1
|
Meng Y, Hu Y, Xue Y, Zhen Z. Metabolomic Profiling of the Striatum in Shank3 Knockout ASD Rats: Effects of Early Swimming Regulation. Metabolites 2025; 15:134. [PMID: 39997759 PMCID: PMC11857520 DOI: 10.3390/metabo15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Objectives: This study aimed to investigate the regulatory impact of early swimming intervention on striatal metabolism in Shank3 gene knockout ASD model rats. Methods:Shank3 gene knockout exon 11-21 male 8-day-old SD rats were used as experimental subjects and randomly divided into the following three groups: a Shank3 knockout control group (KC), a wild-type control group (WC) from the same litter, and a Shank3 knockout swimming group (KS). The rats in the exercise group received early swimming intervention for 8 weeks starting at 8 days old. LC-MS metabolism was employed to detect the changes in metabolites in the striatum. Results: There were 17 differential metabolites (14 down-regulated) between the KC and WC groups, 19 differential metabolites (18 up-regulated) between the KS and KC groups, and 22 differential metabolites (18 up-regulated) between the KS and WC groups. Conclusions: The metabolism of striatum in Shank3 knockout ASD model rats is disrupted, involving metabolites related to synaptic morphology, and the Glu and GABAergic synapses are abnormal. Early swimming intervention regulated the striatal metabolome group of the ASD model rats, with differential metabolites primarily related to nerve development, synaptic membrane structure, and synaptic signal transduction.
Collapse
Affiliation(s)
- Yunchen Meng
- Department of Physical Education and Research, China University of Mining and Technology—Beijing, Beijing 100083, China;
| | - Yiling Hu
- Department of Physical Education and Research, China University of Mining and Technology—Beijing, Beijing 100083, China;
| | - Yaqi Xue
- College of P.E and Sports, Beijing Normal University, Beijing 100875, China;
| | - Zhiping Zhen
- College of P.E and Sports, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
2
|
de Diego-Otero Y, El Bekay R, García-Guirado F, Sánchez-Salido L, Giráldez-Pérez RM. Apocynin, a Selective NADPH Oxidase (Nox2) Inhibitor, Ameliorates Behavioural and Learning Deficits in the Fragile X Syndrome Mouse Model. Biomedicines 2024; 12:2887. [PMID: 39767793 PMCID: PMC11673502 DOI: 10.3390/biomedicines12122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fragile X Syndrome (FXS) is associated with intellectual disability, hyperactivity, social anxiety and signs of autism. Hyperactivation of NADPH oxidase has been previously described in the brain of the male Fmr1-KO mouse. This work aims to demonstrate the efficacy of Apocynin, a specific NADPH oxidase inhibitor, in treating Fragile X mouse hallmarks. Methods: Free radicals, lipid and protein oxidation markers and behavioural and learning paradigms were measured after chronic treatment with orally administered vehicle, 10 mg/kg/day or 30 mg/kg/day of Apocynin. Results: The results revealed a reduction in testis weight, an increase in peritoneal fat, and no variation in body weight after chronic treatment. Furthermore, a reduction in hyperactivity was detected in Apocynin-treated male Fmr1-KO mice. Additionally, the higher dose of 30 mg/kg/day also improves behaviour and learning in the male Fmr1-KO mice, normalising free radical production and oxidative parameters. Moreover, a reduction in phospho-EKR1 and P47-Phox protein signals was observed in specific brain areas. Conclusions: Thus, chronic treatment with Apocynin could lead to a new therapeutic option for the Fragile X Syndrome.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, 14014 Córdoba, Spain;
| | - Rajaa El Bekay
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
- Endocrinology and Nutrition Clinic Unit, Regional University Hospital of Málaga, 29009 Málaga, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco García-Guirado
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
| | - Lourdes Sánchez-Salido
- Research Laboratory, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIO-NAND, Hospital Civil, 29009 Malaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
3
|
Hakizimana O, Hitayezu J, Uyisenga JP, Onohuean H, Palmeira L, Bours V, Alagbonsi AI, Uwineza A. Genetic etiology of autism spectrum disorder in the African population: a scoping review. Front Genet 2024; 15:1431093. [PMID: 39391062 PMCID: PMC11464363 DOI: 10.3389/fgene.2024.1431093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by significant impairments in social, communicative, and behavioral abilities. However, only a limited number of studies address the genetic basis of ASD in the African population. This study aims to document the genes associated with ASD in Africa and the techniques used to identify them. Additionally, genes identified elsewhere but not yet in Africa are also noted. Methods Online databases such as Wiley Online Library, PubMed, and Africa Journal Online were used. The review was conducted using the keyword related to genetic and genomic ASD study in the African population. Result In this scoping review, 40 genetic studies on ASD in Africa were reviewed. The Egyptian and South African populations were the most studied, with 25 and 5 studies, respectively. Countries with fewer studies included Tunisia (4), East African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes responsible for ASD were identified in the African population: 26 were identified using a polymerase chain reaction (PCR)-based method, 22 were identified using sequencing technologies, and 12 genes and one de novo chromosomal aberration were identified through other techniques. No African study identified any ASD gene with genome-wide association studies (GWAS). Notably, at least 20 ASD risk genes reported in non-African countries were yet to be confirmed in Africa's population. Conclusion There are insufficient genetic studies on ASD in the African population, with sample size being a major limitation in most genetic association studies, leading to inconclusive results. Thus, there is a need to conduct more studies with large sample sizes to identify other genes associated with ASD in Africa's population using high-throughput sequencing technology.
Collapse
Affiliation(s)
- Olivier Hakizimana
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Janvier Hitayezu
- Department of Pediatrics, University Teaching Hospital of Kigali (CHUK), Kigali, Rwanda
| | - Jeanne P. Uyisenga
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
| | - Leonor Palmeira
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Abdullateef Isiaka Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annette Uwineza
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
4
|
Pagano G, Lyakhovich A, Pallardó FV, Tiano L, Zatterale A, Trifuoggi M. Mitochondrial dysfunction in Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome: prospect use of antioxidants and mitochondrial nutrients. Mol Biol Rep 2024; 51:480. [PMID: 38578387 PMCID: PMC10997711 DOI: 10.1007/s11033-024-09415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading to neurodegenerative manifestations such as tremors and ataxia.Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxidants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, Naples, I-80126, Italy.
| | | | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, Valencia, E-46010, Spain
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, Ancona, I-60121, Italy
| | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, Naples, I-80126, Italy
| |
Collapse
|
5
|
Premoli M, Fyke W, Bellocchio L, Lemaire V, Wolley-Roberts M, Bontempi B, Pietropaolo S. Early Administration of the Phytocannabinoid Cannabidivarin Prevents the Neurobehavioral Abnormalities Associated with the Fmr1-KO Mouse Model of Fragile X Syndrome. Cells 2023; 12:1927. [PMID: 37566006 PMCID: PMC10416983 DOI: 10.3390/cells12151927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.
Collapse
Affiliation(s)
- Marika Premoli
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - William Fyke
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, University of Bordeaux, 33077 Bordeaux, France
| | - Valerie Lemaire
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | | - Bruno Bontempi
- CNRS, EPHE, INCIA, UMR 5287, Univ. Bordeaux, 33000 Bordeaux, France
| | | |
Collapse
|
6
|
Alam S, Westmark CJ, McCullagh EA. Diet in treatment of autism spectrum disorders. Front Neurosci 2023; 16:1031016. [PMID: 37492195 PMCID: PMC10364988 DOI: 10.3389/fnins.2022.1031016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 07/27/2023] Open
Abstract
Altering the diet to treat disease dates to c. 400 BC when starvation was used to reduce seizures in persons with epilepsy. The current diversity of symptomology and mechanisms underlying autism spectrum disorders (ASDs) and a corresponding lack of disorder-specific effective treatments prompts an evaluation of diet as a therapeutic approach to improve symptoms of ASDs. In this review article, we summarize the main findings of nutritional studies in ASDs, with an emphasis on the most common monogenic cause of autism, Fragile X Syndrome (FXS), and the most studied dietary intervention, the ketogenic diet as well as other dietary interventions. We also discuss the gut microbiota in relation to pre- and probiotic therapies and provide insight into future directions that could aid in understanding the mechanism(s) underlying dietary efficacy.
