1
|
Walter S, Schatz V, Petzold J, Schmidt C, Hoffmann S, Jantsch J, Gerlach RG. O 2-dependent incapacitation of the Salmonella pathogenicity island 1 repressor HilE. Front Cell Infect Microbiol 2025; 15:1434254. [PMID: 40041146 PMCID: PMC11876186 DOI: 10.3389/fcimb.2025.1434254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
For successful colonization, pathogenic bacteria need to adapt their metabolism and virulence functions to challenging environments within their mammalian hosts that are frequently characterized by low oxygen (O2) tensions. Upon oral ingestion, the human pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) is exposed to changing O2 and pH levels. Low concentrations of O2, which can enhance the virulence of enteroinvasive pathogens, facilitate the expression of the type three secretion system (T3SS-1) encoded by the Salmonella pathogenicity island 1 (SPI-1) that is critical for enteroinvasion and pathogenicity of S. Typhimurium. To study the impact of key environmental cues of the intestine when Salmonella encounter enterocytes, we established an in vitro growth model, which allows shifting the concentration of O2 from 0.5% to 11% and the pH from 5.9 to 7.4 in the presence of acetate and the alternative electron acceptor nitrate. Compared to normoxia, hypoxia elevated the expression of SPI-1 genes encoding T3SS-1 translocators and effectors, which resulted in higher invasion and effector translocation in epithelial cells. While hypoxia and pH shift only marginally altered the gene expression of SPI-1 regulators, including the SPI-1 repressor hilE, hypoxia and pH shift completely incapacitated HilE in a post-translational manner, ultimately promoting SPI-1 activity. From these findings, we conclude that O2-dependent HilE function allows for ultrasensitive adaptation of SPI-1 activity in environments with varying O2 availability such as the intestinal tract.
Collapse
Affiliation(s)
- Steffi Walter
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jana Petzold
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg and University of Regensburg, Regensburg, Germany
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman G. Gerlach
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Ellis NA, Machner MP. Genetic Approaches for Identifying and Characterizing Effectors in Bacterial Pathogens. Annu Rev Genet 2024; 58:233-247. [PMID: 39585907 DOI: 10.1146/annurev-genet-111523-102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Microbial pathogens have coevolved with their hosts, often for millions of years, and in the process have developed a variety of virulence mechanisms to ensure their survival, typically at the host's expense. At the center of this host-pathogen warfare are proteins called effectors that are delivered by bacteria into their host where they alter the intracellular environment to promote bacterial proliferation. Many effectors are believed to have been acquired by the bacteria from their host during evolution, explaining why researchers are keen to understand their function, as this information may provide insight into both microbial virulence strategies and biological processes that happen within our own cells. Help for accomplishing this goal has come from the recent development of increasingly powerful genetic approaches, which are the focus of this review.
Collapse
Affiliation(s)
- Nicole A Ellis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Matthias P Machner
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
3
|
Ricci V, Kaur J, Stone J, Piddock LJV. Antibiotics do not induce expression of acrAB directly but via a RamA-dependent pathway. Antimicrob Agents Chemother 2023; 67:e0062023. [PMID: 37815378 PMCID: PMC10649046 DOI: 10.1128/aac.00620-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
The aim of this study was to determine if acrAB induction in Salmonella Typhimurium relies solely on RamA or if other transcriptional activator pathways are also involved, and to better understand the kinetics of induction of both acrAB and ramA. We evaluated the expression of acrAB in S. Typhimurium in response to a variety of compounds that are known to induce the expression of one or more of the transcriptional activators, MarA, SoxS, RamA, and Rob. We utilized green fluorescent protein (GFP) transcriptional reporter fusions to investigate the changes in the expression of acrAB, ramA, marA, and soxS following exposure to sub-inhibitory concentrations of antimicrobial compounds. Of the compounds tested, 13 induce acrAB expression in S. Typhimurium via RamA, MarA, SoxS, and Rob-dependent pathways. None of the tested antibiotics induced acrAB expression, and compounds that induced acrAB expression also induced a general stress response. The results from this study show that the majority of compounds tested induced acrAB via the RamA-dependent pathway. However, none of the antibiotic substrates of the AcrB efflux pump directly increased the expression of AcrAB either directly or indirectly via the induction of one of the transcriptional activators. Using a dual GFP/RFP reporter, we investigated the kinetics of the induction of ramA and acrAB simultaneously and found that acrAB gene expression was transient compared to ramA gene expression. ramA gene expression increased with time and would remain high or decrease slowly over the course of the experiment indicating that RamA exerts a wider global effect and is not limited to efflux regulation alone.
Collapse
Affiliation(s)
- Vito Ricci
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Jaswant Kaur
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Jack Stone
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| | - Laura J. V. Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Fernández-Fernández R, López-Igual R, Casadesús J, Sánchez-Romero MA. Analysis of Salmonella lineage-specific traits upon cell sorting. Front Cell Infect Microbiol 2023; 13:1146070. [PMID: 37065195 PMCID: PMC10090396 DOI: 10.3389/fcimb.2023.1146070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Microbial cell individuality is receiving increasing interest in the scientific community. Individual cells within clonal populations exhibit noticeable phenotypic heterogeneity. The advent of fluorescent protein technology and advances in single-cell analysis has revealed phenotypic cell variant in bacterial populations. This heterogeneity is evident in a wide range of phenotypes, for example, individual cells display variable degrees of gene expression and survival under selective conditions and stresses, and can exhibit differing propensities to host interactions. Last few years, numerous cell sorting approaches have been employed for resolving the properties of bacterial subpopulations. This review provides an overview of applications of cell sorting to analyze Salmonella lineage-specific traits, including bacterial evolution studies, gene expression analysis, response to diverse cellular stresses and characterization of diverse bacterial phenotypic variants.
