching along the armchair and zigzag directions, respectively. An increase in the length of rectangular crack defects from 0 nm to 4 nm resulted in a decrease in Young's modulus for stretching along the armchair and zigzag directions by 6.7% and 5.7%, respectively. Similarly, an increase in the diameter of the circular hole defect from 0 nm to 4 nm resulted in a decrease in Young's modulus along both the armchair and zigzag directions, with a corresponding reduction of 11.0% and 10.4%, respectively. At the late stage of tensile fracture along the zigzag direction, HOP-graphene undergoes a transformation to an amorphous state under tensile stress. Our results might contribute to a more comprehensive understanding of the mechanical properties of HOP-graphene under different test conditions, helping to land it in potential practical applications.
Collapse
Affiliation(s)
- Qing Peng
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China;
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (G.C.); (L.Z.); (H.L.)
- Guangdong Aerospace Research Academy, Guangzhou 511458, China
| | - Jiale Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (G.C.); (L.Z.); (H.L.)
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| | - Xintian Cai
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan 430072, China
| | - Gen Chen
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (G.C.); (L.Z.); (H.L.)
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| | - Zeyu Huang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (G.C.); (L.Z.); (H.L.)
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| | - Lihang Zheng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (G.C.); (L.Z.); (H.L.)
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| | - Hongyang Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (G.C.); (L.Z.); (H.L.)
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| | - Xiao-Jia Chen
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Zhongwei Hu
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
19
|
Lee B, Kim C. Graphene Oxide and its Composites: Advanced Membranes for Selective Water Permeation. Chemphyschem 2024; 25:e202400662. [PMID: 39462455 DOI: 10.1002/cphc.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Indexed: 10/29/2024]
Abstract
Graphene oxide (GO) membranes have gained significant attention as a promising material for separation by selective permeation processes due to their advantageous structural and chemical properties, including high water permeability, chemical resistance, and mechanical strength. In this study, we explore the potential applications of GO membranes in pervaporation to separate liquid mixtures. The layered structure and hydrophilic nature of GO membrane facilitate rapid and selective water transport through angstrom-scale interlayer spacings, resulting in superior performance over conventional polymeric and inorganic membranes. The unique mass transport mechanisms - slip flow and molecular alignment - enable GO membranes to selectively permeate water over organic solvents. For chemical dehydration, GO membranes are the most potential candidates. Furthermore, advancements in composite GO membranes and cross-linking techniques that improve their stability and separation performance are discussed. This study highlights the advantages of GO membranes and their potential to replace or complement existing technologies, by emphasizing their role in advancing membrane-based separation and promoting environmental sustainability. Future research is expected to optimize the fabrication techniques for GO membranes and expand their application scope.
Collapse
Affiliation(s)
- Byeongho Lee
- Department of Environmental Engineering with Institute of Energy/Environment Convergence Technologies and of Future Convergence Engineering, Kongju National University, 1223-24, Cheonan-daero, Cheonan-si, 31080, Republic of Korea
| | - Choonsoo Kim
- Department of Environmental Engineering with Institute of Energy/Environment Convergence Technologies and of Future Convergence Engineering, Kongju National University, 1223-24, Cheonan-daero, Cheonan-si, 31080, Republic of Korea
| |
Collapse
|
20
|
Moradi SE, Shokrollahi A, Shahdost-Fard F. Applicability of a green nanocomposite consists of reduced graphene oxide and β-cyclodextrin for electrochemical tracing of methadone in human biofluids validated by international greenness indexes. Heliyon 2024; 10:e40505. [PMID: 39669158 PMCID: PMC11636103 DOI: 10.1016/j.heliyon.2024.e40505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Background Detecting methadone (MET) is crucial due to its severe side effects. Method Herein, a green nanocomposite based on reduced graphene (rGO) and β-cyclodextrin (β-CD) has been introduced to modify a glassy carbon electrode (GCE) for real-time measurement of MET. This eco-friendly sensing interface has synergistically benefited from both advantages of rGO and β-CD including excellent electron transfer tunneling and surface area enhancement to selectively trap MET based on its shape and size. Significant findings The developed sensor electrochemically detected MET at 0.8 V in buffer phosphate with a pH value of 7 under a wide linear concentration range (1 μM-830 μM), including a MET concentration level alarmed based on the consumer opioid tolerance according to the WHO's report. The limit of detection and analytical sensitivity values were calculated to be 333.33 nM and 0.0502 μA μM-1. The acceptable performance of the sensor to detect MET in various real human biofluids including serum, urine, and saliva samples, which is a bonus for the real-time and on-site measurement of MET, may open up a route for noninvasive routine tests in clinical samples. Moreover, the greenness profile of this strategy has been well evaluated by two common international metrics.
Collapse
Affiliation(s)
| | | | - Faezeh Shahdost-Fard
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| |
Collapse
|
21
|
Soleja N, Mohsin M. Exploring the landscape of FRET-based molecular sensors: Design strategies and recent advances in emerging applications. Biotechnol Adv 2024; 77:108466. [PMID: 39419421 DOI: 10.1016/j.biotechadv.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Probing biological processes in living organisms that could provide one-of-a-kind insights into real-time alterations of significant physiological parameters is a formidable task that calls for specialized analytic devices. Classical biochemical methods have significantly aided our understanding of the mechanisms that regulate essential biological processes. These methods, however, are typically insufficient for investigating transient molecular events since they focus primarily on the end outcome. Fluorescence resonance energy transfer (FRET) microscopy is a potent tool used for exploring non-invasively real-time dynamic interactions between proteins and a variety of biochemical signaling events using sensors that have been meticulously constructed. Due to their versatility, FRET-based sensors have enabled the rapid and standardized assessment of a large array of biological variables, facilitating both high-throughput research and precise subcellular measurements with exceptional temporal and spatial resolution. This review commences with a brief introduction to FRET theory and a discussion of the fluorescent molecules that can serve as tags in different sensing modalities for studies in chemical biology, followed by an outlining of the imaging techniques currently utilized to quantify FRET highlighting their strengths and shortcomings. The article also discusses the various donor-acceptor combinations that can be utilized to construct FRET scaffolds. Specifically, the review provides insights into the latest real-time bioimaging applications of FRET-based sensors and discusses the common architectures of such devices. There has also been discussion of FRET systems with multiplexing capabilities and multi-step FRET protocols for use in dual/multi-analyte detections. Future research directions in this exciting field are also mentioned, along with the obstacles and opportunities that lie ahead.
Collapse
Affiliation(s)
- Neha Soleja
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
22
|
Abbaspour M, Morsali A. Density functional theory and molecular dynamics simulation of water molecules confined between two-dimensional graphene oxide surfaces. J Mol Graph Model 2024; 133:108862. [PMID: 39288644 DOI: 10.1016/j.jmgm.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
In this work, the interaction potentials of water molecule with the two-dimensional graphene oxide (GO) surfaces containing epoxy groups have been determined using the M06-2X/6-31g (d,p) level of theory at different orientations and separations and fitted to the Born-Huggins-Meyer (BHM) potential. Good agreements were found between the computed and the well-known OPLS-AA and Dreiding potentials. We have also used some calculated potentials and the well-known models in the molecular dynamics (MD) simulations. Our results showed that some of the calculated force fields for both 2D GO structures almost represent similar results of average number of hydrogen bonds (), radial distribution functions (RDF), self-diffusion coefficient, and angle distribution function (ADF) with the OPLS-AA and Dreiding models which are due to their agreements of the interaction potentials. However, some models in both GO systems represent different results because of their shifted potentials to the larger distances. Our results also showed that the confined water molecules tend to orient toward the epoxy groups on the GO surfaces and the distributions at the angles of θ = 0o (or θ = 180o) is more than the other distributions. The water molecules confined between the bent GO surfaces showed less diffusion coefficients than the flat structure.