Collapse
Affiliation(s)
- Sabiha Alam
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI, United States
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI, United States
| | - Elizabeth A. McCullagh
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
7
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
8
|
Ardourel M, Ranchon-Cole I, Pâris A, Felgerolle C, Acar N, Lesne F, Briault S, Perche O. FMR protein: Evidence of an emerging role in retinal aging? Exp Eye Res 2022; 225:109282. [PMID: 36265576 DOI: 10.1016/j.exer.2022.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Aging is a multifactorial process that affects the entire organism by cumulative alterations. Visual function impairments that go along with aging are commonly observed, causing lower visual acuity, lower contrast sensitivity, and impaired dark adaptation. Electroretinogram analysis revealed that the amplitudes of rod- and cone-mediated responses are reduced in aged mice and humans. Reports suggested that age-related changes observed in both rod and cone photoreceptor functionality were linked to oxidative stress regulation or free radical production homeostasis. Interestingly, several recent reports linked the fragile X mental retardation protein (FMRP) cellular activity with oxidative stress regulation in several tissue including brain tissue where FMRP participates to the response to stress via protein translation in neurite or is involved in free radical production and abnormal glutathione homeostasis. Based on these recent literatures, we raised the question about the effect of FMRP absence in the aging retina of Fmr1-/y compared to their WT littermates. Indeed, up to now, only young or adult mice (<6 months) were investigated and have shown a specific retinal phenotype. Herein, we demonstrated that Fmr1-/y mice do not present the aging effect on retinal function observed in WT littermates since ERG a- and b-waves amplitudes as well as oscillatory potentials amplitudes were not collapsed with age (12/18 months old). Absence of FMRP and its consequences seem to protect the retina against aging effect, rising a pivotal role of FMRP in retinal aging process.
Collapse
Affiliation(s)
- M Ardourel
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - I Ranchon-Cole
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, F-63000, Clermont-Ferrand, France
| | - A Pâris
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - C Felgerolle
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France
| | - N Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - F Lesne
- Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France
| | - S Briault
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France; Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France
| | - O Perche
- UMR7355, CNRS, Orléans, France; Experimental and Molecular Immunology and Neurogenetics, University of Orléans, 3b rue de la Ferollerie, 45071, Orléans, Cedex 2, France; Genetic Department, Regional Hospital, 14 Avenue de l'hôpital, 45100, Orléans, France.
| |
Collapse
|
9
|
Petroni V, Subashi E, Premoli M, Memo M, Lemaire V, Pietropaolo S. Long-term behavioral effects of prenatal stress in the Fmr1-knock-out mouse model for fragile X syndrome. Front Cell Neurosci 2022; 16:917183. [PMID: 36385949 PMCID: PMC9647640 DOI: 10.3389/fncel.2022.917183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/13/2022] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is a major neurodevelopmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). FXS is caused by a mutation in the X-linked FMR1 gene leading to the absence of the FMRP protein, inducing several behavioral deficits, including motor, emotional, cognitive, and social abnormalities. Beside its clear genetic origins, FXS can be modulated by environmental factors, e.g., stress exposure: indeed the behavioral phenotype of FXS, as well as of ASD patients can be exacerbated by the repeated experience of stressful events, especially early in life. Here we investigated the long-term effects of prenatal exposure to unpredictable chronic stress on the behavioral phenotype of the Fmr1-knock-out (KO) mouse model for FXS and ASD. Mice were tested for FXS- and ASD-relevant behaviors first at adulthood (3 months) and then at aging (18 months), in order to assess the persistence and the potential time-related progression of the stress effects. Stress induced the selective emergence of behavioral deficits in Fmr1-KO mice that were evident in spatial memory only at aging. Stress also exerted several age-specific behavioral effects in mice of both genotypes: at adulthood it enhanced anxiety levels and reduced social interaction, while at aging it enhanced locomotor activity and reduced the complexity of ultrasonic calls. Our findings underline the relevance of gene-environment interactions in mouse models of neurodevelopmental syndromes and highlight the long-term behavioral impact of prenatal stress in laboratory mice.
Collapse
Affiliation(s)
- Valeria Petroni
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Enejda Subashi
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valerie Lemaire
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Susanna Pietropaolo
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
- *Correspondence: Susanna Pietropaolo,
| |
Collapse
|
10
|
Aberrant Ganglioside Functions to Underpin Dysregulated Myelination, Insulin Signalling, and Cytokine Expression: Is There a Link and a Room for Therapy? Biomolecules 2022; 12:biom12101434. [PMID: 36291644 PMCID: PMC9599472 DOI: 10.3390/biom12101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Gangliosides are molecules widely present in the plasma membranes of mammalian cells, participating in a variety of processes, including protein organization, transmembrane signalling and cell adhesion. Gangliosides are abundant in the grey matter of the brain, where they are critically involved in postnatal neural development and function. The common precursor of the majority of brain gangliosides, GM3, is formed by the sialylation of lactosylceramide, and four derivatives of its a- and b-series, GM1, GD1a, GD1b and GT1b, constitute 95% of all the brain gangliosides. Impairments in ganglioside metabolism due to genetic abnormalities of GM-synthases are associated with severe neurological disorders. Apart from that, the latest genome-wide association and translational studies suggest a role of genes involved in brain ganglioside synthesis in less pervasive psychiatric disorders. Remarkably, the most recent animal studies showed that abnormal ganglioside functions result in dysregulated neuroinflammation, aberrant myelination and altered insulin receptor signalling. At the same time, these molecular features are well established as accompanying developmental psychiatric disorders such as attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). This led us to hypothesize a role of deficient ganglioside function in developmental neuropsychiatric disorders and warrants further gene association clinical studies addressing this question. Here, we critically review the literature to discuss this hypothesis and focus on the recent studies on ST3GAL5-deficient mice. In addition, we elaborate on the therapeutic potential of various anti-inflammatory remedies for treatment of developmental neuropsychiatric conditions related to aberrant ganglioside functions.
Collapse
|
11
|
Vandenberg GG, Thotakura A, Scott AL. Mitochondrial bioenergetics of astrocytes in Fragile X Syndrome: new perspectives from culture conditions and sex effects. Am J Physiol Cell Physiol 2021; 322:C125-C135. [PMID: 34817267 DOI: 10.1152/ajpcell.00130.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fragile X syndrome is a genetic disorder that is characterized by a range of cognitive and behavioural deficits, including mild-moderate intellectual disability. The disease is characterized by an X-linked mutation of the Fmr1 gene, which causes silencing of the gene coding for FMRP, a translational regulator integral for neurodevelopment. Mitochondrial dysfunction has been recently associated with FXS, with reports of increases in oxidative stress markers, reactive oxygen species, and lipid peroxidation being present in brain tissue. Astrocytes, a prominent glial cell within the CNS, plays a large role in regulating oxidative homeostasis within the developing brain and dysregulation of astrocyte redox balance in FXS may contribute to oxidative stress. Astrocyte function and mitochondrial bioenergetics is significantly influenced by oxygen availability as well as circulating sex hormones; yet these parameters are rarely considered during in vitro experimentation. Given that the brain normally develops in a range of hypoxic conditions and FXS is a sex-linked genetic disorder, we investigated how different oxygen levels (normoxic versus hypoxic) and biological sex affected mitochondrial bioenergetics of astrocytes in FXS. Our results show demonstrate that both mitochondrial respiration capacity and reactive oxygen species emission are altered with Fmr1 deletion in astrocytes and these changes were dependent upon both sexual dimorphism and oxygen availability.