Collapse
Affiliation(s)
- Rocío Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Rocío López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C., Seville, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- *Correspondence: María Antonia Sánchez-Romero,
| |
Collapse
|
5
|
Ciusa ML, Marshall RL, Ricci V, Stone JW, Piddock LJV. Absence, loss-of-function, or inhibition of Escherichia coli AcrB does not increase expression of other efflux pump genes supporting the discovery of AcrB inhibitors as antibiotic adjuvants. J Antimicrob Chemother 2021; 77:633-640. [PMID: 34897478 PMCID: PMC8865010 DOI: 10.1093/jac/dkab452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives To determine whether expression of efflux pumps and antibiotic susceptibility are altered in Escherichia coli in response to efflux inhibition. Methods The promoter regions of nine efflux pump genes (acrAB, acrD, acrEF, emrAB, macAB, cusCFBA, mdtK, mdtABC, mdfA) were fused to gfp in pMW82 and fluorescence from each reporter construct was used as a measure of the transcriptional response to conditions in which AcrB was inhibited, absent or made non-functional. Expression was also determined by RT-qPCR. Drug susceptibility of efflux pump mutants with missense mutations known or predicted to cause loss of function of the encoded efflux pump was investigated. Results Data from the GFP reporter constructs revealed that no increased expression of the tested efflux pump genes was observed when AcrB was absent, made non-functional, or inhibited by an efflux pump inhibitor/competitive substrate, such as PAβN or chlorpromazine. This was confirmed by RT-qPCR for PAβN and chlorpromazine; however, a small but significant increase in macB gene expression was seen when acrB is deleted. Efflux inhibitors only synergized with antibiotics in the presence of a functional AcrB. When AcrB was absent or non-functional, there was no impact on MICs when other efflux pumps were also made non-functional. Conclusions Absence, loss-of-function, or inhibition of E. coli AcrB did not significantly increase expression of other efflux pump genes, which suggests there is no compensatory mechanism to overcome efflux inhibition and supports the discovery of inhibitors of AcrB as antibiotic adjuvants.
Collapse
Affiliation(s)
- Maria Laura Ciusa
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Vito Ricci
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jack W Stone
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Abstract
For antibiotics with intracellular targets, effective treatment of bacterial infections requires the drug to accumulate to a high concentration inside cells. Bacteria produce a complex cell envelope and possess drug export efflux pumps to limit drug accumulation inside cells. Decreasing cell envelope permeability and increasing efflux pump activity can reduce intracellular accumulation of antibiotics and are commonly seen in antibiotic-resistant strains. Here, we show that the balance between influx and efflux differs depending on bacterial growth phase in Gram-negative bacteria. Accumulation of the fluorescent compound ethidium bromide (EtBr) was measured in Salmonella enterica serovar Typhimurium SL1344 (wild type) and efflux deficient (ΔacrB) strains during growth. In SL1344, EtBr accumulation remained low, regardless of growth phase, and did not correlate with acrAB transcription. EtBr accumulation in the ΔacrB strains was high in exponential phase but dropped sharply later in growth, with no significant difference from that in SL1344 in stationary phase. Low EtBr accumulation in stationary phase was not due to the upregulation of other efflux pumps but instead was due to decreased permeability of the envelope in stationary phase. Transcriptome sequencing (RNA-seq) identified changes in expression of several pathways that remodel the envelope in stationary phase, leading to lower permeability.
Collapse
|
7
|
Powers TR, Haeberle AL, Predeus AV, Hammarlöf DL, Cundiff JA, Saldaña-Ahuactzi Z, Hokamp K, Hinton JCD, Knodler LA. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog 2021; 17:e1009280. [PMID: 34460873 PMCID: PMC8432900 DOI: 10.1371/journal.ppat.1009280] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.
Collapse
Affiliation(s)
- TuShun R. Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Alexander V. Predeus
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Disa L. Hammarlöf
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Jay C. D. Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
8
|
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Advanced strategies for development of vaccines against human bacterial pathogens. World J Microbiol Biotechnol 2021; 37:67. [PMID: 33748926 PMCID: PMC7982316 DOI: 10.1007/s11274-021-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Carlos A Guzman
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, Harayana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, PO box #04, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Abstract
Active efflux of antibiotics preventing their accumulation to toxic intracellular concentrations contributes to clinically relevant multidrug resistance. Inhibition of active efflux potentiates antibiotic activity, indicating that efflux inhibitors could be used in combination with antibiotics to reverse drug resistance. Expression of ramA by Salmonella enterica serovar Typhimurium increases in response to efflux inhibition, irrespective of the mode of inhibition. We hypothesized that measuring ramA promoter activity could act as a reporter of efflux inhibition. A rapid, inexpensive, and high-throughput green fluorescent protein (GFP) screen to identify efflux inhibitors was developed, validated, and implemented. Two chemical compound libraries were screened for compounds that increased GFP production. Fifty of the compounds in the 1,200-compound Prestwick chemical library were identified as potential efflux inhibitors, including the previously characterized efflux inhibitors mefloquine and thioridazine. There were 107 hits from a library of 47,168 proprietary compounds from L. Hoffmann La Roche; 45 were confirmed hits, and a dose response was determined. Dye efflux and accumulation assays showed that 40 Roche and three Prestwick chemical library compounds were efflux inhibitors. Most compounds had specific efflux-inhibitor-antibiotic combinations and/or species-specific synergy in antibiotic disc diffusion and checkerboard assays performed with Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Salmonella Typhimurium. These data indicate that both narrow-spectrum and broad-spectrum combinations of efflux inhibitors with antibiotics can be found. Eleven novel efflux inhibitor compounds potentiated antibiotic activities against at least one species of Gram-negative bacteria, and data revealing an E. coli mutant with loss of AcrB function suggested that these are AcrB inhibitors.IMPORTANCE Multidrug-resistant Gram-negative bacteria pose a serious threat to human and animal health. Molecules that inhibit multidrug efflux offer an alternative approach to resolving the challenges caused by antibiotic resistance, by potentiating the activity of old, licensed, and new antibiotics. We have developed, validated, and implemented a high-throughput screen and used it to identify efflux inhibitors from two compound libraries selected for their high chemical and pharmacological diversity. We found that the new high-throughput screen is a valuable tool to identify efflux inhibitors, as evidenced by the 43 new efflux inhibitors described in this study.
Collapse
|
10
|
Jitprasutwit S, Jitprasutwit N, Hemsley CM, Onlamoon N, Withatanung P, Muangsombut V, Vattanaviboon P, Stevens JM, Ong C, Stevens MP, Titball RW, Korbsrisate S. Identification of Burkholderia pseudomallei Genes Induced During Infection of Macrophages by Differential Fluorescence Induction. Front Microbiol 2020; 11:72. [PMID: 32153515 PMCID: PMC7047822 DOI: 10.3389/fmicb.2020.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 12/05/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, can survive and replicate in macrophages. Little is known about B. pseudomallei genes that are induced during macrophage infection. We constructed a B. pseudomallei K96243 promoter trap library with genomic DNA fragments fused to the 5' end of a plasmid-borne gene encoding enhanced green fluorescent protein (eGFP). Microarray analysis showed that the library spanned 88% of the B. pseudomallei genome. The recombinant plasmids were introduced into Burkholderia thailandensis E264, and promoter fusions active during in vitro culture were removed. J774A.1 murine macrophages were infected with the promoter trap library, and J774A.1 cells containing fluorescent bacteria carrying plasmids with active promoters were isolated using flow cytometric-based cell sorting. Candidate macrophage-induced B. pseudomallei genes were identified from the location of the insertions containing an active promoter activity. A proportion of the 138 genes identified in this way have been previously reported to be involved in metabolism and transport, virulence, or adaptation. Novel macrophage-induced B. pseudomallei genes were also identified. Quantitative reverse-transcription PCR analysis of 13 selected genes confirmed gene induction during macrophage infection. Deletion mutants of two macrophage-induced genes from this study were attenuated in Galleria mellonella larvae, suggesting roles in virulence. B. pseudomallei genes activated during macrophage infection may contribute to intracellular life and pathogenesis and merit further investigation toward control strategies for melioidosis.