Collapse
Affiliation(s)
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
23
|
Channab BE, Tayi F, Aqlil M, Akil A, Essamlali Y, Chakir A, Zahouily M. Graphene oxide, starch, and kraft lignin bio-nanocomposite controlled-release phosphorus fertilizer: Effect on P management and maize growth. Int J Biol Macromol 2024; 282:137190. [PMID: 39500420 DOI: 10.1016/j.ijbiomac.2024.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were used as advanced coatings for triple superphosphate (TSP) fertilizers, and their implications for maize (Zea mays L.) plant growth were examined. Incorporating GO into the composite matrix is a significant accomplishment of this study, as demonstrated by the noticeable changes observed in the FTIR spectra, indicating consequent structural changes. Morphological analyses conducted by SEM reveal changes in the surface characteristics of the ST/KL films, providing essential information about the structural details of the bio-nanocomposite. The utilization of precision-coated TSP fertilizers leads to a significant enhancement in mechanical strength, as demonstrated by the improved crush resistance. Furthermore, these formulations guarantee a gradual release of phosphorus, showcasing their potential for efficient nutrient management in agricultural settings. The study examines the practical application of coated TSP fertilizers in agriculture and their positive effects on various growth parameters of Maize (Zea mays L.) plants. Using these fertilizers promotes sustainable and efficient agricultural practices, contributing to developing innovative agrochemical solutions.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences (CSAES), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Fatima Tayi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Meryem Aqlil
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Adil Akil
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences (CSAES), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf Chakir
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences (CSAES), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
24
|
Chahal S, Sahay T, Li Z, Sharma RK, Kumari E, Bandyopadhyay A, Kumari P, Jyoti Ray S, Vinu A, Kumar P. Graphene via Microwave Expansion of Graphite Followed by Cryo-Quenching and its Application in Electrostatic Droplet Switching. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404337. [PMID: 38958089 DOI: 10.1002/smll.202404337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high-purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few-layered graphene sheets (200-12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ-synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications.
Collapse
Affiliation(s)
- Sumit Chahal
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Indian Institute of Technology Hyderabad, Kandi, Hyderabad, 502284, India
| | - Trisha Sahay
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| | - Raju Kumar Sharma
- Department of Mechanical Engineering, Government Engineering College Sheohar, Chhatauna Bisunpur, Block- Piprahi, Sheohar, Bihar, 843329, India
| | - Ekta Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Arkamita Bandyopadhyay
- Institut für Physik, Theoretische Physik, Martin-Luther-Universität Halle-Wittenber, 06120, Halle, Germany
| | - Puja Kumari
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Soumya Jyoti Ray
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta Campus, Patna, 801106, India
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
25
|
Saleh M, Gul A, Nasir A, Moses TO, Nural Y, Yabalak E. Comprehensive review of Carbon-based nanostructures: Properties, synthesis, characterization, and cross-disciplinary applications. J IND ENG CHEM 2024. [DOI: 10.1016/j.jiec.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Francis C, Rektor A, Valayil-Varghese T, McKibben N, Estrada I, Forbey J, Estrada D. Laser-induced graphene gas sensors for environmental monitoring. Front Chem 2024; 12:1448205. [PMID: 39544719 PMCID: PMC11560773 DOI: 10.3389/fchem.2024.1448205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Artemesia tridentata is a foundational plant taxon in western North America and an important medicinal plant threatened by climate change. Low-cost fabrication of sensors is critical for developing large-area sensor networks for understanding and monitoring a range of environmental conditions. However, the availability of materials and manufacturing processes is still in the early stages, limiting the capacity to develop cost-effective sensors at a large scale. In this study, we demonstrate the fabrication of low-cost flexible sensors using laser-induced graphene (LIG); a graphitic material synthesized using a 450-nm wavelength bench top laser patterned onto polyimide substrates. We demonstrate the effect of the intensity and focus of the incident beam on the morphology and electrical properties of the synthesized material. Raman analyses of the synthesized LIG show a defect-rich graphene with a crystallite size in the tens of nanometers. This shows that the high level of disorder within the LIG structure, along with the porous nature of the material provide a good surface for gas adsorption. The initial characterization of the material has shown an analyte response represented by a change in resistance of up to 5% in the presence of volatile organic compounds (VOCs) that are emitted and detected by Artemisia species. Bend testing up to 100 cycles provides evidence that these sensors will remain resilient when deployed across the landscapes to assess VOC signaling in plant communities. The versatile low-cost laser writing technique highlights the promise of low-cost and scalable fabrication of LIG sensors for gas sensor monitoring.
Collapse
Affiliation(s)
- Cadré Francis
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Attila Rektor
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Tony Valayil-Varghese
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Department of Electrical and Computer and Engineering, Boise State University, Boise, ID, United States
| | - Nicholas McKibben
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Isaac Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Jennifer Forbey
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Center for Advanced Energy Studies, Boise State University, Boise, ID, United States
| |
Collapse
|
27
|
Apiwat C, Houghton JW, Ren R, Tate E, Edel JB, Chanlek N, Luksirikul P, Japrung D. Advancing Albumin Isolation from Human Serum with Graphene Oxide and Derivatives: A Novel Approach for Clinical Applications. ACS OMEGA 2024; 9:40592-40607. [PMID: 39371982 PMCID: PMC11447712 DOI: 10.1021/acsomega.4c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
This study introduces a novel, environmentally friendly albumin isolation method using graphene oxide (GO). GO selectively extracts albumin from serum samples, leveraging the unique interactions between GO's oxygen-containing functional groups and serum proteins. This method achieves high purification efficiency without the need for hazardous chemicals. Comprehensive characterization of GO and reduced graphene oxide (rGO) through techniques such as X-ray diffraction (XRD) analysis, Raman spectroscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) confirmed the structural and functional group transformations crucial for protein binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry analyses demonstrated over 95% purity of isolated albumin, with minimal contamination from other serum proteins. The developed method, optimized for pH and incubation conditions, showcases a green, cost-effective, and simple alternative for albumin purification, promising broad applicability in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Chayachon Apiwat
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Thailand Science Park, Pathumthani 10120, Thailand
| | - Jack W. Houghton
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Ren Ren
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Department
of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, U.K.