Collapse
Affiliation(s)
- Gregory G Vandenberg
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Aasritha Thotakura
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Abd-Elhakim YM, Moustafa GG, El-Sharkawy NI, Hussein MMA, Ghoneim MH, El Deib MM. The ameliorative effect of curcumin on hepatic CYP1A1 and CYP1A2 genes dysregulation and hepatorenal damage induced by fenitrothion oral intoxication in male rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104959. [PMID: 34802538 DOI: 10.1016/j.pestbp.2021.104959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
This research aimed to assess curcumin (CUR) effects on fenitrothion (FNT), a broad-spectrum organophosphate insecticide, -induced hepatorenal damage. Thirty adult male Wistar rats were allocated at random to five equal groups orally administered distilled water containing 1% carboxyl methylcellulose, corn oil (1 mL/rat), CUR (100 mg/kg b.wt.), FNT (5 mg/kg b.wt.), or CUR + FNT. CUR and FNT were dosed three times a week for two months. At the end of this trial, blood and tissue samples (liver and kidney) were subjected to molecular, biochemical, and histopathological assessments. The results revealed that CUR significantly diminished the FNT-induced up-regulation of hepatic CYP1A1 and CYP1A2 transcriptional levels. Moreover, CUR significantly suppressed the increment of the serum levels of hepatic alanine aminotransferase, gamma-glutamyl transferase, and kidney damage indicators (urea and creatinine) in FNT-intoxicated rats. Furthermore, in the hepatic and renal tissues, CUR remarkably restored the FNT-associated depletion of the antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S transferase, catalase, and superoxide dismutase). In addition, CUR notably reduced the FNT-induced increment in malondialdehyde content in the hepatic and renal tissues. Besides, the pathological aberrations in liver and kidney tissues resulting from FNT exposure were significantly abolished in FNT + CUR treated rats. Overall, CUR could be an effective ameliorative agent against negative pesticide impacts like FNT.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mervat H Ghoneim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Maha M El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
D'Antoni S, de Bari L, Valenti D, Borro M, Bonaccorso CM, Simmaco M, Vacca RA, Catania MV. Aberrant mitochondrial bioenergetics in the cerebral cortex of the Fmr1 knockout mouse model of fragile X syndrome. Biol Chem 2021; 401:497-503. [PMID: 31702995 DOI: 10.1515/hsz-2019-0221] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
Impaired energy metabolism may play a role in the pathogenesis of neurodevelopmental disorders including fragile X syndrome (FXS). We checked brain energy status and some aspects of cell bioenergetics, namely the activity of key glycolytic enzymes, glycerol-3-phosphate shuttle and mitochondrial respiratory chain (MRC) complexes, in the cerebral cortex of the Fmr1 knockout (KO) mouse model of FXS. We found that, despite a hyperactivation of MRC complexes, adenosine triphosphate (ATP) production via mitochondrial oxidative phosphorylation (OXPHOS) is compromised, resulting in brain energy impairment in juvenile and late-adult Fmr1 KO mice. Thus, an altered mitochondrial energy metabolism may contribute to neurological impairment in FXS.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Via Giovanni Amendola 165/A, I-70126 Bari, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Via Giovanni Amendola 165/A, I-70126 Bari, Italy
| | - Marina Borro
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035, I-00189 Rome, Italy
| | | | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035, I-00189 Rome, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Via Giovanni Amendola 165/A, I-70126 Bari, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Paolo Gaifami 18, I-95126 Catania, Italy.,Oasi Research Institute - IRCCS, Via Conte Ruggero 73, I-94018 Troina, Italy
| |
Collapse
|
14
|
Vandenberg GG, Dawson NJ, Head A, Scott GR, Scott AL. Astrocyte-mediated disruption of ROS homeostasis in Fragile X mouse model. Neurochem Int 2021; 146:105036. [PMID: 33785420 DOI: 10.1016/j.neuint.2021.105036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Astrocytes, glial cells within the brain, work to protect neurons during high levels of activity by maintaining oxidative homeostasis via regulation of energy supply and antioxidant systems. In recent years, mitochondrial dysfunction has been highlighted as an underlying factor of pathology in many neurological disorders. In animal studies of Fragile X Syndrome (FXS), the leading genetic cause of autism, higher levels of reactive oxygen species, lipid peroxidation, and protein oxidation within the brain indicates that mitochondria function is also altered in FXS. Despite their integral contribution to redox homeostasis within the CNS, the role of astrocytes on the occurrence or progression of neurodevelopmental disorders in this way is rarely considered. This study specifically examines changes to astrocyte mitochondrial function and antioxidant expression that may occur in FXS. Using the Fmr1 knockout (KO) mouse model, mitochondrial respiration and reactive oxygen species (ROS) emission were analyzed in primary cortical astrocytes. While mitochondrial respiration was similar between genotypes, ROS emission was significantly elevated in Fmr1 KO astrocytes. Notably, NADPH-oxidase 2 expression in Fmr1 KO astrocytes was also enhanced but only changes in catalase antioxidant enzyme expression were noted. Characterization of astrocyte factors involved in redox imbalance is invaluable to uncovering potential sources of oxidative stress in neurodevelopmental disorders and more specifically, the intercellular mechanisms that contribute to dysfunction in FXS.
Collapse
Affiliation(s)
- Gregory G Vandenberg
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Neal J Dawson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Alison Head
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. West, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
15
|
Hedrich WD, Wang H. Friend or Foe: Xenobiotic Activation of Nrf2 in Disease Control and Cardioprotection. Pharm Res 2021; 38:213-241. [PMID: 33619640 DOI: 10.1007/s11095-021-02997-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that governs a highly conserved pathway central to the protection of cells against various oxidative stresses. However, the biological impact of xenobiotic intervention of Nrf2 in physiological and pathophysiological conditions remains debatable. Activation of Nrf2 in cancer cells has been shown to elevate drug resistance and increase cell survival and proliferation, while inhibition of Nrf2 sensitizes cancer cells to drug treatment. On the other hand, activation of Nrf2 in normal healthy cells has been explored as a rather successful strategy for cancer chemoprevention. Selective activation of Nrf2 in off-target cells has recently been investigated as an approach for protecting off-target tissues from untoward drug toxicity. Specifically, induction of antioxidant response element genes via Nrf2 activation in cardiac cells is being explored as a means to limit the well-documented cardiotoxicity accompanied by cancer treatment with commonly prescribed anthracycline drugs. In addition to cancers, Nrf2 has been implicated in many other diseases including Alzheimer's and Parkinson's Diseases, diabetes, and cardiovascular disease. In this review, we discuss the roles of Nrf2 and its downstream target genes in the treatment of various diseases, and its recently explored potential for increasing the benefit: risk ratio of commonly utilized cancer treatments.
Collapse
Affiliation(s)
- William D Hedrich
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.,Bristol-Myers Squibb Company, Pharmaceutical Candidate Optimization, Metabolism and Pharmacokinetics, Rt. 206 and Province Line Road, Princeton, New Jersey, 08543, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
16
|
Djague F, Lunga PK, Toghueo KRM, Melogmo DYK, Fekam BF. Garcinia kola (Heckel) and Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. from Cameroon possess potential antisalmonellal and antioxidant properties. PLoS One 2020; 15:e0237076. [PMID: 32750082 PMCID: PMC7402511 DOI: 10.1371/journal.pone.0237076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/19/2020] [Indexed: 11/19/2022] Open
Abstract
Drug resistant Salmonella species and shortcomings related to current drugs stress the urgent need to search for new antimicrobial agents to control salmonellosis. This study investigated the antisalmonellal and antioxidant potentials of methanolic and hydro-ethanolic extracts of Garcinia kola and Alchornea cordifolia as potential sources of drugs to control Salmonella species and to reduce related oxidative stress. The antisalmonellal activity was assessed using the broth microdilution, membrane destabilization and time-kill kinetic assays. While, the DPPH, ABTS and FRAP assays were used for the determination of the antioxidant activities. The minimum inhibitory concentrations ranged from 125 to 1000 μg/mL, with the methanolic root extract of G. kola being the most active. The time kill kinetic assay revealed a concentration-dependent bacteriostatic activity for promising extracts. Potent extracts from G. kola showed the ability to destabilize S. typhi outer membrane, with the methanolic root extract presenting the highest activity; two-fold higher than those of polymyxin B tested as reference. In addition, this methanolic root extract of G. kola also provoked nucleotide leakage in a concentration-dependent manner. From the antioxidant assays, the hydro-ethanolic extract from the stem bark of A. cordifolia presented significant activities comparable to that of Vitamin C. The methanolic root extract of G. kola also presented appreciable antioxidant activities, though less than that of A. cordifolia. Overall, the phytochemical screening of active extracts revealed the presence of anthocyanins, flavonoids, glycosides, phenols, tannins, triterpenoids and steroids. These results provide evidence of the antibacterial potential of G. kola and offer great perspectives in a possible standardisation of an antisalmonellal phytomedicine.
Collapse
Affiliation(s)
- Fred Djague
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Paul Keilah Lunga
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- * E-mail: ,
| | - Kouipou Rufin Marie Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Dongmo Yanick Kevin Melogmo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Boyom Fabrice Fekam
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
17
|
Effects of Long-Term Supplementation with Aluminum or Selenium on the Activities of Antioxidant Enzymes in Mouse Brain and Liver. Catalysts 2020. [DOI: 10.3390/catal10050585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the effects of aluminum (Al) or selenium (Se) on the “primary” antioxidant defense system enzymes (superoxide dismutase, catalase, and glutathione reductase) in cells of mouse brain and liver after long-term (8-week) exposure to drinking water supplemented with AlCl3 (50 mg or 100 mg Al/L in drinking water) or Na2SeO3 (0.2 mg or 0.4 mg Se/L in drinking water). Results have shown that a high dose of Se increased the activities of superoxide dismutase and catalase in mouse brain and liver. Exposure to a low dose of Se resulted in an increase in catalase activity in mouse brain, but did not show any statistically significant changes in superoxide dismutase activity in both organs. Meanwhile, the administration of both doses of Al caused no changes in activities of these enzymes in mouse brain and liver. The greatest sensitivity to the effect of Al or Se was exhibited by glutathione reductase. Exposure to both doses of Al or Se resulted in statistically significant increase in glutathione reductase activity in both brain and liver. It was concluded that 8-week exposure to Se caused a statistically significant increase in superoxide dismutase, catalase and glutathione reductase activities in mouse brain and/or liver, however, these changes were dependent on the used dose. The exposure to both Al doses caused a statistically significant increase only in glutathione reductase activity of both organs.