Collapse
Affiliation(s)
- Siroj Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Niramol Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nattawat Onlamoon
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Joanne M. Stevens
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Ong
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Mark P. Stevens
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Lories B, Roberfroid S, Dieltjens L, De Coster D, Foster KR, Steenackers HP. Biofilm Bacteria Use Stress Responses to Detect and Respond to Competitors. Curr Biol 2020; 30:1231-1244.e4. [PMID: 32084407 PMCID: PMC7322538 DOI: 10.1016/j.cub.2020.01.065] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Bacteria use complex regulatory networks to cope with stress, but the function of these networks in natural habitats is poorly understood. The competition sensing hypothesis states that bacterial stress response systems can serve to detect ecological competition, but studying regulatory responses in diverse communities is challenging. Here, we solve this problem by using differential fluorescence induction to screen the Salmonella Typhimurium genome for loci that respond, at the single-cell level, to life in biofilms with competing strains of S. Typhimurium and Escherichia coli. This screening reveals the presence of competing strains drives up the expression of genes associated with biofilm matrix production (CsgD pathway), epithelial invasion (SPI1 invasion system), and, finally, chemical efflux and antibiotic tolerance (TolC efflux pump and AadA aminoglycoside 3-adenyltransferase). We validate that these regulatory changes result in the predicted phenotypic changes in biofilm, mammalian cell invasion, and antibiotic tolerance. We further show that these responses arise via activation of major stress responses, providing direct support for the competition sensing hypothesis. Moreover, inactivation of the type VI secretion system (T6SS) of a competitor annuls the responses to competition, indicating that T6SS-derived cell damage activates these stress response systems. Our work shows that bacteria use stress responses to detect and respond to competition in a manner important for major phenotypes, including biofilm formation, virulence, and antibiotic tolerance.
Collapse
Affiliation(s)
- Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Stefanie Roberfroid
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Lise Dieltjens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - David De Coster
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
12
|
Zhang Y, Wu G, Palmer I, Wang B, Qian G, Fu ZQ, Liu F. The Role of a Host-Induced Arginase of Xanthomonas oryzae pv. oryzae in Promoting Virulence on Rice. PHYTOPATHOLOGY 2019; 109:1869-1877. [PMID: 31290730 DOI: 10.1094/phyto-02-19-0058-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The plant bacterial pathogen Xanthomonas oryzae pv. oryzae causes bacterial blight of rice, which is one of the most destructive rice diseases prevalent in Asia and parts of Africa. Despite many years of research, how X. oryzae pv. oryzae causes bacterial blight of rice is still not completely understood. Here, we show that the loss of the rocF gene caused a significant decrease in the virulence of X. oryzae pv. oryzae in the susceptible rice cultivar IR24. Bioinformatics analysis demonstrated that rocF encodes arginase. Quantitative real-time PCR and Western blot assays revealed that rocF expression was significantly induced by rice and arginine. The rocF deletion mutant strain showed elevated sensitivity to hydrogen peroxide, reduced extracellular polysaccharide (EPS) production, and reduced biofilm formation, all of which are important determinants for the full virulence of X. oryzae pv. oryzae, compared with the wild-type strain. Taken together, the results of this study revealed a mechanism by which a bacterial arginase is required for the full virulence of X. oryzae pv. oryzae on rice because of its contribution to tolerance to reactive oxygen species, EPS production, and biofilm formation.
Collapse
Affiliation(s)
- Yuqiang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, P.R. China
| | - Ian Palmer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Bo Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Guoliang Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, U.S.A
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, P.R. China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, P.R. China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
13
|
Webber MA, Buckner MMC, Redgrave LS, Ifill G, Mitchenall LA, Webb C, Iddles R, Maxwell A, Piddock LJV. Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan. J Antimicrob Chemother 2018; 72:2755-2763. [PMID: 29091182 DOI: 10.1093/jac/dkx201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Objectives Cross-resistance between antibiotics and biocides is a potentially important driver of MDR. A relationship between susceptibility of Salmonella to quinolones and triclosan has been observed. This study aimed to: (i) investigate the mechanism underpinning this; (ii) determine whether the phenotype is conserved in Escherichia coli; and (iii) evaluate the potential for triclosan to select for quinolone resistance. Methods WT E. coli, Salmonella enterica serovar Typhimurium and gyrA mutants were used. These were characterized by determining antimicrobial susceptibility, DNA gyrase activity and sensitivity to inhibition. Expression of stress response pathways (SOS, RpoS, RpoN and RpoH) was measured, as was the fitness of mutants. The potential for triclosan to select for quinolone resistance was determined. Results All gyrase mutants showed increased triclosan MICs and altered supercoiling activity. There was no evidence for direct interaction between triclosan and gyrase. Identical substitutions in GyrA had different impacts on supercoiling in the two species. For both, there was a correlation between altered supercoiling and expression of stress responses. This was more marked in E. coli, where an Asp87Gly GyrA mutant demonstrated greatly increased fitness in the presence of triclosan. Exposure of parental strains to low concentrations of triclosan did not select for quinolone resistance. Conclusions Our data suggest gyrA mutants are less susceptible to triclosan due to up-regulation of stress responses. The impact of gyrA mutation differs between E. coli and Salmonella. The impacts of gyrA mutation beyond quinolone resistance have implications for the fitness and selection of gyrA mutants in the presence of non-quinolone antimicrobials.