| | - Edward Tate
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Joshua B. Edel
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Narong Chanlek
- Synchrotron
Light Research Institute (Public Organization), 111 University Avenue, Muang, Nakhon Ratchasrima 30000, Thailand
| | - Patraporn Luksirikul
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Thailand Science Park, Pathumthani 10120, Thailand
| |
Collapse
|
28
|
Liu M, Wang L, Yu G. Recent Research Progress of Porous Graphene and Applications in Molecular Sieve, Sensor, and Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401767. [PMID: 38847563 DOI: 10.1002/smll.202401767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Indexed: 10/19/2024]
Abstract
Porous graphene, including 2D and 3D porous graphene, is widely researched recently. One of the most attractive features is the proper utilization of graphene defects, which combine the advantages of both graphene and porous materials, greatly enriching the applications of porous graphene in biology, chemistry, electronics, and other fields. In this review, the defects of graphene are first discussed to provide a comprehensive understanding of porous graphene. Then, the latest advancements in the preparation of 2D and 3D porous graphene are presented. The pros and cons of these preparation methods are discussed in detail, providing a direction for the fabrication of porous graphene. Moreover, various superior properties of porous graphene are described, laying the foundation for their promising applications. Owing to its abundant morphology, wide distribution of pore size, and remarkable properties benefited from porous structure, porous graphene can not only promote molecular diffusion and electron transfer but also expose more active sites. Consequently, a serious of applications containing gas sieving, liquid separation, sensors, and supercapacitors, are presented. Finally, the challenges confronted during preparation and characterization of porous graphene are discussed, offering guidance for the future development of porous graphene in fabrication, characterization, properties, and applications.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
29
|
Le HN, Dao TBT, Nguyen TD, Dinh DA, Ha Thuc CN, Le VH. Revisiting oxidation and reduction reactions for synthesizing a three-dimensional hydrogel of reduced graphene oxide. RSC Adv 2024; 14:30844-30858. [PMID: 39346523 PMCID: PMC11427890 DOI: 10.1039/d4ra05385k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
An improvement to Hummers' method involving a cascade-design graphite oxidation reaction is reported to optimize safety and efficiency in the production of graphite oxide (GrO) and graphene oxide (GO). Chemical reduction using highly alkaline ammonia solution is a novel approach to synthesizing reduced graphene oxide (RGO). In this original research, we revisit the oxidation and reduction reactions, providing significant findings regarding the synthetic pathway to obtain a bioinspired water-intercalated hydrogel of RGO nanosheets. Influential factors in the graphite oxidation reaction, typically the exothermic reaction temperature and hydrogen peroxide effect, are described. Furthermore, the chemical reaction of GO reduction using highly alkaline ammonia solution (pH 14) was investigated to produce hydrated RGO nanosheets assembled in a hydrogel structure (97% water). Three-dimensional assembly and water intercalation are key to preserve the non-stacking state of RGO nanosheets. Therefore, ultrasound transmission to aqueous channels in the macroscopic RGO hydrogel vibrated and dispersed the RGO nanosheets in water. Analytical results revealed the single-layer nanostructures, functional groups, optical band gaps, optimized C/O ratios, particle sizes and zeta potentials of GO and RGO nanosheets. The reversible self-assembly of RGO hydrogels is essential for many applications, such as RGO coatings and polymer/RGO nanocomposites. In a water purification application, the RGO hydrogel was dispersed in aqueous solution by simple agitation and showed a high capacity for organic dye adsorption. After the adsorption, the RGO/dye particles were easily removed by filtration through ordinary cellulose paper. The process of adsorption and filtration is effective and inexpensive for practical environmental remediation. In summary, a bioinspired structure of RGO hydrogel is conceptualized for prospective nanotechnology.
Collapse
Affiliation(s)
- Hon Nhien Le
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Thi Bang Tam Dao
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Trung Do Nguyen
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Duc Anh Dinh
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Chi Nhan Ha Thuc
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| | - Van Hieu Le
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 700000 Vietnam
- Multifunctional Materials Laboratory, University of Science Ho Chi Minh City 700000 Vietnam
- Vietnam National University Linh Trung Ward, Thu Duc City Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
30
|
Xiao S, Hao J, Shi T, Jin J, Wu B, Peng Q. Effects of size and shape of hole defects on mechanical properties of biphenylene: a molecular dynamics study. NANOTECHNOLOGY 2024; 35:485703. [PMID: 39208809 DOI: 10.1088/1361-6528/ad7509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The distinctive multi-ring structure and remarkable electrical characteristics of biphenylene render it a material of considerable interest, notably for its prospective utilization as an anode material in lithium-ion batteries. However, understanding the mechanical traits of biphenylene is essential for its application, particularly due to the volumetric fluctuations resulting from lithium ion insertion and extraction during charging and discharging cycles. In this regard, this study investigates the performance of pristine biphenylene and materials embedded with various types of hole defects under uniaxial tension utilizing molecular dynamics simulations. Specifically, from the stress‒strain curves, we obtained key mechanical properties, including toughness, strength, Young's modulus and fracture strain. It was observed that various near-circular hole (including circular, square, hexagonal, and octagonal) defects result in remarkably similar properties. A more quantitative scaling analysis revealed that, in comparison with the exact shape of the defect, the area of the defect is more critical for determining the mechanical properties of biphenylene. Our finding might be beneficial to the defect engineering of two-dimensional materials.
Collapse
Affiliation(s)
- Shuoyang Xiao
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jiannan Hao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tan Shi
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jianfeng Jin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China
| | - Bin Wu
- School of Physics and Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qing Peng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Guangdong Aerospace Research Academy, Guangzhou 511458, People's Republic of China
| |
Collapse
|
31
|
Wu J, Xu S, Liu X, Zhao J, He Z, Pan A, Wu J. High-precision Helicobacter pylori infection diagnosis using a dual-element multimodal gas sensor array. Analyst 2024; 149:4168-4178. [PMID: 38860637 DOI: 10.1039/d4an00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Helicobacter pylori (H. pylori) is a globally widespread bacterial infection. Early diagnosis of this infection is vital for public and individual health. Prevalent diagnosis methods like the isotope 13C or 14C labelled urea breath test (UBT) are not convenient and may do harm to the human body. The use of cross-response gas sensor arrays (GSAs) is an alternative way for label-free detection of metabolite changes in exhaled breath (EB). However, conventional GSAs are complex to prepare, lack reliability, and fail to discriminate subtle changes in EB due to the use of numerous sensing elements and single dimensional signal. This work presents a dual-element multimodal GSA empowered with multimodal sensing signals including conductance (G), capacitance (C), and dissipation factor (DF) to improve the ability for gas recognition and H. pylori-infection diagnosis. Sensitized by poly(diallyldimethylammonium chloride) (PDDA) and the metal-organic framework material NH2-UiO66, the dual-element graphene oxide (GO)-composite GSAs exhibited a high specific surface area and abundant adsorption sites, resulting in high sensitivity, repeatability, and fast response/recovery speed in all three signals. The multimodal sensing signals with rich sensing features allowed the GSA to detect various physicochemical properties of gas analytes, such as charge transfer and polarization ability, enhancing the sensing capabilities for gas discrimination. The dual-element GSA could differentiate different typical standard gases and non-dehumidified EB samples, demonstrating the advantages in EB analysis. In a case-control clinical study on 52 clinical EB samples, the diagnosis model based on the multimodal GSA achieved an accuracy of 94.1%, a sensitivity of 100%, and a specificity of 90.9% for diagnosing H. pylori infection, offering a promising strategy for developing an accurate, non-invasive and label-free method for disease diagnosis.