Collapse
|
18
|
de Diego-Otero Y, Giráldez-Pérez RM, Lima-Cabello E, Heredia-Farfan R, Calvo Medina R, Sanchez-Salido L, Pérez Costillas L. Pigment epithelium-derived factor (PEDF) and PEDF-receptor in the adult mouse brain: Differential spatial/temporal localization pattern. J Comp Neurol 2020; 529:141-158. [PMID: 32427349 DOI: 10.1002/cne.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western-blotting, and also by enzyme-linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age-dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Research Unit, International Institute of Innovation and Attention to Neurodevelopment and Language, Málaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Cordoba, Edificio Charles Darwin, Córdoba, Spain
| | - Elena Lima-Cabello
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Raúl Heredia-Farfan
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Rocío Calvo Medina
- Pediatric Clinic Unit. Regional University Hospital, Hospital Materno-Infantil Avd, Arroyo de los Angeles, Málaga, Spain
| | - Lourdes Sanchez-Salido
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Lucía Pérez Costillas
- Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Psychiatry and Physiotherapy Department, University of Malaga. Medical School, Málaga, Spain
| |
Collapse
|
19
|
Westmark PR, Gutierrez A, Gholston AK, Wilmer TM, Westmark CJ. Preclinical testing of the ketogenic diet in fragile X mice. Neurochem Int 2020; 134:104687. [PMID: 31958482 DOI: 10.1016/j.neuint.2020.104687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The ketogenic diet is highly effective at attenuating seizures in refractory epilepsy, and accumulating evidence in the literature suggests that it may be beneficial in autism. To our knowledge, no one has studied the ketogenic diet in any fragile X syndrome (FXS) model. FXS is the leading known genetic cause of autism. Herein, we tested the effects of chronic ketogenic diet treatment on seizures, body weight, ketone and glucose levels, diurnal activity levels, learning and memory, and anxiety behaviors in Fmr1KO and littermate control mice as a function of age. The ketogenic diet selectively attenuates seizures in male but not female Fmr1KO mice and differentially affects weight gain and diurnal activity levels dependent on Fmr1 genotype, sex and age.
Collapse
Affiliation(s)
- Pamela R Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandra Gutierrez
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA; Molecular Environmental Toxicology Center, Summer Research Opportunities Program, University of Wisconsin, Madison, WI, USA
| | - Aaron K Gholston
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA; Molecular Environmental Toxicology Center, Summer Research Opportunities Program, University of Wisconsin, Madison, WI, USA
| | - Taralyn M Wilmer
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Reinhard SM, Rais M, Afroz S, Hanania Y, Pendi K, Espinoza K, Rosenthal R, Binder DK, Ethell IM, Razak KA. Reduced perineuronal net expression in Fmr1 KO mice auditory cortex and amygdala is linked to impaired fear-associated memory. Neurobiol Learn Mem 2019; 164:107042. [PMID: 31326533 PMCID: PMC7519848 DOI: 10.1016/j.nlm.2019.107042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Fragile X Syndrome (FXS) is a leading cause of heritable intellectual disability and autism. Humans with FXS show anxiety, sensory hypersensitivity and impaired learning. The mechanisms of learning impairments can be studied in the mouse model of FXS, the Fmr1 KO mouse, using tone-associated fear memory paradigms. Our previous study reported impaired development of parvalbumin (PV) positive interneurons and perineuronal nets (PNN) in the auditory cortex of Fmr1 KO mice. A recent study suggested PNN dynamics in the auditory cortex following tone-shock association is necessary for fear expression. Together these data suggest that abnormal PNN regulation may underlie tone-fear association learning deficits in Fmr1 KO mice. We tested this hypothesis by quantifying PV and PNN expression in the amygdala, hippocampus and auditory cortex of Fmr1 KO mice following fear conditioning. We found impaired tone-associated memory formation in Fmr1 KO mice. This was paralleled by impaired learning-associated regulation of PNNs in the superficial layers of auditory cortex in Fmr1 KO mice. PV cell density decreased in the auditory cortex in response to fear conditioning in both WT and Fmr1 KO mice. Learning-induced increase of PV expression in the CA3 hippocampus was only observed in WT mice. We also found reduced PNN density in the amygdala and auditory cortex of Fmr1 KO mice in all conditions, as well as reduced PNN intensity in CA2 hippocampus. There was a positive correlation between tone-associated memory and PNN density in the amygdala and auditory cortex, consistent with a tone-association deficit. Altogether our studies suggest a link between impaired PV and PNN regulation within specific regions of the fear conditioning circuit and impaired tone memory formation in Fmr1 KO mice.
Collapse
Affiliation(s)
- Sarah M Reinhard
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sonia Afroz
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Yasmien Hanania
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Kasim Pendi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Katherine Espinoza
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Robert Rosenthal
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| | - Khaleel A Razak
- Psychology Department and Psychology Graduate Program, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
21
|
Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog Neurobiol 2019; 181:101645. [PMID: 31229499 DOI: 10.1016/j.pneurobio.2019.101645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDDs), which are among the most important aging-related diseases, are typically characterized by neuronal damage and a progressive impairment in neurological function during aging. Few effective therapeutic targets for NDDs have been revealed; thus, an understanding of the pathogenesis of NDDs is important. Forkhead box O (FoxO) transcription factors have been implicated in the mechanisms regulating aging and longevity. The functions of FoxOs are regulated by diverse post-translational modifications (e.g., phosphorylation, acetylation, ubiquitination, methylation and glycosylation). FoxOs exert both detrimental and protective effects on NDDs. Therefore, an understanding of the precise function of FoxOs in NDDs will be helpful for developing appropriate treatment strategies. In this review, we first introduce the post-translational modifications of FoxOs. Next, the regulation of FoxO expression and post-translational modifications in the central nervous system (CNS) is described. Afterwards, we analyze and address the important roles of FoxOs in NDDs. Finally, novel potential directions of future FoxO research in NDDs are discussed. This review recapitulates essential facts and questions about the promise of FoxOs in treating NDDs, and it will likely be important for the design of further basic studies and to realize the potential for FoxOs as therapeutic targets in NDDs.
Collapse
|
22
|
Bagni C, Zukin RS. A Synaptic Perspective of Fragile X Syndrome and Autism Spectrum Disorders. Neuron 2019; 101:1070-1088. [PMID: 30897358 PMCID: PMC9628679 DOI: 10.1016/j.neuron.2019.02.041] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Abstract
Altered synaptic structure and function is a major hallmark of fragile X syndrome (FXS), autism spectrum disorders (ASDs), and other intellectual disabilities (IDs), which are therefore classified as synaptopathies. FXS and ASDs, while clinically and genetically distinct, share significant comorbidity, suggesting that there may be a common molecular and/or cellular basis, presumably at the synapse. In this article, we review brain architecture and synaptic pathways that are dysregulated in FXS and ASDs, including spine architecture, signaling in synaptic plasticity, local protein synthesis, (m)RNA modifications, and degradation. mRNA repression is a powerful mechanism for the regulation of synaptic structure and efficacy. We infer that there is no single pathway that explains most of the etiology and discuss new findings and the implications for future work directed at improving our understanding of the pathogenesis of FXS and related ASDs and the design of therapeutic strategies to ameliorate these disorders.
Collapse
Affiliation(s)
- Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York City, NY, USA.
| |
Collapse
|
23
|
Maurin T, Bardoni B. Fragile X Mental Retardation Protein: To Be or Not to Be a Translational Enhancer. Front Mol Biosci 2018; 5:113. [PMID: 30619879 PMCID: PMC6297276 DOI: 10.3389/fmolb.2018.00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Thomas Maurin
- Université Côte d'Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Barbara Bardoni
- CNRS LIA "Neogenex", Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France
| |
Collapse
|
24
|
Qiu S, Wu Y, Lv X, Li X, Zhuo M, Koga K. Reduced synaptic function of Kainate receptors in the insular cortex of Fmr1 Knock-out mice. Mol Brain 2018; 11:54. [PMID: 30241548 PMCID: PMC6151036 DOI: 10.1186/s13041-018-0396-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/11/2018] [Indexed: 01/26/2023] Open
Abstract
Fragile X syndrome is caused by the loss of fragile X mental retardation protein (FMRP). Kainate receptor (KAR) is a subfamily of ionotropic glutamate receptors (iGluR) that acts mainly as a neuromodulator of synaptic transmission and neuronal excitability. However, little is known about the changes of synaptic KAR in the cortical area of Fmr1 KO mice. In this study, we performed whole-cell patch-clamp recordings from layer II/III pyramidal neurons in the insular cortex of Fmr1 KO mice. We found that KARs mediated currents were reduced in Fmr1 KO mice. KARs were mainly located in the synaptosomal fraction of the insular cortex. The abundance of KAR subunit GluK1 and GluK2/3 in the synaptosome was reduced in Fmr1 KO mice, whereas the total expressions of these KARs subunits were not changed. Finally, lack of FMRP impairs subsequent internalization of surface GluK2 after KAR activation, while having no effect on the surface GluK2 expression. Our studies provide evidence indicating that loss of FMRP leads to the abnormal function and localization of KARs. This finding implies a new molecular mechanism for Fragile X syndrome.