Collapse
Affiliation(s)
- Mark A Webber
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK.,The Quadram Institute, Norwich Research Park, Norwich NR47UH, UK
| | - Michelle M C Buckner
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Liam S Redgrave
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Gyles Ifill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Carly Webb
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Robyn Iddles
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| |
Collapse
|
14
|
Madelung M, Kronborg T, Doktor TK, Struve C, Krogfelt KA, Møller-Jensen J. DFI-seq identification of environment-specific gene expression in uropathogenic Escherichia coli. BMC Microbiol 2017; 17:99. [PMID: 28438119 PMCID: PMC5404293 DOI: 10.1186/s12866-017-1008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Background During infection of the urinary tract, uropathogenic Escherichia coli (UPEC) are exposed to different environments, such as human urine and the intracellular environments of bladder epithelial cells. Each environment elicits a distinct bacterial environment-specific transcriptional response. We combined differential fluorescence induction (DFI) with next-generation sequencing, collectively termed DFI-seq, to identify differentially expressed genes in UPEC strain UTI89 during growth in human urine and bladder cells. Results DFI-seq eliminates the need for iterative cell sorting of the bacterial library and yields a genome-wide view of gene expression. By analysing the gene expression of UPEC in human urine we found that genes involved in amino acid biosynthesis were upregulated. Deletion mutants lacking genes involved in arginine biosynthesis were outcompeted by the wild type during growth in human urine and inhibited in their ability to invade or proliferate in the J82 bladder epithelial cell line. Furthermore, DFI-seq was used to identify genes involved in invasion of J82 bladder epithelial cells. 56 genes were identified to be differentially expressed of which almost 60% encoded hypothetical proteins. One such gene UTI89_C5139, displayed increased adhesion and invasion of J82 cells when deleted from UPEC strain UTI89. Conclusions We demonstrate the usefulness of DFI-seq for identification of genes required for optimal growth of UPEC in human urine, as well as potential virulence genes upregulated during infection of bladder cell culture. DFI-seq holds potential for the study of bacterial gene expression in live-animal infection systems. By linking fitness genes, such as those genes involved in amino acid biosynthesis, to virulence, this study contributes to our understanding of UPEC pathophysiology. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1008-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle Madelung
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tina Kronborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Karen Angeliki Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
15
|
Deyneko IV, Kasnitz N, Leschner S, Weiss S. Composing a Tumor Specific Bacterial Promoter. PLoS One 2016; 11:e0155338. [PMID: 27171245 PMCID: PMC4865170 DOI: 10.1371/journal.pone.0155338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/27/2016] [Indexed: 12/12/2022] Open
Abstract
Systemically applied Salmonella enterica spp. have been shown to invade and colonize neoplastic tissues where it retards the growth of many tumors. This offers the possibility to use the bacteria as a vehicle for the tumor specific delivery of therapeutic molecules. Specificity of such delivery is solely depending on promoter sequences that control the production of a target molecule. We have established the functional structure of bacterial promoters that are transcriptionally active exclusively in tumor tissues after systemic application. We observed that the specific transcriptional activation is accomplished by a combination of a weak basal promoter and a strong FNR binding site. This represents a minimal set of control elements required for such activation. In natural promoters, additional DNA remodeling elements are found that alter the level of transcription quantitatively. Inefficiency of the basal promoter ensures the absence of transcription outside tumors. As a proof of concept, we compiled an artificial promoter sequence from individual motifs representing FNR and basal promoter and showed specific activation in a tumor microenvironment. Our results open possibilities for the generation of promoters with an adjusted level of expression of target proteins in particular for applications in bacterial tumor therapy.
Collapse
Affiliation(s)
- Igor V. Deyneko
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| | - Nadine Kasnitz
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara Leschner
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
16
|
Zhang J, Wang C, Zhang L, Wu H, Xiao Y, Xu Y, Qian X, Zhu W. Novel nonplanar and rigid fluorophores with intensive emission in water and the application in two-photon imaging of live cells. RSC Adv 2016. [DOI: 10.1039/c6ra13226j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel nonplanar and rigid fluorophores have been synthesized, by fusing a twisted heterocycle onto a naphthalimide skeleton, and exhibited excellent higher quantum yield value (Φ = 0.60–0.66) and molar extinction coefficient in water.
Collapse
Affiliation(s)
- Jingwen Zhang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Chao Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Lei Zhang
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Huijing Wu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
17
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
18
|
Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015; 6:377. [PMID: 25972857 PMCID: PMC4412071 DOI: 10.3389/fmicb.2015.00377] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids, and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design, and subsequent experimental verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on EPIs will also be analyzed and the reasons why no compounds have yet progressed into clinical use will be explored.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | | | - Shutao Ma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan, China
| |
Collapse
|
19
|
Baylay AJ, Ivens A, Piddock LJV. A novel gene amplification causes upregulation of the PatAB ABC transporter and fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2015; 59:3098-108. [PMID: 25779578 PMCID: PMC4432121 DOI: 10.1128/aac.04858-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/01/2015] [Indexed: 01/14/2023] Open
Abstract
Overexpression of the ABC transporter genes patA and patB confers efflux-mediated fluoroquinolone resistance in Streptococcus pneumoniae and is also linked to pneumococcal stress responses. Although upregulation of patAB has been observed in many laboratory mutants and clinical isolates, the regulatory mechanisms controlling expression of these genes are unknown. In this study, we aimed to identify the cause of high-level constitutive overexpression of patAB in M184, a multidrug-resistant mutant of S. pneumoniae R6. Using a whole-genome transformation and sequencing approach, we identified a novel duplication of a 9.2-kb region of the M184 genome which included the patAB genes. This duplication did not affect growth and was semistable with a low segregation rate. The expression levels of patAB in M184 were much higher than those that could be fully explained by doubling of the gene dosage alone, and inactivation of the first copy of patA had no effect on multidrug resistance. Using a green fluorescent protein reporter system, increased patAB expression was ascribed to transcriptional read-through from a tRNA gene upstream of the second copy of patAB. This is the first report of a large genomic duplication causing antibiotic resistance in S. pneumoniae and also of a genomic duplication causing antibiotic resistance by a promoter switching mechanism.
Collapse
Affiliation(s)
- Alison J Baylay
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection, and College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection, and College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci U S A 2015; 112:3511-6. [PMID: 25737552 DOI: 10.1073/pnas.1419939112] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The incidence of multidrug-resistant bacterial infections is increasing globally and the need to understand the underlying mechanisms is paramount to discover new therapeutics. The efflux pumps of Gram-negative bacteria have a broad substrate range and transport antibiotics out of the bacterium, conferring intrinsic multidrug resistance (MDR). The genomes of pre- and posttherapy MDR clinical isolates of Salmonella Typhimurium from a patient that failed antibacterial therapy and died were sequenced. In the posttherapy isolate we identified a novel G288D substitution in AcrB, the resistance-nodulation division transporter in the AcrAB-TolC tripartite MDR efflux pump system. Computational structural analysis suggested that G288D in AcrB heavily affects the structure, dynamics, and hydration properties of the distal binding pocket altering specificity for antibacterial drugs. Consistent with this hypothesis, recreation of the mutation in standard Escherichia coli and Salmonella strains showed that G288D AcrB altered substrate specificity, conferring decreased susceptibility to the fluoroquinolone antibiotic ciprofloxacin by increased efflux. At the same time, the substitution increased susceptibility to other drugs by decreased efflux. Information about drug transport is vital for the discovery of new antibacterials; the finding that one amino acid change can cause resistance to some drugs, while conferring increased susceptibility to others, could provide a basis for new drug development and treatment strategies.