Collapse
Affiliation(s)
- Jiaying Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Shiyuan Xu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Xuemei Liu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou 310016, P.R. China
| | - Aiwu Pan
- Department of Internal Medicine, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, P.R. China.
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
32
|
Imran H, Lee HJ, Alam A, An J, Ko M, Lim S. Ultrasensitive detection of 5-hydroxymethylcytosine in genomic DNA using a graphene-based sensor modified with biotin and gold nanoparticles. Mater Today Bio 2024; 27:101123. [PMID: 38988817 PMCID: PMC11234158 DOI: 10.1016/j.mtbio.2024.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Ten-eleven translocation (TET) proteins orchestrate deoxyribonucleic acid (DNA) methylation-demethylation dynamics by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and are frequently inactivated in various cancers. Due to the significance of 5hmC as an epigenetic biomarker for cancer diagnosis, pathogenesis, and treatment, its rapid and precise quantification is essential. Here, we report a highly sensitive electrochemical method for quantifying genomic 5hmC using graphene sheets that were electrochemically exfoliated and functionalized with biotin and gold nanoparticles (Bt-AuNPs) through a single-step electrical method. The attachment of Bt-AuNPs to graphene enhances the specificity of 5hmC-containing DNA and augments the oxidation of 5hmC to 5-formylcytosine in DNA. When coupled to a gold electrode, the Bt-AuNP-graphene-based sensor exhibits exceptional sensitivity and specificity for detecting 5hmC, with a detection limit of 63.2 fM. Furthermore, our sensor exhibits a remarkable capacity to measure 5hmC levels across a range of biological samples, including preclinical mouse tissues with varying 5hmC levels due to either TET gene disruption or oncogenic transformation, as well as human prostate cancer cell lines. Therefore, our sensing strategy has substantial potential for cancer diagnostics and prognosis.
Collapse
Affiliation(s)
- Habibulla Imran
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Ji Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Mycronic AB, Nytorpsvägen 9, Täby, 183 53 Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
33
|
Singh R, Rawat H, Kumar A, Gandhi Y, Kumar V, Mishra SK, Narasimhaji CV. Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering. Heliyon 2024; 10:e33542. [PMID: 39040352 PMCID: PMC11261797 DOI: 10.1016/j.heliyon.2024.e33542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024] Open
Abstract
In this discourse, we delve into the manifold applications of graphene-based nanomaterials (GBNs) in the realm of biomedicine. Graphene, characterized by its two-dimensional planar structure, superconductivity, mechanical robustness, chemical inertness, extensive surface area, and propitious biocompatibility, stands as an exemplary candidate for diverse biomedical utility. Graphene include various distinctive characteristics of its two-dimensional planar structure, enormous surface area, mechanical and chemical stability, high conductivity, and exceptional biocompatibility. We investigate graphene and its diverse derivatives, which include reduced graphene oxides (rGOs), graphene oxides (GOs), and graphene composites, with a focus on elucidating the unique attributes relevant to their biomedical utility. In this review article it highlighted the unique properties of graphene, synthesis methods of graphene and functionalization methods of graphene. In the quest for novel materials to advance regenerative medicine, researchers have increasingly turned their attention to graphene-based materials, which have emerged as a prominent innovation in recent years. Notably, it highlights their applications in the regeneration of various tissues, including nerves, skeletal muscle, bones, skin, cardiac tissue, cartilage, and adipose tissue, as well as their influence on induced pluripotent stem cells, marking significant breakthroughs in the field of regenerative medicine. Additionally, this review article explores future prospects in this evolving area of study.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Hemant Rawat
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yashika Gandhi
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Sujeet K. Mishra
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | | |
Collapse
|
34
|
Wang H, Zheng H, Hu M, Ma Z, Liu H. Synergistic effect of Al 2O 3-decorated reduced graphene oxide on microstructure and mechanical properties of 6061 aluminium alloy. Sci Rep 2024; 14:16213. [PMID: 39003352 PMCID: PMC11246458 DOI: 10.1038/s41598-024-67004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
In this study, Al6061 alloy matrix composites reinforced Al2O3-decorated reduced graphene oxide (Al2O3/RGO) with 0.1, 0.3 and 0.5 weight present (wt%) were successfully fabricated using high energy ball milling and hot extrusion techniques. The microstructures of these Al2O3/RGO/Al6061 aluminum matrix composites (Al MMCs) were characterized. The results showed that Al2O3/RGO were uniformly distributed within the Al6061 matrix and tightly bonded to the matrix. Al2O3 encapsulation on RGO surface would prevent the formation of Al4C3 brittle phase in matrix, ensuring that there was no reaction between the reinforcement and the matrix Al6061. Tensile strength and Vickers hardness tests demonstrated that the mechanical properties of Al MMCs significantly increased with addition of Al2O3/RGOs. Remarkably, Al MMCs with 0.1 wt% reinforcement showed tensile yield and tensile strengths of 270 MPa and 286 MPa, respectively, which were 49% and 43% higher than those of pure Al6061 prepared using the same process. Furthermore, the 0.1 wt% Al2O3/RGO composite also showed the best plastic deformation capability in considering of the strength.
Collapse
Affiliation(s)
- Hongding Wang
- School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Haitao Zheng
- Urumqi West Depot, China Railway Urumqi Group Co.Ltd, Urumqi, 830023, People's Republic of China
| | - Mingshuai Hu
- School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Zhonglei Ma
- School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Hong Liu
- School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
35
|
Lee J, Ju S, Lim C, Lee J, Yoon Y. Effect of a solvothermal method using DMF on the dispersibility of rGO, application of rGO as a CDI electrode material, and recovery of sp 2-hybridized carbon. RSC Adv 2024; 14:22665-22675. [PMID: 39027039 PMCID: PMC11255561 DOI: 10.1039/d4ra03387f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
Graphene is prized for its large surface area and superior electrical properties. Efforts to maximize the electrical conductivity of graphene commonly result in the recovery of sp2-hybridized carbon in the form of reduced graphene oxide (rGO). However, rGO shows poor dispersibility and aggregation when mixed with other materials without hydrophilic functional groups, This could lead to electrode delamination, agglomeration, and reduced efficiency. This study focuses on the impact of solvothermal reduction on the dispersibility and capacitance of rGO compared with chemical reduction. The results show that the dispersibility of rGO-D obtained through solvothermal reduction using N,N-dimethylformamide improved compared to that obtained through chemical reduction (rGO-H). Furthermore, when utilized as a material for CDI, an improvement in deionization efficiency was observed in the AC@rGO-D-based CDI system compared to AC@rGO-H and AC. However, the specific surface area, a key factor affecting CDI efficiency, was higher in rGO-H (249.572 m2 g-1) than in rGO-D (150.661 m2 g-1). While AC@rGO-H is expected to exhibit higher deionization efficiency due to its greater specific surface area, the opposite was observed. This highlights the effect of the improved dispersibility of rGO-D and underscores its potential as a valuable material for CDI applications.