Collapse
Affiliation(s)
- Shuang Qiu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Yu Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xinyou Lv
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Xia Li
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
25
|
Tranfaglia MR, Thibodeaux C, Mason DJ, Brown D, Roberts I, Smith R, Guilliams T, Cogram P. Repurposing available drugs for neurodevelopmental disorders: The fragile X experience. Neuropharmacology 2018; 147:74-86. [PMID: 29792283 DOI: 10.1016/j.neuropharm.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Many available drugs have been repurposed as treatments for neurodevelopmental disorders. In the specific case of fragile X syndrome, many clinical trials of available drugs have been conducted with the goal of disease modification. In some cases, detailed understanding of basic disease mechanisms has guided the choice of drugs for clinical trials, and several notable successes in fragile X clinical trials have led to common use of drugs such as minocycline in routine medical practice. Newer technologies like Disease-Gene Expression Matching (DGEM) may allow for more rapid identification of promising repurposing candidates. A DGEM study predicted that sulindac could be therapeutic for fragile X, and subsequent preclinical validation studies have shown promising results. The use of combinations of available drugs and nutraceuticals has the potential to greatly expand the options for repurposing, and may even be a viable business strategy. This article is part of the Special Issue entitled 'Drug Repurposing: old molecules, new ways to fast track drug discovery and development for CNS disorders'.
Collapse
Affiliation(s)
| | - Clare Thibodeaux
- Cures Within Reach, 125 S. Clark Street, 17th Floor, Chicago, IL 60603, USA.
| | - Daniel J Mason
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom.
| | - David Brown
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Ian Roberts
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Richard Smith
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Tim Guilliams
- Healx Ltd., Park House, Castle Park, Cambridge, CB3 0DU, United Kingdom
| | - Patricia Cogram
- FRAXA-DVI, IEB, Las Encinas 3370, Ñuñoa, Santiago, Chile; Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council (CONICET), Pacheco de Melo 1854, CP 1126, Ciudad de Buenos Aires, Argentina; Institute of Ecology and Biodiversity, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| |
Collapse
|
26
|
Carreno-Munoz MI, Martins F, Medrano MC, Aloisi E, Pietropaolo S, Dechaud C, Subashi E, Bony G, Ginger M, Moujahid A, Frick A, Leinekugel X. Potential Involvement of Impaired BK Ca Channel Function in Sensory Defensiveness and Some Behavioral Disturbances Induced by Unfamiliar Environment in a Mouse Model of Fragile X Syndrome. Neuropsychopharmacology 2018; 43:492-502. [PMID: 28722023 PMCID: PMC5770751 DOI: 10.1038/npp.2017.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 07/08/2017] [Indexed: 01/20/2023]
Abstract
In fragile X syndrome (FXS), sensory hypersensitivity and impaired habituation is thought to result in attention overload and various behavioral abnormalities in reaction to the excessive and remanent salience of environment features that would normally be ignored. This phenomenon, termed sensory defensiveness, has been proposed as the potential cause of hyperactivity, hyperarousal, and negative reactions to changes in routine that are often deleterious for FXS patients. However, the lack of tools for manipulating sensory hypersensitivity has not allowed the experimental testing required to evaluate the relevance of this hypothesis. Recent work has shown that BMS-204352, a BKCa channel agonist, was efficient to reverse cortical hyperexcitability and related sensory hypersensitivity in the Fmr1-KO mouse model of FXS. In the present study, we report that exposing Fmr1-KO mice to novel or unfamiliar environments resulted in multiple behavioral perturbations, such as hyperactivity, impaired nest building and excessive grooming of the back. Reversing sensory hypersensitivity with the BKCa channel agonist BMS-204352 prevented these behavioral abnormalities in Fmr1-KO mice. These results are in support of the sensory defensiveness hypothesis, and confirm BKCa as a potentially relevant molecular target for the development of drug medication against FXS/ASD.
Collapse
Affiliation(s)
- Maria Isabel Carreno-Munoz
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France,University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Fabienne Martins
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maria Carmen Medrano
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Elisabetta Aloisi
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Susanna Pietropaolo
- University of Bordeaux, INCIA, Pessac, France,CNRS, INCIA, UMR 5287, Pessac, France
| | - Corentin Dechaud
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Enejda Subashi
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillaume Bony
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Melanie Ginger
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | | | - Andreas Frick
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Xavier Leinekugel
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France,Neurocentre Magendie, INSERM U1215, Université de Bordeaux, 146 rue Leo Saignat, 33077 Bordeaux, France, Tel: +33 6 09 55 53 39, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
27
|
Ikumawoyi V, Agbaje E, Awodele O. Antigenotoxic and Antioxidant Activity of Methanol Stem Bark Extract of Napoleona Vogelii Hook & Planch (Lecythidaceae) In Cyclophosphamide-Induced Genotoxicity. Open Access Maced J Med Sci 2017; 5:866-874. [PMID: 29362611 PMCID: PMC5771287 DOI: 10.3889/oamjms.2017.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/19/2017] [Accepted: 05/19/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND: Napoleona vogelii is used in traditional medicine for cancer management. AIM: The study was conducted to evaluate the antigenotoxic and antioxidant activities of methanol stem bark extract of N. vogelii in male Sprague Dawley rats. MATERIALS AND METHOD: Thirty male Sprague Dawley rats were randomly divided into group 1 (control) administered 10 mL/kg distilled water, groups 2 and 3 were co-administered 100 mg/kg, 200 mg/kg of N. vogelli and 5 mg/kg cyclophosphamide (CPA) respectively for 7 days p.o. Groups 4 and 5 were administered only 5 mg/kg CPA and 200 mg/kg NV respectively. RESULTS: The LD50 oral was greater than 4 g/kg. There were significant (p < 0.0001) increases in plasma enzymatic and non-enzymatic antioxidant enzymes and significant (p < 0.0001) decrease in percentage micronuclei in bone marrow of extract treated rats compared to rats administered 5 mg/kg CPA alone. There was steatosis pointing to cytotoxic injury in the liver of rats co-administered 200 mg/kg NV and 5 mg/kg CPA. Gas chromatography-mass spectrometry analysis of the extract showed the presence of phytol and unsaturated fatty acids. CONCLUSION: N. vogelii possesses antigenotoxic and antioxidant activities associated with the presence of phytochemicals, phytol and unsaturated fatty acids.
Collapse
Affiliation(s)
- Victor Ikumawoyi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi araba, Lagos, Nigeria
| | - Esther Agbaje
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi araba, Lagos, Nigeria
| | - Olufunsho Awodele
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi araba, Lagos, Nigeria
| |
Collapse
|
28
|
Munshi K, Pawlowski K, Gonzalez-Heydrich J, Picker JD. Review of Salient Investigational Drugs for the Treatment of Fragile X Syndrome. J Child Adolesc Psychopharmacol 2017; 27:850-863. [PMID: 28475355 DOI: 10.1089/cap.2016.0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability, in addition to being the commonest diagnosable cause of autism. The identification of the biochemical mechanism underlying this disorder has provided amenable targets for therapy. This review aims to provide an overview of investigational drug therapies for FXS. METHODS The authors carried out a search of clinical and preclinical trials for FXS in PubMed and on the U.S. National Institutes of Health index of clinical trials ( www.clinicaltrials.gov ). We limited our review to Phase II trials or more preliminary and reviewed the associated publications for these studies, complemented by a review of the literature on PubMed. RESULTS The review of the preclinical, Phase I, and Phase II trials of agents with therapeutic potential in FXS revolves around an understanding of the putative pathways in the pathogenesis of FXS. While there is significant overlap between some of these pathways, the agents can be categorized as modulators of the metabotropic glutamate receptor system, GABAergic agents, and miscellaneous modulators affecting other pathways. CONCLUSION As trials involving agents targeting different aspects of the molecular biology proceed, common themes have emerged. With the great hope came great disappointment as the initial trials failed to demonstrate sufficient significance. In particular, the differences in outcome between the animal models and humans have highlighted the unique challenges of carrying out trials in these cognitively and behaviorally challenged individuals, as well as a dearth of clinically relevant outcome measures for use in medication trials. However, in reviewing and reframing the studies of the last decade, many important lessons have been learned, which will ultimately have a greater impact on therapeutic research in the field of developmental delay as a whole.