Collapse
|
21
|
Baylay AJ, Piddock LJV. Clinically relevant fluoroquinolone resistance due to constitutive overexpression of the PatAB ABC transporter in Streptococcus pneumoniae is conferred by disruption of a transcriptional attenuator. J Antimicrob Chemother 2014; 70:670-9. [PMID: 25411187 PMCID: PMC4319486 DOI: 10.1093/jac/dku449] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Constitutive overexpression of patAB has been observed in several unrelated fluoroquinolone-resistant laboratory mutants and clinical isolates; therefore, we sought to identify the cause of this overexpression. METHODS Constitutive patAB overexpression in two clinical isolates and a laboratory-selected mutant was investigated using a whole-genome transformation approach. To determine the effect of the detected terminator mutations, the WT and mutated patA leader sequences were cloned upstream of a GFP reporter. Finally, mutation of the opposing base in the stem-loop structure was carried out. RESULTS We identified three novel mutations causing up-regulation of patAB. All three of these were located in the upstream region of patA and affected the same Rho-independent transcriptional terminator structure. Each mutation was predicted to destabilize the terminator stem-loop to a different degree, and there was a strong correlation between predicted terminator stability and patAB expression level. Using a GFP reporter of patA transcription, these terminator mutations led to increased transcription of a downstream gene. For one mutant sequence, terminator stability could be restored by mutation of the opposing base in the stem-loop structure, demonstrating that transcriptional suppression of patAB is mediated by the terminator stem-loop structure. CONCLUSIONS This study showed that a mutation in a Rho-independent transcriptional terminator structure confers overexpression of patAB and fluoroquinolone resistance. Understanding how levels of the PatAB efflux pump are regulated increases our knowledge of pneumococcal biology and how the pneumococcus can respond to various stresses, including antimicrobials.
Collapse
Affiliation(s)
- Alison J Baylay
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection and College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection and College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
22
|
Campelo AB, Roces C, Mohedano ML, López P, Rodríguez A, Martínez B. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb Cell Fact 2014; 13:77. [PMID: 24886591 PMCID: PMC4055356 DOI: 10.1186/1475-2859-13-77] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. RESULTS Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. CONCLUSIONS Inserting the Lcn972 cluster into segregational unstable plasmids prevents their lost by segregation and probable could be applied as an alternative to the use of antibiotics to support safer and more sustainable biotechnological applications of genetically engineered L. lactis.
Collapse
Affiliation(s)
- Ana B Campelo
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Clara Roces
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - M Luz Mohedano
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Paloma López
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas CIB (CSIC), 28040 Madrid, Spain
| | - Ana Rodríguez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - Beatriz Martínez
- Dairy Safe group, Department Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de AsturiasIPLA-CSIC, Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| |
Collapse
|
23
|
Expression of fluorescent proteins in bifidobacteria for analysis of host-microbe interactions. Appl Environ Microbiol 2014; 80:2842-50. [PMID: 24584243 DOI: 10.1128/aem.04261-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bifidobacteria are an important component of the human gastrointestinal microbiota and are frequently used as probiotics. The genetic inaccessibility and lack of molecular tools commonly used in other bacteria have hampered a detailed analysis of the genetic determinants of bifidobacteria involved in their adaptation to, colonization of, and interaction with the host. In the present study, a range of molecular tools were developed that will allow the closing of some of the gaps in functional analysis of bifidobacteria. A number of promoters were tested for transcriptional activity in Bifidobacterium bifidum S17 using pMDY23, a previously published promoter probe vector. The promoter of the gap gene (Pgap) of B. bifidum S17 yielded the highest promoter activity among the promoters tested. Thus, this promoter and the pMDY23 backbone were used to construct a range of vectors for expression of different fluorescent proteins (FPs). Successful expression of cyan fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), and mCherry could be shown for three strains representing three different Bifidobacterium spp. The red fluorescent B. bifidum S17/pVG-mCherry was further used to demonstrate application of fluorescent bifidobacteria for adhesion assays and detection in primary human macrophages cultured in vitro. Furthermore, pMGC-mCherry was cloned by combining a chloramphenicol resistance marker and expression of the FP mCherry under the control of Pgap. The chloramphenicol resistance marker of pMGC-mCherry was successfully used to determine gastrointestinal transit time of B. bifidum S17. Moreover, B. bifidum S17/pMGC-mCherry could be detected in fecal samples of mice after oral administration.
Collapse
|
24
|
Bent ZW, Branda SS, Young GM. The Yersinia enterocolitica Ysa type III secretion system is expressed during infections both in vitro and in vivo. Microbiologyopen 2013; 2:962-75. [PMID: 24166928 PMCID: PMC3892342 DOI: 10.1002/mbo3.136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022] Open
Abstract
Yersinia enterocolitica biovar 1B maintains two type III secretion systems (T3SS) that are involved in pathogenesis, the plasmid encoded Ysc T3SS and the chromosomally encoded Ysa T3SS. In vitro, the Ysa T3SS has been shown to be expressed only at 26°C in a high-nutrient medium containing an exceptionally high concentration of salt – an artificial condition that provides no clear insight on the nature of signal that Y. enterocolitica responds to in a host. However, previous research has indicated that the Ysa system plays a role in the colonization of gastrointestinal tissues of mice. In this study, a series of Ysa promoter fusions to green fluorescent protein gene (gfp) were created to analyze the expression of this T3SS during infection. Using reporter strains, infections were carried out in vitro using HeLa cells and in vivo using the mouse model of yersiniosis. Expression of green fluorescent protein (GFP) was measured from the promoters of yspP (encoding a secreted effector protein) and orf6 (encoding a structural component of the T3SS apparatus) in vitro and in vivo. During the infection of HeLa cells GFP intensity was measured by fluorescence microscopy, while during murine infections GFP expression in tissues was measured by flow cytometry. These approaches, combined with quantification of yspP mRNA transcripts by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), demonstrate that the Ysa system is expressed in vitro in a contact-dependent manner, and is expressed in vivo during infection of mice.