Collapse
Affiliation(s)
- Junho Lee
- Department of Environmental and Energy Engineering, Yonsei University Wonju 26493 Republic of Korea +82-10-8993-0744
| | - Seonghyeon Ju
- Department of Environmental and Energy Engineering, Yonsei University Wonju 26493 Republic of Korea +82-10-8993-0744
| | - Chaehwi Lim
- Department of Environmental and Energy Engineering, Yonsei University Wonju 26493 Republic of Korea +82-10-8993-0744
| | - Jihoon Lee
- Department of Environmental and Energy Engineering, Yonsei University Wonju 26493 Republic of Korea +82-10-8993-0744
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University Wonju 26493 Republic of Korea +82-10-8993-0744
| |
Collapse
|
36
|
Thomas SM, Ravindran P. Exploration of isoelectronic substitution in graphene dioxide for photocatalytic and photovoltaic applications - an ab-initio study. Phys Chem Chem Phys 2024; 26:18667-18682. [PMID: 38922675 DOI: 10.1039/d4cp01033g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Herein, we propose graphene dioxide (GDO) derivatives as promising materials for green hydrogen production by photocatalytic water splitting. The optoelectronic and photocatalytic properties of GDO, an insulator with a wide band gap, are tuned by designing new compositions through isovalent substitution of S/Se at the O site, Si and (B,N) at the C site. The newly predicted GDO derivatives were studied using hybrid functional calculations and our results show that several of these materials exhibit semiconducting behavior with a direct band gap value higher than 1.23 eV, hence appropriate for visible light-driven photocatalytic water splitting. The structural stability of these materials was analyzed by total energy and lattice dynamical calculations. The photo generated charge carriers possess lower effective mass and hence higher carrier mobility resulting in suppressed recombination rate and hence improving the water splitting efficiency. Apart from low excitonic binding energy, the electronic structure analysis shows that in several of these compounds the electrons and holes reside in two different atomic sites ensuring further reduction in recombination rate. The relatively higher absorption coefficient of GDO derivatives in the visible part of the solar spectrum indicates enhanced photoconversion efficiency suitable for solar cell applications also and it was further determined by photovoltaic performance parameter analysis. The band edge potential of GDO derivatives is well straddled by the water redox potential at different pHs, suggesting their potential for water splitting along with the possibility of CO2 reduction. Our findings indicate that the newly predicted compositions hold significant promise for photocatalytic as well as photovoltaic applications.
Collapse
Affiliation(s)
- Santy M Thomas
- Department of Physics, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India.
- Simulation Center for Atomic and Nanoscale MATerials (SCANMAT), Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - P Ravindran
- Department of Physics, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India.
- Simulation Center for Atomic and Nanoscale MATerials (SCANMAT), Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| |
Collapse
|
37
|
Dai Y, Liu G, Zhang G. Effect of strain on the photoelectric properties of molybdenum ditelluride under vacancy defects: a DFT investigation. J Mol Model 2024; 30:259. [PMID: 38977581 DOI: 10.1007/s00894-024-06057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
CONTEXT This study explores the impact of deformation on the electrical and optical characteristics of monolayer cadmium telluride (MoTe2) with vacancies, using the foundational principles of density functional theory. It was discovered that both strain and imperfections alter the electrical characteristics of monolayer MoTe2. Under VTe-MoTe2, a direct-to-indirect band-gap transition occurs. In DTe-MoTe2, the band-gap value reduces dramatically, the conduction band changes downward, and the carrier concentration rises. The DVTe-induced band gap state is closer to the Fermi energy level than the VTe-induced band gap state. In this paper, DTe-MoTe2 is chosen for tensile deformation. The results show that the band-gap value tends to decrease by increasing tensile deformation. When the stretching value reaches 10%, the lower bound of the conduction band and the top of the valence band overlap, and the system is converted from a semiconductor to a metal. Considering the density of states, the missing state MoTe2 is mainly contributed by the participation of Te-s, Te-p, and Mo-d orbitals. In terms of optical qualities, the absorption and reflection peaks are red-shifted and blue-shifted, respectively. It is hoped that these effects on the optoelectronic properties will be widely applied. METHODS In this study, we utilize the generalized gradient approximation plane-wave pseudopotential method, incorporating Perdew-Burke Ernzerhof (PBE) generalized functions and following the fundamental principles of the density functional theory framework. A 3 × 3 × 1 supercell was constructed as an undoped model based on a MoTe2 monolayer, which consists of 9 Mo atoms and 18 Te atoms. The vacuum flat plate was set to 15 Å along the z-direction to avoid interactions between the monolayers. For electronic structure calculations, the energy cutoff was set to 450 eV. Each model's computational process and structural optimization were carried out using the Monkhorst-Pack specialized K-point sampling approach. Crystal optimization computations used a 3 × 3 × 1 Monkhorst-Pack K-point grid for molybdenum ditelluride monolayers and a 9 × 9 × 1 K-point grid for electronic system analysis, analyzing state density and optical characteristics, respectively. For the structural optimization, the convergence requirements for maximum force, maximum atom displacement, maximum stress, and energy change were defined at 0.03 eV/Å, 0.001 Å, 0.05 Gpa, and 1.0 × 10-5 eV/atom, respectively.
Collapse
Affiliation(s)
- Ying Dai
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Guili Liu
- College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang, People's Republic of China.
| | - Guoying Zhang
- School of Physics, Shenyang Normal University, Shenyang, People's Republic of China
| |
Collapse
|
38
|
Zhao Q, Niu F, Liu J, Yin H. Research Progress of Natural Rubber Wet Mixing Technology. Polymers (Basel) 2024; 16:1899. [PMID: 39000755 PMCID: PMC11244561 DOI: 10.3390/polym16131899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The performance of natural rubber (NR), a naturally occurring and sustainable material, can be greatly enhanced by adding different fillers to the NR matrix. The homogeneous dispersion of fillers in the NR matrix is a key factor in their ability to reinforce. As a novel method, wet mixing technology may effectively provide good filler dispersion in the NR matrix while overcoming the drawbacks of conventional dry mixing. This study examines the literature on wet mixing fillers, such as graphene, carbon nanotubes, silica, carbon black, and others, to prepare natural rubber composites. It also focuses on the wet preparation techniques and key characteristics of these fillers. Furthermore, the mechanism of filler reinforcement is also examined. To give guidance for the future development of wet mixing technology, this study also highlights the shortcomings of the current system and the urgent need to address them.
Collapse
Affiliation(s)
| | | | | | - Haishan Yin
- College of Electromechanical and Engineering, Qingdao University of Science and Technology, Qingdao 266100, China; (Q.Z.); (F.N.); (J.L.)
| |
Collapse
|
39
|
Al-Hamry A, Pan Y, Rahaman M, Selyshchev O, Tegenkamp C, Zahn DRT, Pašti IA, Kanoun O. Toward Humidity-Independent Sensitive and Fast Response Temperature Sensors Based on Reduced Graphene Oxide/Poly(vinyl alcohol) Nanocomposites. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:4718-4734. [PMID: 38947952 PMCID: PMC11210420 DOI: 10.1021/acsaelm.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024]
Abstract
Flexible temperature sensors are becoming increasingly important these days. In this work, we explore graphene oxide (GO)/poly(vinyl alcohol) (PVA) nanocomposites for potential application in temperature sensors. The influence of the mixing ratio of both materials, the reduction temperature, and passivation on the sensing performance has been investigated. Various spectroscopic techniques revealed the composite structure and atomic composition. These were complemented by semiempirical quantum chemical calculations to investigate rGO and PVA interaction. Scanning electron and atomic force microscopy measurements were carried out to evaluate dispersion and coated film quality. The temperature sensitivity has been evaluated for several composite materials with different compositions in the range from 10 to 80 °C. The results show that a linear temperature behavior can be realized based on rGO/PVA composites with temperature coefficients of resistance (TCR) larger than 1.8% K-1 and a fast response time of 0.3 s with minimal hysteresis. Furthermore, humidity influence has been investigated in the range from 10% to 80%, and a minor effect is shown. Therefore, we can conclude that rGO/PVA composites have a high potential for excellent passivation-free, humidity-independent, sensitive, and fast response temperature sensors for various applications. The GO reduction is tunable, and PVA improves the rGO/PVA sensor performance by increasing the tunneling effect and band gap energy, consequently improving temperature sensitivity. Additionally, PVA exhibits minimal water absorption, reducing the humidity sensitivity. rGO/PVA maintains its temperature sensitivity during and after several mechanical deformations.