Collapse
Affiliation(s)
- Kaizad Munshi
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Katherine Pawlowski
- 3 Division of Genetics and Genomics, Boston Children's Hospital , Boston, Massachusetts.,4 Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Joseph Gonzalez-Heydrich
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Jonathan D Picker
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts.,3 Division of Genetics and Genomics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
29
|
Martinez LA, Tejada-Simon MV. Pharmacological Rescue of Hippocampal Fear Learning Deficits in Fragile X Syndrome. Mol Neurobiol 2017; 55:5951-5961. [DOI: 10.1007/s12035-017-0819-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
|
30
|
Pyronneau A, He Q, Hwang JY, Porch M, Contractor A, Zukin RS. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal 2017; 10:10/504/eaan0852. [PMID: 29114038 DOI: 10.1126/scisignal.aan0852] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and a leading cause of autism. FXS is caused by a trinucleotide expansion in the gene FMR1 on the X chromosome. The neuroanatomical hallmark of FXS is an overabundance of immature dendritic spines, a factor thought to underlie synaptic dysfunction and impaired cognition. We showed that aberrantly increased activity of the Rho GTPase Rac1 inhibited the actin-depolymerizing factor cofilin, a major determinant of dendritic spine structure, and caused disease-associated spine abnormalities in the somatosensory cortex of FXS model mice. Increased cofilin phosphorylation and actin polymerization coincided with abnormal dendritic spines and impaired synaptic maturation. Viral delivery of a constitutively active cofilin mutant (cofilinS3A) into the somatosensory cortex of Fmr1-deficient mice rescued the immature dendritic spine phenotype and increased spine density. Inhibition of the Rac1 effector PAK1 with a small-molecule inhibitor rescued cofilin signaling in FXS mice, indicating a causal relationship between PAK1 and cofilin signaling. PAK1 inhibition rescued synaptic signaling (specifically the synaptic ratio of NMDA/AMPA in layer V pyramidal neurons) and improved sensory processing in FXS mice. These findings suggest a causal relationship between increased Rac1-cofilin signaling, synaptic defects, and impaired sensory processing in FXS and uncover a previously unappreciated role for impaired Rac1-cofilin signaling in the aberrant spine morphology and spine density associated with FXS.
Collapse
Affiliation(s)
- Alexander Pyronneau
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qionger He
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Morgan Porch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
31
|
Deacon RMJ, Hurley MJ, Rebolledo CM, Snape M, Altimiras FJ, Farías L, Pino M, Biekofsky R, Glass L, Cogram P. Retracted: Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. GENES, BRAIN, AND BEHAVIOR 2017; 16:739. [PMID: 28211606 DOI: 10.1111/gbb.12373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retraction: "Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566" by R. M. J. Deacon, M. J. Hurley, C. M. Rebolledo, M. Snape, F. J. Altimiras, L. Farías, M. Pino, R. Biekofsky, L. Glass and P. Cogram. The above article, from Genes, Brain and Behavior, published online on 12th May 2017 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Andrew Holmes and John Wiley & Sons Ltd. The retraction has been agreed as all authors cannot agree on a revised author order, and at least one author continues to dispute the original order. In this case, the original article is being retracted on the grounds that the journal does not have permission to publish. Reference: Deacon, R. M. J., Hurley, M. J., Rebolledo, C. M., Snape, M., Altimiras, F. J., Farías, L., Pino, M., Biekofsky, R., Glass, L. and Cogram, P. (2017), Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566. Genes, Brain and Behavior. doi:10.1111/gbb.12373.
Collapse
Affiliation(s)
- R M J Deacon
- Biomedicine Division, Centre for Systems Biotechnology, Fraunhofer Research Foundation, Santiago, Chile
- Gen.DDI Ltd, London, UK
- Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - M J Hurley
- Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council, Buenos Aires, Argentina
- Division of Brain Sciences, Centre for Neuroinflammation and Neurodegeneration, Imperial College, London, UK
| | - C M Rebolledo
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - M Snape
- AMO Pharmaceuticals Ltd, Huntingdon, UK
| | - F J Altimiras
- Biomedicine Division, Centre for Systems Biotechnology, Fraunhofer Research Foundation, Santiago, Chile
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Santiago, Chile
| | - L Farías
- Biomedicine Division, Centre for Systems Biotechnology, Fraunhofer Research Foundation, Santiago, Chile
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Santiago, Chile
| | - M Pino
- Biomedicine Division, Centre for Systems Biotechnology, Fraunhofer Research Foundation, Santiago, Chile
| | | | - L Glass
- Neuren Pharmaceuticals, Bethesda, MD, USA
| | - P Cogram
- Biomedicine Division, Centre for Systems Biotechnology, Fraunhofer Research Foundation, Santiago, Chile
- Laboratory of Molecular Neuropsychiatry, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, National Scientific and Technical Research Council, Buenos Aires, Argentina
- Institute Of Ecology and Biodiversity (IEB), Faculty of Science, University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Increased Training Intensity Induces Proper Membrane Localization of Actin Remodeling Proteins in the Hippocampus Preventing Cognitive Deficits: Implications for Fragile X Syndrome. Mol Neurobiol 2017; 55:4529-4542. [DOI: 10.1007/s12035-017-0666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
33
|
Behavioral effects of chronic stress in the Fmr1 mouse model for fragile X syndrome. Behav Brain Res 2017; 320:128-135. [PMID: 27939692 DOI: 10.1016/j.bbr.2016.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
Fragile X Syndrome (FXS) is a pervasive developmental disorder due to a mutation in the FMR1 X-linked gene. Despite its clear genetic cause, the expression of FXS symptoms is known to be modulated by environmental factors, including stress. Furthermore, several studies have shown disturbances in stress regulatory systems in FXS patients and Fmr1 mice. These studies have mostly focused on the hormonal responses to stress, using the acute exposure to a single type of stressor. Hence, little is known about the behavioral effects of stress in FXS, and the importance of the nature of the stressing procedure, especially in the context of a repeated exposure that more closely resembles real life conditions. Here we evaluated the effects of chronic exposure to different types of stress (i.e., either repeated restraint or unpredictable stress) on the behavioral phenotype of adult Fmr1 mice. Our results demonstrated that chronic stress induced deficits in social interaction and working memory only in WT mice and the impact of stress depended on the type of stressors and the specific behavior tested. Our data suggest that the behavioral sensitivity to stress is dramatically reduced in FXS, opening new views on the impact of gene-environment interactions in this pathology.
Collapse
|
34
|
Pantelidou M, Tsiakitzis K, Rekka EA, Kourounakis PN. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind. Molecules 2017; 22:molecules22020307. [PMID: 28218677 PMCID: PMC6155817 DOI: 10.3390/molecules22020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/25/2022] Open
Abstract
Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems) and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.
Collapse
Affiliation(s)
- Maria Pantelidou
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus.
| | - Karyofyllis Tsiakitzis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Panos N Kourounakis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus.
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
35
|
Hardiman RL, Bratt A. Hypothalamic-pituitary-adrenal axis function in Fragile X Syndrome and its relationship to behaviour: A systematic review. Physiol Behav 2016; 167:341-353. [DOI: 10.1016/j.physbeh.2016.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/13/2016] [Accepted: 09/30/2016] [Indexed: 01/18/2023]
|
36
|
Tabet R, Vitale N, Moine H. Fragile X syndrome: Are signaling lipids the missing culprits? Biochimie 2016; 130:188-194. [PMID: 27597551 DOI: 10.1016/j.biochi.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism. FXS results from the absence of FMRP, an RNA binding protein associated to ribosomes that influences the translation of specific mRNAs in post-synaptic compartments of neurons. The main molecular consequence of the absence of FMRP is an excessive translation of neuronal protein in several areas of the brain. This local protein synthesis deregulation is proposed to underlie the defect in synaptic plasticity responsible for FXS. Recent findings in neurons of the fragile X mouse model (Fmr1-KO) uncovered another consequence of the lack of FMRP: a deregulation of the diacylglycerol (DAG)/phosphatidic acid (PA) homeostasis. DAG and PA are two interconvertible lipids that influence membrane architecture and that act as essential signaling molecules that activate various downstream effectors, including master regulators of local protein synthesis and actin polymerization. As a consequence, DAG and PA govern a variety of cellular processes, including cell proliferation, vesicle/membrane trafficking and cytoskeletal organization. At the synapse, the level of these lipids is proposed to influence the synaptic activation status. FMRP appears as a master regulator of this neuronal process by controlling the translation of a diacylglycerol kinase enzyme that converts DAG into PA. The deregulated levels of DAG and PA caused by the absence of FMRP could represent a novel therapeutic target for the treatment of FXS.