Collapse
Affiliation(s)
- Zachary W Bent
- Microbiology Graduate Group, University of California, Davis, CA; Systems Biology, Sandia National Laboratories, Livermore, CA
| | | | | |
Collapse
|
25
|
Kannan RM, Gérard HC, Mishra MK, Mao G, Wang S, Hali M, Whittum-Hudson JA, Hudson AP. Dendrimer-enabled transformation of Chlamydia trachomatis. Microb Pathog 2013; 65:29-35. [PMID: 24075820 DOI: 10.1016/j.micpath.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Lack of a system for genetic manipulation of Chlamydia trachomatis has been a key challenge to advancing understanding the molecular genetic basis of virulence for this bacterial pathogen. We developed a non-viral, dendrimer-enabled system for transformation of this organism and used it to characterize the effects of inserting the common 7.5 kbp chlamydial plasmid into strain L2(25667R), a C. trachomatis isolate lacking it. The plasmid was cloned in pUC19 and the clone complexed to polyamidoamine dendrimers, producing ∼83 nm spherical particles. Nearly confluent McCoy cell cultures were infected with L2(25667R) and reference strain L2(434). At 16 h post-infection, medium was replaced with dendrimer-plasmid complexes in medium lacking additives (L2(25667R)) or with additive-free medium alone (L2(434)). Three h later complexes/buffer were removed, and medium was replaced; cultures were harvested at various times post-transformation for analyses. Real time PCR and RT-PCR of nucleic acids from transformed cultures demonstrated plasmid replication and gene expression. A previous report indicated that one or more plasmid-encoded product govern(s) transcription of the glycogen synthase gene (glgA) in standard strains. In L2(25667R) the gene is not expressed, but transformants of that strain given the cloned chlamydial plasmid increase glgA expression, as does L2(434). The cloned plasmid is retained, replicated, and expressed in transformants over at least 5 passages, and GFP is expressed when transformed into growing L2(25667R). This transformation system will allow study of chlamydial gene function in pathogenesis.
Collapse
Affiliation(s)
- Rangaramanujam M Kannan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21235, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
van Wijk SJL, Fiškin E, Dikic I. Selective monitoring of ubiquitin signals with genetically encoded ubiquitin chain-specific sensors. Nat Protoc 2013; 8:1449-58. [PMID: 23807287 DOI: 10.1038/nprot.2013.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite intensive research, there is a distinct lack of methodology for visualizing endogenous ubiquitination in living cells. In this protocol, we describe how unique properties of ubiquitin (Ub)-binding domains (UBDs) can be used to selectively detect, visualize and inhibit Ub-dependent processes in mammalian cells. The procedure deals with designing and validating the binding selectivity of GFP-tagged K63- and linear-linked sensors (TAB2 NZF and NEMO UBAN, respectively) in vitro. We describe how these moieties can be used to inhibit tumor necrosis factor (TNF)-mediated NF-κB signaling and to detect ubiquitinated cytosolic Salmonella in living cells, emphasizing a more flexible use compared with chain-specific antibodies. These chain-specific sensors can be used to detect Ub-like or autophagy-related modifiers and, in combination with mass spectrometry, to identify new Ub targets. These Ub (-like) sensors can be designed, constructed and tested in ~2-3 weeks.
Collapse
Affiliation(s)
- Sjoerd J L van Wijk
- Institute of Biochemistry II, School of Medicine, Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
27
|
A differential fluorescence-based genetic screen identifies Listeria monocytogenes determinants required for intracellular replication. J Bacteriol 2013; 195:3331-40. [PMID: 23687268 DOI: 10.1128/jb.00210-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive, facultative intracellular pathogen capable of causing severe invasive disease with high mortality rates in humans. While previous studies have largely elucidated the bacterial and host cell mechanisms necessary for invasion, vacuolar escape, and subsequent cell-to-cell spread, the L. monocytogenes factors required for rapid replication within the restrictive environment of the host cell cytosol are poorly understood. In this report, we describe a differential fluorescence-based genetic screen utilizing fluorescence-activated cell sorting (FACS) and high-throughput microscopy to identify L. monocytogenes mutants defective in optimal intracellular replication. Bacteria harboring deletions within the identified gene menD or pepP were defective for growth in primary murine macrophages and plaque formation in monolayers of L2 fibroblasts, thus validating the ability of the screening method to identify intracellular replication-defective mutants. Genetic complementation of the menD and pepP deletion strains rescued the in vitro intracellular infection defects. Furthermore, the menD deletion strain displayed a general extracellular replication defect that could be complemented by growth under anaerobic conditions, while the intracellular growth defect of this strain could be complemented by the addition of exogenous menaquinone. As prior studies have indicated the importance of aerobic metabolism for L. monocytogenes infection, these findings provide further evidence for the importance of menaquinone and aerobic metabolism for L. monocytogenes pathogenesis. Lastly, both the menD and pepP deletion strains were attenuated during in vivo infection of mice. These findings demonstrate that the differential fluorescence-based screening approach provides a powerful tool for the identification of intracellular replication determinants in multiple bacterial systems.
Collapse
|
28
|
Lawler AJ, Ricci V, Busby SJW, Piddock LJV. Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 2013; 68:1551-7. [PMID: 23493314 PMCID: PMC3682690 DOI: 10.1093/jac/dkt069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objectives The transcriptional activator RamA regulates production of the multidrug resistance efflux AcrAB–TolC system in several Enterobacteriaceae. This study investigated factors that lead to increased expression of ramA. Methods In order to monitor changes in ramA expression, the promoter region of ramA was fused to a gfp gene encoding an unstable green fluorescence protein (GFP) on the reporter plasmid, pMW82. The ramA reporter plasmid was transformed into Salmonella Typhimurium SL1344 and a ΔacrB mutant. The response of the reporter to subinhibitory concentrations of antibiotics, dyes, biocides, psychotropic agents and efflux inhibitors was measured during growth over a 5 h time period. Results Our data revealed that the expression of ramA was increased in a ΔacrB mutant and also in the presence of the efflux inhibitors phenylalanine-arginine-β-naphthylamide, carbonyl cyanide m-chlorophenylhydrazone and 1-(1-naphthylmethyl)-piperazine. The phenothiazines chlorpromazine and thioridazine also increased ramA expression, triggering the greatest increase in GFP expression. However, inducers of Escherichia coli marA and soxS and 12 of 17 tested antibiotic substrates of AcrAB–TolC did not induce ramA expression. Conclusions This study shows that expression of ramA is not induced by most substrates of the AcrAB–TolC efflux system, but is increased by mutational inactivation of acrB or when efflux is inhibited.
Collapse
Affiliation(s)
- A J Lawler
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
29
|
Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer AK, Kirchhoff D, Schmidt A, Burton N, Bumann D. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog 2012; 8:e1002966. [PMID: 23093937 PMCID: PMC3475680 DOI: 10.1371/journal.ppat.1002966] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/14/2012] [Indexed: 01/05/2023] Open
Abstract
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. Salmonella infections cause extensive morbidity and mortality worldwide. A vaccine that prevents systemic Salmonella infections is urgently needed but suitable antigens remain largely unknown. In this study we identified several antigen candidates that mediated protective immunity to Salmonella in a mouse typhoid fever model. Interestingly, all these antigens were associated with the Salmonella surface. This suggested that similar antigen properties might be relevant for CD4 T cell dependent immunity to intracellular pathogens like Salmonella, as for antibody-dependent immunity to extracellular pathogens. Detailed analysis revealed that Salmonella surface antigens were not generally more immunogenic compared to internal antigens. However, internal antigens were inaccessible for CD4 T cell recognition of a substantial number of infected host cells that contained exclusively live intact Salmonella. Together, these results might pave the way for development of an efficacious Salmonella vaccine, and provide a basis to facilitate antigen identification for Salmonella and possibly other intracellular pathogens.