Collapse
Affiliation(s)
- Ammar Al-Hamry
- Measurement
and Sensor Technology, Chemnitz University
of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Yang Pan
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Mahfujur Rahaman
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Oleksandr Selyshchev
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Christoph Tegenkamp
- Analysis
of Solid Surfaces, Chemnitz University of
Technology, Reichenhainer
Str. 70, 09126 Chemnitz, Germany
| | - Dietrich R. T. Zahn
- Semiconductor
Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| | - Igor A. Pašti
- Faculty
of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Olfa Kanoun
- Measurement
and Sensor Technology, Chemnitz University
of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany
| |
Collapse
|
40
|
Ayyubov I, Tálas E, Borbáth I, Pászti Z, Silva C, Szegedi Á, Kuncser A, Yazici MS, Sajó IE, Szabó T, Tompos A. Composites of Titanium-Molybdenum Mixed Oxides and Non-Traditional Carbon Materials: Innovative Supports for Platinum Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1053. [PMID: 38921928 PMCID: PMC11206414 DOI: 10.3390/nano14121053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
TiO2-based mixed oxide-carbon composite support for Pt electrocatalysts provides higher stability and CO tolerance under the working conditions of polymer electrolyte membrane fuel cells compared to traditional carbon supports. Non-traditional carbon materials like graphene nanoplatelets and graphite oxide used as the carbonaceous component of the composite can contribute to its affordability and/or functionality. Ti(1-x)MoxO2-C composites involving these carbon materials were prepared through a sol-gel route; the effect of the extension of the procedure through a solvothermal treatment step was assessed. Both supports and supported Pt catalysts were characterized by physicochemical methods. Electrochemical behavior of the catalysts in terms of stability, activity, and CO tolerance was studied. Solvothermal treatment decreased the fracture of graphite oxide plates and enhanced the formation of a reduced graphene oxide-like structure, resulting in an electrically more conductive and more stable catalyst. In parallel, solvothermal treatment enhanced the growth of mixed oxide crystallites, decreasing the chance of formation of Pt-oxide-carbon triple junctions, resulting in somewhat less CO tolerance. The electrocatalyst containing graphene nanoplatelets, along with good stability, has the highest activity in oxygen reduction reaction compared to the other composite-supported catalysts.
Collapse
Affiliation(s)
- Ilgar Ayyubov
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (I.B.); (Z.P.); (C.S.); (Á.S.); (A.T.)
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Emília Tálas
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (I.B.); (Z.P.); (C.S.); (Á.S.); (A.T.)
| | - Irina Borbáth
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (I.B.); (Z.P.); (C.S.); (Á.S.); (A.T.)
| | - Zoltán Pászti
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (I.B.); (Z.P.); (C.S.); (Á.S.); (A.T.)
| | - Cristina Silva
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (I.B.); (Z.P.); (C.S.); (Á.S.); (A.T.)
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Ágnes Szegedi
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (I.B.); (Z.P.); (C.S.); (Á.S.); (A.T.)
| | - Andrei Kuncser
- National Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele, Romania;
| | - M. Suha Yazici
- Energy Institute, Istanbul Technical University, Maslak, 34467 Istanbul, Turkey;
| | - István E. Sajó
- Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624 Pécs, Hungary;
| | - Tamás Szabó
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - András Tompos
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; (I.A.); (I.B.); (Z.P.); (C.S.); (Á.S.); (A.T.)
| |
Collapse
|
41
|
Baskoro F, Wong HQ, Najman S, Yang PY, Togonon JJH, Ho YC, Tseng MC, Tzou DLM, Kung YR, Pao CW, Yen HJ. Lithium-Ion Dynamic and Storage of Atomically Precise Halogenated Nanographene Assemblies via Bottom-Up Chemical Synthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29016-29028. [PMID: 38783839 PMCID: PMC11163403 DOI: 10.1021/acsami.4c02545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Graphene has received much scientific attention as an electrode material for lithium-ion batteries because of its extraordinary physical and electrical properties. However, the lack of structural control and restacking issues have hindered its application as carbon-based anode materials for next generation lithium-ion batteries. To improve its performance, several modification approaches such as edge-functionalization and electron-donating/withdrawing substitution have been considered as promising strategies. In addition, group 7A elements have been recognized as critical elements due to their electronegativity and electron-withdrawing character, which are able to further improve the electronic and structural properties of materials. Herein, we elucidated the chemistry of nanographenes with edge-substituted group 7A elements as lithium-ion battery anodes. The halogenated nanographenes were synthesized via bottom-up organic synthesis to ensure the structural control. Our study reveals that the presence of halogens on the edge of nanographenes not only tunes the structural and electronic properties but also impacts the material stability, reactivity, and Li+ storage capability. Further systematic spectroscopic studies indicate that the charge polarization caused by halogen atoms could regulate the Li+ transport, charge transfer energy, and charge storage behavior in nanographenes. Overall, this study provides a new molecular design for nanographene anodes aiming for next-generation lithium-ion batteries.