Collapse
Affiliation(s)
- Ricardos Tabet
- Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
37
|
Wang L, Wang Y, Zhou S, Yang L, Shi Q, Li Y, Zhang K, Yang L, Zhao M, Yang Q. Imbalance between Glutamate and GABA in Fmr1 Knockout Astrocytes Influences Neuronal Development. Genes (Basel) 2016; 7:genes7080045. [PMID: 27517961 PMCID: PMC4999833 DOI: 10.3390/genes7080045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS) is a form of inherited mental retardation that results from the absence of the fragile X mental retardation protein (FMRP), the product of the Fmr1 gene. Numerous studies have shown that FMRP expression in astrocytes is important in the development of FXS. Although astrocytes affect neuronal dendrite development in Fmr1 knockout (KO) mice, the factors released by astrocytes are still unclear. We cultured wild type (WT) cortical neurons in astrocyte-conditioned medium (ACM) from WT or Fmr1 KO mice. Immunocytochemistry and Western blotting were performed to detect the dendritic growth of both WT and KO neurons. We determined glutamate and γ-aminobutyric acid (GABA) levels using high-performance liquid chromatography (HPLC). The total neuronal dendritic length was reduced when cultured in the Fmr1 KO ACM. This neurotoxicity was triggered by an imbalanced release of glutamate and GABA from Fmr1 KO astrocytes. We found increased glutaminase and GABA transaminase (GABA-T) expression and decreased monoamine oxidase B expression in Fmr1 KO astrocytes. The elevated levels of glutamate contributed to oxidative stress in the cultured neurons. Vigabatrin (VGB), a GABA-T inhibitor, reversed the changes caused by glutamate and GABA release in Fmr1 KO astrocytes and the abnormal behaviors in Fmr1 KO mice. Our results indicate that the imbalance in the astrocytic glutamate and GABA release may be involved in the neuropathology and the underlying symptoms of FXS, and provides a therapeutic target for treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, No. 323 Hospital of PLA, Xi'an 710054, China.
| | - Shimeng Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Liukun Yang
- Fifth Company, Second Battalion, Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China.
| | - Qixin Shi
- Fifth Company, Second Battalion, Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China.
| | - Yujiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
38
|
Tabet R, Moutin E, Becker JAJ, Heintz D, Fouillen L, Flatter E, Krężel W, Alunni V, Koebel P, Dembélé D, Tassone F, Bardoni B, Mandel JL, Vitale N, Muller D, Le Merrer J, Moine H. Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proc Natl Acad Sci U S A 2016; 113:E3619-28. [PMID: 27233938 PMCID: PMC4932937 DOI: 10.1073/pnas.1522631113] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.
Collapse
Affiliation(s)
- Ricardos Tabet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Enora Moutin
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jérôme A J Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Plateforme Métabolomique, Unité Propre de Recherche (UPR) 2357 CNRS, Université de Strasbourg, 67082 Strasbourg, France
| | - Laetitia Fouillen
- Laboratoire de Biogènese Membranaire; UMR 5200 CNRS, Plateforme Métabolome, Université de Bordeaux, 33140 Villenave D'Ornon, France
| | - Eric Flatter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Violaine Alunni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Pascale Koebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Doulaye Dembélé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Medical Center, Sacramento, CA 95817
| | - Barbara Bardoni
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, University of Nice Sophia-Antipolis, CNRS Laboratoire International Associé (LIA) Neogenex, 06560 Valbonne, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France; Collège de France, 75005 Paris, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Dominique Muller
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva 4, Switzerland
| | - Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France;
| |
Collapse
|
39
|
Promiscuous or discriminating: Has the favored mRNA target of Fragile X Mental Retardation Protein been overlooked? Proc Natl Acad Sci U S A 2016; 113:7009-11. [PMID: 27317743 DOI: 10.1073/pnas.1607665113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Staiger EA, Albright JD, Brooks SA. Genome‐wide association mapping of heritable temperament variation in the
T
ennessee
W
alking
H
orse. GENES BRAIN AND BEHAVIOR 2016; 15:514-26. [DOI: 10.1111/gbb.12290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/26/2022]
Affiliation(s)
- E. A. Staiger
- Department of Animal Science Cornell University Ithaca NY
| | - J. D. Albright
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine University of Tennessee Knoxville TN
| | - S. A. Brooks
- Department of Animal Science University of Florida Gainesville FL USA
| |
Collapse
|
41
|
Ling Q, Tejada-Simon MV. Statins and the brain: New perspective for old drugs. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:80-86. [PMID: 26655447 DOI: 10.1016/j.pnpbp.2015.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/15/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
Abstract
Statins are one of the most popular lipid-lowering drugs (LLDs). Upon oral administration, these drugs are well absorbed by the intestine and effectively used for the treatment of dyslipidemias. Recently, statins are becoming also well-known for their cholesterol-independent effects and their potential use in brain diseases and different types of cancers. While still controversial, recent research has suggested that statin's cholesterol-independent activities work possibly through alterations on isoprenoid levels. This reduction of isoprenoids in the central nervous system might result in effective biochemical and behavioral improvements on certain neurological disorders. This manuscript aims to highlight current research describing the use of statin therapy in the brain and discuss whether statins might affect neuronal dynamics and function independently of their cholesterol regulatory role.
Collapse
Affiliation(s)
- Q Ling
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - M V Tejada-Simon
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA; Department of Biology, University of Houston, Houston, TX, USA; Department of Psychology, University of Houston, Houston, TX, USA; Biology of Behavior Institute (BoBI), University of Houston, Houston, TX, USA.
| |
Collapse
|
42
|
Abstract
The discovery of vitamin E (α-tocopherol) began in 1922 as a vital component required in reproduction. Today, there are eight naturally occurring vitamin E isoforms, namely α-, β-, γ- and δ-tocopherol and α-, β-, γ- and δ-tocotrienol. Vitamin E is potent antioxidants, capable of neutralizing free radicals directly by donating hydrogen from its chromanol ring. α-Tocopherol is regarded the dominant form in vitamin E as the α-tocopherol transfer protein in the liver binds mainly α-tocopherol, thus preventing its degradation. That contributed to the oversight of tocotrienols and resulted in less than 3% of all vitamin E publications studying tocotrienols. Nevertheless, tocotrienols have been shown to possess superior antioxidant and anti-inflammatory properties over α-tocopherol. In particular, inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase to lower cholesterol, attenuating inflammation via downregulation of transcription factor NF-κB activation, and potent radioprotectant against radiation damage are some properties unique to tocotrienols, not tocopherols. Aside from cancer, vitamin E has also been shown protective in bone, cardiovascular, eye, nephrological and neurological diseases. In light of the different pharmacological properties of tocopherols and tocotrienols, it becomes critical to specify which vitamin E isoform(s) are being studied in any future vitamin E publications. This review provides an update on vitamin E therapeutic potentials, protective effects and modes of action beyond cancer, with comparison of tocopherols against tocotrienols. With the concerted efforts in synthesizing novel vitamin E analogs and clinical pharmacology of vitamin E, it is likely that certain vitamin E isoform(s) will be therapeutic agents against human diseases besides cancer.
Collapse
Affiliation(s)
- Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
43
|
An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8548910. [PMID: 26788253 PMCID: PMC4691629 DOI: 10.1155/2016/8548910] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/15/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. METHODS This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. RESULTS Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. CONCLUSIONS These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.