Collapse
Affiliation(s)
- Somedutta Barat
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Yvonne Willer
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
| | - Konstantin Rizos
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne K. Schemmer
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dennis Kirchhoff
- Immunomodulation Group, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
30
|
Zhu S, Wang Z, Wang J, Wang Y, Wang N, Wang Z, Xu M, Su X, Wang M, Zhang S, Huang M, Wu R. A quantitative model of transcriptional differentiation driving host-pathogen interactions. Brief Bioinform 2012; 14:713-23. [PMID: 22962337 DOI: 10.1093/bib/bbs047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite our expanding knowledge about the biochemistry of gene regulation involved in host-pathogen interactions, a quantitative understanding of this process at a transcriptional level is still limited. We devise and assess a computational framework that can address this question. This framework is founded on a mixture model-based likelihood, equipped with functionality to cluster genes per dynamic and functional changes of gene expression within an interconnected system composed of the host and pathogen. If genes from the host and pathogen are clustered in the same group due to a similar pattern of dynamic profiles, they are likely to be reciprocally co-evolving. If genes from the two organisms are clustered in different groups, this means that they experience strong host-pathogen interactions. The framework can test the rates of change for individual gene clusters during pathogenic infection and quantify their impacts on host-pathogen interactions. The framework was validated by a pathological study of poplar leaves infected by fungal Marssonina brunnea in which co-evolving and interactive genes that determine poplar-fungus interactions are identified. The new framework should find its wide application to studying host-pathogen interactions for any other interconnected systems.
Collapse
Affiliation(s)
- Sheng Zhu
- Center for Computational Biology, Beijing Forestry University, Beijing 100083, China. ; Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA. Tel: +001 717 531 2037; Fax: +001 717 531 0480; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Regulation of RamA by RamR in Salmonella enterica serovar Typhimurium: isolation of a RamR superrepressor. Antimicrob Agents Chemother 2012; 56:6037-40. [PMID: 22948865 DOI: 10.1128/aac.01320-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RamA is a transcription factor involved in regulating multidrug resistance in Salmonella enterica serovar Typhimurium SL1344. Green fluorescent protein (GFP) reporter fusions were exploited to investigate the regulation of RamA expression by RamR. We show that RamR represses the ramA promoter by binding to a palindromic sequence and describe a superrepressor RamR mutant that binds to the ramA promoter sequence more efficiently, thus exhibiting a ramA inactivated phenotype.
Collapse
|
32
|
Deyneko IV, Weiss S, Leschner S. An integrative computational approach to effectively guide experimental identification of regulatory elements in promoters. BMC Bioinformatics 2012; 13:202. [PMID: 22897887 PMCID: PMC3465240 DOI: 10.1186/1471-2105-13-202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 08/01/2012] [Indexed: 01/22/2023] Open
Abstract
Background Transcriptional activity of genes depends on many factors like DNA motifs, conformational characteristics of DNA, melting etc. and there are computational approaches for their identification. However, in real applications, the number of predicted, for example, DNA motifs may be considerably large. In cases when various computational programs are applied, systematic experimental knock out of each of the potential elements obviously becomes nonproductive. Hence, one needs an approach that is able to integrate many heterogeneous computational methods and upon that suggest selected regulatory elements for experimental verification. Results Here, we present an integrative bioinformatic approach aimed at the discovery of regulatory modules that can be effectively verified experimentally. It is based on combinatorial analysis of known and novel binding motifs, as well as of any other known features of promoters. The goal of this method is the identification of a collection of modules that are specific for an established dataset and at the same time are optimal for experimental verification. The method is particularly effective on small datasets, where most statistical approaches fail. We apply it to promoters that drive tumor-specific gene expression in tumor-colonizing Gram-negative bacteria. The method successfully identified a number of potential modules, which required only a few experiments to be verified. The resulting minimal functional bacterial promoter exhibited high specificity of expression in cancerous tissue. Conclusions Experimental analysis of promoter structures guided by bioinformatics has proved to be efficient. The developed computational method is able to include heterogeneous features of promoters and suggest combinatorial modules for experimental testing. Expansibility and robustness of the methodology implemented in the approach ensures good results for a wide range of problems.
Collapse
Affiliation(s)
- Igor V Deyneko
- Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstr, 7, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|
33
|
Functional genomics studies shed light on the nutrition and gene expression of non-typhoidal Salmonella and enterovirulent E. coli in produce. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Leschner S, Deyneko IV, Lienenklaus S, Wolf K, Bloecker H, Bumann D, Loessner H, Weiss S. Identification of tumor-specific Salmonella Typhimurium promoters and their regulatory logic. Nucleic Acids Res 2011; 40:2984-94. [PMID: 22140114 PMCID: PMC3326293 DOI: 10.1093/nar/gkr1041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Conventional cancer therapies are often limited in effectiveness and exhibit strong side effects. Therefore, alternative therapeutic strategies are demanded. The employment of tumor-colonizing bacteria that exert anticancer effects is such a novel approach that attracts increasing attention. For instance, Salmonella enterica serovar Typhimurium has been used in many animal tumor models as well as in first clinical studies. These bacteria exhibit inherent tumoricidal effects. In addition, they can be used to deliver therapeutic agents. However, bacterial expression has to be restricted to the tumor to prevent toxic substances from harming healthy tissue. Therefore, we screened an S. Typhimurium promoter-trap library to identify promoters that exclusively drive gene expression in the cancerous tissue. Twelve elements could be detected that show reporter gene expression in tumors but not in spleen and liver. In addition, a DNA motif was identified that appears to be necessary for tumor specificity. Now, such tumor-specific promoters can be used to safely express therapeutic proteins by tumor-colonizing S. Typhimurium directly in the neoplasia.