Collapse
Affiliation(s)
- Febri Baskoro
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Hui Qi Wong
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Sustainable
Chemical Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Svetozar Najman
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Po-Yu Yang
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jazer Jose H. Togonon
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yi-Chi Ho
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Mei-Chun Tseng
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Der-Lii M. Tzou
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yu-Ruei Kung
- Department
of Chemical Engineering and Biotechnology, Tatung University, Taipei 10452, Taiwan
| | - Chun-Wei Pao
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department
of Photonics, National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan
| | - Hung-Ju Yen
- Institute
of Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
42
|
Chen J, Li D, Ding X, Zhang D. Sensitive and selective electrochemical aptasensing method for the voltammetric determination of dopamine based on AuNPs/PEDOT-ERGO nanocomposites. Bioelectrochemistry 2024; 157:108653. [PMID: 38281365 DOI: 10.1016/j.bioelechem.2024.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
In this study, the effects of phosphate buffered saline (PBS) and graphene oxide (GO) as supporting electrolytes and dopants on the electropolymerization process of 3,4-ethylenedioxythiophene (EDOT) on glassy carbon electrode (GCE) were investigated. It was found that the PEDOT-ERGO nanocomposites obtained by a simple one-step electrochemical redox polymerization method using GO as the only supporting electrolyte and dopant possess excellent electrochemical properties. Then, the PEDOT-ERGO nanocomposites were used as electrode substrate to further modify with AuNPs, and an electrochemical aptasensor based on AuNPs/PEDOT-ERGO nanocomposites was successfully constructed for the sensitive and selective determination of dopamine (DA). Comparison of the cyclic voltammetric response of different neurotransmitters before and after aptamer assembly showed that the aptamer significantly improved the selectivity of the sensor for DA. The low detection limit of 1.0 μM (S/N = 3) indicated the good electrochemical performance of the PEDOT-ERGO nanocomposite film. Moreover, the aptasensor showed good recoveries in 50-fold diluted fetal bovine serum with RSD values all less than 5 % (n = 5), indicating that the PEDOT-ERGO nanocomposites and the electrochemical aptasensor have promising applications in other neurochemicals assay and biomedical analysis.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dandan Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
43
|
HosseinAbadi M, Abbas Rafati A, Ghasemian Lemraski E. Electrochemical detection of regorafenib using a graphite sheet electrode modified with nitrogen-doped reduced graphene oxide nanocomposite. MATERIALS SCIENCE AND ENGINEERING: B 2024; 304:117375. [DOI: 10.1016/j.mseb.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Shi Z, Yun Q, Zhang T, Xing C, Li J, Wu Y, Wang L. Facile Preparation of High-Performance Reduced Graphene Oxide (RGO)/Copper (Cu) Composites Based on Pyrolysis of Copper Formate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2519. [PMID: 38893783 PMCID: PMC11174114 DOI: 10.3390/ma17112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Graphene has attracted much interest in many scientific fields because of its high specific surface area, Young's modulus, fracture strength, carrier mobility and thermal conductivity. In particular, the graphene oxide (GO) prepared by chemical exfoliation of graphite has achieved low-cost and large-scale production and is one of the most promising for Cu matrix composites. Here, we prepared a high strength, high electrical conductivity and high thermal conductivity reduced graphene oxide (RGO)/Cu composite by directly heating the GO/copper formate. The oxygen-containing functional groups and defects of RGO are significantly reduced compared with those of GO. The tensile yield strength and thermal conductivity of RGO/Cu composite with RGO volume fraction of 0.49 vol.% are as high as 553 MPa and 364 W/(m·K) at room temperature, respectively. The theoretical value of the tensile yield strength of the composite is calculated according to the strengthening mechanism, and the result shows that it agrees with the experimental value. After hot-rolling treatment, the ductility and conductivity of the composite materials have been greatly improved, and the ductility of the RGO/Cu composite with RGO volume fraction of 0.49 vol.% has been increased to four times the original. This work provides a highly efficient way to fabricate a high-performance RGO-reinforced Cu composite for commercial application.
Collapse
Affiliation(s)
- Zhendong Shi
- Harbin Aircraft Industry Group Co., Ltd., Aviation Industry Corporation of China, Harbin 150066, China;
- Harbin Hafei Aviation Industry Co., Ltd., Aviation Industry Corporation of China, Harbin 150010, China
| | - Qingwen Yun
- Harbin Aircraft Industry Group Co., Ltd., Aviation Industry Corporation of China, Harbin 150066, China;
| | - Tong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (T.Z.); (C.X.); (J.L.); (Y.W.)
| | - Changsheng Xing
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (T.Z.); (C.X.); (J.L.); (Y.W.)
| | - Jie Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (T.Z.); (C.X.); (J.L.); (Y.W.)
| | - Yunzhong Wu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (T.Z.); (C.X.); (J.L.); (Y.W.)
| | - Lidong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (T.Z.); (C.X.); (J.L.); (Y.W.)
| |
Collapse
|
45
|
Belessi V, Koutsioukis A, Giasafaki D, Philippakopoulou T, Panagiotopoulou V, Mitzithra C, Kripotou S, Manolis G, Steriotis T, Charalambopoulou G, Georgakilas V. One-Pot Synthesis of Functionalised rGO/AgNPs Hybrids as Pigments for Highly Conductive Printing Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:859. [PMID: 38786815 PMCID: PMC11123983 DOI: 10.3390/nano14100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
This work provides a method for the development of conductive water-based printing inks for gravure, flexography and screen-printing incorporating commercial resins that are already used in the printing industry. The development of the respective conductive materials/pigments is based on the simultaneous (in one step) reduction of silver salts and graphene oxide in the presence of 2,5-diaminobenzenesulfonic acid that is used for the first time as the common in-situ reducing agent for these two reactions. The presence of aminophenylsulfonic derivatives is essential for the reduction procedure and in parallel leads to the enrichment of the graphene surface with aminophenylsulfonic groups that provide a high hydrophilicity to the final materials/pigments.
Collapse
Affiliation(s)
- Vassiliki Belessi
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, Egaleo, 12243 Athens, Greece;
- Laboratory of Electronic Devices and Materials, Department of Electrical and Electronic Engineering, University of West Attica, Egaleo, 12244 Athens, Greece;
| | | | - Dimitra Giasafaki
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Theodora Philippakopoulou
- Department of Graphic Design and Visual Communication, Graphic Arts Technology Study Direction, University of West Attica, Egaleo, 12243 Athens, Greece;
| | | | - Christina Mitzithra
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Sotiria Kripotou
- Laboratory of Electronic Devices and Materials, Department of Electrical and Electronic Engineering, University of West Attica, Egaleo, 12244 Athens, Greece;
| | - Georgios Manolis
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Theodore Steriotis
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | - Georgia Charalambopoulou
- National Centre for Scientific Research “Demokritos”, Agia Paraskevi, 15341 Athens, Greece; (D.G.); (C.M.); (G.M.); (G.C.)
| | | |
Collapse
|
46
|
Yaldagard M, Arkas M. Enhanced Mass Activity and Durability of Bimetallic Pt-Pd Nanoparticles on Sulfated-Zirconia-Doped Graphene Nanoplates for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications. Molecules 2024; 29:2129. [PMID: 38731620 PMCID: PMC11085642 DOI: 10.3390/molecules29092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Developing highly active and durable Pt-based electrocatalysts is crucial for polymer electrolyte membrane fuel cells. This study focuses on the performance of oxygen reduction reaction (ORR) electrocatalysts composed of Pt-Pd alloy nanoparticles on graphene nanoplates (GNPs) anchored with sulfated zirconia nanoparticles. The results of field emission scanning electron microscopy and transmission electron microscopy showed that Pt-Pd and S-ZrO2 are well dispersed on the surface of the GNPs. X-ray diffraction revealed that the S-ZrO2 and Pt-Pd alloy coexist in the Pt-Pd/S-ZrO2-GNP nanocomposites without affecting the crystalline lattice of Pt and the graphitic structure of the GNPs. To evaluate the electrochemical activity and reaction kinetics for ORR, we performed cyclic voltammetry, rotating disc electrode, and EIS experiments in acidic solutions at room temperature. The findings showed that Pt-Pd/S-ZrO2-GNPs exhibited a better ORR performance than the Pt-Pd catalyst on the unsulfated ZrO2-GNP support and with Pt on S-ZrO2-GNPs and commercial Pt/C.