Collapse
|
44
|
González-Fernández R, Hernández J, Martín-Vasallo P, Puopolo M, Palumbo A, Ávila J. Expression Levels of the Oxidative Stress Response Gene ALDH3A2 in Granulosa-Lutein Cells Are Related to Female Age and Infertility Diagnosis. Reprod Sci 2015; 23:604-9. [PMID: 26449735 DOI: 10.1177/1933719115607996] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress (OS) plays an important role in all physiological processes. The effect of OS on cellular processes is modulated by the ability of the cell to express genes implicated in the reversal of lipid, protein, and DNA injury. Aldehyde dehydrogenase 3, member A2 (ALDH3A2) is a ubiquitous enzyme involved in lipid detoxification. The objective of this study was to investigate the expression ofALDH3A2in human granulosa-lutein (GL) cells of women undergoing in vitro fertilization (IVF) and its relationship with age, infertility diagnosis, and IVF outcome variables. Relative expression levels ofALDH3A2were determined by quantitative reverse transcription-polymerase chain reaction. To investigate the effect of age onALDH3A2expression, 72 women between 18 and 44 years of age with no ovarian factor (NOF) were analyzed. To evaluate the effect of infertility diagnosis onALDH3A2expression, the following groups were analyzed: 22 oocyte donors (ODs), 24 women >40 years old (yo) with tubal or male factor and no ovarian pathology, 18 poor responders (PRs), 19 cases with endometriosis (EM), and 18 patients with polycystic ovarian syndrome (PCOS). In NOF,ALDH3A2expression correlated positively with age and with the doses of follicle-stimulating hormone and luteinizing hormone administered and negatively with the number of total and mature oocytes. When different groups were analyzed,ALDH3A2expression levels were higher in patients >40 yo and in PR compared to OD. On the contrary, EM and PCOS levels were lower than expected for age. These data suggest that GL cellALDH3A2expression levels correlate with age, cause of infertility, and ovarian response to stimulation.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de la Laguna, La Laguna, Spain
| | - Jairo Hernández
- Centro de Asistencia a la Reproducción Humana de Canarias, La Laguna, Spain
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de la Laguna, La Laguna, Spain CIBICAN, Universidad de La Laguna, La Laguna, Spain
| | - Maria Puopolo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Palumbo
- Centro de Asistencia a la Reproducción Humana de Canarias, La Laguna, Spain Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de la Laguna, La Laguna, Spain CIBICAN, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
45
|
Sastre A, Campillo NE, Gil C, Martinez A. Therapeutic approaches for the future treatment of Fragile X. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Kwon KJ, Lee EJ, Kim MK, Jeon SJ, Choi YY, Shin CY, Han SH. The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function. Neuroscience 2015; 301:403-14. [PMID: 26047724 DOI: 10.1016/j.neuroscience.2015.05.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/05/2015] [Accepted: 05/29/2015] [Indexed: 12/31/2022]
Abstract
While prolonged sleep deprivation (SD) could lead to profound negative health consequences, such as impairments in vital biological functions of immunity and cognition, melatonin possesses powerful ameliorating effects against those harmful insults. Melatonin has strong antioxidant and anti-inflammatory effects that help to restore body's immune and cognitive functions. In this study, we investigated the possible role of melatonin in reversing cognitive dysfunction induced by SD in rats. Our experimental results revealed that sleep-deprived animals exhibited spatial memory impairment in the Morris water maze tasks compared with the control groups. Furthermore, there was an increased glial activation most prominent in the hippocampal region of the SD group compared to the normal control (NC) group. Additionally, markers of oxidative stress such as 4-hydroxynonenal (4-HNE) and 7,8-dihydro-8-oxo-deoxyguanine (8-oxo-dG) were significantly increased, while fragile X-mental retardation protein (FMRP) expression was decreased in the SD group. Interestingly, melatonin treatment normalized these events to control levels following SD. Our data demonstrate that SD induces oxidative stress through glial activation and decreases FMRP expression in the neurons. Furthermore, our results suggest the efficacy of melatonin for the treatment of sleep-related neuronal dysfunction, which occurs in neurological disorders such as Alzheimer's disease and autism.
Collapse
Affiliation(s)
- K J Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Neurology, Konkuk University Medical Center, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - E J Lee
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - M K Kim
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - S J Jeon
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Y Y Choi
- Department of Biomedical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - C Y Shin
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - S-H Han
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea; Department of Neurology, Konkuk University Medical Center, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
47
|
Ofusori DA, Adejuwon AO. Histopathological studies of acute and chronic effects of Calliandra portoricensis leaf extract on the stomach and pancreas of adult Swiss albino mice. Asian Pac J Trop Biomed 2015; 1:182-5. [PMID: 23569755 DOI: 10.1016/s2221-1691(11)60023-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 02/17/2011] [Accepted: 03/13/2011] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE To evaluate the consequence of oral administration of Calliandra portoricensis (C. portoricensis) leaf extract on the stomach and pancreas in Swiss albino mice. METHODS Three groups of mice (B, C and D) were treated with 4 mg/kg of C. portoricensis extract. Group A was the control and received an equivalent volume of distilled water. Group B received C. portoricensis leaf extract for 7 days, Group C received C. portoricensis leaf extract for 14 days, and Group D received C. portoricensis leaf extract for 28 days. At different stages in the study, the mice were sacrificed and the stomach and pancreas were excised and fixed in 10% formol saline for histological analysis. RESULTS The result showed a normal microstructural outline in groups B and C as compared with the control. However, animals in group D showed disorganization of the mucosa and discontinuation of epithelial lining of the stomach while the islets of Langerans in the pancreas were at various degree of degeneration as compared with the control mice. CONCLUSIONS The present finding suggests that chronic administration (28 days as seen in this study) of C. portoricensis leaf extract may inhibit the proper function of the stomach and pancreas.
Collapse
Affiliation(s)
- David A Ofusori
- Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW This work reviews recent research regarding treatment of fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder. The phenotype includes anxiety linked to sensory hyperarousal, hyperactivity, and attentional problems consistent with attention deficit hyperactivity disorder and social deficits leading to autism spectrum disorder in 60% of boys and 25% of girls with FXS. RECENT FINDINGS Multiple targeted treatments for FXS have rescued the phenotype of the fmr1 knockout mouse, but few have been beneficial to patients with FXS. The failure of the metabotropic glutamate receptor 5 antagonists falls on the heels of the failure of Arbaclofen's efficacy in children and adults with autism or FXS. In contrast, efficacy has been demonstrated in a controlled trial of minocycline in children with FXS. Minocycline lowers the abnormally elevated levels of matrix metalloproteinase 9 in FXS. Acamprosate and lovastatin have been beneficial in open-label trials in FXS. The first 5 years of life may be the most efficacious time for intervention when combined with behavioral and/or educational interventions. SUMMARY Minocycline, acamprosate, lovastatin, and sertraline are treatments that can be currently prescribed and have shown benefit in children with FXS. Use of combined medical and behavioral interventions will likely be most efficacious for the treatment of FXS.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Jonathan Polussa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|
49
|
Kitajima H, Kanazawa T, Mori R, Hirano S, Ogihara T, Fujimura M. Long-term alpha-tocopherol supplements may improve mental development in extremely low birthweight infants. Acta Paediatr 2015; 104:e82-9. [PMID: 25382182 DOI: 10.1111/apa.12854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 01/21/2023]
Abstract
AIM Methods to improve the mental development of extremely low birthweight (ELBW) children are currently lacking. We assessed the effects of long-term supplementation of alpha-tocopherol on the neurological development of 259 school-aged ELBW children. METHODS Extremely low birthweight participants were divided into three groups: group A with no alpha-tocopherol supplementation (n = 121); group B with the supplementation for <6 months (n = 104) and group C with the supplementation for more than 6 months (n = 34). We analysed the participants' data at birth and between the ages of one-and-a-half to 8 years and evaluated potential factors associated with intellectual disabilities. RESULTS Children from group C had the best outcome. The groups' mean gestational weeks and mean ventilator days were as follows: 27.5 weeks, 16.1 days (group A); 25.7 weeks, 41.7 days (group B); and 25.1 weeks, 75.5 days (group C). Multivariate regression analysis revealed that the odds ratios for impaired mental development at 8 years were 1.5 in group B and 0.19 (p = 0.017) in group C, compared with 1.0 in group A. The association between the duration of alpha-tocopherol administration and performance intelligence quotient (IQ) was dose dependent (p = 0.03). CONCLUSION Long-term supplementation of alpha-tocopherol appeared to improve mental development, in particular, performance IQ, in school-aged ELBW children.
Collapse
Affiliation(s)
- Hiroyuki Kitajima
- Department of Neonatal Medicine; Osaka Medical Center and Research Institute for Maternal and Child Health; Izumi Japan
| | - Tadahiro Kanazawa
- Department of Comparative and Developmental Psychology; School of Human Science Osaka University; Suita Japan
| | - Rintaro Mori
- Department of Health Policy; National Center for Child Health and Development; Tokyo Japan
| | - Shinya Hirano
- Department of Neonatal Medicine; Osaka Medical Center and Research Institute for Maternal and Child Health; Izumi Japan
| | - Tohru Ogihara
- Department of Pediatrics; Osaka Medical College; Takatsuki Japan
| | - Masanori Fujimura
- Department of Neonatal Medicine; Osaka Medical Center and Research Institute for Maternal and Child Health; Izumi Japan
| |
Collapse
|
50
|
Dumas ME, Davidovic L. Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions. J Neuroimmune Pharmacol 2015; 10:402-24. [PMID: 25616565 DOI: 10.1007/s11481-014-9578-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
Metabolic phenotyping corresponds to the large-scale quantitative and qualitative analysis of the metabolome i.e., the low-molecular weight <1 KDa fraction in biological samples, and provides a key opportunity to advance neurosciences. Proton nuclear magnetic resonance and mass spectrometry are the main analytical platforms used for metabolic profiling, enabling detection and quantitation of a wide range of compounds of particular neuro-pharmacological and physiological relevance, including neurotransmitters, secondary messengers, structural lipids, as well as their precursors, intermediates and degradation products. Metabolic profiling is therefore particularly indicated for the study of central nervous system by probing metabolic and neurochemical profiles of the healthy or diseased brain, in preclinical models or in human samples. In this review, we introduce the analytical and statistical requirements for metabolic profiling. Then, we focus on key studies in the field of metabolic profiling applied to the characterization of animal models and human samples of central nervous system disorders. We highlight the potential of metabolic profiling for pharmacological and physiological evaluation, diagnosis and drug therapy monitoring of patients affected by brain disorders. Finally, we discuss the current challenges in the field, including the development of systems biology and pharmacology strategies improving our understanding of metabolic signatures and mechanisms of central nervous system diseases.
Collapse
Affiliation(s)
- Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|