Collapse
Affiliation(s)
- Sara Leschner
- Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2011; 2:101. [PMID: 21772831 PMCID: PMC3131049 DOI: 10.3389/fmicb.2011.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. are major cause of human morbidity and mortality worldwide. Upon entry into the human host, Salmonella spp. must overcome the resistance to colonization mediated by the gut microbiota and the innate immune system. They successfully accomplish this by inducing inflammation and mechanisms of innate immune defense. Many models have been developed to study Salmonella spp. interaction with the microbiota that have helped to identify factors necessary to overcome colonization resistance and to mediate disease. Here we review the current state of studies into this important pathogen/microbiota/host interaction in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Brian M M Ahmer
- The Department of Microbiology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
36
|
Abuaita BH, Withey JH. Genetic screening for bacterial mutants in liquid growth media by fluorescence-activated cell sorting. J Microbiol Methods 2011; 84:109-13. [PMID: 21094189 PMCID: PMC3026434 DOI: 10.1016/j.mimet.2010.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/28/2010] [Accepted: 11/07/2010] [Indexed: 11/25/2022]
Abstract
Many bacterial pathogens have defined in vitro virulence inducing conditions in liquid media which lead to production of virulence factors important during an infection. Identifying mutants that no longer respond to virulence inducing conditions will increase our understanding of bacterial pathogenesis. However, traditional genetic screens require growth on solid media. Bacteria in a single colony are in every phase of the growth curve, which complicates the analysis and makes screens for growth phase-specific mutants problematic. Here, we utilize fluorescence-activated cell sorting in conjunction with random transposon mutagenesis to isolate bacteria grown in liquid media that are defective in virulence activation. This method permits analysis of an entire bacterial population in real time and selection of individual bacterial mutants with the desired gene expression profile at any time point after induction. We have used this method to identify Vibrio cholerae mutants defective in virulence induction.
Collapse
Affiliation(s)
- Basel H. Abuaita
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI
| | - Jeffrey H. Withey
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
37
|
Abstract
As the genomics era matures, the availability of complete microbial genome sequences is facilitating computational approaches to understand bacterial genomes and DNA structure/function relationships. From the genome of pathogens, we can derive invaluable information on potential targets for new antimicrobial agents. Advancements in high-throughput 'omics' technologies and the availability of multiple isolates of the same species have significantly changed the time frame and scope for identifying novel therapeutic targets. This article aims to discuss selected aspects of the bacterial genome, and advocates 'omics'-based techniques to advance the discovery of new therapeutic targets against extracellular bacterial pathogens.
Collapse
Affiliation(s)
- Nagathihalli S Nagaraj
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
38
|
Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 2010; 34:554-87. [DOI: 10.1111/j.1574-6976.2010.00214.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 2010; 8:401-12. [PMID: 20453875 DOI: 10.1038/nrmicro2351] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New technologies such as high-throughput methods and 13C-isotopologue-profiling analysis are beginning to provide us with insight into the in vivo metabolism of microorganisms, especially in the host cell compartments that are colonized by intracellular bacterial pathogens. In this Review, we discuss the recent progress made in determining the major carbon sources and metabolic pathways used by model intracellular bacterial pathogens that replicate either in the cytosol or in vacuoles of infected host cells. Furthermore, we highlight the possible links between intracellular carbon metabolism and the expression of virulence genes.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
40
|
Close DM, Ripp S, Sayler GS. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. SENSORS (BASEL, SWITZERLAND) 2009; 9:9147-74. [PMID: 22291559 PMCID: PMC3260636 DOI: 10.3390/s91109147] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/14/2009] [Accepted: 10/23/2009] [Indexed: 11/19/2022]
Abstract
Whole-cell, genetically modified bioreporters are designed to emit detectable signals in response to a target analyte or related group of analytes. When integrated with a transducer capable of measuring those signals, a biosensor results that acts as a self-contained analytical system useful in basic and applied environmental, medical, pharmacological, and agricultural sciences. Historically, these devices have focused on signaling proteins such as green fluorescent protein, aequorin, firefly luciferase, and/or bacterial luciferase. The biochemistry and genetic development of these sensor systems as well as the advantages, challenges, and common applications of each one will be discussed.
Collapse
Affiliation(s)
- Dan M. Close
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| | - Steven Ripp
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| | - Gary S. Sayler
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| |
Collapse
|
41
|
Zhang X, Pan Z, Fang Q, Zheng J, Hu M, Jiao X. An auto-inducible Escherichia coli lysis system controlled by magnesium. J Microbiol Methods 2009; 79:199-204. [DOI: 10.1016/j.mimet.2009.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/26/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
|
42
|
Salmonella enterica serovar Typhimurium NiFe uptake-type hydrogenases are differentially expressed in vivo. Infect Immun 2008; 76:4445-54. [PMID: 18625729 DOI: 10.1128/iai.00741-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium, a common enteric pathogen, possesses three NiFe uptake-type hydrogenases. The results from mouse infection studies suggest that the H(2) oxidation capacity provided by these hydrogenases is important for virulence. Since the three enzymes are similar in structure and function, it may be expected that they are utilized under different locations and times during an infection. A recombination-based method to examine promoter activity in vivo (RIVET) was used to determine hydrogenase gene expression in macrophages, polymorphonuclear leukocyte (PMN)-like cells, and a mouse model of salmonellosis. The hyd and hya promoters showed increased expression in both murine macrophages and human PMN-like cells compared to that in the medium-only controls. Quantitative reverse transcription-PCR results suggested that hyb is also expressed in phagocytes. A nonpolar hya mutant was compromised for survival in macrophages compared to the wild type. This may be due to lower tolerance to acid stress, since the hya mutant was much more acid sensitive than the wild type. In addition, hya mutant cells were internalized by macrophages the same as wild-type cells. Mouse studies (RIVET) indicate that hyd is highly expressed in the liver and spleen early during infection but is expressed poorly in the ileum in infected animals. Late in the infection, the hyd genes were expressed at high levels in the ileum as well as in the liver and spleen. The hya genes were expressed at low levels in all locations tested. These results suggest that the hydrogenases are used to oxidize hydrogen in different stages of an infection.
Collapse
|
43
|
Expression of green fluorescent protein fused to magnetosome proteins in microaerophilic magnetotactic bacteria. Appl Environ Microbiol 2008; 74:4944-53. [PMID: 18539817 DOI: 10.1128/aem.00231-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.
Collapse
|
44
|
Enninga J, Sansonetti P, Tournebize R. Roundtrip explorations of bacterial infection: from single cells to the entire host and back. Trends Microbiol 2007; 15:483-90. [PMID: 17983749 DOI: 10.1016/j.tim.2007.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/04/2007] [Accepted: 10/24/2007] [Indexed: 01/05/2023]
Abstract
Host-pathogen interactions are highly regulated, dynamic processes that take place at the molecular, cellular and organ level. Innovative imaging technologies have emerged recently to investigate the underlying mechanisms of host-pathogen interactions. Innovations in fluorescence microscopy enable functional studies on the single-cell level. New light microscopes have been developed that improve the resolution to less than 100 nm. At the other extreme, intravital microscopy enables the correlation of cellular events on the organ level. This is also achieved by alternatives to microscopy such as bioluminescence, positron-emission tomography and magnetic resonance imaging. The methodologies described here will have a tremendous effect on our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Jost Enninga
- Unité de Pathogénie Microbienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France.
| | | | | |
Collapse
|