Collapse
Affiliation(s)
- Maryam Yaldagard
- Department of Chemical Engineering, Faculty of Engineering, Urmia University, Urmia 5766-151818, Iran
| | - Michael Arkas
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology, 15310 Athens, Greece
| |
Collapse
|
47
|
Lv Y, Gong C, Dong Y, Choi HJ. Synthesis of rGO/CoFe 2O 4 Composite and Its Magnetorheological Characteristics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1859. [PMID: 38673216 PMCID: PMC11051295 DOI: 10.3390/ma17081859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
In this study, composite particles of rGO/CoFe2O4 were synthesized using a solvothermal method to fabricate a low-density magnetorheological (MR) material with enhanced sedimentation stability. The morphology and crystallographic features of rGO/CoFe2O4 were characterized via SEM, TEM, and XRD, and its magnetic properties were tested using VSM. The MR fluid was formulated by blending rGO/CoFe2O4 particles into silicone oil. Under different magnet strengths (H), a rotational rheometer was used to test its MR properties. Typical MR properties were observed, including shear stress, viscosity, storage/loss modulus, and dynamic yield stress (τdy) following the Herschel-Bulkley model reaching 200 Pa when H is 342 kA/m. Furthermore, the yield stress of the MR fluid follows a power law relation as H increases and the index changes from 2.0 (in the low H region) to 1.5 (in the high H region). Finally, its MR efficiency was calculated to be about 104% at H of 342 kA/m.
Collapse
Affiliation(s)
- Yang Lv
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, 2 West Wenhua Road, Weihai 264209, China; (Y.L.); (C.G.)
| | - Chengjie Gong
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, 2 West Wenhua Road, Weihai 264209, China; (Y.L.); (C.G.)
| | - Yuzhen Dong
- School of Materials Science and Engineering, Harbin Institute of Technology Weihai, 2 West Wenhua Road, Weihai 264209, China; (Y.L.); (C.G.)
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
48
|
Mukherjee S, Mukherjee A, Bytesnikova Z, Ashrafi AM, Richtera L, Adam V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens Bioelectron 2024; 250:116050. [PMID: 38301543 DOI: 10.1016/j.bios.2024.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Low-cost, rapid, and easy-to-use biosensors for various cancer biomarkers are of utmost importance in detecting cancer biomarkers for early-stage metastasis control and efficient diagnosis. The molecular complexity of cancer biomarkers is overwhelming, thus, the repeatability and reproducibility of measurements by biosensors are critical factors. Electrochemical biosensors are attractive alternatives in cancer diagnosis due to their low cost, simple operation, and promising analytical figures of merit. Recently graphene-derived nanostructures have been used extensively for the fabrication of electrochemical biosensors because of their unique physicochemical properties, including the high electrical conductivity, adsorption capacity, low cost and ease of mass production, presence of oxygen-containing functional groups that facilitate the bioreceptor immobilization, increased flexibility and mechanical strength, low cellular toxicity. Indeed, these properties make them advantageous compared to other alternatives. However, some drawbacks must be overcome to extend their use, such as poor and uncontrollable deposition on the substrate due to the low dispersity of some graphene materials and irreproducibility of the results because of the differences in various batches of the produced graphene materials. This review has documented the most recently developed strategies for electrochemical sensor fabrication. It differs in the categorization method compared to published works to draw greater attention to the wide opportunities of graphene nanomaterials for biological applications. Limitations and future scopes are discussed to advance the integration of novel technologies such as artificial intelligence, the internet of medical things, and triboelectric nanogenerators to eventually increase efficacy and efficiency.
Collapse
Affiliation(s)
- Soumajit Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnici 835, 252 41, Dolni Breznany, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
49
|
Vita Damasceno JP, Picheau E, Hof F, Zarbin AJG, Pénicaud A, Drummond C. Influence of Defects and Charges on the Colloidal Stabilization of Graphene in Water. Chemistry 2024; 30:e202303508. [PMID: 38369596 DOI: 10.1002/chem.202303508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mastering graphene preparation is an essential step to its integration into practical applications. For large-scale purposes, full graphite exfoliation appears as a suitable route for graphene production. However, it requires overpowering attractive van der Waals forces demanding large energy input, with the risk of introducing defects in the material. This difficulty can be overcome by using graphite intercalation compounds (GICs) as starting material. The greater inter-sheet separation in GICs (compared with graphite) allows the gentler exfoliation of soluble graphenide (reduced graphene) flakes. A solvent exchange strategy, accompanied by the oxidation of graphenide to graphene, can be implemented to produce stable aqueous graphene dispersions (Eau de graphene, EdG), which can be readily incorporated into many processes or materials. In this work, we prove that electrostatic forces are responsible for the stability of fully exfoliated graphene in water, and explore the influence of the oxidation and solvent exchange procedures on the quality and stability of EdG. We show that the amount of defects in graphene is limited if graphenide oxidation is carried out before exposing the material to water, and that gas removal of water before the incorporation of pre-oxidized graphene is advantageous for the long-term stability of EdG.
Collapse
Affiliation(s)
- João Paulo Vita Damasceno
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Emmanuel Picheau
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Ferdinand Hof
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Aldo J G Zarbin
- Department of Chemistry, Federal University of Paraná (UFPR), CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Alain Pénicaud
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| | - Carlos Drummond
- Centre de Recherche Paul Pascal (CRPP) UMR 5031-CNRS/, Université de Bordeaux, 115 Av. Du Dr. Albert Schweitzer, 33600, Pessac, France
- present address: Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, Brazil
| |
Collapse
|
50
|
Adiraju A, Al-Hamry A, Jalasutram A, Wang J, Kanoun O. Multifaceted experiments and photothermal simulations based analysis of laser induced graphene and its fibers. DISCOVER NANO 2024; 19:59. [PMID: 38548950 PMCID: PMC10978564 DOI: 10.1186/s11671-024-03999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024]
Abstract
The interaction of CO2 laser with polyimide results in the formation of laser-induced graphene (LIG) and other morphological transitions based on laser parameters, such as Laser-induced fibers (LIF) on the surface. However, a fundamental investigation of LIF, its properties and potential have not been explored until now. We aim therefore to provide novel insights into the LIF by characterization of its structural, electrical, electrochemical, and mechanical properties. Four different morphologies were identified depending on the laser parameters and the temperature required for their formation were quantified by FEM model. Minimum temperatures of 1800 K were required to form LIG and around 2600 to 5000 K to form LIF. High heterogeneity of the LIF along thickness due to temperature gradients, and the existence of sheet structures underneath the fibers were identified. Due to the loosely bound nature of fibers, LIF dispersion was prepared by ultrasonication to functionalize the carbon electrode for electrochemical characterization. The modification with LIF on the electrodes enhanced the electrochemical response of the electrode towards standard redox couple which confirmed the conductive nature of the fibers. This work provides a solid basis for the versatile tuning of the behavior and properties of LIF for potential applications.
Collapse
Affiliation(s)
- Anurag Adiraju
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107, Chemnitz, Germany.
| | - Ammar Al-Hamry
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Aditya Jalasutram
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Junfei Wang
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Olfa Kanoun
- Chair Measurement and Sensor Technology, Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09107, Chemnitz, Germany
| |
Collapse
|